1
|
Fibrin glue does not promote migration and proliferation of bone marrow derived mesenchymal stem cells in collagenic membranes: an in vitro study. Sci Rep 2022; 12:20660. [PMID: 36450814 PMCID: PMC9712600 DOI: 10.1038/s41598-022-25203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
During Autologous Matrix-Induced Chondrogenesis (AMIC), the membrane is often glued into the chondral defect. However, whether fibrin glue influences cells proliferation and migration remain unclear. This study evaluated the impact of fibrin glue addition to biologic membranes loaded with bone marrow-derived mesenchymal stem cells (B-MSCs). A porcine derived collagen membrane (Cartimaix, Matricel GmbH, Germany) was used. B-MSCs were harvested from three different unrelated donors. The membranes were embedded in mounting medium with DAPI (ABCAM, Cambridge, UK) and analysed at 1-, 2-, 3-, 4-, 6-, and at 8-week follow-up. The DAPI ties the DNA of the cell nucleus, emitting blue fluorescence. DAPI/nuclei signals were analysed with fluorescence microscopy at 100-fold magnification. The group without fibrin glue demonstrated greater migration of the B-MSCs within the membrane at week 4 (P < 0.001), 6 (P < 0.001), and 8 (P < 0.001). No difference was found at week 1, 2, and 3. The group without fibrin glue demonstrated greater proliferation of B-MSCs within the membrane. These differences were significant at week 1 (P = 0.02), 2 (P = 0.008), 3 (P = 0.0009), 4 (P < 0.0001), 6 (P < 0.0001), 8 (P < 0.0001). Concluding, in the present setting, the use of fibrin in a collagenic biomembrane impairs B-MSCs proliferation and migration in vitro.
Collapse
|
2
|
Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review. Life (Basel) 2022; 12:life12111718. [PMID: 36362873 PMCID: PMC9698345 DOI: 10.3390/life12111718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: It is unclear whether the type of membrane used for matrix-assisted autologous chondrocyte implantation (mACI) influences results. A systematic review was conducted to investigate the midterm results of the three most common types of membrane fixation for mACI. Methods: This systematic review was conducted according to the 2020 PRISMA checklist. PubMed, Google Scholar, Embase, and Scopus online databases were accessed in August 2022. All the prospective clinical trials reporting outcomes of mACI in the knee were considered. Studies that describe the modality of membrane fixation (glued, glued, and sutured, no fixation) used for mACI were eligible. Studies that conducted a minimum of 12 months of follow-up were considered. The outcomes of interest were the Tegner Activity Scale and International Knee Documentation Committee (IKDC) score. The rate of failure and revisions were also collected. Results: Data from 26 studies (1539 procedures; 554 of 1539 (36%) were women) were retrieved. The mean follow-up was 42.6 (12 to 84) months. No difference between the groups was found in terms of mean duration of symptoms, age, BMI, gender, and defect size (P > 0.1). No difference was found in terms of the Tegner score (P = 0.3). When no fixation was used, a statistically significant higher IKDC compared to the other groups (P = 0.02) was evidenced. No difference was found in the rate of failure (P = 0.1). The no-fixation group evidenced a statistically significant lower rate of revisions (P = 0.02). Conclusions: No membrane fixation for mACI in the knee scored better than the fastening techniques at the midterm follow-up.
Collapse
|
3
|
Migliorini F, Prinz J, Maffulli N, Eschweiler J, Weber C, Lecoutrier S, Hildebrand F, Greven J, Schenker H. Fibrin glue does not assist migration and proliferation of chondrocytes in collagenic membranes: an in vitro study. J Orthop Surg Res 2022; 17:311. [PMID: 35690862 PMCID: PMC9188690 DOI: 10.1186/s13018-022-03201-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Some authors secured the membrane during matrix-induced autologous chondrocyte implantation (mACI) with fibrin glue or did not use a formal fixation. The real impact of fibrin glue addition on chondrocytes migration and proliferation has not yet been clarified. This study evaluated the impact of fibrin glue on a chondrocyte loaded collagenic membrane. METHODS A resorbable collagen I/III porcine derived membrane commonly employed in AMIC was used for all experiments. Chondrocytes from three difference donors were used. At 1-, 2-, 3-, 4-, 6-, and at 8-week the membranes were embedded in Mounting Medium with Dapi (ABCAM, Cambridge, UK). The Dapi contained in the mounting medium ties the DNA of the cell nucleus and emits a blue fluorescence. In this way, the spreading of the cells in the membrane can be easily monitored. The outcomes of interest were to evaluate (1) cell migration and (2) cell proliferation within the porous membrane layer. DAPI/nuclei signals were analysed with fluorescence microscope under a magnification of 100-fold. RESULTS The no-fibrin group demonstrated greater migration of the cells within the membrane. Although migration resulted higher in the no-fibrin group at every follow-up, this difference was significant only at week 1 (P < 0.001), 2 (P = 0.004), and 3 (P = 0.03). No difference was found at week 3, 6, and 8. The no-fibrin group demonstrated greater proliferation of the chondrocytes within the membrane. These differences were significant at week 4 (P < 0.0001), 6 (P < 0.0001), 8 (P < 0.0001). CONCLUSION The use of fibrin glue over a resorbable membrane leads to lower in vitro proliferation and migration of chondrocytes.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Julia Prinz
- Department of Ophthalmology, RWTH University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.
- School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, ST4 7QB, Stoke on Trent, England.
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, E1 4DG, London, England.
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Weber
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Lecoutrier
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Johannes Greven
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Hanno Schenker
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
Migliorini F, Maffulli N, Baroncini A, Bell A, Hildebrand F, Schenker H. Autologous matrix-induced chondrogenesis is effective for focal chondral defects of the knee. Sci Rep 2022; 12:9328. [PMID: 35661147 PMCID: PMC9167289 DOI: 10.1038/s41598-022-13591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 12/05/2022] Open
Abstract
Focal chondral defects of the knee are common and their management is challenging. This study investigated the efficacy and safety of Autologous Matrix-Induced Chondrogenesis (AMIC) for focal chondral defects of the knee. A systematic review and meta-analysis was conducted (according to the 2020 PRISMA statement) to investigate the efficacy of AMIC in improving symptoms and to compare AMIC versus microfracture (MFx). In January 2022, the following databases were accessed: Pubmed, Web of Science, Google Scholar, Embase. No time constrain was used for the search. All the clinical trials investigating AMIC and/or those comparing AMIC versus MFx for focal chondral defects of the knee were accessed. Only studies published in peer reviewed journals were considered. Studies which investigated other locations of the defects rather than knee were not eligible, nor those reporting data form mixed locations. Studies which reported data on revision settings, as well as those investigating efficacy on kissing lesions or multiple locations, were not suitable. The mean difference (MD) and odd ratio (OR) effect measure were used for continuous and binary data, respectively. Data from 18 studies (548 patients) were retrieved with a mean follow-up of 39.9 ± 26.5 months. The mean defect size was 3.2 ± 1.0 cm2. The visual analogue scale (VAS) decreased of − 3.9/10 (95% confidence interval (CI) − 4.0874 to -3.7126), the Tegner Activity Scale increased of + 0.8/10 (95% CI 0.6595 to 0.9405). The Lysholm Knee Scoring System increased of + 28.9/100 (95% CI 26.8716 to 29.1284), as did the International Knee Documentation Committee (IKDC) + 33.6/100 (95% CI 32.5800 to 34.6200). At last follow-up no patient showed signs of hypertrophy. 4.3% (9 of 210) of patients underwent revision procedures. The rate of failure was 3.8% (9 of 236). Compared to MFx, AMIC demonstrated lower VAS score (MD: − 1.01; 95% CI − 1.97 to 0.05), greater IKDC (MD: 11.80; 95% CI 6.65 to 16.94), and lower rate of revision (OR: 0.16; 95% CI 0.06 to 0.44). AMIC is effective for focal chondral defects of the knee. Furthermore, AMIC evidenced greater IKDC, along with a lower value of VAS and rate of revision compared to MFx.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, ST4 7QB, Stoke on Trent, England.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, E1 4DG, London, England
| | - Alice Baroncini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Andreas Bell
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152, Simmerath, Germany
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Hanno Schenker
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
5
|
Migliorini F, Eschweiler J, Goetze C, Tingart M, Maffulli N. Membrane scaffolds for matrix-induced autologous chondrocyte implantation in the knee: a systematic review. Br Med Bull 2021; 140:50-61. [PMID: 34553227 DOI: 10.1093/bmb/ldab024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Chondral defects of the knee are common and their management is challenging. SOURCE OF DATA Current scientific literature published in PubMed, Google scholar, Embase and Scopus. AREAS OF AGREEMENT Membrane-induced autologous chondrocyte implantation (mACI) has been used to manage chondral defects of the knee. AREAS OF CONTROVERSY Hyaluronic acid membrane provides better outcomes than a collagenic membrane for mACI in the knee at midterm follow-up is controversial. GROWING POINTS To investigate whether hyaluronic acid membrane may provide comparable clinical outcomes than collagenic membranes for mACI in focal defects of the knee. AREAS TIMELY FOR DEVELOPING RESEARCH Hyaluronic acid membrane yields a lower rate of failures and revision surgeries for mACI in the management of focal articular cartilage defects of the knee compared with collagenic scaffolds at midterm follow-up. No difference was found in patient reported outcome measures (PROMs). Further comparative studies are required to validate these results in a clinical setting.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Christian Goetze
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Markus Tingart
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke-on-Trent ST4 7QB, UK
| |
Collapse
|
6
|
Migliorini F, Eschweiler J, Maffulli N, Schenker H, Baroncini A, Tingart M, Rath B. Autologous Matrix-Induced Chondrogenesis (AMIC) and Microfractures for Focal Chondral Defects of the Knee: A Medium-Term Comparative Study. Life (Basel) 2021; 11:life11030183. [PMID: 33669015 PMCID: PMC7996570 DOI: 10.3390/life11030183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction: The potential of autologous matrix-induced chondrogenesis (AMIC) to restore unipolar focal chondral defects of the knee is promising. However, the outcome compared to microfracturing (MFx) for certain defect sizes (2–3 cm2) is still uncertain. Therefore, the present study compared primary isolated AMIC versus MFx in a cohort of patients with borderline sized focal unipolar chondral defects of the knee at midterm follow-up. Methods: Patients with chondral defects of the knee who underwent AMIC or MFx were compared. An arthroscopic approach was used for MFx, and a minimally invasive parapatellar arthrotomy for AMIC. For those patients who underwent AMIC, a collagen membrane was used with fibrin glue. The patients answered independently: Visual Analogic Scale (VAS), Tegner Activity Scale, International Knee Documentation Committee (IKDC), and the Lysholm scores. Results: A total of 83 patients with a mean age of 30.2 and body mass index (BMI) of 26.9 kg/m2 were recruited. Of them, 33.7% (28 of 83) were women, and 55.4% (46 of 83 patients) had defects in the right knee. The mean length of symptoms before surgery was 43.3 months. The mean size of the defect was 2.7 cm2. The mean length of follow-up was 42.1 months. No difference was found in terms of symptoms and follow-up length, mean age and BMI, mean size of defect, sex, and side. The AMIC cohort reported greater IKCD (p > 0.0001), Lysholm (p = 0.002), VAS (p = 0.01), Tegner (p = 0.004) scores. The AMIC cohort reported lower rate of failure (p = 0.005) and revision surgery (p = 0.02). No difference was found in the rate of arthroplasty (p = 0.2). No delamination or hypertrophy were detected. Conclusion: AMIC demonstrated superiority over MFx for focal unipolar chondral defects of the knee. At approximately 40 months follow-up, the IKDC, Lysholm, and VAS scores were greater in the AMIC group. Patients treated with AMIC also demonstrated a higher level of sport activity, and lower rates of failure and revision surgeries.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.B.); (M.T.); (B.R.)
| | - Jörg Eschweiler
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.B.); (M.T.); (B.R.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke-on-Trent ST5 5BG, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK
- Correspondence:
| | - Hanno Schenker
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.B.); (M.T.); (B.R.)
| | - Alice Baroncini
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.B.); (M.T.); (B.R.)
| | - Markus Tingart
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.B.); (M.T.); (B.R.)
| | - Björn Rath
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.B.); (M.T.); (B.R.)
- Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria
| |
Collapse
|
7
|
You F, Chen X, Cooper DML, Chang T, Eames BF. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. Biofabrication 2018; 11:015015. [PMID: 30524110 DOI: 10.1088/1758-5090/aaf44a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival and proliferation, extracellular matrix production, and mineralization potential were evaluated in the presence or absence of the HAP phase. Chondrocytes in ALG/HAP constructs survived well and proliferated, but also expressed higher levels of calcified cartilage markers compared to controls, including Collagen type X secretion, alkaline phosphatase (ALP) activity, and mineral deposition. Compared to controls, ALG/HAP constructs also showed an elevated level of mineralized matrix in vivo when implanted subcutaneously in mice. The printability of ALG/HAP composite hydrogel precursors was verified by 3D printing of ALG/HAP hydrogel scaffolds with a porous structure. In summary, these results confirm the hypothesis that HAP in ALG hydrogel stimulates chondrocytes to secrete calcified matrix in vitro and in vivo and reveal that ALG/HAP composites have the potential for 3D bioprinting and osteochondral regeneration.
Collapse
Affiliation(s)
- Fu You
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N5A9, Canada. Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
8
|
Ribitsch I, Mayer RL, Egerbacher M, Gabner S, Kańduła MM, Rosser J, Haltmayer E, Auer U, Gültekin S, Huber J, Bileck A, Kreil DP, Gerner C, Jenner F. Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. Dis Model Mech 2018; 11:11/7/dmm033092. [PMID: 29991479 PMCID: PMC6078409 DOI: 10.1242/dmm.033092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease characterized by progressive cartilage degeneration, is one of the leading causes of disability worldwide owing to the limited regenerative capacity of adult articular cartilage. Currently, there are no disease-modifying pharmacological or surgical therapies for OA. Fetal mammals, in contrast to adults, are capable of regenerating injured cartilage in the first two trimesters of gestation. A deeper understanding of the properties intrinsic to the response of fetal tissue to injury would allow us to modulate the way in which adult tissue responds to injury. In this study, we employed secretome proteomics to compare fetal and adult protein regulation in response to cartilage injury using an ovine cartilage defect model. The most relevant events comprised proteins associated with the immune response and inflammation, proteins specific for cartilage tissue and cartilage development, and proteins involved in cell growth and proliferation. Alarmins S100A8, S100A9 and S100A12 and coiled-coil domain containing 88A (CCDC88A), which are associated with inflammatory processes, were found to be significantly upregulated following injury in adult, but not in fetal animals. By contrast, cartilage-specific proteins like proteoglycan 4 were upregulated in response to injury only in fetal sheep postinjury. Our results demonstrate the power and relevance of the ovine fetal cartilage regeneration model presented here for the first time. The identification of previously unrecognized modulatory proteins that plausibly affect the healing process holds great promise for potential therapeutic interventions. Summary: Secretome proteomics identifies differential regulation of inflammation modulators during fetal and adult articular cartilage defect healing, offering novel strategies for therapy.
Collapse
Affiliation(s)
- Iris Ribitsch
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Rupert L Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Monika Egerbacher
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Simone Gabner
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Maciej M Kańduła
- Department of Biotechnology, Boku University Vienna, Vienna 1180, Austria.,Institute of Bioinformatics, Johannes Kepler University, Linz 4040, Austria
| | - Julie Rosser
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Eva Haltmayer
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Ulrike Auer
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Sinan Gültekin
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Johann Huber
- Teaching and Research Farm Kremesberg, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - David P Kreil
- Department of Biotechnology, Boku University Vienna, Vienna 1180, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Florien Jenner
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
9
|
Hunziker EB, Lippuner K, Keel MJB, Shintani N. Novel organ-slice culturing system to simulate meniscal repair: Proof of concept using a synovium-based pool of meniscoprogenitor cells. J Orthop Res 2016; 34:1588-96. [PMID: 26790377 DOI: 10.1002/jor.23172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/08/2016] [Indexed: 02/04/2023]
Abstract
Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait, and obesity. Sixty percent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function. Although tissue-engineering-based approaches to meniscal repair are now being pursued, an appropriate in-vitro model has not been conceived. The aim of this study was to develop an organ-slice culturing system to simulate the repair of human meniscal lesions in vitro. The model consists of a ring of bovine meniscus enclosing a chamber that represents the defect and reproduces its sequestered physiological microenvironment. The defect, which is closed with a porous membrane, is filled with fragments of synovial tissue, as a source of meniscoprogenitor cells, and a fibrin-embedded, calcium-phosphate-entrapped depot of the meniscogenic agents BMP-2 and TGF-β1. After culturing for 2 to 6 weeks, the constructs were evaluated histochemically and histomorphometrically, as well as immunohistochemically, for the apoptotic marker caspase 3 and collagen types I and II. Under the defined conditions, the fragments of synovium underwent differentiation into meniscal tissue, which bonded with the parent meniscal wall. Both the parent and the neoformed meniscal tissue survived the duration of the culturing period without significant cell losses. The concept on which the in-vitro system is based was thus validated. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1588-1596, 2016.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Department of Osteoporosis, Inselspital, University of Bern, Bern, Switzerland.,Orthopaedic Surgery, Inselspital, University of Bern, Bern, Switzerland.,Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital, University of Bern, Bern, Switzerland.,Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Marius J B Keel
- Orthopaedic Surgery, Inselspital, University of Bern, Bern, Switzerland.,Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital, University of Bern, Bern, Switzerland.,Orthopaedic Surgery, Inselspital, University of Bern, Bern, Switzerland.,Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Tissue Eng Part C Methods 2016; 22:173-88. [PMID: 26592915 DOI: 10.1089/ten.tec.2015.0307] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted with primary cells from embryonic chick cartilage. During initial two-dimensional culture expansion of these primary cells, two morphologically and molecularly distinct cell populations ("rounded" and "fibroblastic") were isolated. The biological performance of each population was evaluated in 3D hybrid constructs separately. The cell viability, proliferation, and cartilage differentiation were observed at high levels in hybrid constructs of both cell populations, confirming the validity of these 3D bioprinting parameters for effective cartilage tissue engineering. Statistically significant performance variations were observed, however, between the rounded and fibroblastic cell populations. Molecular and morphological data support the notion that such performance differences may be attributed to the relative differentiation state of rounded versus fibroblastic cells (i.e., differentiated chondrocytes vs. chondroprogenitors, respectively), which is a relevant issue for cell-based tissue engineering strategies. Taken together, our study demonstrates that bioprinting 3D hybrid constructs of PCL and cell-impregnated alginate hydrogel is a promising approach for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zohreh Izadifar
- 1 Division of Biomedical Engineering, University of Saskatchewan , Saskatoon, Canada
| | - Tuanjie Chang
- 2 Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Canada
| | - William Kulyk
- 2 Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Canada
| | - Xiongbiao Chen
- 1 Division of Biomedical Engineering, University of Saskatchewan , Saskatoon, Canada .,3 Department of Mechanical Engineering, University of Saskatchewan , Saskatoon, Canada
| | - B Frank Eames
- 1 Division of Biomedical Engineering, University of Saskatchewan , Saskatoon, Canada .,2 Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Canada
| |
Collapse
|
11
|
Hunziker EB, Lippuner K, Shintani N. How best to preserve and reveal the structural intricacies of cartilaginous tissue. Matrix Biol 2014; 39:33-43. [PMID: 25173436 DOI: 10.1016/j.matbio.2014.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
No single processing technique is capable of optimally preserving each and all of the structural entities of cartilaginous tissue. Hence, the choice of methodology must necessarily be governed by the nature of the component that is targeted for analysis, for example, fibrillar collagens or proteoglycans within the extracellular matrix, or the chondrocytes themselves. This article affords an insight into the pitfalls that are to be encountered when implementing the available techniques and how best to circumvent them. Adult articular cartilage is taken as a representative pars pro toto of the different bodily types. In mammals, this layer of tissue is a component of the synovial joints, wherein it fulfills crucial and diverse biomechanical functions. The biomechanical functions of articular cartilage have their structural and molecular correlates. During the natural course of postnatal development and after the onset of pathological disease processes, such as osteoarthritis, the tissue undergoes structural changes which are intimately reflected in biomechanical modulations. The fine structural intricacies that subserve the changes in tissue function can be accurately assessed only if they are faithfully preserved at the molecular level. For this reason, a careful consideration of the tissue-processing technique is indispensable. Since, as aforementioned, no single methodological tool is capable of optimally preserving all constituents, the approach must be pre-selected with a targeted structure in view. Guidance in this choice is offered.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland.
| | - Kurt Lippuner
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland
| | - Nahoko Shintani
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland
| |
Collapse
|
12
|
Olstad K, Hendrickson EH, Ekman S, Carlson CS, Dolvik NI. Local Morphological Response of the Distal Femoral Articular-Epiphyseal Cartilage Complex of Young Foals to Surgical Stab Incision and Potential Relevance to Cartilage Injury and Repair in Children. Cartilage 2013; 4:239-48. [PMID: 26069670 PMCID: PMC4297086 DOI: 10.1177/1947603513480024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Describe the local morphological response of the articular-epiphyseal cartilage complex to surgical stab incision in the distal femur of foals, with emphasis on the relationship between growth cartilage injury, enchondral ossification, and repair. DESIGN Nine foals were induced into general anesthesia at the age of 13 to 15 days. Four full-thickness stab incision defects were created in the cartilage on the lateral aspect of the lateral trochlear ridge of the left distal femur. Follow-up examination was carried out from 1 to 49 days postoperatively, including examination of intact bones, sawed slabs, and histological sections. RESULTS Incision defects filled with cells displaying fibroblast-, chondrocyte-, and osteoblast-like characteristics, potentially validating the rationale behind the drilling of stable juvenile osteochondritis dissecans lesions in children. Incisions induced necrosis within the cartilage on the margins at all depths of the defects. Sharp dissection may therefore be contraindicated in cartilage repair in young individuals. Incisions caused a focal delay in enchondral ossification in 2 foals, apparently related to the orientation of the incision defect relative to the direction of ossification. Defects became progressively surrounded by subchondral bone, in which granulation tissue containing clasts and foci of osteoblast-like cells was observed. Continued enchondral ossification was therefore likely to result in healing of uncomplicated defects to morphologically normal bone. CONCLUSIONS Epiphyseal growth cartilage injury had the potential to exert a negative effect on enchondral ossification. Enchondral ossification exerted a beneficial effect on repair. This relationship warrants consideration in future studies of cartilage injury and repair within the articular-epiphyseal cartilage complex of all species.
Collapse
Affiliation(s)
- Kristin Olstad
- Equine Section, Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Eli H.S. Hendrickson
- Equine Section, Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Stina Ekman
- Division of Pathology, Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cathy S. Carlson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, USA
| | - Nils I. Dolvik
- Equine Section, Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| |
Collapse
|
13
|
Ding L, Heying E, Nicholson N, Stroud NJ, Homandberg GA, Guo D, Buckwalter JA, Martin JA. Mechanical impact induces cartilage degradation via mitogen activated protein kinases. Osteoarthritis Cartilage 2010; 18:1509-17. [PMID: 20813194 PMCID: PMC3013628 DOI: 10.1016/j.joca.2010.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the activation of Mitogen activated protein (MAP) kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction-induced chondrocyte death and cartilage degeneration. DESIGN The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan (PG) loss were determined with fluorescent microscopy and 1, 9-Dimethyl-Methylene Blue (DMMB) assay. The expression of catabolic genes at mRNA levels was examined with quantitative real-time PCR. RESULTS Early p38 activation was detected at 20 min and 1h post-impaction. At 24h, enhanced phosphorylation of p38 and extracellular signal-regulated protein kinase (ERK)1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and PG losses. Quantitative Real-time PCR analysis revealed that blunt impaction significantly up-regulated matrix metalloproteinase (MMP)-13, Tumor necrosis factor (TNF)-α, and ADAMTS-5 expression. CONCLUSION These findings implicate p38 and ERK mitogen activated protein kinases (MAPKs) in the post-injury spread of cartilage degeneration and suggest that the risk of post-traumatic osteoarthritis (PTOA) following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Emily Heying
- Department of Biology, Wartburg College, Waverly, Iowa, USA
| | - Nathan Nicholson
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Nicolas J. Stroud
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Gene A. Homandberg
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Danping Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA,Corresponding author. 500 Newton Road, 1182 Medical Laboratories, Iowa City, Iowa 52242, USA
| |
Collapse
|
14
|
Hunziker EB, Stähli A. Surgical suturing of articular cartilage induces osteoarthritis-like changes. Osteoarthritis Cartilage 2008; 16:1067-73. [PMID: 18308590 PMCID: PMC2657041 DOI: 10.1016/j.joca.2008.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/14/2008] [Indexed: 02/02/2023]
Abstract
INTRODUCTION In clinical tissue-engineering-based approaches to articular cartilage repair, various types of flap are frequently used to retain an implanted construct within the defect, and they are usually affixed by suturing. We hypothesize that the suturing of articular cartilage is associated with a loss of chondrocytes from, and osteoarthritis-like changes within, the perisutural area. MATERIALS AND METHODS We established a large, partial-thickness defect model in the femoral groove of adult goats. The defects were filled with bovine fibrinogen to support a devitalized flap of autologous synovial tissue, which was sutured to the surrounding articular cartilage with single, interrupted stitches. The perisutural and control regions were analyzed histologically, histochemically and histomorphometrically shortly after surgery and 3 weeks later. RESULTS Compared to control regions, chondrocytes were lost from the perisutural area even during the first few hours of surgery. During the ensuing 3 weeks, the numerical density of cells in the perisutural area decreased significantly. The cell losses were associated with a loss of proteoglycans from the extracellular matrix. Shortly after surgery, fissures were observed within the walls of the suture channels. By the third week, their surface density had increased significantly and they were filled with avascular mesenchymal tissue. CONCLUSIONS The suturing of articular cartilage induces severe local damage, which is progressive and reminiscent of that associated with the early stages of osteoarthritis. This damage could be most readily circumvented by adopting an alternative mode of flap affixation, such as gluing with a biological adhesive.
Collapse
Affiliation(s)
- Ernst B. Hunziker
- Corresponding author: Prof. Ernst B. Hunziker, DST Research Center, Department of Clinical Research, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland. Tel: +41 31 632 8685; Fax: +41 31 632 4955; E-mail:
| | | |
Collapse
|
15
|
Davies LC, Blain EJ, Caterson B, Duance VC. Chondroitin sulphate impedes the migration of a sub-population of articular cartilage chondrocytes. Osteoarthritis Cartilage 2008; 16:855-64. [PMID: 18222711 DOI: 10.1016/j.joca.2007.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/11/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether chondroitin sulphate (CS) impedes the migration of primary articular chondrocytes. DESIGN Articular chondrocytes were isolated from young and skeletally mature bovine animals. Boyden chambers were used to quantify chondrocyte migration on aggrecan in the presence and absence of CS chains. A novel in vitro model of cell migration into articular cartilage explants was designed to visualise and quantify the migration of labelled chondrocytes into cartilage matrix which had been treated with chondroitinase ABC to remove CS chains present. RESULTS A consistent trend of increased migration with both age groups of a sub-population of chondrocytes was demonstrated on aggrecan in the absence of CS. These data were supported by results from the in vitro model of chondrocyte migration which demonstrated increasing numbers of a chondrocyte sub-population from both age groups of cartilage migrating into the chondroitinase ABC digested cartilage explants with time in culture. Minimal migration of these chondrocytes was demonstrated into phosphate buffered saline (PBS) treated control explants. CONCLUSIONS We confirm that a sub-population of chondrocytes isolated from both young and skeletally mature articular cartilages have the ability to migrate. We also demonstrate that CS chains inhibit the migration of these articular chondrocytes and that their removal by chondroitinase ABC digestion enhances the migration of these chondrocytes. Such findings may provide a clinical application for improving cell-based cartilage repair strategies by enhancing integration between endogenous and repair tissue.
Collapse
Affiliation(s)
- L C Davies
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, UK
| | | | | | | |
Collapse
|
16
|
Development of partial-thickness articular cartilage injury in a rabbit model. Clin Orthop Relat Res 2008; 466:487-94. [PMID: 18196436 PMCID: PMC2505122 DOI: 10.1007/s11999-007-0050-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/02/2007] [Indexed: 01/31/2023]
Abstract
In humans, partial-thickness cartilage lesions frequently result in premature osteoarthritis. While rabbits often are used as a model for partial-thickness cartilage lesions, the natural course of cartilage surrounding such a lesion is largely unknown. We developed a rabbit model of a chronic partial-thickness cartilage defect and asked whether these defects led to (1) deterioration of surrounding cartilage macroscopically and microscopically (increased Mankin score) and (2) disturbances in proteoglycan metabolism. In 55 rabbits, we created a 4-mm-diameter partial-thickness cartilage defect on one medial femoral condyle. The surrounding cartilage was characterized during the course of 26 weeks. Contralateral knees were sham-operated. In experimental knees, we found cartilage softening and fibrillation at 13 and 26 weeks. High Mankin scores observed at 1 week were partially restored at 13 weeks but worsened later and were most pronounced at 26 weeks. Mankin scores in the experimental groups were worse at 1 and 26 weeks when compared with the sham groups. Mankin scores at 26 weeks improved compared with 1 week in the sham groups. Disturbances in proteoglycan metabolism were less evident. In this rabbit model, a partial-thickness cartilage lesion resulted in early markers of degenerative changes resembling the human situation.
Collapse
|
17
|
Lu Y, Markel MD, Swain C, Kaplan LD. Development of partial thickness articular cartilage injury in an ovine model. J Orthop Res 2006; 24:1974-82. [PMID: 16894593 DOI: 10.1002/jor.20249] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to create a controlled partial thickness cartilage lesion in a sheep model, and to provide a foundation to study the natural history of the progression of this lesion. Twenty-eight sheep divided into four groups (1, 12, 24, and 52 weeks, n=7/group) were used in this study. In one stifle, a mechanical tool was used to create a 200 microm partial thickness lesion (1.5x1.5 cm2) on the medial femoral condyle via arthroscopy. Joint fluid was drawn presurgery and after euthanasia for analysis of collage II 3/4 C (long) (C2C). After euthanasia, the condyle was analyzed by gross appearance, confocal laser microscopy (CLM) for cell viability, scanning electronic microscopy (SEM) for surface roughness, Artscan for cartilage stiffness, and histology for cartilage morphology. The gross appearance of the treated area appeared rough, soft, and swollen compared to untreated control over time. CLM demonstrated that the depth of cell death increased to 590 microm at 52 weeks after surgery. SEM demonstrated that the treated area became more irregular over time. Stiffness of the treated area was significantly less than control by 12 weeks after surgery. Histologic analysis demonstrated that the 12, 24, and 52 week groups had significantly poorer histologic scores than the 1 week group. Joint fluid analysis demonstrated that the treatment group at 1 week had significant higher levels of C2C than the pretreatment baseline data. The results of this study demonstrated that partial thickness injury of cartilage continued to propagate and degenerate over time in this sheep model. Options for the prevention or treatment of this lesion may be tested using this model in the future.
Collapse
Affiliation(s)
- Yan Lu
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
18
|
Bush PG, Hodkinson PD, Hamilton GL, Hall AC. Viability and volume of in situ bovine articular chondrocytes-changes following a single impact and effects of medium osmolarity. Osteoarthritis Cartilage 2005; 13:54-65. [PMID: 15639638 DOI: 10.1016/j.joca.2004.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 10/05/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mechanical stress above the physiological range can profoundly influence articular cartilage causing matrix damage, changes to chondrocyte metabolism and cell injury/death. It has also been implicated as a risk factor in the development of osteoarthritis (OA). The mechanism of cell damage is not understood, but chondrocyte volume could be a determinant of the sensitivity and subsequent response to load. For example, in OA, it is possible that the chondrocyte swelling that occurs renders the cells more sensitive to the damaging effects of mechanical stress. This study had two aims: (1) to investigate the changes to the volume and viability of in situ chondrocytes near an injury to cartilage resulting from a single blunt impact, and (2) to determine if alterations to chondrocyte volume at the time of impact influenced cell viability. METHODS Explants of bovine articular cartilage were incubated with the fluorescent indicators calcein-AM and propidium iodide permitting the measurement of cell volume and viability, respectively, using confocal laser scanning microscopy (CLSM). Cartilage was then subjected to a single impact (optimally 100g from 10 cm) delivered from a drop tower which caused areas of chondrocyte injury/death within the superficial zone (SZ). The presence of lactate dehydrogenase (LDH; an enzyme released following cell injury) was used to determine the effects of medium osmolarity on the response of chondrocytes to a single impact. RESULTS A single impact caused discrete areas of chondrocyte injury/death which were almost exclusively within the SZ of cartilage. There appeared to be two phases of cell death, a rapid phase lasting approximately 3 min, followed by a slower progressive 'wave of cell death' away from the initial area lasting for approximately 20 min. The volume of the majority (88.1+/-5.99% (n=7) of the viable chondrocytes in this region decreased significantly (P<0.006). By monitoring LDH release, a single impact 5 min after changing the culture medium to hyper-, or hypo-osmolarity, reduced or stimulated chondrocyte injury, respectively. CONCLUSIONS A single impact caused temporal and spatial changes to in situ chondrocyte viability with cell shrinkage occurring in the majority of cells. However, chondrocyte shrinkage by raising medium osmolarity at the time of impact protected the cells from injury, whereas swollen chondrocytes were markedly more sensitive. These data showed that chondrocyte volume could be an important determinant of the sensitivity and response of in situ chondrocytes to mechanical stress.
Collapse
Affiliation(s)
- Peter G Bush
- School of Biomedical and Clinical Laboratory Sciences, University Medical School, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | | | | | | |
Collapse
|
19
|
Ashhurst DE. The cartilaginous skeleton of an elasmobranch fish does not heal. Matrix Biol 2004; 23:15-22. [PMID: 15172034 DOI: 10.1016/j.matbio.2004.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 02/02/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The inability of articular cartilage to heal satisfactorily is becoming, with ageing populations, an important medical problem. One question that has not been raised is whether a mechanism for the repair of cartilage evolved in animals with cartilaginous skeletons. Fin rays of dogfish were cut and the fish maintained for up to 6 months. The initial inflammatory reaction around the cut rays lasts for 2 weeks. By 4 weeks the cut ends are covered by fibrous tissue. At 12 weeks some areas of cartilage-like tissue are developing. Development of these areas continues and at 26 weeks large chondrocyte-like cells are surrounded by matrix. This tissue is in regions of poor vascularity. It does not have the typical appearance of hyaline cartilage, nor is it integrated with the cartilage of the fin rays. No changes in the cut surfaces of the fin rays are observed at any time. It is concluded that no mechanism has evolved in the elasmobranch fishes for the repair of their cartilaginous skeleton. This is discussed in relation to previous investigations of the reactions of cartilage to injury in embryonic, neonatal and adult tissues of higher vertebrates.
Collapse
Affiliation(s)
- Doreen E Ashhurst
- Department of Anatomy, St. George's Hospital Medical School, Tooting, London SW17 0RE, UK.
| |
Collapse
|
20
|
Hunziker EB, Quinn TM. Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J Bone Joint Surg Am 2003; 85-A Suppl 2:85-92. [PMID: 12721349 DOI: 10.2106/00004623-200300002-00011] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND A number of arthroscopic procedures that are used in the treatment of focal cartilage lesions or osteoarthritic joints, such as shaving, débridement, and laser abrasion, involve the removal of both diseased and healthy articular cartilage. The excision of such tissue has the effect of generating lesions within the articular cartilage. The fate of the chondrocytes that border such lesions has not been evaluated. The purpose of this investigation was to ascertain whether the surgical creation of lesions in articular cartilage induces irreversible loss of chondrocytes over time from tissue bordering the wound edge and to determine whether the synthetic activity of cells in this region is compromised. METHODS Partial-thickness defects of defined dimensions were created in the femoral condyle and/or trochlear groove of rabbits and miniature pigs. Cell volumes, cell volume densities, and numerical cell densities within tissue close to (within 100 micro m) and remote from (control site) the wound edge were determined by quantitative histomorphometry at various time intervals up to six months after surgery. Rates of proteoglycan synthesis by cells in both regions were determined by quantitative autoradiography following (35) S-sulphate labeling in vivo. RESULTS The surgical creation of partial-thickness lesions in articular cartilage induced a significant and long-term loss of cells from tissue near the wound edge. However, the surviving cell population maintained a normal rate of matrix proteoglycan deposition. CONCLUSIONS This study illustrates that maintenance and remodeling of cartilage matrix close to wound edges in articular cartilage lesions is compromised, since fewer cells, with an unchanged metabolic activity rate, are left to sustain matrix domains.
Collapse
|
21
|
Bos PK, DeGroot J, Budde M, Verhaar JAN, van Osch GJVM. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. ARTHRITIS AND RHEUMATISM 2002; 46:976-85. [PMID: 11953975 DOI: 10.1002/art.10208] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Chondrocyte death in articular cartilage wound edges and the subsequent lack of matrix-producing cells in the interface area are considered to be a major cause of impaired cartilage wound healing and poor integrative cartilage repair. This study was undertaken to investigate whether enzymatic matrix digestion can be used to stimulate integrative cartilage repair via a mechanism of local increase in the amount of vital chondrocytes in cartilage wound edges. METHODS Full-thickness bovine articular cartilage samples were cultured in vitro for 14 days in standard medium. Samples were either left untreated or treated for 48 hours with 0.3% hyaluronidase or 30 units/ml highly purified collagenase VII. Nuclear and cytoplasmic changes were analyzed to determine cell viability, and the number of vital chondrocytes in wound edges was determined. Subsequently, we investigated whether increased chondrocyte density in the lesion edges resulted in better wound healing. Finally, full-thickness human tibial plateau cartilage explants were tested with similar enzyme treatment protocols to determine the clinical value of our results. RESULTS In bovine explants a rapid onset of chondrocyte death was observed in wound edges in all treatment groups. This led to low chondrocyte density in a band of 0-150 microm from the lesion edges in untreated and hyaluronidase-treated explants. Treatment with 30 units/ml collagenase resulted in a significant increase in chondrocyte density in this area. The integration experiments demonstrated improved integration of the lesion edges after treatment with collagenase. In human articular cartilage an increase in chondrocyte density at the lesion edges could also be achieved, but only when proteoglycans were depleted from the wound edges prior to collagenase treatment. CONCLUSION Treatment with highly purified collagenase improves integrative cartilage repair, possibly by increasing the cell density at cartilage wound edges.
Collapse
Affiliation(s)
- P K Bos
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Boyan BD, Dean DD, Lohmann CH, Niederauer GG, McMillan J, Sylvia VL, Schwartz Z. Cartilage regeneration. Oral Maxillofac Surg Clin North Am 2002; 14:105-16. [DOI: 10.1016/s1042-3699(02)00017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Levin A, Burton-Wurster N, Chen CT, Lust G. Intercellular signaling as a cause of cell death in cyclically impacted cartilage explants. Osteoarthritis Cartilage 2001; 9:702-11. [PMID: 11795989 DOI: 10.1053/joca.2001.0467] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED Recently, in vitro cartilage studies have shown that impact loading can produce structural damage and osteoarthritis-like changes, including tissue swelling, collagen denaturation, and cell death. OBJECTIVE This study was to determine whether a signal for cell death moves through the cartilage matrix, resulting in the spread of cell death over time from impacted to unimpacted regions. DESIGN Cyclic impacts were applied to the 2 mm core of 4 mm cartilage discs. Post-impact culturing extended for 3, 6 or 21 days and occurred in one of two ways. In one, discs were cultured intact. In the second, cores were removed immediately after cessation of impact and cores and rings cultured separately. Cells in apoptosis and later stage necrosis were monitored using the TUNEL assay. RESULTS The extent of cell death in impacted samples increased with increased duration of post-impact culturing. At the early time, the majority of cell death was located in the regions of direct impact whereas after extended culture, the extent of cell death was similar in the surrounding unimpacted regions and in the impacted core region. However, the physical separation of the impacted core from the surrounding, non-impacted ring regions immediately after impact, and prior to independent culture, kept the level of cell death in the surrounding ring close to control levels, even after 21 days of incubation. DISCUSSION These findings indicate that soluble intercellular signalling is involved in the spreading of cell death through the cartilage matrix, and that its effects can be prevented by physical isolation of the surrounding ring from the impacted core.
Collapse
Affiliation(s)
- A Levin
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Mature articular cartilage has a poor reparative response to injury and its irreparable breakdown is the common feature of degenerative joint diseases. If articular cartilage lesions become symptomatic, the orthopaedic surgeon must decide on a treatment option. The treatment options include conversion of chondral lesions to osteochondral lesions, which facilitates migration of cells from the marrow space to effect repair. In recent years, a greater emphasis has been placed on tissue engineering strategies and thus several new treatment options have been introduced, including the use of cell transplantation. Several tissue sources and cell types can potentially be used for this type of therapy. These include autologous or allograft chondrocytes and mesenchymal progenitor cells from various tissues. These cells may be delivered to articular cartilage lesions by a variety of methods including direct cell injection to the lesion or seeding in a biodegradable scaffold prior to implantation. In this review, the potential of cell transplantation for articular cartilage repair and regeneration will be discussed. The authors will focus on the available technologies and the present limitations of cell-based therapies.
Collapse
Affiliation(s)
- B Johnstone
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
25
|
Tew S, Redman S, Kwan A, Walker E, Khan I, Dowthwaite G, Thomson B, Archer CW. Differences in repair responses between immature and mature cartilage. Clin Orthop Relat Res 2001:S142-52. [PMID: 11603699 DOI: 10.1097/00003086-200110001-00014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cartilage has a poor reparative capacity although it is unclear as to what extent this may be dependent on age or maturation. In the current study, the cellular responses of chondrocytes to experimental wounding in vitro using embryonic, immature, and mature cartilage have been compared. In all cases, the response was consistent (a combination of cell death that included apoptosis and proliferation). The speed of response varied in terms of cell death with embryonic cartilage showing the most rapid response and mature cartilage showing the slowest response. Intrinsic repair as assessed by the ability to heal the lesion was not detected in any of the culture systems used. It was concluded that the poor repair potential of cartilage is not maturation dependent in the systems studied.
Collapse
Affiliation(s)
- S Tew
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences, Cardiff University, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hembry RM, Dyce J, Driesang I, Hunziker EB, Fosang AJ, Tyler JA, Murphy G. Immunolocalization of matrix metalloproteinases in partial-thickness defects in pig articular cartilage. A preliminary report. J Bone Joint Surg Am 2001; 83:826-38. [PMID: 11407790 DOI: 10.2106/00004623-200106000-00003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Partial-thickness defects in mature articular cartilage do not heal spontaneously. Attempts at repair often result in limited integration between the repair tissue and the surrounding cartilage, with formation of chondrocyte clusters adjacent to a zone of cartilage necrosis. In wound repair, spatially and temporally controlled expression of matrix metalloproteinases and their inhibitors have been implicated in proteolytic degradation of damaged extracellular matrix components, but the sequence of events following damage to cartilage is unknown. To determine this sequence, we studied the distribution of matrix metalloproteinases and their inhibitors during early in vivo repair of partial-thickness defects in pig articular cartilage. METHODS With use of a model that elicits the ingrowth of mesenchymal cells into partial-thickness defects, partial-thickness defects were created in knee joint cartilage. The distributions of matrix metalloproteinase-1, 2, 3, 9, 13, and 14; tissue inhibitors of metalloproteinase-1 and 2; and the neoepitope DIPEN341 specifically generated following matrix metalloproteinase cleavage of aggrecan were determined by immunolocalization of repair tissue and surrounding cartilage excised from immature pigs during the first eight weeks of repair and from adult minipigs at eight days and three weeks. RESULTS Synthesis of matrix metalloproteinase-13 was usually confined to hypertrophic chondrocytes in immature cartilage and to the radial zone in adult cartilage. Following injury, strong induction of matrix metalloproteinase-13 synthesis was observed in chondrocyte clusters surrounding lesions in all of the animals. The migration of macrophages into defects was prominent at two and eight days, with synthesis and deposition of matrix metalloproteinase-9 onto damaged cartilage matrix and newly synthesized matrix in the defect. The DIPEN341 neoepitope was localized to damaged cartilage matrix at eight days and six weeks, indicating partial degradation of aggrecan. Focal synthesis of matrix metalloproteinase-1, 3, and 14 and of tissue inhibitor of metalloproteinase-1 occurred at later times, suggesting continuous remodeling of the increasingly compact repair tissue. CONCLUSIONS The expression of matrix metalloproteinase-13 by normal hypertrophic chondrocytes and the induction of synthesis in chondrocyte clusters adjacent to the zone of cartilage necrosis suggest that this enzyme participates in the pericellular proteolysis required for lacunar expansion. The localization of matrix metalloproteinase-9 to damaged cartilage matrix suggested matrix proteolysis, which was confirmed with DIPEN341 localization. Reduced matrix metachromasia persisted and was colocalized with DIPEN341 at six weeks. However, under the conditions investigated, there was only limited proteolytic degradation in the zone of cartilage necrosis. This may render the zone mechanically weakened, thereby contributing to subsequent instability of the region, and may form a barrier to integration of repair tissue with viable cartilage. CLINICAL RELEVANCE Osteoarthritis initially involves the superficial layers of cartilage. The development of procedures to promote the healing or repair of early defects will have major advantages in terms of disease alleviation as well as economic importance. Identification of the enzymes involved in the early repair of partial-thickness defects in articular cartilage is clinically relevant because proteolysis of damaged matrix has to take place in order for repair tissue to integrate with surrounding healthy cartilage.
Collapse
Affiliation(s)
- R M Hembry
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|