1
|
Agyeman-Prempeh NO, Maas H, Burchell GL, Millar NL, Moen MH, Smit TH. Treatment options for Achilles tendinopathy: a scoping review of preclinical studies. PeerJ 2025; 13:e18143. [PMID: 39807157 PMCID: PMC11727660 DOI: 10.7717/peerj.18143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity. Despite the publication of many preclinical studies, a comprehensive, quality-assessed review of the basic molecular mechanisms in Achilles tendinopathy is lacking. Objectives This scoping review aims to summarize the literature regarding in vitro and in vivo animal studies examining AT treatments and evaluate their effect on tendon properties. Also, a quality assessment of the included animal studies is done. We provide a comprehensive insight into the current state of preclinical AT treatment research which may guide preclinical researchers in future research. Eligibility criteria Treatment options of Achilles tendinopathy in chemically or mechanically induced in vivo or in vitro Achilles tendinopathy models, reporting biomechanical, histological, and/or biochemical outcomes were included. Sources of evidence A systematically conducted scoping review was performed in PubMed, Embase.com, Clarivate Analytics/Web of Science, and the Wiley/Cochrane Library. Studies up to May 4, 2023 were included. Charting Methods Data from the included articles were extracted and categorized inductively in tables by one reviewer. The risk-of-bias quality assessment of the included animal studies is done with Systematic Review Centre for Laboratory Animal Experimentation risk-of-bias tool. Results A total of 98 studies is included, which investigated 65 different treatment options. 80% of studies reported significant improvement in the Achilles tendon characteristics after treatment. The main results were; maximum load and stiffness improvement; fibre structure recovered and less inflammation was observed; collagen I fibrils increased, collagen III fibrils decreased, and fewer inflammatory cells were observed after treatment. However, 65.4% to 92.5% of the studies had an uncertain to high risk of bias according to the risk-of-bias tool of the Systematic Review Centre for Laboratory Animal Experimentation. Conclusions Despite promising preclinical treatment outcomes, translation to clinical practice lags behind. This may be due to the poor face validity of animal models, heterogeneity in Achilles tendinopathy induction, and low quality of the included studies. Preclinical treatments that improved the biomechanical, histological, and biochemical tendon properties may be interesting for clinical trial investigation. Future efforts should focus on developing standardized preclinical Achilles tendinopathy models, improving reporting standards to minimize risk of bias, and facilitating translation to clinical practice.
Collapse
Affiliation(s)
- Nathanael Opoku Agyeman-Prempeh
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Huub Maas
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| | | | - Neal L. Millar
- University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maarten H. Moen
- Department of Sports Medicine, Bergman Clinics, Naarden, the Netherlands, Unaffliated, Naarden, Netherlands
- High-Performance Team, Dutch National Olympic Committee & National Sports Federation, Arnhem, Netherlands
| | - Theodoor Henri Smit
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| |
Collapse
|
2
|
Gopinatth V, Boghosian T, Perugini JM, Smith MV, Knapik DM. Current Concepts in Orthobiologics for Achilles Tendon Injuries: A Critical Analysis Review. JBJS Rev 2024; 12:01874474-202411000-00003. [PMID: 39499787 DOI: 10.2106/jbjs.rvw.24.00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
» Platelet-rich plasma and hyaluronic acid are low-risk and potentially high-reward treatments for Achilles tendinopathy, although clinical studies have yielded mixed results with questionable methodological quality» Case series and reports have reported that bone marrow aspirate, stem cells, and amniotic membrane products can improve functional outcomes, alleviate pain, and facilitate return to sport and activities, but high-level evidence studies are lacking» Exosomes are a promising novel biologic with laboratory studies showing improved collagen organization and cell proliferation, greater tendon mechanical properties, and prevention of extracellular matrix breakdown.» Standardization of protocols with clear reporting is necessary for future studies evaluating orthobiologic therapies for Achilles tendon injuries.
Collapse
Affiliation(s)
- Varun Gopinatth
- Saint Louis University School of Medicine, St. Louis, Missouri
| | - Tanya Boghosian
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Matthew V Smith
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Derrick M Knapik
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Ruan D, Fei Y, Qian S, Huang Z, Chen W, Tang C, Xiang X, Xu J, Yin Z, Chen X, Heng BC, Liu W, Shen W, Ouyang H. Early-Stage Primary Anti-inflammatory Therapy Enhances the Regenerative Efficacy of Platelet-Rich Plasma in a Rabbit Achilles Tendinopathy Model. Am J Sports Med 2021; 49:3357-3371. [PMID: 34549620 DOI: 10.1177/03635465211037354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendinopathy is a pervasive clinical problem that afflicts both athletes and the general public. Although the inflammatory changes in tendinopathy are well characterized, how the therapeutic effects of platelet-rich plasma (PRP) on tendinopathy are being modulated by the inflammatory environment is not well defined. PURPOSE/HYPOTHESIS In this study, we aimed to compare the therapeutic effects of PRP alone versus a combination of PRP with a primary glucocorticoid (GC) injection at the early stage of tendinopathy. We hypothesized that PRP treatment could promote better tendon regeneration through the suppression of inflammation with GC. STUDY DESIGN Controlled laboratory study. METHODS The gene expression profile of tendon stem/progenitor cells (TSPCs) cultured with PRP was analyzed with RNA sequencing. To evaluate the cell viability, senescence, and apoptosis of TSPCs under different conditions, TSPCs were treated with 0.1 mg/mL triamcinolone acetonide (TA) and/or 10% PRP in an IL1B-induced inflammatory environment. To further verify the effects of the sequential therapy of GCs and PRP, an early tendinopathy animal model was established through a local injection of collagenase in the rabbit Achilles tendon. The tendinopathy model was then treated with isopycnic normal saline (NS group), TA (TA group), PRP (PRP group), or TA and PRP successively (TA+PRP group). At 8 weeks after treatment, the tendons were assessed with magnetic resonance imaging (MRI), histological examination, transmission electron microscopy (TEM), and mechanical testing. RESULTS Gene Ontology enrichment analysis indicated that PRP treatment of TPSCs induced an inflammatory response, regulated cell migration, and remodeled the extracellular matrix. Compared with the sole use of PRP, successive treatment with TA followed by PRP yielded similar results in cell viability and senescence but less cell apoptosis in vitro. In vivo experiments demonstrated that the TA+PRP group achieved significantly better tendon regeneration, as confirmed by MRI, histological examination, TEM, and mechanical testing. CONCLUSION This study showed that the primary use of GCs did not exert any obvious deleterious side effects on the treated tendon but instead enhanced the regenerative effects of PRP in early inflammatory tendinopathy. CLINICAL RELEVANCE The sequential therapy of GCs followed by PRP provides a promising treatment strategy for tendinopathy in clinical practice. PRP combined with the primary use of GCs appears to promote tendon regeneration in early inflammatory tendinopathy.
Collapse
Affiliation(s)
- Dengfeng Ruan
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China
| | | | | | | | - Weishan Chen
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Xiang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Jialu Xu
- Department of Infectious Diseases, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Hepatology Institute, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Zi Yin
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China
| | - Xiao Chen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China
| | | | - Wanlu Liu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China.,Investigation performed at the Department of Orthopedic Surgery, Second Affiliated Hospital; Zhejiang University-University of Edinburgh Institute; and School of Basic Medical Sciences; Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
6
|
Elastic and surgeon friendly electrospun tubes delivering PDGF-BB positively impact tendon rupture healing in a rabbit Achilles tendon model. Biomaterials 2020; 232:119722. [DOI: 10.1016/j.biomaterials.2019.119722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023]
|
7
|
Li S, Wu Y, Jiang G, Tian X, Hong J, Chen S, Yan R, Feng G, Cheng Z. Intratendon delivery of leukocyte-rich platelet-rich plasma at early stage promotes tendon repair in a rabbit Achilles tendinopathy model. J Tissue Eng Regen Med 2019; 14:452-463. [PMID: 31840415 DOI: 10.1002/term.3006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/30/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a great obstacle in clinical practice due to its poor regenerative capacity. The influence of different stages of tendinopathy on effects of leukocyte-rich platelet-rich plasma (Lr-PRP) has not been elucidated. The aim of this study is to investigate the optimal time point for delivery of Lr-PRP on tendinopathy. A tendinopathy model was established by local collagenase injection on the rabbit Achilles tendon. Then after collagenase induction, following treatments were applied randomly on the lesion: (a) 200 μl of Lr-PRP at 1 week (PRP-1 group), (b) 200 μl of saline at 1 week (Saline-1 group), (c) 200 μl of Lr-PRP at 4 weeks (PRP-2 group), and (d) 200 μl of saline at 4 weeks (Saline-2 group). Six weeks after collagenase induction, outcomes were assessed by magnetic resonance imaging, cytokine quantification, gene expression, histology, and transmission electron microscopy. Our results demonstrated that PRP-1 group had the least cross-sectional area and lesion percent of the involved tendon, as well as the lowest signal intensity in magnetic resonance imaging among all groups. However, the PRP-2 group showed larger cross-sectional area than saline groups. Enzyme-linked immunosorbent assay indicated that PRP-1 group had a higher level of interleukin-10 but lower level of interleukin-6 when compared with PRP-2 and saline groups. Meanwhile, the highest expression of collagen (Col) 1 in PRP-1 and Col 3, matrix metalloproteinase (MMP)-1, and MMP-3 in PRP-2 was found. Histologically, the PRP-1 showed better general scores than PRP-2, and no significant difference was found between the PRP-2 and saline groups. For transmission electron microscopy, PRP-1 had the largest mean collagen fibril diameter, and the PRP-2 group showed even smaller mean collagen fibril diameter than saline groups. In conclusion, intratendon delivery of Lr-PRP at early stage showed beneficial effect for repair of tendinopathy but not at late stage. For translation of our results to clinical circumstances, further studies are still needed.
Collapse
Affiliation(s)
- Sihao Li
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yifan Wu
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiulian Tian
- Department of Neurology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Shiming Chen
- Department of Surgery, Shaoxing Second Hospital, Shaoxing, China
| | - Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Gang Feng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhiyuan Cheng
- Institute of Microelectronics and Nanoelectronics, Key Lab. of Advanced Micro/Nano Electronics Devices & Smart Systems of Zhejiang, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
de Girolamo L, Morlin Ambra LF, Perucca Orfei C, McQuilling JP, Kimmerling KA, Mowry KC, Johnson KA, Phan AT, Whited JL, Gomoll AH. Treatment with Human Amniotic Suspension Allograft Improves Tendon Healing in a Rat Model of Collagenase-Induced Tendinopathy. Cells 2019; 8:E1411. [PMID: 31717431 PMCID: PMC6912389 DOI: 10.3390/cells8111411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Treatment of tendon injuries is challenging, with neither conservative nor surgical approaches providing full recovery. Placental-derived tissues represent a promising tool for the treatment of tendon injuries. In this study, human amniotic suspension allograft (ASA) was investigated in a pre-clinical model of Achilles tendinopathy. Collagenase type I was injected in the right hind limb of Sprague Dawley rats to induce disease. Contralateral tendons were either left untreated or injected with saline as controls. Seven days following induction, tendons were injected with saline, ASA, or left untreated. Rats were sacrificed 14 and 28 days post-treatment. Histological and biomechanical analysis of tendons was completed. Fourteen days after ASA injection, improved fiber alignment and reduced cell density demonstrated improvement in degenerated tendons. Twenty-eight days post-treatment, tendons in all treatment groups showed fewer signs of degeneration, which is consistent with normal tendon healing. No statistically significant differences in histological or biomechanical analyses were observed between treatment groups at 28 days independent of the treatment they received. In this study, ASA treatment was safe, well-tolerated, and resulted in a widespread improvement of the tissue. The results of this study provide preliminary insights regarding the potential use of ASA for the treatment of Achilles tendinopathy.
Collapse
Affiliation(s)
- Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Luiz Felipe Morlin Ambra
- University Hospital São Paulo, Av. Prof. Lineu Prestes, 2565-Butantã, São Paulo, SP 05508-000, Brazil;
| | | | - John P. McQuilling
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Kelly A. Kimmerling
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Katie C. Mowry
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Kimberly A. Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Amy T. Phan
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Jessica L. Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Andreas H. Gomoll
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
9
|
Stem Cells and Platelet-Rich Plasma Enhance the Healing Process of Tendinitis in Mice. Stem Cells Int 2019; 2019:1497898. [PMID: 31662764 PMCID: PMC6778922 DOI: 10.1155/2019/1497898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/06/2019] [Indexed: 11/17/2022] Open
Abstract
Objective Achilles tendon pathologies occur frequently and have a significant socioeconomic impact. Currently, there is no evidence on the best treatment for these pathologies. Cell therapy has been studied in several animal models, and encouraging results have been observed with respect to tissue regeneration. This study is aimed at evaluating the functional and histological effects of bone marrow stem cell or platelet-rich plasma implantation compared to eccentric training in the treatment of Achilles tendinopathy in rats. Methods Fourty-one male Wistar rats received collagenase injections into their bilateral Achilles tendons (collagenase-induced tendinopathy model). The rats were randomly divided into four groups: stem cells (SC), platelet-rich plasma (PRP), stem cells+platelet-rich plasma (SC+PRP), and control (eccentric training (ET)). After 4 weeks, the Achilles tendons were excised and subjected to biomechanical and histological analyses (Sirius red and hematoxylin-eosin staining). Results Biomechanical assessments revealed no differences among the groups in ultimate tensile strength or yield strength of the tendons (p = 0.157), but there were significant differences in the elastic modulus (MPa; p = 0.044) and maximum tensile deformation (p = 0.005). The PRP group showed the greatest maximum deformation, and the SC group showed the highest Young's modulus (elasticity) measurement. In histological analysis (hematoxylin-eosin and Sirius red staining), there were no differences among the groups. Conclusion PRP and SC+PRP yielded better biomechanical results than eccentric training, showing that these treatments offer better tend function outcomes. This theoretical rationale for the belief that cell therapies can serve as viable alternatives to current treatments chronic fibrotic opens the door for opportunities to continue this research.
Collapse
|
10
|
Majdalani C, Boudier-Revéret M, Pape J, Brismée JM, Michaud J, Luong DH, Grabs D, Chang KV, Chen WS, Wu CH, Sobczak S. Accuracy of Two Ultrasound-Guided Coracohumeral Ligament Injection Approaches: A Cadaveric Study. PM R 2019; 11:989-995. [PMID: 30690914 DOI: 10.1002/pmrj.12079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glenohumeral idiopathic adhesive capsulitis is a common shoulder condition that hinders functionality. Addressing the pathology has been extensively researched. Ultrasound (US)-guided injections have shown their efficacy. However, no study has been conducted to compare anatomical accuracy between different approaches in targeting the coracohumeral ligament (CHL). OBJECTIVE To investigate whether US-guided injection of the CHL can be performed accurately using either the rotator interval (RI) or the coracoidal (CO) approach. METHODS An experimental cadaveric case series. SETTING Anatomy laboratory. SPECIMENS Both shoulders of 13 Thiel-embalmed cadavers. INTERVENTIONS Three physiatrists each injected a 0.1 mL bolus of colored dye in both shoulders of each cadaver using either the RI or the CO approach under US guidance. Each cadaver received a total of six injections (three injections per shoulder). The accuracy of the injection was determined following shoulder dissection by an anatomist. MAIN OUTCOME MEASURE The accuracy of the US-guided injection of the CHL. RESULTS The RI approach yielded 36 accurate injections, giving it an accuracy of 100%. With the CO approach two injections were deemed inaccurate yielding an accuracy of 94%. There was no significant difference in accuracy between all operators. CONCLUSIONS US-guided injection of the CHL can be performed accurately with both the RI and CO approaches. The RI approach was likely to be more accurate.
Collapse
Affiliation(s)
- Carl Majdalani
- Department of Physical Medicine and Rehabilitation, Centre hospitalier de l'Université de Montréal, Montréal, Canada
| | - Mathieu Boudier-Revéret
- Department of Physical Medicine and Rehabilitation, Centre hospitalier de l'Université de Montréal, Montréal, Canada
| | - John Pape
- Department of Physiotherapy, University Hospital of North Tees, Stockton on Tees, United Kingdom
| | - Jean-Michel Brismée
- Center for Rehabilitation Research, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Johan Michaud
- Department of Physical Medicine and Rehabilitation, Centre hospitalier de l'Université de Montréal, Montréal, Canada
| | - Dien Hung Luong
- Department of Physical Medicine and Rehabilitation, Centre hospitalier de l'Université de Montréal, Montréal, Canada
| | - Detlev Grabs
- Département d'Anatomie, Université du Québec à Trois-Rivières, Québec, Canada.,Research Unit of Clinical and Functional Anatomy, Université du Québec à Trois-Rivières, Québec, Canada
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Chueh Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Stéphane Sobczak
- Département d'Anatomie, Université du Québec à Trois-Rivières, Québec, Canada.,Research Unit of Clinical and Functional Anatomy, Université du Québec à Trois-Rivières, Québec, Canada
| |
Collapse
|
11
|
Zhang YJ, Chen X, Li G, Chan KM, Heng BC, Yin Z, Ouyang HW. Concise Review: Stem Cell Fate Guided By Bioactive Molecules for Tendon Regeneration. Stem Cells Transl Med 2018; 7:404-414. [PMID: 29573225 PMCID: PMC5905226 DOI: 10.1002/sctm.17-0206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Tendon disorders, which are commonly presented in the clinical setting, disrupt the patients' normal work and life routines, and they damage the careers of athletes. However, there is still no effective treatment for tendon disorders. In the field of tissue engineering, the potential of the therapeutic application of exogenous stem cells to treat tendon pathology has been demonstrated to be promising. With the development of stem cell biology and chemical biology, strategies that use inductive tenogenic factors to program stem cell fate in situ are the most easily and readily translatable to clinical applications. In this review, we focus on bioactive molecules that can potentially induce tenogenesis in adult stem cells, and we summarize the various differentiation factors found in comparative studies. Moreover, we discuss the molecular regulatory mechanisms of tenogenesis, and we examine the various challenges in developing standardized protocols for achieving efficient and reproducible tenogenesis. Finally, we discuss and predict future directions for tendon regeneration. Stem Cells Translational Medicine 2018;7:404-414.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| | - Gang Li
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Kai-Ming Chan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Novel animal model for Achilles tendinopathy: Controlled experimental study of serial injections of collagenase in rabbits. PLoS One 2018; 13:e0192769. [PMID: 29438431 PMCID: PMC5811024 DOI: 10.1371/journal.pone.0192769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Our goal was to develop a novel technique for inducing Achilles tendinopathy in animal models which more accurately represents the progressive histological and biomechanical characteristic of chronic Achilles tendinopathy in humans. In this animal research study, forty-five rabbits were randomly assigned to three groups and given bilateral Achilles injections. Low dose (LD group) (n = 18) underwent a novel technique with three low-dose (0.1mg) injections of collagenase that were separated by two weeks, the high dose group (HD) (n = 18) underwent traditional single high-dose (0.3mg) injections, and the third group were controls (n = 9). Six rabbits were sacrificed from each experimental group (LD and HD) at 10, 12 and 16 weeks. Control animals were sacrificed after 16 weeks. Histological and biomechanical properties were then compared in all three groups. At 10 weeks, Bonar score and tendon cross sectional area was highest in HD group, with impaired biomechanical properties compared to LD group. At 12 weeks, Bonar score was higher in LD group, with similar biomechanical findings when compared to HD group. After 16 weeks, Bonar score was significantly increased for both LD group (11,8±2,28) and HD group (5,6±2,51), when compared to controls (2±0,76). LD group showed more pronounced histological and biomechanical findings, including cross sectional area of the tendon, Young’s modulus, yield stress and ultimate tensile strength. In conclusion, Achilles tendinopathy in animal models that were induced by serial injections of low-dose collagenase showed more pronounced histological and biomechanical findings after 16 weeks than traditional techniques, mimicking better the progressive and chronic characteristic of the tendinopathy in humans.
Collapse
|
13
|
Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm 2018; 544:358-371. [PMID: 29317260 DOI: 10.1016/j.ijpharm.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
Abstract
The high incidence of degenerative tears and prevalence of retears (20-95%) after surgical repair makes rotator cuff injuries a significant health problem. This high retear rate is attributed to the failure of the repaired tissue to regenerate the native tendon-to-bone insertion (enthesis). Biological augmentation of surgical repair such as autografts, allografts, and xenografts are confounded by donor site morbidity, immunogenicity, and disease transmission, respectively. In contrast, these risks may be alleviated via growth factor therapy, which can actively influence the healing environment to promote functional repair. Several challenges have to be overcome before growth factor delivery can translate into clinical practice such as the selection of optimal growth factor(s) or combination, identification of the most efficient stage and duration of delivery, and the design considerations for the delivery device. Emerging insight into the injury-repair microenvironment and our understanding of growth factor mechanisms in healing are informing the design of advanced delivery scaffolds to effectively treat rotator cuff tears. Here, we review potential growth factor candidates, design parameters and material selection for growth factor delivery, innovative and dynamic delivery scaffolds, and novel therapeutic targets from tendon and developmental biology for the structural and functional healing of rotator cuff repair.
Collapse
|
14
|
Chen QJ, Chen L, Wu SK, Wu YJ, Pang QJ. rhPDGF-BB combined with ADSCs in the treatment of Achilles tendinitis via miR-363/PI3 K/Akt pathway. Mol Cell Biochem 2017; 438:175-182. [PMID: 28766166 DOI: 10.1007/s11010-017-3124-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/15/2017] [Indexed: 12/18/2022]
Abstract
To investigate the mechanism of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and human adipose-derived stem cells (hADSCs) in the treatment of Achilles tendinitis. Biomechanical indices of stiffness, stress, and maximum load-to-failure were detected by biomechanical test. mRNA and protein levels of miR-363, p-PI3K/AKT, tendon-related genes Collagen I, Scleraxis (Scx), and Tenascin C (TNC) were measured by qRT-PCR and western blot. The proliferation of hADSCs was accessed by MTT assay. Biomechanical indices of stiffness, stress, and maximum load-to-failure, and mRNA and protein levels of tendon-related genes could be improved by rhPDGF-BB or hADSCs alone, and could be further improved by rhPDGF-BB + hADSCs. rhPDGF-BB and hADSCs downregulated the expression of miR-363 and upregulated the levels of p-PI3K/Akt, and rhPDGF-BB + hADSCs further strengthened these effects. In addition, rhPDGF-BB promoted the proliferation of hADSCs in vitro and upregulated the expression of tendon-related genes. miR-363 mimic downregulated the levels of p-PI3K/Akt, miR-363 inhibitor upregulated the levels of p-PI3K/Akt, and miR-363 mimic and PI3K/Akt pathway inhibitor LY294002 reversed the positive effect of rhPDGF-BB on the proliferation of hADSCs, which suggested that rhPDGF-BB promoted the proliferation of hADSCs via miR-363/PI3K/Akt pathway. Biomechanical indices and tendon-related genes could be improved by rhPDGF-BB and hADSCs. Moreover, rhPDGF-BB promoted the proliferation of hADSCs via miR-363/PI3K/Akt pathway, indicating that rhPDGF-BB combined with ADSCs could treat Achilles tendinitis via miR-363/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Qiao-Jie Chen
- Department of Orthopaedics Surgery, Ningbo No. 2 Hospital, Zhejiang, 315010, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, Ningbo No. 2 Hospital, Zhejiang, 315010, People's Republic of China
| | - Shao-Kun Wu
- Department of Orthopaedics Surgery, Ningbo No. 2 Hospital, Zhejiang, 315010, People's Republic of China
| | - Yao-Jun Wu
- Department of Orthopaedics Surgery, Ningbo No. 2 Hospital, Zhejiang, 315010, People's Republic of China
| | - Qing-Jiang Pang
- Department of Orthopaedics Surgery, Ningbo No. 2 Hospital, Zhejiang, 315010, People's Republic of China.
- , 41 Xibei Rd., Haishu, Ningbo, 315000, People's Republic of China.
| |
Collapse
|
15
|
Lee SY, Chieh HF, Lin CJ, Jou IM, Sun YN, Kuo LC, Wu PT, Su FC. Characteristics of Sonography in a Rat Achilles Tendinopathy Model: Possible Non-invasive Predictors of Biomechanics. Sci Rep 2017; 7:5100. [PMID: 28698601 PMCID: PMC5506063 DOI: 10.1038/s41598-017-05466-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to investigate the dynamic changes of histopathology, biomechanical properties, echo intensity, and ultrasound features in a collagenase-induced tendinopathy model of rat Achilles tendons, and to examine the associations among biomechanical properties, echo intensity, and ultrasound features. Forty-two rats received an ultrasound-guided collagenase injection on their left Achilles tendons, and needle puncture on the right ones as the control. At four, eight, and twelve weeks post-injury, the tendons were examined via measurements of their biomechanical properties, histopathological and ultrasonographic characteristics. The injured tendons showed significantly higher histopathological scores, lower Young’s modulus, and higher ultrasound feature scores than the those of control ones throughout the study period. Up to week 12, all injured tendons showed defective healing. The neovascularization score had a significant negative linear association with the failure stress and Young’s modulus. Maximum normalized echo intensity had a significant positive linear association with maximum strain. Therefore, neovascularization and maximum normalized echo intensity are associated with mechanically altered tendinopathic tendons. Non-invasive ultrasound methodology, including echo intensity and ultrasound feature scores, may provide useful information about biomechanical properties of tendinopathic tendons.
Collapse
Affiliation(s)
- Su-Ya Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Feng Chieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Ju Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Nien Sun
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.,Department of Computer Science & Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan. .,Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Morath O, Kubosch EJ, Taeymans J, Zwingmann J, Konstantinidis L, Südkamp NP, Hirschmüller A. The effect of sclerotherapy and prolotherapy on chronic painful Achilles tendinopathy-a systematic review including meta-analysis. Scand J Med Sci Sports 2017; 28:4-15. [PMID: 28449312 DOI: 10.1111/sms.12898] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 01/29/2023]
Abstract
Chronic painful Achilles tendinopathy (AT) is a common disorder among athletes. Sclerotherapy (ST) and prolotherapy (PT) are two promising options among the numerous other conservative therapies. As their efficacy and potential adverse effects (AE) are still unclear, we systematically searched, analyzed, and synthesized the available literature on ST and PT for treating AT. Electronic databases, Google Scholar and articles' reference lists were searched according to PRISMA guidelines. Eligibility criteria were set up according to the PICOS-scheme including human and animal studies. Three authors independently reviewed the results and evaluated methodological quality (Coleman Methodology Score and Cochrane Risk of Bias Assessment). The initial search yielded 1104 entries. After screening, 18 articles were available for qualitative synthesis, six of which were subjected to meta-analysis. The mean Coleman Score of the 13 human studies was 50. Four RCTs were ranked as having a low risk of selection bias. Three of those reported a statistically significant drop in the visual analog scale (VAS) score, one a significant increase in the VISA-A Score. 12 of 13 human studies reported positive results in achieving pain relief and patient satisfaction, whereas only one study's finding differed. Meta-analysis revealed an unambiguous result in favor of the intervention (weighted mean difference D=-4.67 cm, 95% CI -5.56 to -3.76 cm [P<.001]). Only one serious AE and two minor AEs were reported in the entire literature. This systematic review suggests that ST and PT may be effective treatment options for AT and that they can be considered safe. Long-term studies and RCTs are still needed to support their recommendation.
Collapse
Affiliation(s)
- O Morath
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - E J Kubosch
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - J Taeymans
- Bern University of Applied Sciences - Health, Berne, Switzerland
| | - J Zwingmann
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - L Konstantinidis
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - N P Südkamp
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - A Hirschmüller
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.,ALTIUS Swiss Sportmed Center, Rheinfelden, Switzerland
| |
Collapse
|
17
|
Abstract
STUDY DESIGN Preclinical animal study. OBJECTIVE Determine the in vivo effects of platelet-derived growth factor BB (PDGF-BB) delivered in a thiol-modified hyaluronic acid (TMHA) hydrogel on intervertebral disk (IVD) degeneration. SUMMARY OF BACKGROUND DATA IVD degeneration is a worldwide health concern and remains without an effective treatment. Several in vitro studies have demonstrated the potential of PDGF-BB, a primary component of platelet-rich plasma, as a therapy for IVD degeneration. Our hypotheses were that treatment of injured IVDs with PDGF would inhibit degeneration and that administration of PDGF in a TMHA hydrogel would improve its efficacy. METHODS IVD degeneration was induced using the rabbit annular puncture model. Four weeks after injury, IVDs were treated with either PDGF-BB or PDGF-BB delivered within a TMHA hydrogel. The efficacy of treatment was determined using x-ray, MRI, histology, and biomechanical testing. RESULTS At 4 weeks after treatment, cell apoptosis and deposition of matrix containing type III collagen a1 (Col3a1) was demonstrated in both the nucleus pulposus and annulus fibrosus, while this was inhibited by PDGF. At 8 weeks after treatment, disc area and MRI indices of injured IVDs treated with PDGF were significantly higher (P < 0.05) than those treated with the TMHA alone. Similarly, degenerative scores for saline- and TMHA-treated IVDs demonstrated significantly more degeneration (P < 0.05) than PDGF-treated IVDs at 8 weeks. Biomechanical assessments found fewer indicators of degeneration in PDGF-TMHA-treated IVDs at both 4 and 8 weeks post-treatment, compared to saline-, TMHA-, and PDGF-only-treated IVDs. Both PDGF- and PDGF-TMHA-treated IVDs also demonstrated a significant increase (P < 0.05) in compressive strength to failure, compared with controls at 8 weeks post-treatment. CONCLUSION The results of this study suggest that PDGF-BB significantly decreases disc degeneration and when delivered in a TMHA gel scaffold, helps prevent both apoptosis and Col3 matrix production, while maintaining disc structure and biomechanical function. LEVEL OF EVIDENCE NA.
Collapse
|
18
|
A mechanical and histologic comparative study of the effect of saline, steroid, autologous blood, and platelet-rich plasma on collagenase-induced Achilles tendinopathy in a rat model. CURRENT ORTHOPAEDIC PRACTICE 2015. [DOI: 10.1097/bco.0000000000000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Sayegh ET, Sandy JD, Virk MS, Romeo AA, Wysocki RW, Galante JO, Trella KJ, Plaas A, Wang VM. Recent Scientific Advances Towards the Development of Tendon Healing Strategies. ACTA ACUST UNITED AC 2015; 4:128-143. [PMID: 26753125 DOI: 10.2174/2211542004666150713190231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - John D Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Mandeep S Virk
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anthony A Romeo
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Robert W Wysocki
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Jorge O Galante
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Katie J Trella
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anna Plaas
- Department of Rheumatology/Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Vincent M Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
20
|
Abstract
Injuries of the Achilles tendon are relatively common with potentially devastating outcomes. Healing Achilles tendons form a fibrovascular scar resulting in a tendon which may be mechanically weaker than the native tendon. The resulting strength deficit causes a high risk for reinjury and other complications. Treatments using biologics aim to restore the normal properties of the native tendon and reduce the risk of rerupture and maximize tendon function. The purpose of this review was to summarize the current findings of various therapies using biologics in an attempt to improve the prognosis of Achilles tendon ruptures and tendinopathies. A PubMed search was performed using specific search terms. The search was open for original manuscripts and review papers limited to publication within the last 10 years. From these searches, papers were included in the review if they investigated the effects of biological augmentation on Achilles tendon repair or healing. Platelet-rich plasma may assist in the healing process of Achilles tendon ruptures, while the evidence to support its use in the treatment of chronic Achilles tendinopathies remains insufficient. The use of growth factors such as hepatocyte growth factor, recombinant human platelet-derived growth factor-BB, interleukin-6, and transforming growth factor beta as well as several bone morphogenetic proteins have shown promising results for Achilles tendon repair. In vitro and preclinical studies have indicated the potential effectiveness of bone marrow aspirate as well. Stem cells also have positive effects on Achilles tendon healing, particularly during the early phases. Polyhydroxyalkanoates (PHA), decellularized tendon tissue, and porcine small intestinal submucosa (SIS) are biomaterials which have shown promising results as scaffolds used in Achilles tendon repair. The application of biological augmentation techniques in Achilles tendon repair appears promising; however, several techniques require further investigation to evaluate their clinical application.
Collapse
Affiliation(s)
- Evan Shapiro
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Daniel Grande
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Mark Drakos
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| |
Collapse
|
21
|
Rodeo SA, Sugiguchi F, Fortier LA, Cunningham ME, Maher S. What's new in orthopaedic research. J Bone Joint Surg Am 2014; 96:2015-9. [PMID: 25471917 DOI: 10.2106/jbjs.n.01001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Scott A Rodeo
- The Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | - Fumitaka Sugiguchi
- The Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | - Lisa A Fortier
- Cornell University of Veterinary Medicine, 930 Campus Road, Room C3-181, Ithaca, NY 14853-6401
| | | | - Suzanne Maher
- The Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
22
|
Presciutti SM, Paglia DN, Karukonda T, Soung DY, Guzzo R, Drissi H, Moss IL. PDGF-BB inhibits intervertebral disc cell apoptosis in vitro. J Orthop Res 2014; 32:1181-8. [PMID: 24841673 DOI: 10.1002/jor.22638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/04/2014] [Indexed: 02/04/2023]
Abstract
Degeneration of the intervertebral disc (IVD) results in deterioration of the spinal motion segment and can lead to debilitating back pain. Given the established mitotic and anti-apoptotic effects of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in a variety of cell types we postulated that rhPDGF-BB might delay disc cell degeneration through inhibition of apoptosis. To address this hypothesis, we treated human IVD cells isolated from five independent patients with rhPDGF-BB in monolayer and 3D pellet cultures. The anti-apoptotic potential, cell proliferative capacity, morphology/pellet differentiation, and gene expression of PDGF-treated IVD cells were evaluated via flow cytometry/immunohistochemistry, MTT assays, histology, and quantitative RT-PCR, respectively. We found that rhPDGF-BB treatment significantly inhibited cell apoptosis, increased cell proliferation and matrix production, and maintained mRNA expression of critical extracellular matrix genes. This study suggests two possible mechanisms for the anti-degenerative effects of rhPDGF-BB on human IVD cells. First, PDGF treatment strongly inhibited IVD cell apoptosis in 3D cultures. Second, rhPDGF-BB acts as an anabolic agent, promoting maintenance of IVD cell phenotype in 3D culture, based on the molecular and protein expression analysis. We speculate that rhPDGF-BB may be used as a biologic treatment to target early degenerative IVD disease in the future.
Collapse
Affiliation(s)
- Steven M Presciutti
- Departments of Orthopaedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, MARB Building, 4th Floor, Farmington, Connecticut, 06030
| | | | | | | | | | | | | |
Collapse
|
23
|
Banks JM, Mozdzen LC, Harley BAC, Bailey RC. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials 2014; 35:8951-9. [PMID: 25085859 DOI: 10.1016/j.biomaterials.2014.07.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
Biomaterial designs are increasingly incorporating multiple instructive signals to induce a desired cell response. However, many approaches do not allow orthogonal manipulation of immobilized growth factor signals and matrix stiffness. Further, few methods support patterning of biomolecular signals across a biomaterial in a spatially-selective manner. Here, we report a sequential approach employing carbodiimide crosslinking and benzophenone photoimmobilization chemistries to orthogonally modify the stiffness and immobilized growth factor content of a model collagen-GAG (CG) biomaterial. We subsequently examined the singular and combined effects of bone morphogenetic protein (BMP-2), platelet derived growth factor (PDGF-BB), and CG membrane stiffness on the bioactivity and osteogenic/adipogenic lineage-specific gene expression of adipose derived stem cells, an increasingly popular cell source for regenerative medicine studies. We found that the stiffest substrates direct osteogenic lineage commitment of ASCs regardless of the presence or absence of growth factors, while softer substrates require biochemical cues to direct cell fate. We subsequently describe the use of this approach to create overlapping patterns of growth factors across a single substrate. These results highlight the need for versatile approaches to selectively manipulate the biomaterial microenvironment to identify synergies between biochemical and mechanical cues for a range of regenerative medicine applications.
Collapse
Affiliation(s)
- Jessica M Banks
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura C Mozdzen
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ryan C Bailey
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
Spanoudes K, Gaspar D, Pandit A, Zeugolis DI. The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol 2014; 32:474-82. [PMID: 25043371 DOI: 10.1016/j.tibtech.2014.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022]
Abstract
Tendon injuries constitute an unmet clinical need, with 3 to 5 million new incidents occurring annually worldwide. Tissue grafting and biomaterial-based approaches fail to provide environments that are conducive to regeneration; instead they lead to nonspecific cell adhesion and scar tissue formation, which collectively impair functionality. Cell based therapies may potentially recover native tendon function, if tenocyte trans-differentiation can be evaded and stem cell differentiation towards tenogenic lineage is attained. To this end, recreating an artificial in vivo tendon niche by engineering functional in vitro microenvironments is a research priority. Clinically relevant cell based therapies for tendon repair and regeneration could be created using tools that harness biophysical beacons (surface topography, mechanical loading), biochemical cues (oxygen tension), and biological signals (growth factors).
Collapse
Affiliation(s)
- Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
25
|
Kessler MW, Barr J, Greenwald R, Lane LB, Dines JS, Dines DM, Drakos MC, Grande DA, Chahine NO. Enhancement of Achilles tendon repair mediated by matrix metalloproteinase inhibition via systemic administration of doxycycline. J Orthop Res 2014; 32:500-6. [PMID: 24346815 DOI: 10.1002/jor.22564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/19/2013] [Indexed: 02/04/2023]
Abstract
Collagenases or matrix metalloproteinases (MMPs) have been shown to play an important role in the matrix degradation cascade associated with Achilles tendon rupture and disease. The goal of this study was to examine the effects of daily administration of doxycycline (Doxy) through oral gavage on MMP activity and on the repair quality of Achilles tendons in vivo. Our findings indicate that Achilles tendon transection resulted in increasing MMP-8 activity from 2 to 6 weeks post-injury, with peak increases in activity occurring at 4 weeks post-injury. Doxy adiministration at clinically relevant serum concentrations was found to significantly inhibit MMP activity after continuous treatment for 4 weeks, but not for continuous administration for shorter durations (96 h or 2 weeks). Extended doxy administration was also associated with improved collagen fibril organization, and enhanced biomechanical properties (stiffness, ultimate tensile strength, maximum load to failure, and elastic toughness). Our findings indicate that a temporal delay exists between Achilles tendon transection and associated increases in MMP-8 activity in situ. Our findings suggest that inhibition of MMP-8 at its peak activity levels ameliorates fibrosis development and improves biomechanical properties of the Achilles tendon.
Collapse
Affiliation(s)
- Michael W Kessler
- Orthopaedic Research Lab, The Feinstein Institute for Medical Research, Manhasset, New York; Georgetown University Hospital, Washington, District of Columbia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Solchaga LA, Bendele A, Shah V, Snel LB, Kestler HK, Dines JS, Hee CK. Comparison of the effect of intra-tendon applications of recombinant human platelet-derived growth factor-BB, platelet-rich plasma, steroids in a rat achilles tendon collagenase model. J Orthop Res 2014; 32:145-50. [PMID: 24018586 DOI: 10.1002/jor.22483] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/14/2013] [Indexed: 02/04/2023]
Abstract
This study compared the effect of intra-tendon (IT) delivery of recombinant human platelet-derived growth factor-BB (rhPDGF-BB), platelet-rich plasma (PRP) and corticosteroids in a rat tendinopathy model. Seven days after collagenase induction of tendinopathy, a 30-µl IT injection was administered. Treatments included: saline; 3 µg rhPDGF-BB; 10 µg rhPDGF-BB; PRP; and 300 µg triamcinolone acetonide (TCA). Outcomes were assessed 7 and 21 days after treatment. All groups exhibited good to excellent repair. Relative to saline, cell proliferation increased 65% in the 10 µg rhPDGF-BB group and decreased 74% in the TCA group; inflammation decreased 65% in the TCA group. At 7 days, maximum load-to-failure was increased in the 3 µg rhPDGF-BB group relative to saline, PRP, and TCA (p < 0.025). On day 21, maximum load-to-rupture was increased in the 10 µg rhPDGF-BB group relative to saline, PRP, and TCA (p < 0.035) and in the 3 µg rhPDGF-BB group compared to saline and TCA (p < 0.027). Stiffness in the 10 µg rhPDGF-BB group was increased compared to saline, PRP, and TCA (p < 0.038). Histology demonstrated similar repair in all groups. PRP and TCA did not improve mechanical properties compared to saline. Injections of rhPDGF-BB increased maximum load-to-failure (3 and 10 µg) and stiffness (10 µg) relative to controls and commonly used treatments. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:145-150, 2014.
Collapse
Affiliation(s)
- Luis A Solchaga
- Research and Development, BioMimetic Therapeutics, LLC, Franklin, Tennessee
| | | | | | | | | | | | | |
Collapse
|
27
|
Evidenzbasierte Evaluation intraoperativer biologischer Augmentation und deren Komplikationspotenzial. ARTHROSKOPIE 2013. [DOI: 10.1007/s00142-012-0740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|