1
|
Sayedyahossein S, Thines L, Sacks DB. Ca 2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal 2023; 110:110846. [PMID: 37549859 PMCID: PMC10529277 DOI: 10.1016/j.cellsig.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The Hippo signaling pathway is a master regulator of organ size and tissue homeostasis. Hippo integrates a broad range of cellular signals to regulate numerous processes, such as cell proliferation, differentiation, migration and mechanosensation. Ca2+ is a fundamental second messenger that modulates signaling cascades involved in diverse cellular functions, some of which are also regulated by the Hippo pathway. Studies published over the last five years indicate that Ca2+ can influence core Hippo pathway components. Nevertheless, comprehensive understanding of the crosstalk between Ca2+ signaling and the Hippo pathway, and possible mechanisms through which Ca2+ regulates Hippo, remain to be elucidated. In this review, we summarize the multiple intersections between Ca2+ and the Hippo pathway and address the biological consequences.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Bae B, Gruner HN, Lynch M, Feng T, So K, Oliver D, Mastick GS, Yan W, Pieraut S, Miura P. Elimination of Calm1 long 3'-UTR mRNA isoform by CRISPR-Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. RNA (NEW YORK, N.Y.) 2020; 26:1414-1430. [PMID: 32522888 PMCID: PMC7491327 DOI: 10.1261/rna.076430.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 05/04/2023]
Abstract
The majority of mouse and human genes are subject to alternative cleavage and polyadenylation (APA), which most often leads to the expression of two or more alternative length 3' untranslated region (3'-UTR) mRNA isoforms. In neural tissues, there is enhanced expression of APA isoforms with longer 3'-UTRs on a global scale, but the physiological relevance of these alternative 3'-UTR isoforms is poorly understood. Calmodulin 1 (Calm1) is a key integrator of calcium signaling that generates short (Calm1-S) and long (Calm1-L) 3'-UTR mRNA isoforms via APA. We found Calm1-L expression to be largely restricted to neural tissues in mice including the dorsal root ganglion (DRG) and hippocampus, whereas Calm1-S was more broadly expressed. smFISH revealed that both Calm1-S and Calm1-L were subcellularly localized to neural processes of primary hippocampal neurons. In contrast, cultured DRG showed restriction of Calm1-L to soma. To investigate the in vivo functions of Calm1-L, we implemented a CRISPR-Cas9 gene editing strategy to delete a small region encompassing the Calm1 distal poly(A) site. This eliminated Calm1-L expression while maintaining expression of Calm1-S Mice lacking Calm1-L (Calm1ΔL/ΔL ) exhibited disorganized DRG migration in embryos, and reduced experience-induced neuronal activation in the adult hippocampus. These data indicate that Calm1-L plays functional roles in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bongmin Bae
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hannah N Gruner
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Maebh Lynch
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Ting Feng
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Kevin So
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Wei Yan
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
3
|
Adebayo OL, Khera A, Sandhir R, Adenuga GA. Reduced expressions of calmodulin genes and protein and reduced ability of calmodulin to activate plasma membrane Ca(2+)-ATPase in the brain of protein undernourished rats: modulatory roles of selenium and zinc supplementation. Cell Biochem Funct 2016; 34:95-103. [PMID: 26879852 DOI: 10.1002/cbf.3168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 11/08/2022]
Abstract
The roles of protein undernutrition as well as selenium (Se) and zinc (Zn) supplementation on the ability of calmodulin (CaM) to activate erythrocyte ghost membrane (EGM) Ca(2+)-ATPase and the calmodulin genes and protein expressions in rat's cortex and cerebellum were investigated. Rats on adequate protein diet and protein-undernourished (PU) rats were fed with diet containing 16% and 5% casein, respectively, for a period of 10 weeks. The rats were then supplemented with Se and Zn at a concentration of 0.15 and 227 mg l(-1), respectively, in drinking water for 3 weeks. The results obtained from the study showed significant reductions in synaptosomal plasma membrane Ca(2+)-ATPase (PMCA) activity, Ca(2+)/CaM activated EGM Ca(2+) ATPase activity and calmodulin genes and protein expressions in PU rats. Se or Zn supplementation improved the ability of Ca(2+)/CaM to activate EGM Ca(2+)-ATPase and protein expressions. Se or Zn supplementation improved gene expression in the cerebellum but not in the cortex. Also, the activity of PMCA was significantly improved by Zn. In conclusion, it is postulated that Se and Zn might be beneficial antioxidants in protecting against neuronal dysfunction resulting from reduced level of calmodulin such as present in protein undernutrition.
Collapse
Affiliation(s)
- Olusegun L Adebayo
- Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.,Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India.,Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ikenne, Ogun State, Nigeria
| | - Alka Khera
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Gbenga A Adenuga
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ikenne, Ogun State, Nigeria
| |
Collapse
|
4
|
Kobayashi H, Saragai S, Naito A, Ichio K, Kawauchi D, Murakami F. Calm1 signaling pathway is essential for the migration of mouse precerebellar neurons. Development 2014; 142:375-84. [PMID: 25519244 DOI: 10.1242/dev.112680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The calcium ion regulates many aspects of neuronal migration, which is an indispensable process in the development of the nervous system. Calmodulin (CaM) is a multifunctional calcium ion sensor that transduces much of the signal. To better understand the role of Ca(2+)-CaM in neuronal migration, we investigated mouse precerebellar neurons (PCNs), which undergo stereotyped, long-distance migration to reach their final position in the developing hindbrain. In mammals, CaM is encoded by three non-allelic CaM (Calm) genes (Calm1, Calm2 and Calm3), which produce an identical protein with no amino acid substitutions. We found that these CaM genes are expressed in migrating PCNs. When the expression of CaM from this multigene family was inhibited by RNAi-mediated acute knockdown, inhibition of Calm1 but not the other two genes caused defective PCN migration. Many PCNs treated with Calm1 shRNA failed to complete their circumferential tangential migration and thus failed to reach their prospective target position. Those that did reach the target position failed to invade the depth of the hindbrain through the required radial migration. Overall, our results suggest the participation of CaM in both the tangential and radial migration of PCNs.
Collapse
Affiliation(s)
- Hiroaki Kobayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunsuke Saragai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Naito
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Ichio
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Kawauchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Huang KP, Huang FL, Shetty PK. Stimulation-mediated translocation of calmodulin and neurogranin from soma to dendrites of mouse hippocampal CA1 pyramidal neurons. Neuroscience 2011; 178:1-12. [PMID: 21256930 DOI: 10.1016/j.neuroscience.2011.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 11/27/2022]
Abstract
Calmodulin (CaM) and neurogranin (Ng) are two abundant neuronal proteins in the forebrain whose interactions are implicated in the enhancement of synaptic plasticity. To gain further insight into the actions of these two proteins we investigated whether they co-localize in principle neurons and whether they respond to high frequency stimulation in a coordinated fashion. Immunohistochemical staining of CaM and Ng in mouse hippocampal slices revealed that CaM was highly concentrated in the nucleus of CA1 pyramidal neurons, whereas Ng was more broadly localized throughout the soma and dendrites. The asymmetrical localization of CaM in the nucleus of pyramidal neurons was in sharp contrast to the distribution observed in pyramidal cells of the neighboring subiculum, where CaM was uniformly localized throughout the soma and dendrites. The somatic concentrations of CaM and Ng in CA1 pyramidal neurons were approximately 10- and two-fold greater than observed in the dendrites, respectively. High frequency stimulation (HFS) of hippocampal slices promoted mobilization of CaM and Ng from soma to dendrites. These responses were spatially restricted to the area close to the site of stimulation and were inhibited by the N-methyl-D-asparate receptor antagonist 2-amino-5-phosphonopentanoic acid. Furthermore, HFS failed to promote translocation of CaM from soma to dendrites of slices from Ng knockout mice, which also exhibited deficits in HFS-induced long-term potentiation. Translocated CaM and Ng exhibited distinct puncta decorating the apical dendrites of pyramidal neurons and appeared to be concentrated in dendritic spines. These findings suggest that mobilization of CaM and Ng to stimulated dendritic spines may enhance synaptic efficacy by increasing and prolonging the Ca2+ transients and activation of Ca2+/CaM-dependent enzymes.
Collapse
Affiliation(s)
- K-P Huang
- Program of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
6
|
Chen S, Song Y, Cao J, Wang G, Wei H, Xu X, Lu L. Localization and function of calmodulin in live-cells of Aspergillus nidulans. Fungal Genet Biol 2010; 47:268-78. [DOI: 10.1016/j.fgb.2009.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/29/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
7
|
Friedrich FW, Bausero P, Sun Y, Treszl A, Kramer E, Juhr D, Richard P, Wegscheider K, Schwartz K, Brito D, Arbustini E, Waldenstrom A, Isnard R, Komajda M, Eschenhagen T, Carrier L. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J 2009; 30:1648-55. [DOI: 10.1093/eurheartj/ehp153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Abstract
Calmodulin (CaM), the ubiquitous calcium sensor protein, is involved in almost all intracellular events. In higher vertebrates, a single protein is encoded by multiple, co-expressed genes, and the number of discrete CaM transcripts produced by a single cell is further increased by intense alternative polyadenylation signal usage. It appears most likely that the individual transcripts possess unique intracellular fates, so that this apparent redundancy multiplies the number of challenges which the cell is able to respond to. The promoter regions of the different CaM genes have been analyzed. Several putative transcription factor binding sites have been identified; however, the elements responsible for their generally strong co-expression, and even those providing different spatial and temporal control, remain to be elucidated. Moreover, a powerful posttranscriptional control mechanism is responsible for the establishment of local intracellular CaM mRNA pools. This is mainly achieved by the selective targeting of mRNAs to various cellular domains, although regulation via mRNA stability cannot be ruled out. Finally, tailoring of the CaM protein itself offers the fastest way whereby the properties of this Ca2+-receptor protein can be changed. Indeed, several posttranslational modifications of CaM were described earlier, but their functions are not yet understood. Here, we briefly review the regulatory levels from the gene transcription to the covalent modifications of the synthesized protein.
Collapse
Affiliation(s)
- Elod Kortvely
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem u., H-6722, Szeged, Hungary
| | | |
Collapse
|
9
|
Burwinkel B, Hu B, Schroers A, Clemens PR, Moses SW, Shin YS, Pongratz D, Vorgerd M, Kilimann MW. Muscle glycogenosis with low phosphorylase kinase activity: mutations in PHKA1, PHKG1 or six other candidate genes explain only a minority of cases. Eur J Hum Genet 2003; 11:516-26. [PMID: 12825073 DOI: 10.1038/sj.ejhg.5200996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscle-specific deficiency of phosphorylase kinase (Phk) causes glycogen storage disease, clinically manifesting in exercise intolerance with early fatiguability, pain, cramps and occasionally myoglobinuria. In two patients and in a mouse mutant with muscle Phk deficiency, mutations were previously found in the muscle isoform of the Phk alpha subunit, encoded by the X-chromosomal PHKA1 gene (MIM # 311870). No mutations have been identified in the muscle isoform of the Phk gamma subunit (PHKG1). In the present study, we determined Q1the structure of the PHKG1 gene and characterized its relationship to several pseudogenes. In six patients with adult- or juvenile-onset muscle glycogenosis and low Phk activity, we then searched for mutations in eight candidate genes. The coding sequences of all six genes that contribute to Phk in muscle were analysed: PHKA1, PHKB, PHKG1, CALM1, CALM2 and CALM3. We also analysed the genes of the muscle isoform of glycogen phosphorylase (PYGM), of a muscle-specific regulatory subunit of the AMP-dependent protein kinase (PRKAG3), and the promoter regions of PHKA1, PHKB and PHKG1. Only in one male patient did we find a PHKA1 missense mutation (D299V) that explains the enzyme deficiency. Two patients were heterozygous for single amino-acid replacements in PHKB that are of unclear significance (Q657K and Y770C). No sequence abnormalities were found in the other three patients. If these results can be generalized, only a fraction of cases with muscle glycogenosis and a biochemical diagnosis of low Phk activity are caused by coding, splice-site or promoter mutations in PHKA1, PHKG1 or other Phk subunit genes. Most patients with this diagnosis probably are affected either by elusive mutations of Phk subunit genes or by defects in other, unidentified genes.
Collapse
Affiliation(s)
- Barbara Burwinkel
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Calmodulin (CaM), a multifunctional intracellular calcium receptor, is a key element in signaling mechanisms. It is encoded in vertebrates by multiple apparently redundant genes (CaM I, II, III). To investigate whether differential expression takes place in the developing rat brain, a quantitative in situ hybridization analysis was carried out involving 15 brain areas at six ages between embryonic day 19 and postnatal day 20 (PD20) with gene-specific [(35)S]cRNA probes. A widespread, developmental stage-specific and differential expression of the three CaM genes was observed. The characteristic changes in the CaM mRNA levels in the examined time frame allowed the brain regions to be classified into three categories. For the majority of the areas (e.g. the piriform cortex for CaM III), the signal intensities peaked at around PD10 and the expression profile was symmetric (type 1). Other regions (e.g. the cerebral cortex, layer 1 for CaM II) displayed their highest signal intensities at the earliest age measured, followed by a gradual decrease (type 2). The signal intensities in the regions in the third group (e.g. the hypothalamus for CaM III) fluctuated from age to age (type 3). Marked CaM mRNA levels were measured for each transcript corresponding to the three CaM genes in the molecular layers of the cerebral and cerebellar cortici and hippocampus, suggesting their dendritic translocation. The highest signal intensity was measured for CaM II mRNA, followed by those for CaM III and CaM I mRNAs on PD1. However, the CaM II and CaM III mRNAs subsequently decreased steeply, while the CaM I mRNAs were readily detected even on PD20. Our results suggest that during development (1) the transcription of the CaM genes is under differential, area-specific control, and (2) a large population of CaM mRNAs is targeted to the dendritic compartment in a gene-specific manner.
Collapse
Affiliation(s)
- E Kortvely
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem Street, P.O. Box 659, H-6722 Szeged, Hungary
| | | | | | | |
Collapse
|
11
|
Kovacs B, Gulya K. Differential expression of multiple calmodulin genes in cells of the white matter of the rat spinal cord. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:28-34. [PMID: 12191491 DOI: 10.1016/s0169-328x(02)00159-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calmodulin (CaM) displays complex cytoplasmic and synaptic functions in the nervous system. However, the very little information that is available on the gene expression of the multiple CaM genes in different glial cell types are from brain tissues of rodents, and no data have been published on their CaM gene expression in the spinal cord. Therefore, we have modified and tested a color in situ hybridization method sensitive enough to detect mRNA populations in cells with low CaM mRNA abundances in the white matter of the rat lumbar spinal cord. Morphologically, two distinct cell types expressing CaM mRNAs were detected. Differential CaM gene expression was demonstrated in medium-sized astrocyte-like cells that reside predominantly in the dorsal column of the spinal cord, where CaM I mRNA was most abundant, followed by the CaM III and CaM II mRNA populations. The oligodendrocytes displayed a less differential CaM gene expression in both the dorsal and the lateral columns, but the CaM I gene had a slightly higher expression level than those of the other CaM genes. The results indicate that the CaM gene expression profile of the spinal cord is richer and more complex than previously thought on the basis of conventional radioactive in situ hybridization techniques. Thus, when a method that is sufficiently sensitive was used, more cell types could be demonstrated to express CaM mRNAs; hence, in spite of their lower CaM expression, glial cells could also be visualized.
Collapse
Affiliation(s)
- Beatrix Kovacs
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem u., P.O. Box 659, Szeged, Hungary
| | | |
Collapse
|
12
|
Palfi A, Kortvely E, Fekete E, Kovacs B, Varszegi S, Gulya K. Differential calmodulin gene expression in the rodent brain. Life Sci 2002; 70:2829-55. [PMID: 12269397 DOI: 10.1016/s0024-3205(02)01544-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apparently redundant members of the calmodulin (CaM) gene family encode for the same amino acid sequence. CaM, a ubiquitous cytoplasmic calcium ion receptor, regulates the function of a variety of target molecules even in a single cell. Maintenance of the fidelity of the active CaM-target interactions in different compartments of the cell requires a rather complex control of the total cellular CaM pool comprising multiple levels of regulatory circuits. Among these mechanisms, it has long been proposed that a multigene family maximizes the regulatory potentials at the level of the gene expression. CaM genes are expressed at a particularly profound level in the mammalian central nervous system (CNS), especially in the highly polarized neurons. Thus, in the search for clear evidence of the suggested differential expression of the CaM genes, much of the research has been focused on the elements of the CNS. This review aims to give a comprehensive survey on the current understanding of this field at the level of the regulation of CaM mRNA transcription and distribution in the rodent brain. The results indicate that the CaM genes are indeed expressed in a gene-specific manner in the developing and adult brain under physiological conditions. To establish local CaM pools in distant intracellular compartments (dendrites and glial processes), local protein synthesis from differentially targeted mRNAs is also employed. Moreover, the CaM genes are controlled in a unique, gene-specific fashion when responding to certain external stimuli. Additionally, putative regulatory elements have been identified on the CaM genes and mRNAs.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Zoology and Cell Biology, University of Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
13
|
Shimoda K, Miyake T, Kimura J, Maejima K. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica. Genet Mol Biol 2002. [DOI: 10.1590/s1415-47572002000100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Jun Kimura
- Keio University School of Medicine, Japan
| | | |
Collapse
|
14
|
Vizi S, Palfi A, Hatvani L, Gulya K. Methods for quantification of in situ hybridization signals obtained by film autoradiography and phosphorimaging applied for estimation of regional levels of calmodulin mRNA classes in the rat brain. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 8:32-44. [PMID: 11522526 DOI: 10.1016/s1385-299x(01)00082-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Comparative analysis of the regional abundances of the various mRNAs in neural tissues requires the quantitation of target nucleic acid sequences while their tissue distribution is preserved. A quantitative in situ hybridization protocol is presented for the assessment of regional levels of calmodulin (CaM) I, II and III mRNAs in the rat brain. Coronal brain cryostat sections were hybridized with multiple CaM [35S]cRNA probes and co-exposed to an autoradiographic film or storage phosphor screen, together with a membrane-based radioactive standard scale. The membrane scale was calibrated against a brain paste standard scale. Regression analyses of the sensitometric graphs of standard scales corresponding to the autoradiographic film and to the storage phosphor screen were performed by means of exponential (ROD=p(1)(1-exp[-p(2)x])) and linear (LI=ax) functions, respectively (ROD is relative optical density, LI is labeling intensity, and x is radioactivity). The ROD/LI values for the hybridized brain regions were converted into cRNA probe copy numbers (estimations of mRNA copy numbers) through use of the above standard scales. This method was applied to compare the regional abundances of multiple CaM mRNAs in the brains of control, dehydrated, chronic ethanol-treated and ethanol withdrawal-treated animals.
Collapse
Affiliation(s)
- S Vizi
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem Street, PO Box 659, H-6722, Szeged, Hungary
| | | | | | | |
Collapse
|
15
|
Vizi S, Palfi A, Gulya K. Multiple calmodulin genes exhibit systematically differential responses to chronic ethanol treatment and withdrawal in several regions of the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 83:63-71. [PMID: 11072096 DOI: 10.1016/s0169-328x(00)00185-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ethanol induces profound alterations in the neuronal signaling systems, including the calcium (Ca(2+)) signaling. Prolonged exposure to ethanol evokes adaptive changes in the affected systems as they strive to restore the normal neuronal function. We investigated the involvement of calmodulin (CaM) genes, coding for the major mediator protein of intracellular Ca(2+) signals, in these adaptive processes at the mRNA level. The changes induced in the regional abundances of the CaM I, II, and III mRNA classes by chronic ethanol treatment and withdrawal were examined by means of quantitative in situ hybridization, employing gene-specific [35S]cRNA probes on rat brain cryostat sections. Regional analysis of the resulting changes in mRNA levels highlighted brain areas that belong in neuronal systems known to be especially sensitive to the action of ethanol. The results revealed systematically differential regulation for the three mRNA classes: the CaM I and CaM III mRNA levels displayed increases, and CaM II levels decreases in the affected brain regions, in both chronic ethanol- and withdrawal-treated animals. As regards the numbers of brain regions undergoing significant alterations in mRNA content, the CaM I mRNA levels exhibited changes in most brain areas, the CaM II levels did so in a lower number of brain regions, and the CaM III levels changed in only a few brain areas. These results suggest a differential regulation for the CaM genes in the rat brain and may help towards elucidation of the functional significance of the multiple CaM genes in the mammalian genome.
Collapse
Affiliation(s)
- S Vizi
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem St., POB 659, H-6722, Szeged, Hungary
| | | | | |
Collapse
|
16
|
Toutenhoofd SL, Strehler EE. The calmodulin multigene family as a unique case of genetic redundancy: multiple levels of regulation to provide spatial and temporal control of calmodulin pools? Cell Calcium 2000; 28:83-96. [PMID: 10970765 DOI: 10.1054/ceca.2000.0136] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calmodulin (CaM) is a ubiquitous, highly conserved calcium sensor protein involved in the regulation of a wide variety of cellular events. In vertebrates, an identical CaM protein is encoded by a family of non-allelic genes, raising questions concerning the evolutionary pressure responsible for the maintenance of this apparently redundant family. Here we review the evidence that the control of the spatial and temporal availability of CaM may require multiple regulatory levels to ensure the proper localization, maintenance and size of intracellular CaM pools. Differential transcription of the CaM genes provides one level of regulation to meet tissue-specific, developmental and cell-specific needs for altered CaM levels. Post-transcriptional regulation occurs at the level of mRNA stability, perhaps dependent on alternative polyadenylation and differences in the untranslated sequences of the multiple gene transcripts. Recent evidence indicates that trafficking of specific CaM mRNAs may occur to specialized cellular locales such as the dendrites of neurons. This could allow local CaM synthesis and thereby help generate local pools of CaM. Local CaM activity may be further regulated by post-translational mechanisms such as phosphorylation or storage of CaM in a 'masked' form. The spatial resolution of CaM activity is enhanced by the limited free diffusion of CaM combined with differential affinity for and availability of target proteins. Preserving multiple CaM genes with divergent noncoding sequences may be necessary in complex organisms to ensure that the many CaM-dependent processes occur with the requisite spatial and temporal resolution. Transgenic mouse models and studies on mice carrying single and double gene 'knockouts' promise to shed further light on the role of specificity versus redundancy in the evolutionary maintenance of the vertebrate CaM multigene family.
Collapse
Affiliation(s)
- S L Toutenhoofd
- Program in Molecular Neuroscience, Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
17
|
Hu WH, Qiang WA, Li F, Liu N, Wang GQ, Wang HY, Wan XS, Liao WH, Liu JS, Jen MF. Constitutive and inducible nitric oxide synthases after dynorphin-induced spinal cord injury. J Chem Neuroanat 2000; 17:183-97. [PMID: 10697245 DOI: 10.1016/s0891-0618(99)00039-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has recently been demonstrated that selective inhibition of both neuronal constitutive and inducible nitric oxide synthases (ncNOS and iNOS) is neuroprotective in a model of dynorphin (Dyn) A(1-17)-induced spinal cord injury. In the present study, various methods including the conversion of 3H-L-arginine to 3H-citrulline, immunohistochemistry and in situ hybridization are employed to determine the temporal profiles of the enzymatic activities, immunoreactivities, and mRNA expression for both ncNOS and iNOS after intrathecal injection of a neurotoxic dose (20 nmol) of Dyn A(1-17). The expression of ncNOS immunoreactivity and mRNA increased as early as 30 min after injection and persisted for 1-4 h. At 24-48 h, the number of ncNOS positive cells remained elevated while most neurons died. The cNOS enzymatic activity in the ventral spinal cord also significantly increased at 30 min 48 h, but no significant changes in the dorsal spinal cord were observed. However, iNOS mRNA expression increased later at 2 h, iNOS immunoreactivity and enzymatic activity increased later at 4 h and persisted for 24-48 h after injection of 20 nmol Dyn A(1-17). These results indicate that both ncNOS and iNOS are associated with Dyn-induced spinal cord injury, with ncNOS predominantly involved at an early stage and iNOS at a later stage.
Collapse
Affiliation(s)
- W H Hu
- Department of Spinal Cord Injury, Research Institute of Surgery and Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Palfi A, Gulya K. Water deprivation upregulates the three calmodulin genes in exclusively the supraoptic nucleus of the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:111-6. [PMID: 10640681 DOI: 10.1016/s0169-328x(99)00270-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM), the ubiquitous intracellular calcium-binding protein, is coded by three bona fide CaM genes (CaM I, CaM II and CaM III) in mammals. They code for the same protein and are transcribed at particularly high levels in the brain, where CaM plays an essential role in basic neuronal functions. In this study, the expression of the three CaM genes in response to osmotic stimuli by water deprivation was investigated in the rat brain, with particular interest as concerns the hypothalamic magnocellular nuclei. CaM mRNA levels were determined by quantitative in situ hybridization autoradiography with gene-specific [35S]cRNA probes. In response to osmotic challenge, it was found that upregulation of the three CaM genes participates in the activation of the hypothalamo-hypophyseal system in the supraoptic nucleus (SON) (126% to 169%), but not in the magnocellular part of the paraventricular hypothalamic nucleus (PVN) (-10%). CaM mRNA levels decreased by 10%-15% in the suprachiasmatic nucleus (SCh) and many other extrahypothalamic brain areas. The opposite responses of the CaM gene expression in the SON and the magnocellular part of the PVN suggest a functional difference between them. Moreover, the significantly different magnitudes of the changes in the CaM mRNA levels in the SON nucleus (138%, 126% and 169% for CaM I, CaM II and CaM III, respectively) exemplify the precise differential control of the CaM gene expression in the brain.
Collapse
Affiliation(s)
- A Palfi
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem St., POB 659, H-6722, Szeged, Hungary
| | | |
Collapse
|
19
|
Palfi A, Vizi S, Gulya K. Differential distribution and intracellular targeting of mRNAs corresponding to the three calmodulin genes in rat brain. A quantitative in situ hybridization study. J Histochem Cytochem 1999; 47:583-600. [PMID: 10219052 DOI: 10.1177/002215549904700502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To investigate the pattern of expression of the three calmodulin (CaM) genes by in situ hybridization, gene-specific [35S]-cRNA probes complementary to the multiple CaM mRNAs were hybridized in rat brain sections and subsequently detected by quantitative film or high-resolution nuclear emulsion autoradiography. A widespread and differential area-specific distribution of the CaM mRNAs was detected. The expression patterns corresponding to the three CaM genes differed most considerably in the olfactory bulb, the cerebral and cerebellar cortices, the diagonal band, the suprachiasmatic and medial habenular nuclei, and the hippocampus. Moreover, the significantly higher CaM I and CaM III mRNA copy numbers than that of CaM II in the molecular layers of certain brain areas revealed a differential dendritic targeting of these mRNAs. The results indicate a differential pattern of distribution of the multiple CaM mRNAs at two levels of cellular organization in the brain: (a) region-specific expression and (b) specific intracellular targeting. A precise and gene-specific regulation of synthesis and distribution of CaM mRNAs therefore exists under physiological conditions in the rat brain.
Collapse
Affiliation(s)
- A Palfi
- Department of Zoology and Cell Biology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
20
|
Di Gregorio A, Villani MG, Locascio A, Ristoratore F, Aniello F, Branno M. Developmental regulation and tissue-specific localization of calmodulin mRNA in the protochordate Ciona intestinalis. Dev Growth Differ 1998; 40:387-94. [PMID: 9727352 DOI: 10.1046/j.1440-169x.1998.t01-2-00003.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A full-length cDNA encoding a highly conserved calmodulin was isolated from a cDNA library prepared from hatched larvae of the ascidian Ciona intestinalis. Sequence analysis has identified a 447 b.p. open reading frame, encoding a putative protein of 149 amino acid residues, with a predicted molecular weight of 16.8 kDa, showing 85-98% identity to known calmodulins. Northern blot analysis revealed a single transcript of about 0.8 kb in length, which was maternally expressed and progressively increased during development, until late tail-bud stage. Whole-mount in situ hybridizations, carried out on embryos at different stages of development, showed that starting from the neurula stage, the C. intestinalis calmodulin (Ci-CaM) expression became restricted to the neuroectoderm and that in larvae it was specifically detected in the nervous system.
Collapse
Affiliation(s)
- A Di Gregorio
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Toutenhoofd SL, Foletti D, Wicki R, Rhyner JA, Garcia F, Tolon R, Strehler EE. Characterization of the human CALM2 calmodulin gene and comparison of the transcriptional activity of CALM1, CALM2 and CALM3. Cell Calcium 1998; 23:323-38. [PMID: 9681195 DOI: 10.1016/s0143-4160(98)90028-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human calmodulin is encoded by three genes CALM1, CALM2 and CALM3 located on different chromosomes. To complete the characterization of this family, the exon-intron structure of CALM2 was solved by a combination of genomic DNA library screening and genomic PCR amplification. Intron interruptions were found at identical positions in human CALM2 as in CALM1 and CALM3; however, the overall size of CALM2 (16 kb) was almost twice that of the other two human CALM genes. Over 1 kb of the 5' flanking sequence of human CALM2 were determined, revealing the presence of a TATA-like sequence 27 nucleotides upstream of the transcriptional start site and several conserved sequence elements possibly involved in the regulation of this gene. To determine if differential transcriptional activity plays a major role in regulating cellular calmodulin levels, we directly measured and compared the mRNA abundance and transcriptional activity of the three CALM genes in proliferating human teratoma cells. CALM3 was at least 5-fold more actively transcribed than CALM1 or CALM2. CALM transcriptional activity agreed well with the mRNA abundance profile in the teratoma cells. In transient transfections using luciferase reporter genes driven by 1 kb of the 5' flanking DNA of the three CALM genes, the promoter activity correlated with the endogenous CALM transcriptional activity, but only when the 5' untranslated regions were included in the constructs. We conclude that the CALM gene family is differentially active at the transcriptional level in teratoma cells and that the 5' untranslated regions are necessary to recover full promoter activation.
Collapse
Affiliation(s)
- S L Toutenhoofd
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Sík A, Hájos N, Gulácsi A, Mody I, Freund TF. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc Natl Acad Sci U S A 1998; 95:3245-50. [PMID: 9501248 PMCID: PMC19727 DOI: 10.1073/pnas.95.6.3245] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 01/22/1998] [Indexed: 02/06/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein phosphatase 2B or calcineurin (CN) participates in several Ca2+-dependent signal transduction cascades and, thus, contributes to the short and long term regulation of neuronal excitability. By using a specific antibody to CN, we demonstrate its absence from hippocampal interneurons and illustrate a physiological consequence of such CN deficiency. Consistent with the lack of CN in interneurons as detected by immunocytochemistry, the CN inhibitors FK-506 or okadaic acid significantly prolonged N-methyl-D-aspartate channel openings recorded in the cell-attached mode in hippocampal principal cells but not those recorded in interneurons. Interneurons were also devoid of Ca2+/calmodulin-dependent protein kinase IIalpha, yet many of their nuclei contained the cyclic AMP-responsive element binding protein. On the basis of the CN and Ca2+/calmodulin-dependent protein kinase IIalpha deficiency of interneurons, entirely different biochemical mechanisms are expected to govern Ca2+-dependent neuronal plasticity in interneurons versus principal cells.
Collapse
Affiliation(s)
- A Sík
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest, H-1083, Hungary
| | | | | | | | | |
Collapse
|
23
|
Solà C, Tusell JM, Serratosa J. Calmodulin is expressed by reactive microglia in the hippocampus of kainic acid-treated mice. Neuroscience 1997; 81:699-705. [PMID: 9316022 DOI: 10.1016/s0306-4522(97)00245-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calmodulin is a calcium-binding protein that is highly abundant in the brain, where it is involved in many essential functions. The protein is mainly expressed by neuronal cells. Calmodulin is encoded by three different genes in mammals, all of them producing an identical protein. Alterations in the expression of either calmodulin genes or protein have been reported in the rodent brain by several authors in different experimental situations. However, no mention has been made to date of possible alterations in calmodulin expression in glial cells in response to certain stimuli. In the present study, we found an increase in the expression of calmodulin in reactive microglial cells in the mouse hippocampus 24 h after an intraperitoneal administration of a convulsant dose of kainic acid. The results show that a high expression of calmodulin can be added to the list of changes described to occur in microglial cells when they become reactive microglia in response to certain kinds of stimuli, in contrast to the non-detectable level of expression of this protein observed in the resting microglial cells. It is difficult to explain such an increase due to the great number of processes in which calmodulin is involved, but the great level of calmodulin observed in the reactive microglial cells shows that calmodulin immunolabelling can be used to reveal these kinds of cells.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, Spain
| | | | | |
Collapse
|
24
|
Arnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A 1997; 94:8842-7. [PMID: 9238065 PMCID: PMC23159 DOI: 10.1073/pnas.94.16.8842] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calbindin D28 encodes a calcium binding protein that is expressed in the cerebellum exclusively in Purkinje cells. We have used biolistic transfection of organotypic slices of P12 cerebellum to identify a 40-bp element from the calbindin promoter that is necessary and sufficient for Purkinje cell specific expression in this transient in situ assay. This element (PCE1) is also present in the calmodulin II promoter, which regulates expression of a second Purkinje cell Ca2+ binding protein. Expression of high levels of exogenous calbindin or calretinin decreased transcription mediated by PCE1 in Purkinje cells 2.5- to 3-fold, whereas the presence of 1 microM ionomycin in the extracellular medium increased expression. These results demonstrate that PCE1 is a component of a cell-specific and Ca2+-sensitive transcriptional regulatory mechanism that may play a key role in setting the Ca2+ buffering capacity of Purkinje cells.
Collapse
Affiliation(s)
- D B Arnold
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
25
|
Solà C, Tusell JM, Serratosa J. Comparative study of the pattern of expression of calmodulin messenger RNAs in the mouse brain. Neuroscience 1996; 75:245-56. [PMID: 8923538 DOI: 10.1016/0306-4522(96)00214-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calmodulin is a major calcium-binding protein in the mammalian brain, playing an important role in neuronal cell function. Its amino acid sequence is highly conserved and the protein is encoded by multiple genes. In the mouse brain, as well as in the rat and the human brain, three different genes have been detected for calmodulin, CaM I, CaM II and CaM III, all of which encode an identical protein. We studied the pattern of expression of the three calmodulin genes and the pattern of calmodulin distribution in the mouse brain by in situ hybridization histochemistry and immunohistochemistry. We found that calmodulin messenger RNAs from the three calmodulin genes were widely expressed in the mouse brain. Nevertheless, there were differences in their patterns of distribution. In general, all calmodulin messenger RNAs were preferentially distributed in hippocampus, cerebral cortex and cerebellar cortex, and CaM II messenger RNA also in caudate-putamen. However, all messenger RNAs showed clearly differentiated patterns of distribution in the hippocampus and the cerebellar cortex. Calmodulin immunoreactivity was present in all cells so far examined. Immunostaining was observed both in the cell nucleus, where it was especially strong, and in the cytoplasm. Our results suggest that the three calmodulin genes are differentially regulated in the mouse brain and also that, although all calmodulin genes have a basal expression, precise regulation of calmodulin levels might be attained through the different contribution of the three calmodulin genes.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Spain
| | | | | |
Collapse
|
26
|
Heiman RG, Atkinson RC, Andruss BF, Bolduc C, Kovalick GE, Beckingham K. Spontaneous avoidance behavior in Drosophila null for calmodulin expression. Proc Natl Acad Sci U S A 1996; 93:2420-5. [PMID: 8637889 PMCID: PMC39812 DOI: 10.1073/pnas.93.6.2420] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The regulatory protein calmodulin is a major mediator of calcium-induced changes in cellular activity. To analyze the roles of calmodulin in an intact animal, we have generated a calmodulin null mutation in Drosophila melanogaster. Maternal calmodulin supports calmodulin null individuals throughout embryogenesis, but they die within 2 days of hatching as first instar larvae. We have detected two pronounced behavioral abnormalities specific to the loss of calmodulin in these larvae. Swinging of the head and anterior body, which occurs in the presence of food, is three times more frequent in the null animals. More strikingly, most locomotion in calmodulin null larvae is spontaneous backward movement. This is in marked contrast to the wild-type situation where backward locomotion is seen only as a stimulus-elicited avoidance response. Our finding of spontaneous avoidance behavior has striking similarities to the enhanced avoidance responses produced by some calmodulin mutations in Paramecium. Thus our results suggest evolutionary conservation of a role for calmodulin in membrane excitability and linked behavioral responses.
Collapse
Affiliation(s)
- R G Heiman
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
In the rat, a single calmodulin (CaM) protein is encoded by three separate genes which produce five different transcripts. The significance of the multiple CaM genes is not known; however, individual CaM transcripts could be targeted to specific intracellular sites. In this report, the cellular distribution of CaM I mRNAs was analyzed in the postnatal rat brain. The 4.0-kb CaM I transcript was present in neuronal cell bodies and also localized to apical dendritic processes. In cerebral cortical neurons, the 4.0-kb CaM I mRNA was detected in apical dendrites at postnatal day (PD) 5 to 15. In hippocampal neurons, this CaM message was present in dendritic processes from PD S to 20, whereas in Purkinje neurons it was detected in dendrites at PD 15 and 20. The presence of the 4.0-kb CaM I mRNA in dendrites of the rat brain supports the notion of targeting transcripts derived from the CaM multigene family to discrete intracellular destinations.
Collapse
Affiliation(s)
- F B Berry
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Berry F, Brown IR. Developmental expression of calmodulin mRNA and protein in regions of the postnatal rat brain. J Neurosci Res 1995; 42:613-22. [PMID: 8600293 DOI: 10.1002/jnr.490420503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of calmodulin (CaM) protein and mRNA was analyzed in specific regions of the rat brain during postnatal development. CaM levels in the adult brain were more abundant in the cerebral hemispheres and thalamus compared to brain stem and superior plus inferior colliculus. All brain regions contained higher CaM protein and mRNA levels than in non-neural tissues such as the kidney. During postnatal development of the brain, maximal levels of CaM protein and CaM I mRNAs were attained at day 10 or 15. Protein levels declined thereafter in the adult in all regions except the thalamus. With respect to products of the rat CaM I gene, the 4.0 kb neural transcript demonstrated a pronounced increase during postnatal development, whereas the 1.8 kb message showed little change.
Collapse
Affiliation(s)
- F Berry
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Ikeshima H, Imai S, Shimoda K, Hata J, Takano T. Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. Neurosci Lett 1995; 200:117-20. [PMID: 8614558 DOI: 10.1016/0304-3940(95)12092-i] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MEF2D, a member of myocyte-specific enhancer binding factor 2 (MEF2) gene family, was shown by Northern blot hybridization to be strongly expressed in the head portion of mouse embryos at later stages of ontogenesis, in the cerebellum and the cerebrum of adult mice, in cultured cell lines of neuronal origin, and in skeletal and cardiac muscles. During ontogenesis, MEF2D transcripts were detected by in situ hybridization in the olfactory bulb, entorhinal cortex, pyriform cortex, and hippocampus, in Purkinje and granule cells, and in large neurons in both the ventral and dorsal horns of spinal cord. Adult mice continued to express MEF2D in these limited areas of the central nervous system. Thus, MEF2D seems to be involved in either the differentiation process or the function of these neurons.
Collapse
Affiliation(s)
- H Ikeshima
- Department of Microbiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
30
|
Shimoda K, Ikeshima H, Matsuo K, Hata J, Maejima K, Takano T. Spatial and temporal regulation of the rat calmodulin gene III directed by a 877-base promoter and 103-base leader segment in the mature and embryonal central nervous system of transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 31:61-70. [PMID: 7476034 DOI: 10.1016/0169-328x(95)00032-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three non-allelic rat calmodulin (CaM) genes CaMI, CaMII and CaMIII, which share no homology in their 5'-upstream regions, are coordinately expressed in neurons of the central nervous system (CNS). Deletion analysis of the CaMIII promoter showed that the upstream segments longer than 700 bases functioned as efficient promoters, and that the sequence from -133 to -65 was required for the activity of house-keeping type promoter in transient expression assays on a mouse glioma cell line C6. However, the transient expression seemed not to be cell type specific. To determine the temporal and spatial specificity of the promoter function, we produced transgenic mice carrying a fusion gene of the CaMIII segment from -877 to +103 and the lacZ reporter gene. In CNS of the adult transgenic mice, the localization of transgene expression was similar to that of endogenous CaMIII transcripts analyzed by in situ hybridization. The transgene was expressed prominently in pyramidal cells of the cerebral neocortex and the hippocampal regions CA1 to CA3, in Purkinje cells of the cerebellar cortex, and in neurons of the spinal cord, and moderately in granule cells of the dentate gyrus and the cerebellar cortex. In the developing CNS, the overall profiles of neuron-specific expression were also similar for both transgene and endogenous CaMIII that were expressed in the mantle layer and the dorsal root ganglia of the embryonal spinal cord. These results indicated that the neuron-specific expression of rat CaMIII was directed by this 877-base promoter sequence. The CaMIII segment used for the promoter of transgene contained a 29-bp sequence at -410, namely H3, which was conserved in the upstream regions of vertebrate CaMII and CaMIII. H3 seemed to play a pivotal role in the temporal and spatial expression of transgene in CNS, although the deletion of H3 did not decrease CAT activity in the transient expression. The transgene expression was not observed in the external granular cells of the developing cerebellum and in some neurons of the embryonic sensory ganglia in which the endogenous CaMIII was obviously expressed. Therefore, the other cis-acting element(s) located outside of this 877-bp segment seemed to be required for the temporal regulation of CaMIII in certain rudimentary neurons.
Collapse
Affiliation(s)
- K Shimoda
- Laboratory Animal Center, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Barrón S, Tusell JM, Serratosa J. Effect of hexachlorocyclohexane isomers on calmodulin mRNA expression in the central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:279-86. [PMID: 7543649 DOI: 10.1016/0169-328x(95)00015-k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three different calmodulin genes that encode the same protein have been found in the brain of all mammalian species so far examined. Little is known about the factors involved in regulating the expression of this gene family in the central nervous system. We have investigated the possibility of differential expression of two calmodulin genes, CaM I and CaM II, which are expressed strongly in neuronal cells in the adult rat brain, after treatment with the gamma (lindane) and the delta isomers of the hexachlorocyclohexane (HCH). In this study a decrease of CaM I mRNA (mainly in the 4.0 kb transcript) was found in the cortex of the rats after 24 h of isomer administration. CaM I expression seemed to be more sensitive to delta isomer action, whereas the gamma isomer acted mainly at CaM II level. The levels of mRNA of calmodulin CaM II gene were also found to decrease after lindane administration; delta-HCH produced an increase of this transcript. These results were obtained by Northern blot analysis and confirmed by means of in situ hybridization. Our results suggest that levels of neuronal calmodulin mRNA species are modified in response to changes in neuronal activity.
Collapse
Affiliation(s)
- S Barrón
- Department of Pharmacology and Toxicology, C.I.D.-C.S.I.C., Barcelona, Spain
| | | | | |
Collapse
|