1
|
Hui B, Yao X, Zhang L, Zhou Q. Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1761-1768. [PMID: 31915845 DOI: 10.1007/s00210-019-01775-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Abnormal neuroinflammation ignited by overproduction of chemokines and cytokines via microglial cells can induce the occurrence and development of neurodegenerative disorders. The aim of this study is to investigate the effects of dexamethasone sodium phosphate (Dex-SP) on chemokine and cytokine secretion in lipopolysaccharide (LPS)-activated microglial cells. LPS markedly enhanced the secretion of pro-inflammatory factors such as regulated on activation, normal T cell expressed and secreted (RANTES), transforming growth factor beta-β1 (TGF-β1) and nitric oxide (NO), but decreased the production of macrophage inflammatory protein-1α (MIP-1α) and interleukin 10 (IL-10) in BV-2 microglial cells. Furthermore, LPS increased BV-2 microglial cell migration. However, Dex-SP treatment had the opposite effect, dampening the secretion of RANTES, TGF-β1, and NO, while increasing the production of MIP-1α and IL-10 and blocking migration of LPS-stimulated BV-2 microglial cells. Furthermore, Dex-SP markedly suppressed the LPS-induced degradation of IRAK-1 and IRAK-4, and blocked the activation in TRAF6, p-TAK1, and p-JNK in BV-2 microglial cells. These results showed that Dex-SP inhibited the neuroinflammatory response and migration in LPS-activated BV-2 microglia by inhibiting the secretion of RANTES, TGF-β1, and NO and increasing the production of MIP-1α and IL-10. The molecular mechanism of Dex-SP may be associated with inhibition of TRAF6/TAK-1/JNK signaling pathways mediated by IRAK-1 and IRAK-4.
Collapse
Affiliation(s)
- Bin Hui
- College of Pharmacy, Shanghai University of Medical & Health Sciences, Shanghai, China
- Health School attached to Shanghai University of Medical & Health Sciences, Shanghai, China
| | - Xin Yao
- Jiyuan Shi People's Hospital, Jiyuan, Henan, China
| | - Liping Zhang
- Department of Emergency Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Qinhua Zhou
- College of Medicine, Jiaxing University, Jiaxing, China.
| |
Collapse
|
2
|
Vaillancourt M, Chia P, Medzikovic L, Cao N, Ruffenach G, Younessi D, Umar S. Experimental Pulmonary Hypertension Is Associated With Neuroinflammation in the Spinal Cord. Front Physiol 2019; 10:1186. [PMID: 31616310 PMCID: PMC6764190 DOI: 10.3389/fphys.2019.01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Rationale Pulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated. Methods/Results PH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01). Conclusion We report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pamela Chia
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nancy Cao
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Younessi
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Tozaki-Saitoh H, Miyata H, Yamashita T, Matsushita K, Tsuda M, Inoue K. P2Y12 receptors in primary microglia activate nuclear factor of activated T-cell signaling to induce C-C chemokine 3 expression. J Neurochem 2017; 141:100-110. [PMID: 28144998 DOI: 10.1111/jnc.13968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 02/03/2023]
Abstract
Microglia are widely accepted as surveillants in the central nervous system that are continually searching the local environment for signs of injury. Following an inflammatory situation, microglia alter their morphology, extend ramified processes, and undergo cell body hypertrophy. Extracellular nucleotides are recognized as a danger signal by microglia. ADP acting on P2Y12 receptors induce process extension of microglia thereby attracting microglia to the site of adenosine tri-phosphate/ADP leaking or release. However, the question whether ADP/P2Y12 receptor signaling directly stimulates the production or release of inducible factors such as cytokines remains unclear. In this study, we found that CC chemokine ligand 3 (CCL3) is induced by ADP-treated primary microglia. Pharmacological characterization using pertussis toxin, a P2Y12 receptor inhibitor, and a calcium chelator revealed that CCL3 induction was caused by P2Y12 receptor-mediated intracellular calcium elevation. Next, nuclear factor of activated T-cell dephosphorylation and nuclear translocalization were observed. Calcineurin, an inhibitor for nuclear factor of activated T cell, suppressed CCL3 induction. These data indicate that microglial P2Y12 receptors are utilized to trigger an acute inflammatory response in microglia via rapid CCL3 induction after ADP stimulation.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Miyata
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Yamashita
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuyuki Matsushita
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu Universisty, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Loría F, Díaz-Nido J. Frataxin knockdown in human astrocytes triggers cell death and the release of factors that cause neuronal toxicity. Neurobiol Dis 2015; 76:1-12. [PMID: 25554687 DOI: 10.1016/j.nbd.2014.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/15/2014] [Accepted: 12/21/2014] [Indexed: 01/27/2023] Open
Abstract
Friedreich's ataxia (FA) is a recessive, predominantly neurodegenerative disorder caused in most cases by mutations in the first intron of the frataxin (FXN) gene. This mutation drives the expansion of a homozygous GAA repeat that results in decreased levels of FXN transcription and frataxin protein. Frataxin (Fxn) is a ubiquitous mitochondrial protein involved in iron-sulfur cluster biogenesis, and a decrease in the levels of this protein is responsible for the symptoms observed in the disease. Although the pathological manifestations of FA are mainly observed in neurons of both the central and peripheral nervous system, it is not clear if changes in non-neuronal cells may also contribute to the pathogenesis of FA, as recently suggested for other neurodegenerative disorders. Therefore, the aims of this study were to generate and characterize a cell model of Fxn deficiency in human astrocytes (HAs) and to evaluate the possible involvement of non-cell autonomous processes in FA. To knockdown frataxin in vitro, we transduced HAs with a specific shRNA lentivirus (shRNA37), which produced a decrease in both frataxin mRNA and protein expression, along with mitochondrial superoxide production, and signs of p53-mediated cell cycle arrest and apoptotic cell death. To test for non-cell autonomous interactions we cultured wild-type mouse neurons in the presence of frataxin-deficient astrocyte conditioned medium, which provoked a delay in the maturation of these neurons, a decrease in neurite length and enhanced cell death. Our findings confirm a detrimental effect of frataxin silencing, not only for astrocytes, but also for neuron-glia interactions, underlining the need to take into account the role of non-cell autonomous processes in FA.
Collapse
Affiliation(s)
- Frida Loría
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
5
|
Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014; 8:73. [PMID: 24659953 PMCID: PMC3952085 DOI: 10.3389/fncel.2014.00073] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical SchoolHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| |
Collapse
|
6
|
Kiguchi N, Kobayashi Y, Maeda T, Saika F, Kishioka S. CC-chemokine MIP-1α in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci Lett 2010; 484:17-21. [PMID: 20692319 DOI: 10.1016/j.neulet.2010.07.085] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 12/19/2022]
Abstract
We investigated the involvement of spinal macrophage inflammatory protein-1α (MIP-1α), an inflammatory chemokine, in partial sciatic nerve ligation (PSL)-induced neuropathic pain in mice. PSL increased MIP-1α mRNA levels as well as levels of the MIP-1α receptor, CCR1, but not CCR5 in the spinal dorsal horn. PSL-induced tactile allodynia and thermal hyperalgesia were prevented by intrathecal (i.t.) injection of a neutralizing antibody of MIP-1α (2ng). Recombinant MIP-1α (10pmol, i.t.) elicited long-lasting tactile allodynia and thermal hyperalgesia in naïve mice. These results suggest that peripheral nerve injury elicits the up-regulation of spinal MIP-1α and CCR1 to participate in neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | | | | | |
Collapse
|
7
|
Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006; 80:308-22. [PMID: 17156911 PMCID: PMC1849976 DOI: 10.1016/j.pneurobio.2006.10.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/05/2006] [Accepted: 10/26/2006] [Indexed: 11/19/2022]
Abstract
Microglia constitute the primary resident immune surveillance cell in the brain and are thought to play a significant role in the pathogenesis of several neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and HIV-associated dementia. Measuring microglial activation in vivo in patients suffering from these diseases may help chart progression of neuroinflammation as well as assess efficacy of therapies designed to modulate neuroinflammation. Recent studies suggest that activated microglia in the CNS may be detected in vivo using positron emission tomography (PET) utilizing pharmacological ligands of the mitochondrial peripheral benzodiazepine receptor (PBR (recently renamed as Translocator protein (18kDa)). Beginning with the molecular characterization of PBR and regulation in activated microglia, we examine the rationale behind using PBR ligands to image microglia with PET. Current evidence suggests these findings might be applied to the development of clinical assessments of microglial activation in neurological disorders.
Collapse
Affiliation(s)
- Sriram Venneti
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J. Lopresti
- From the Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Clayton A. Wiley
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Mitrasinovic OM, Grattan A, Robinson CC, Lapustea NB, Poon C, Ryan H, Phong C, Murphy GM. Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system. J Neurosci 2005; 25:4442-51. [PMID: 15858070 PMCID: PMC6725106 DOI: 10.1523/jneurosci.0514-05.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/21/2022] Open
Abstract
Microglia with increased expression of the macrophage colony-stimulating factor receptor (M-CSFR; c-fms) are found surrounding plaques in Alzheimer's disease (AD) and in mouse models for AD and after ischemic or traumatic brain injury. Increased expression of M-CSFR causes microglia to adopt an activated state that results in proliferation, release of cytokines, and enhanced phagocytosis. To determine whether M-CSFR-induced microglial activation affects neuronal survival, we assembled a coculture system consisting of BV-2 microglia transfected to overexpress the M-CSFR and hippocampal organotypic slices treated with NMDA. Twenty-four hours after assembly of the coculture, microglia overexpressing M-CSFR proliferated at a higher rate than nontransfected control cells and exhibited enhanced migration toward NMDA-injured hippocampal cultures. Surprisingly, coculture with c-fms-transfected microglia resulted in a dramatic reduction in NMDA-induced neurotoxicity. Similar results were observed when cocultures were treated with the teratogen cyclophosphamide. Biolistic overexpression of M-CSFR on microglia endogenous to the organotypic culture also rescued neurons from excitotoxicity. Furthermore, c-fms-transfected microglia increased neuronal expression of macrophage colony-stimulating factor (M-CSF), the M-CSFR, and neurotrophin receptors in the NMDA-treated slices, as determined with laser capture microdissection. In the coculture system, direct contact between the exogenous microglia and the slice was necessary for neuroprotection. Finally, blocking expression of the M-CSF ligand by exogenous c-fms-transfected microglia with a hammerhead ribozyme compromised their neuroprotective properties. These results demonstrate a protective role for microglia overexpressing M-CSFR in our coculture system and suggest under certain circumstances, activated microglia can help rather than harm neurons subjected to excitotoxic and teratogen-induced injury.
Collapse
Affiliation(s)
- Olivera M Mitrasinovic
- Neuroscience Research Laboratories, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK. Role of microglia in central nervous system infections. Clin Microbiol Rev 2004; 17:942-64, table of contents. [PMID: 15489356 PMCID: PMC523558 DOI: 10.1128/cmr.17.4.942-964.2004] [Citation(s) in RCA: 509] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nature of microglia fascinated many prominent researchers in the 19th and early 20th centuries, and in a classic treatise in 1932, Pio del Rio-Hortega formulated a number of concepts regarding the function of these resident macrophages of the brain parenchyma that remain relevant to this day. However, a renaissance of interest in microglia occurred toward the end of the 20th century, fueled by the recognition of their role in neuropathogenesis of infectious agents, such as human immunodeficiency virus type 1, and by what appears to be their participation in other neurodegenerative and neuroinflammatory disorders. During the same period, insights into the physiological and pathological properties of microglia were gained from in vivo and in vitro studies of neurotropic viruses, bacteria, fungi, parasites, and prions, which are reviewed in this article. New concepts that have emerged from these studies include the importance of cytokines and chemokines produced by activated microglia in neurodegenerative and neuroprotective processes and the elegant but astonishingly complex interactions between microglia, astrocytes, lymphocytes, and neurons that underlie these processes. It is proposed that an enhanced understanding of microglia will yield improved therapies of central nervous system infections, since such therapies are, by and large, sorely needed.
Collapse
Affiliation(s)
- R Bryan Rock
- Neuroimmunology Laboratory, Minneapolis Medical Research Foundation, and University of Minnesota Medical School, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Mitrasinovic OM, Murphy GM. Accelerated phagocytosis of amyloid-beta by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J Biol Chem 2002; 277:29889-96. [PMID: 12032144 DOI: 10.1074/jbc.m200868200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microglia surrounding A beta plaques in Alzheimer's disease and in the APPV717F transgenic mouse model of Alzheimer's disease have enhanced immunoreactivity for the macrophage colony-stimulating factor receptor (M-CSFR), encoded by the proto-oncogene c-fms. Increased expression of M-CSFR on cultured microglia results in proliferation and release of pro-inflammatory cytokines and expression of inducible nitric-oxide synthase. We transfected mouse BV-2 and human SV-A3 microglia to overexpress M-CSFR and examined microglial phagocytosis of fluorescein-conjugated A beta. Flow cytometry and laser confocal microscopy showed accelerated phagocytosis of A beta in mouse and human microglia because of M-CSFR overexpression that was time- and concentration-dependent. In contrast, microglial uptake of 1-microm diameter polystyrene microspheres was not enhanced by M-CSFR overexpression. Microglial uptake of A beta was blocked by cytochalasin D, which inhibits phagocytosis. M-CSFR overexpression increased the mRNA for macrophage scavenger receptor A, and fucoidan blocking of macrophage scavenger receptors inhibited uptake of A beta. M-CSFR antibody blocking experiments demonstrated that increased A beta uptake depended on the interaction of the M-CSFR with its ligand. These results suggest that overexpression of M-CSFR in APPV717F mice may prime microglia for phagocytosis of A beta after immunization.
Collapse
Affiliation(s)
- Olivera M Mitrasinovic
- Neuroscience Research Laboratories, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5485, USA
| | | |
Collapse
|
11
|
Rudick RA. Evolving concepts in the pathogenesis of multiple sclerosis and their therapeutic implications. J Neuroophthalmol 2001; 21:279-83. [PMID: 11756860 DOI: 10.1097/00041327-200112000-00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent evidence suggests that multiple sclerosis (MS) is a continuously active neuropathologic process, even during the subclinical relapsing/remitting phase of the disease. Patients commonly feel well and function without disability for many years, experiencing only occasional relapses and nondisabling symptoms. In time, many evolve into a pattern of continuously progressive neurologic disability termed secondary progressive MS (SP-MS). SP-MS is hypothesized to occur once disease severity has exceeded a threshold. Above that threshold, compensatory mechanisms are inadequate to maintain normal function, and further disease progression is accompanied by progressively worsening disability. Inflammation dominates the early stage of disease. Progressive axonal pathology may underlie clinical disease progression in later stages. These concepts have important implications related to the diagnosis, methods for patient follow-up, type and timing of disease therapy, and the testing of neuroprotective drugs in MS.
Collapse
Affiliation(s)
- R A Rudick
- Mellen Center for Multiple Sclerosis Treatment and Research Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
12
|
Laurenzi MA, Arcuri C, Rossi R, Marconi P, Bocchini V. Effects of microenvironment on morphology and function of the microglial cell line BV-2. Neurochem Res 2001; 26:1209-16. [PMID: 11874202 DOI: 10.1023/a:1013911205494] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of microenvironmental changes were examined in the microglial cell line BV-2. In serum supplemented medium cells were ameboid shaped and exhibited thin cytoplasmatic processes at lower concentration or in absence of serum. High levels of acetylated low-density lipoprotein (LDL) receptor and of phagocytic and proliferative activity were detected. Lipopolysaccharide (LPS) and the neuropeptide substance P (SP) induced secretion of interleukin-6. Low interleukin-3 secretion was detected only occasionally and was not influenced by LPS and SP. In defined medium, "process-bearing" cells were evident. Compared to cultures in serum supplemented medium, the cells expressed lower acetylated LDL-binding and phagocytic activity while actively proliferated, the response to LPS was reduced and to SP absent. Granulocyte/macrophage colony-stimulating factor increased the number of process-bearing cells, of acetylated LDL-binding and of IL-6 secretion induced by LPS. Cell morphology was not influenced by neurotrophins like nerve growth factor and brain-derived neurotrophic factor. The described phenotypical and functional plasticity makes the BV-2 cell line a useful model to investigate mechanisms of microglial activation.
Collapse
Affiliation(s)
- M A Laurenzi
- Department of Clinical Medicine, Pathology, Pharmacology, University of Perugia, Policlinico Monteluce, Italy.
| | | | | | | | | |
Collapse
|
13
|
Mitrasinovic OM, Perez GV, Zhao F, Lee YL, Poon C, Murphy GM. Overexpression of macrophage colony-stimulating factor receptor on microglial cells induces an inflammatory response. J Biol Chem 2001; 276:30142-9. [PMID: 11387343 DOI: 10.1074/jbc.m104265200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microglia are important in the inflammatory response in Alzheimer's disease (AD). We showed previously that macrophage colony-stimulating factor receptor (M-CSFR), encoded by the c-fms protooncogene, is overexpressed on microglia surrounding amyloid beta (Abeta) deposits in the APP(V717F) mouse model for AD. The M-CSFR is also increased on microglia after experimental brain injury and in AD. To determine the relevance of these findings, we transiently expressed M-CSFR on murine BV-2 and human SV-A3 microglial cell lines using an SV40-promoted c-fms construct. M-CSFR overexpression resulted in microglial proliferation and increased expression of inducible nitric-oxide synthase, the proinflammatory cytokines interleukin-1alpha, macrophage inflammatory protein 1-alpha, and interleukin-6 and of macrophage colony-stimulating factor (M-CSF) itself. Antibody neutralization of M-CSF showed that the M-CSFR-induced proinflammatory response was dependent on M-CSF in the culture media. By using a co-culture of c-fms-transfected murine microglia and rat organotypic hippocampal slices and a species-specific real time reverse transcriptase-polymerase chain reaction assay and enzyme-linked immunosorbent assay, we showed that M-CSFR overexpression on exogenous microglia induced expression of interleukin-1alpha by the organotypic culture. These results show that increased M-CSFR expression induces microglial proliferation, cytokine expression, and a paracrine inflammatory response, suggesting that in APP(V717F) mice increased M-CSFR on microglia could be an important factor in Abeta-induced inflammatory response.
Collapse
Affiliation(s)
- O M Mitrasinovic
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
14
|
Felzien LK, McDonald JT, Gleason SM, Berman NE, Klein RM. Increased chemokine gene expression during aging in the murine brain. Brain Res 2001; 890:137-46. [PMID: 11164776 DOI: 10.1016/s0006-8993(00)03090-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Normal aging results in changes in the brain that contribute to the decline of various functions, including learning and memory. Mechanisms causing this decline have not been clearly established. Activation of microglia is associated with the normal aging process in rodents and primates. Microglial activation is regulated by chemokine gene expression, and activated microglia produce substances that can be detrimental to surrounding cells. In this study we determined whether changes in chemokine expression occur during normal aging in the mouse brain. RNA samples taken from the cortex, midbrain, hippocampus, and cerebellum of 4-, 10-, 21- and 30-month-old C57BL6/DBA2 mice were analyzed for changes in gene expression. RNase protection assays were used to examine a panel of chemokines. Increased expression of macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES occurred in all four regions of the brains in the oldest mice. These increases were first detectable at 21 months of age. Increases in MIP-1alpha, MIP-1beta, and RANTES protein levels were also detected in the brains of old mice, as measured by ELISA. Increased microglial activation in the brains of 30-month-old mice, as detected by immunohistochemistry using F4/80 antibodies, correlated with increases in chemokine expression. The observed increases in chemokine gene expression that occur in conjunction with increased microglial activation suggest that chemokines may contribute to the decreased brain function that occurs during normal aging.
Collapse
Affiliation(s)
- L K Felzien
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
15
|
Harry GJ, Lefebvre d'Hellencourt C, Bruccoleri A, Schmechel D. Age-dependent cytokine responses: trimethyltin hippocampal injury in wild-type, APOE knockout, and APOE4 mice. Brain Behav Immun 2000; 14:288-304. [PMID: 11120597 DOI: 10.1006/brbi.2000.0606] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, the hippocampal neurotoxicant trimethyltin (TMT) was used to examine possible differential susceptibility associated with the apolipoprotein E genotype. Mice-wild type (C57BL6J), APOE knockout, and APOE4 transgenic-received either saline or TMT (2 mg/kg, ip) at either 21 days or 8 months of age. At both ages, similar mRNA levels were seen in the hippocampus across genotypes for ICAM-1, A20, and MAC-1. GFAP mRNA was higher in the APOE knockouts and APOE4 as compared to wild-type mice. Within 24 h, TMT produced cell death of hippocampal dentate granule neurons and mild astrogliosis in all animals. In 21-day-old mice, TMT exposure significantly increased mRNA levels for ICAM-1 and MIP-1alpha in all genotypes. EB-22, GFAP, TNFalpha, and TGF-beta1 levels were significantly elevated in both wild-type and APOE knockout mice following TMT. At 8 months of age, genotype specific differences were observed. mRNA levels for GFAP, TNFbeta, TNFalpha, and MIP-1alpha were increased in both APOE knockout and APOE4 mice compared to wild-type mice. TMT exposure significantly increased mRNA levels for GFAP and MIP-1alpha in all animals. TNFalpha mRNA levels were increased in wild-type and APOE4 mice while EB22 mRNA levels were increased in both the APOE knockout and APOE4 mice but not wild-type mice. These data suggest an age-dependent effect on both microglia early inflammatory responses to injury associated with the APOE genotype.
Collapse
Affiliation(s)
- G J Harry
- Neurotoxicology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
16
|
Bruccoleri A, Harry GJ. Chemical-induced hippocampal neurodegeneration and elevations in TNFalpha, TNFbeta, IL-1alpha, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. J Neurosci Res 2000; 62:146-55. [PMID: 11002296 DOI: 10.1002/1097-4547(20001001)62:1<146::aid-jnr15>3.0.co;2-l] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The osteopetrotic (op/op) mouse, deficient in biologically active colony stimulating factor 1 (CSF-1), was used to examine the role of microglia in chemical-induced trauma. Op/op mice and normal phenotype littermates (non-op/op) received an acute i.p. injection of the hippocampal toxicant, trimethyltin hydroxide (TMT; 1.5 or 2.0 mg/kg). At 2.0 mg/kg, both mice displayed severe degeneration of dentate granule neurons. At 1.5 mg/kg, non-op/op mice showed a limited punctate pattern of neuronal death while op/op mice showed prominent neuronal death. TMT-induced astrocyte reactivity was similar in both groups. RNase protection assays were conducted on hippocampal tissue at 24 hr post-TMT. Elevations were seen in mRNA levels for the host response genes: intercellular cell adhesion molecule (ICAM-1; non-op/op 80%, op/op 85%), the protease inhibitor EB22 (non-op/op 60%, op/op 300%), and glial fibrillary acidic protein (GFAP; non-op/op 300%, op/op 480%) within 24 hr. Macrophage-1 antigen (Mac-1) mRNA levels were lower in all op/op mice and were not induced by TMT exposure. Macrophage inflammatory protein (MIP)-1alpha and MIP-1beta mRNA levels were elevated in non-op/op mice while mRNA levels for interferon inducible protein (IP-10) and monocyte chemoattractant protein (MCP-1) were elevated in op/op mice. Tumor necrosis factor alpha (TNFalpha) mRNA levels were significantly elevated in both non-op/op (100%) and op/op (600%) mice. TNFbeta mRNA levels in op/op mice were elevated 200% and interleukin 1alpha (IL-1alpha) 150%. Reverse transcriptase polymerase chain reaction (RT-PCR) showed a TMT-induced elevation in INFalpha and INFbeta mRNA levels and no elevation of INFgamma. mRNA levels of the CSF-1 receptor, c-fms, were unaltered.
Collapse
Affiliation(s)
- A Bruccoleri
- Neurotoxicology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
17
|
Zujovic V, Benavides J, Vig� X, Carter C, Taupin V. Fractalkine modulates TNF-? secretion and neurotoxicity induced by microglial activation. Glia 2000. [DOI: 10.1002/(sici)1098-1136(20000215)29:4<305::aid-glia2>3.0.co;2-v] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
|
19
|
Osaka H, McGinty A, Höepken UE, Lu B, Gerard C, Pasinetti GM. Expression of C5a receptor in mouse brain: role in signal transduction and neurodegeneration. Neuroscience 1999; 88:1073-82. [PMID: 10336122 DOI: 10.1016/s0306-4522(98)00372-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study we explored the potential role of the complement derived anaphylatoxin C5a and the expression of its receptor in mouse brain. Using in situ hybridization, we found that C5a receptor messenger RNA is expressed in mouse brain. In response to intraventricular kainic acid injection, there was marked increase in the C5a receptor messenger RNA expression, particularly in hippocampal formation and cerebral cortex. C5a ligand-binding autoradiography confirmed the functional expression and elevation of the C5a receptor post-lesioning. The expression of C5a receptor messenger RNA in brain was confirmed by northern blot hybridization of total RNA from neuronal and glial cells in vitro. Based on these findings we explored the role of C5a in mechanisms of signal transduction in brain cells. Treatment of primary cultures of mouse astrocytes with human recombinant C5a resulted in the activation of mitogen-activated extracellular signal-regulated protein kinase. This response appeared to be mediated by the C5a receptor since astrocyte cultures derived from C5a receptor knockout mice were not responsive to the treatment. Understanding the regulation of C5a receptor in brain and mechanisms by which pro-inflammatory C5a modulates specific signal transduction pathways in brain cells is crucial to studies of inflammatory mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- H Osaka
- Neuroinflammation Research Center of the Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
20
|
Janabi N, Hau I, Tardieu M. Negative Feedback Between Prostaglandin and α- and β-Chemokine Synthesis in Human Microglial Cells and Astrocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce α- and β-chemokines (IL-8 > growth related protein α (GROα) ≫ RANTES > microphage inflammatory protein (MIP)-1α and MIP-1β) in parallel to PGs (PGE2 and PGF2α) after proinflammatory cytokine stimulation: TNF-α + IL-1β induced all except RANTES, which was induced by TNF-α + IFN-γ. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1α and MIP-1β, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37–60% increase in RANTES, MIP-1α, and MIP-1β but not in GROα and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2α production by stimulated microglial cells and astrocytes, whereas Abs to β-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their β-chemokine secretion, whereas α-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of β-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral α-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity.
Collapse
Affiliation(s)
- Nazila Janabi
- Laboratory of Virus, Neuron and Immunity, Unité de Formation et de Recherche, Kremlin Bicêtre, University of Paris-South, Paris, France
| | - Isabelle Hau
- Laboratory of Virus, Neuron and Immunity, Unité de Formation et de Recherche, Kremlin Bicêtre, University of Paris-South, Paris, France
| | - Marc Tardieu
- Laboratory of Virus, Neuron and Immunity, Unité de Formation et de Recherche, Kremlin Bicêtre, University of Paris-South, Paris, France
| |
Collapse
|
21
|
Abstract
Macrophage inflammatory protein-1alpha (MIP-1alpha) is a member of a superfamily of inflammatory cytokines termed chemokines, and it has been implicated in the pathogenesis of several human diseases with inflammatory components. It has been known that MIP-1alpha plays a role in recruiting and activating mononuclear phagocytes in the central nervous system (CNS), and that astrocytes and microglia are sources of this chemokine. However, details of the regulation of MIP-1alpha production by these glial cells are not known. In the present study, expression of MIP-1alpha was determined in purified cultures of human astrocyte. MIP-1alpha mRNA levels in human astrocyte cell preparations were determined by reverse transcription polymerase chain reaction (RT-PCR) and amount of MIP-1alpha protein secreted into culture supernatants by human astrocytes was assayed by enzyme-linked immunosorbent assay (ELISA). Under the unstimulated conditions, human astrocytes did not express MIP-1alpha message or protein, indicating that human astrocytes do not constitutively carry MIP-1alpha message. Following treatment with interleukin-1beta (IL-1beta), human astrocytes demonstrated increased message and protein expression for MIP-1alpha, while other immune modulators such as interferon-gamma (IFN)-gamma, tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), lipopolysaccharide, or phorbol ester (a protein kinase C activator) did not induce MIP-1alpha expression in human astrocytes.
Collapse
Affiliation(s)
- Y Miyamoto
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Meda L, Baron P, Prat E, Scarpini E, Scarlato G, Cassatella MA, Rossi F. Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid[25-35]. J Neuroimmunol 1999; 93:45-52. [PMID: 10378868 DOI: 10.1016/s0165-5728(98)00188-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence indicates that amyloid (A beta) deposition and phagocyte activation participate in inflammatory reactions in the brain during the course of Alzheimer's disease. To further investigate the effects of A beta-phagocyte interaction, we examined the production of proinflammatory (IL-1beta, IL-6), chemotactic (MIP-1alpha, IP-10) and inhibitory (IL-1Ra, IL-10 and TGFbeta1) cytokines by cultured human monocytes and mouse microglial cells upon stimulation with A beta[25-35]. Northern blot analysis and specific immunoassays demonstrated that A beta[25-35] triggers mRNA expression and release of IL-1beta, IL-1Ra and MIP-1alpha but not of IL-6, IL-10, TGFbeta1 and IP-10 from human monocytes. Similar results were obtained by examining the production of IL-1beta, IL-6 and IL-10 from mouse microglial cells in the same experimental conditions. Taken together, these data indicate that A beta-phagocyte interaction can drive a different response towards cytokine production by monocytes and microglia, with a particular proinflammatory trend, and further support a role for A beta deposition as a triggering factor of inflammatory events in Alzheimer's disease.
Collapse
Affiliation(s)
- L Meda
- Institute of Neurology, Dino Ferrari Center, University of Milan, IRCCS Ospedale Maggiore Policlinico, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Ghirnikar RS, Lee YL, Eng LF. Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res 1998; 23:329-40. [PMID: 9482245 DOI: 10.1023/a:1022453332560] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A traumatic injury to the adult mammalian central nervous system (CNS), such as a stab wound lesion, results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. The roles of cytokines and growth factors released locally by the damaged endogenous cells are recognized in controlling the cellular changes that occur following CNS injury. However, the role of chemokines, a novel class of chemoattractant cytokines, is only recently being studied in regulating inflammatory cell invasion in the injured/diseased CNS (1). The mRNAs for several chemokines have been shown to be upregulated in experimental allergic encephalomyelitis (EAE), an inflammatory demyelinating disease of the CNS, but chemokine expression in traumatic brain injury has not been studied in detail. Astrocytes have been demonstrated to participate in numerous processes that occur following injury to the CNS. In particular, astrocytic expression of cytokines and growth factors in the injured CNS has been well reviewed (2). Recently a few studies have detected the presence of chemokines in astrocytes following traumatic brain injury (3,4). These studies have suggested that chemokines may represent a promising target for future therapy of inflammatory conditions. This review summarizes the events that occur in traumatic brain injury and discusses the roles of resident and non-resident cells in the expression of growth factors, cytokines and chemokines in the injured CNS.
Collapse
|
24
|
Ishii N, Tada M, Sakuma S, Sawamura Y, Shinohe Y, Abe H. Human astrocytoma cells are capable of producing macrophage inflammatory protein-1beta. J Neurooncol 1998; 37:17-23. [PMID: 9525834 DOI: 10.1023/a:1005959719927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated expression of macrophage inflammatory protein-1 (MIP-1) alpha and beta in human astrocytoma cell lines and surgical specimens of astrocytic tumors. Enzyme-linked immunosorbent assay (ELISA) showed constitutive secretion of MIP-1alpha protein in only one and MIP-1beta in none of 7 cell lines tested. However, MIP-1alpha production was increased in three cell lines by stimulation with lipopolysaccharide (LPS) and 5 cell lines by stimulation with phorbol-12myristate-13-acetate (PMA). Also, induction of MIP-1beta production was observed in one cell line with LPS stimulation and in two cell lines with PMA stimulation. Reverse-transcription polymerase chain reaction (RT-PCR) showed the increase of MIP-1alpha and beta mRNA expression in these cell lines. The increase of the mRNA with the stimuli was further confirmed by Northern blot analysis. In contrast, RT-PCR analysis revealed that the majority of the tested tumor specimens of high-grade.astrocytomas expressed both MIP-1alpha and MIP-1beta mRNAs. ELISA detected MIP-1beta protein in 1 of 11 cerebrospinal fluid samples from patients with high-grade astrocytoma and in 8 of 9 tumor cyst fluid samples, whereas MIP-1alpha was detected in only 1 cyst fluid somple. Taken together, these results indicate that astrocytic tumor cells are capable of expressing and producing MIPs, and suggest that MIPs may participate in the inflammatory responses commonly seen in astrocytic tumors.
Collapse
Affiliation(s)
- N Ishii
- Department of Neurosurgery, University of Hokkaido, School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Mallat M, Calvo CF, Dobbertin A. Migration and proliferation of mononuclear phagocytes in the central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:99-108. [PMID: 9413568 DOI: 10.1007/978-1-4757-9551-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M Mallat
- INSERM U.114, Chaire de Neuropharmacologie, Collège de France, Paris, France
| | | | | |
Collapse
|
26
|
Bartholdi D, Schwab ME. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 1997; 9:1422-38. [PMID: 9240400 DOI: 10.1111/j.1460-9568.1997.tb01497.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Injury to the spinal cord induces a complex cascade of cellular reactions at the local lesion area: secondary cell death and inflammatory reactions as well as scar and cavity formation take place. In order to investigate the molecular features underlying this local wounding response and to determine their pathophysiological implications, we studied the expression pattern of pro-inflammatory and chemoattractant cytokines in an experimental spinal cord injury model in mouse. We show by in situ hybridization that transcripts for the pro-inflammatory cytokines TNF alpha and IL-1 as well as the chemokines MIP-1alpha and MIP-1beta are upregulated within the first hour following injury. In this early phase, the expression of the pro-inflammatory cytokines is restricted to cells in the surroundings of the lesion area probably resident CNS cells. While TNF alpha is expressed in a very narrow time window, IL-1 can be detected in a second phase in a subset of polymorphonuclear granulocytes which immigrate into the spinal cord around 6 h. Message for the chemokines MIP-1alpha and beta is expressed in a generalized way in the grey matter of the entire spinal cord around 24 h and gets again restricted to the cellular infiltrate at the lesion site at 4 days following injury. Interestingly, our data suggest that resident CNS cells, most probably microglial cells, and not peripheral inflammatory cells, are the main source for cytokine and chemokine mRNAs. The defined cytokine pattern observed indicates that the inflammatory events upon lesioning the CNS are tightly controlled. The very early expression of pro-inflammatory cytokine and chemokine messages may represent an important element of the recruitment of inflammatory cells. Additional pathophysiological consequences of the specific cytokine pattern observed remain to be determined.
Collapse
Affiliation(s)
- D Bartholdi
- Brain Research Institute, University of Zürich, Switzerland
| | | |
Collapse
|
27
|
Takami S, Nishikawa H, Minami M, Nishiyori A, Sato M, Akaike A, Satoh M. Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett 1997; 227:173-6. [PMID: 9185678 DOI: 10.1016/s0304-3940(97)00338-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution and cell source of macrophage inflammatory protein-1alpha (MIP-1alpha) mRNA induced by transient and permanent middle cerebral artery occlusion (MCAO) were investigated by a double in situ hybridization technique. The distribution and time course of the induction of MIP-1alpha mRNA were similar in the two MCAO models. MIP-1alpha mRNA was not detected in the sham-operated rat brain. MIP-1alpha mRNA was induced by MCAO with the peak of expression at 4-6 h after the onset of occlusion, and the signals of MIP-1alpha mRNA were observed in the ischemic core region at an earlier time point, and thereafter intensely in the penumbra of the ischemic area. The signals of MIP-1alpha mRNA were evident on Mac-1alpha mRNA-positive cells, but not on glial fibrillary acidic protein (GFAP) mRNA-positive cells, indicating that MIP-1alpha mRNA was induced in microglia/macrophages of the rat brain after focal cerebral ischemia.
Collapse
Affiliation(s)
- S Takami
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
A traumatic injury to the adult mammalian central nervous system (CNS) results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. Chemokines, a novel class of chemoattractant cytokines, are now being recognized as mediators of the inflammatory changes that occur following injury. The expression of MCP-1 (macrophage chemotactic peptide-1), a member of the beta family of chemokines, has recently been demonstrated in trauma in the rat brain (Berman et al.: J Immunol 156:3017-3023, 1996). Using a stab wound model for mechanical injury, we studied the expression of two other beta chemokines: RANTES (Regulated on Activation, Normal T cell Expressed and Secreted) and MIP-1 beta (macrophage inflammatory protein-1 beta) in the rat brain. The stab wound injury was characterized by widespread gliosis and infiltration of hematogenous cells. Immunohistochemical staining revealed the presence of RANTES and MIP-1 beta in the injured brain. RANTES and MIP-1 beta were both diffusely expressed in the necrotic tissue and were detected as early as 1 day post-injury (dpi). Double-labeling studies showed that MIP-1 beta, but not RANTES, was expressed by reactive astrocytes near the lesion site. In addition, MIP-1 beta staining was also detected on macrophages at the site of injury. The initial expression of the chemokines closely correlated with the appearance of inflammatory cells in the injured CNS, suggesting that RANTES and MIP-1 beta may play a role in the inflammatory events of traumatic brain injury. This study also demonstrates for the first time MIP-1 beta expression in reactive astrocytes following trauma to the rat CNS.
Collapse
Affiliation(s)
- R S Ghirnikar
- Department of Pathology, VAPA Health Care System, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
29
|
McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:195-218. [PMID: 8866675 DOI: 10.1016/0165-0173(95)00011-9] [Citation(s) in RCA: 952] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cultured brain cells are capable of generating many molecules associated with inflammatory and immune functions. They constitute the endogenous immune response system of brain. They include complement proteins and their regulators, inflammatory cytokines, acute phase reactants and many proteases and protease inhibitors. Most of the proteins are made by microglia and astrocytes, but even neurons are producers. Many appear in association with Alzheimer disease lesions, indicating a state of chronic inflammation in Alzheimer disease brain. Such a state can apparently exist without stimulation by peripheral inflammatory mediators or the peripheral immune system. A strong inflammatory response may be autotoxic to neurons, exacerbating the fundamental pathology in Alzheimer disease and perhaps other neurological disorders. Autotoxic processes may contribute to cellular death in chronic inflammatory diseases affecting other parts of the body, suggesting the general therapeutic value of anti-inflammatory agents. With respect to Alzheimer disease, multiple epidemiological studies indicate that patients taking anti-inflammatory drugs or suffering from conditions in which such drugs are routinely used, have a decreased risk of developing Alzheimer disease. In one very preliminary clinical trial, the anti-inflammatory drug indomethacin arrested progress of the disease. New agents directed against the inflammatory processes revealed in studies of Alzheimer disease lesions may have broad therapeutic applications.
Collapse
Affiliation(s)
- P L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
30
|
Murphy GM, Song Y, Ong E, Lee YL, Schmidt KG, Bocchini V, Eng LF. Leukemia inhibitory factor mRNA is expressed in cortical astrocyte cultures but not in an immortalized microglial cell line. Neurosci Lett 1995; 184:48-51. [PMID: 7739804 DOI: 10.1016/0304-3940(94)11165-f] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leukemia inhibitory factor (LIF) is a multifunctional cytokine synthesized by a variety of cell types. In the nervous system LIF affects neuronal differentiation, and may be important during cerebral infection and inflammation. To clarify the cellular source of LIF in the brain, we examined the expression of LIF mRNA by primary cortical astrocyte cultures and an immortalized microglial cell line. The microglial cell line did not express LIF mRNA in response to pro-inflammatory agents such as lipopolysaccharide (LPS) that induced expression of other cytokine mRNAs. In contrast, primary astrocyte cultures grown in serum-containing medium expressed LIF mRNA constitutively, and this expression was regulated by pro-inflammatory and anti-inflammatory stimuli. Agents which activate the cAMP and protein kinase C second messenger systems also increased LIF mRNA in astrocyte cultures. These results suggest that astrocytes, but not microglia, may be an important source of LIF during cerebral inflammation and infection.
Collapse
Affiliation(s)
- G M Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305-5485, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Eng LF, Lee YL, Murphy GM, Yu AC. A RT-PCR study of gene expression in a mechanical injury model. PROGRESS IN BRAIN RESEARCH 1995; 105:219-29. [PMID: 7568880 DOI: 10.1016/s0079-6123(08)63298-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L F Eng
- Department of Pathology, Stanford University School of Medicine, CA 94304, USA
| | | | | | | |
Collapse
|