1
|
Tang Y, Huang J, Damiri F, Xiao Z, Liao X, Zhang W, Chen Y, Berrada M, Song Z, Liu Y. The preparation of silk fibroin-based hydrogels and their applications in cartilage repair. Int J Biol Macromol 2025; 310:143610. [PMID: 40300680 DOI: 10.1016/j.ijbiomac.2025.143610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
With the social development, the number of patients with osteoarthritis (OA) is increasing year by year, making it crucial to explore novel therapies and treatments to facilitate cartilage repair. Among these, hydrogels have become a center of conversation as potential cartilage substitutes in view of their swelling capacity, mechanical properties, lubricating performance, and other characteristics similar with that of extracellular matrix of articular cartilage. Therefore, it is of important values to generate multi-functional hydrogels with various bioactive materials for cartilage repair. As a natural fibrous protein known for its wonderful biocompatibility, degradability, as well as mechanical strength, silk fibroin (SF) with collagen-like structure has been widely applied in cartilage repair. Therefore, utilizing SF to construct hydrogels through various crosslinking methods shows greater application potential in cartilage repair and the treatment of OA. Besides having the benefits of both SF and hydrogels, the resulting SF-based hydrogels can further load various drugs, growth factors, stem cells, etc., so as to effectively promote cartilage repair. This review summarized the construction methods of SF-based hydrogels and the research progress in cartilage repair. The future development for SF-based hydrogels in cartilage repair was also discussed, which lay the foundation for further treatment of OA.
Collapse
Affiliation(s)
- Yuxin Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Ziyi Xiao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zhang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yiling Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Zhihao Song
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; UCL School of Pharmacy, 29-39 Brunswick Square, University College London, London WC1N1AX, UK.
| |
Collapse
|
2
|
Joukar A, Karnik S, Noori-Dokht H, Younesi S, Trippel SB, Wagner DR. Mechanical Wear of Degraded Articular Cartilage. Ann Biomed Eng 2025; 53:956-965. [PMID: 39863807 DOI: 10.1007/s10439-025-03680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE To evaluate the mechanical wear of cartilage with different types of degradation. METHODS Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation. Biochemical assays were performed to quantify the cartilage matrix loss to the media during culture and from an accelerated, ex vivo wear test. The coefficient of friction during the wear test was measured. Distribution of GAGs in the tissue was assessed histologically. RESULTS All three degradative treatments decreased the cartilage modulus values and depleted GAGs in histological sections. However, wear was not uniform among the different treatments. Collagen loss from the tissue due to mechanical wear was only higher with IL-1β and collagenase treatment, while collagen loss due to wear with ChABC treatment was similar to untreated controls. In addition, less GAG was released due to mechanical wear in all degraded groups than the controls, likely because GAGs had already been depleted from these tissues during culture. As no significant differences in the coefficient of friction were observed between groups, changes in wear were attributed to altered tissue composition and structure rather than to changes in frictional forces. CONCLUSIONS Results suggest that cartilage with a degraded collagen network is more susceptible to mechanical wear, but that cartilage wear may be relatively unaffected by the loss of GAGs. Furthermore, exacerbated mechanical wear could be an additional mechanism by which inflammatory cytokines induce cartilage breakdown.
Collapse
Affiliation(s)
- Amin Joukar
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sonali Karnik
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 723 W. Michigan Street, SL 260, Indianapolis, IN, 46202, USA
| | - Hessam Noori-Dokht
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sogol Younesi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen B Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 723 W. Michigan Street, SL 260, Indianapolis, IN, 46202, USA
| | - Diane R Wagner
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 723 W. Michigan Street, SL 260, Indianapolis, IN, 46202, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Liu Z, Liu L, Liu J, Wu J, Tang R, Wolfram J. Electrospun meshes for abdominal wall hernia repair: Potential and challenges. Acta Biomater 2025; 195:52-72. [PMID: 39826853 DOI: 10.1016/j.actbio.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Surgical meshes are widely used in abdominal wall hernia repairs. However, consensus on mesh treatment remains elusive due to varying repair outcomes, especially with the introduction of new meshes, posing a substantial challenge for surgeons. Addressing these issues requires communicating the features of emerging candidates with a focus on clinical considerations. Electrospinning is a versatile technique for producing meshes with biomechanical architectures that closely mimic the extracellular matrix and enable incorporation of bioactive and therapeutic agents into the interconnective porous network, providing a favorable milieu for tissue integration and remodeling. Although this promising technique has drawn considerable interest in mesh fabrication and functionalization, currently developed electrospun meshes have limitations in meeting clinical requirements for hernia repair. This review summarizes the advantages and limitations of meshes prepared through electrospinning based on biomechanical, biocompatible, and bioactive properties/functions, offering interdisciplinary insights into challenges and future directions toward clinical mesh-aided hernia repair. STATEMENT OF SIGNIFICANCE: Consensus for hernia treatments using surgical meshes remains elusive based on varying repair outcomes, presenting significant challenges for researchers and surgeons. Differences in understanding mesh between specialists, particularly regarding material characteristics and clinical requirements, contribute to this issue. Electrospinning has been increasingly applied in mesh preparation through various approaches and strategies, aiming to improve abdominal wall hernia by restoring mechanical, morphological and functional integrity. However, there is no comprehensive overview of these emerging meshes regarding their features, functions, and clinical potentials, emphasizing the necessity of interdisciplinary discussions on this topic that build upon recent developments in electrospun mesh and provide insights from clinically practical prospectives.
Collapse
Affiliation(s)
- Zhengni Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| | - Lei Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Zhou Q, Liu J, Qi Y, Hu Y, Li Y, Cong C, Chen Y. Jianpi qingre tongluo prescription alleviates the senescence-associated secretory phenotype with osteoarthritis by regulating STAG1/TP53/P21 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118953. [PMID: 39423944 DOI: 10.1016/j.jep.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Qingre Chubi prescription primarily consists of a compound formula, also known as Huangqin Qingre Chubi Capsules (HQC), which strengthens the spleen and resolves dampness, clear heat, and collaterals. Long-term clinical use has shown that HQC improves joint swelling and pain in patients with osteoarthritis. Mechanistically, we demonstrated that HQC inhibits inflammatory responses, extracellular matrix degradation, and delays chondrocyte senescence. AIM To determine the bioactivity and mechanism of action of Jianpi Qingre Tongluo prescription (HQC) on osteoarthritis (OA). MATERIALS AND METHODS First, the chondroprotective effects of HQC were assessed using histopathology, immunohistochemical staining and protein blotting in an OA rat model. Additionally, we identified key targets for crucial targets of HQC in OA using the Network Pharmacology and Gene Expression Omnibus (GEO) dataset (GSE98918 and GSE152805). In vitro conditions, IL-1β-treated chondrocytes served to study the impact of HQC on OA development and the senescence-associated secretory phenotype (SASP). This was evaluated using a series of approaches, such as flow cytometry assays, and immunofluorescence staining, and then verified by rescue experiments. RESULTS Therapy with HQC attenuated the severity of osteoarthritis (demonstrated by histopathology, OARSI grading scores, and Mankin scores) and SASP factors (as indicated by IL-1β, IL-6, IL-4, IL-37, MMP13, ADAMTS5, COL2A1, and ACAN levels, and apoptotic cell death). HQC might treat osteoarthritis via four important targets (STAG1, TP53, P21, and P16), with the p53 signalling pathway representing one of the main pathways. The HQC acts primarily on chondrocyte clusters. In vitro experiments indicated that STAG1 overexpression accelerates chondrocyte apoptosis, promotes SASP factor expression and extracellular matrix (ECM) degradation, and facilitates OA progression. HQC-containing serum suppressed the expression of the STAG1/TP53/P21 pathway, regulated SASP factors, and restored ECM balance. CONCLUSION Jianpi Qingre Tongluo prescription modulated SASP factors by regulating the STAG1/TP53/P21 signal transduction axis and decelerating cartilage senescence and degradation in patients with OA. Jianpi Qingre Tongluo may be an effective drug candidate.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China; The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yajun Qi
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yuedi Hu
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yang Li
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Chengzhi Cong
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yiming Chen
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
5
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Kupratis ME, Gonzalez U, Rahman A, Burris DL, Corbin EA, Price C. Exogenous Collagen Crosslinking is Highly Detrimental to Articular Cartilage Lubrication. J Biomech Eng 2024; 146:071001. [PMID: 38323667 PMCID: PMC11005859 DOI: 10.1115/1.4064663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (μk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated μk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low μk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, μk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.
Collapse
Affiliation(s)
- Meghan E. Kupratis
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Uriel Gonzalez
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - David L. Burris
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Elise A. Corbin
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Materials Science & Engineering, University of Delaware, Newark, DE 19716
- University of Delaware
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
7
|
Zhou M, Archibeck ES, Feteih Y, Abubakr Y, O'Connell GD. Non-enzymatic glycation increases the failure risk of annulus fibrosus by predisposing the extrafibrillar matrix to greater stresses. Acta Biomater 2023; 168:223-234. [PMID: 37433360 DOI: 10.1016/j.actbio.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Growing clinical evidence suggests a correlation between diabetes and more frequent and severe intervertebral disc failure, partially attributed to accelerated advanced glycation end-products (AGE) accumulation in the annulus fibrosus (AF) through non-enzymatic glycation. However, in vitro glycation (i.e., crosslinking) reportedly improved AF uniaxial tensile mechanical properties, contradicting clinical observations. Thus, this study used a combined experimental-computational approach to evaluate the effect of AGEs on anisotropic AF tensile mechanics, applying finite element models (FEMs) to complement experimental testing and examine difficult-to-measure subtissue-level mechanics. Methylglyoxal-based treatments were applied to induce three physiologically relevant AGE levels in vitro. Models incorporated crosslinks by adapting our previously validated structure-based FEM framework. Experimental results showed that a threefold increase in AGE content resulted in a ∼55% increase in AF circumferential-radial tensile modulus and failure stress and a 40% increase in radial failure stress. Failure strain was unaffected by non-enzymatic glycation. Adapted FEMs accurately predicted experimental AF mechanics with glycation. Model predictions showed that glycation increased stresses in the extrafibrillar matrix under physiologic deformations, which may increase tissue mechanical failure or trigger catabolic remodeling, providing insight into the relationship between AGE accumulation and increased tissue failure. Our findings also added to the existing literature regarding crosslinking structures, indicating that AGEs had a greater effect along the fiber direction, while interlamellar radial crosslinks were improbable in the AF. In summary, the combined approach presented a powerful tool for examining multiscale structure-function relationships with disease progression in fiber-reinforced soft tissues, which is essential for developing effective therapeutic measures. STATEMENT OF SIGNIFICANCE: Increasing clinical evidence correlates diabetes with premature intervertebral disc failure, likely due to advanced glycation end-products (AGE) accumulation in the annulus fibrosus (AF). However, in vitro glycation reportedly increases AF tensile stiffness and toughness, contradicting clinical observations. Using a combined experimental-computational approach, our work shows that increases in AF bulk tensile mechanical properties with glycation are achieved at the risk of exposing the extrafibrillar matrix to increased stresses under physiologic deformations, which may increase tissue mechanical failure or trigger catabolic remodeling. Computational results indicate that crosslinks along the fiber direction account for 90% of the increased tissue stiffness with glycation, adding to the existing literature. These findings provide insight into the multiscale structure-function relationship between AGE accumulation and tissue failure.
Collapse
Affiliation(s)
- Minhao Zhou
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Erin S Archibeck
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Yarah Feteih
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Yousuf Abubakr
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, 5122 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA; Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
8
|
Brackin RB, McColgan GE, Pucha SA, Kowalski MA, Drissi H, Doan TN, Patel JM. Improved Cartilage Protection with Low Molecular Weight Hyaluronic Acid Hydrogel. Bioengineering (Basel) 2023; 10:1013. [PMID: 37760116 PMCID: PMC10525634 DOI: 10.3390/bioengineering10091013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic joint injuries are common, leading to progressive tissue degeneration and the development of osteoarthritis. The post-traumatic joint experiences a pro-inflammatory milieu, initiating a subtle but deteriorative process in cartilage tissue. To prevent or even reverse this process, our group previously developed a tissue-penetrating methacrylated hyaluronic acid (MeHA) hydrogel system, crosslinked within cartilage to restore and/or protect the tissue. In the current study, we further optimized this approach by investigating the impact of biomaterial molecular weight (MW; 20, 75, 100 kDa) on its integration within and reinforcement of cartilage, as well as its ability to protect tissue degradation in a catabolic state. Indeed, the low MW MeHA integrated and reinforced cartilage tissue better than the high MW counterparts. Furthermore, in a 2 week IL-1β explant culture model, the 20 kDa MeHA demonstrated the most protection from biphasic mechanical loss, best retention of proteoglycans (Safranin O staining), and least aggrecan breakdown (NITEGE). Thus, the lower MW MeHA gels integrated better into the tissue and provided the greatest protection of the cartilage matrix. Future work will test this formulation in a preclinical model, with the goal of translating this therapeutic approach for cartilage preservation.
Collapse
Affiliation(s)
- Riley B. Brackin
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Gail E. McColgan
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Saitheja A. Pucha
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Michael A. Kowalski
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Hicham Drissi
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Thanh N. Doan
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Jay M. Patel
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
9
|
Joukar A, Creecy A, Karnik S, Noori-Dokht H, Trippel SB, Wallace JM, Wagner DR. Correlation analysis of cartilage wear with biochemical composition, viscoelastic properties and friction. J Mech Behav Biomed Mater 2023; 142:105827. [PMID: 37060715 PMCID: PMC10175217 DOI: 10.1016/j.jmbbm.2023.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Healthy articular cartilage exhibits remarkable resistance to wear, sustaining mechanical loads and relative motion for decades. However, tissues that replace or repair cartilage defects are much less long lasting. Better information on the compositional and material characteristics that contribute to the wear resistance of healthy cartilage could help guide strategies to replace and repair degenerated tissue. The main objective of this study was to assess the relationship between wear of healthy articular cartilage, its biochemical composition, and its viscoelastic material properties. The correlation of these factors with the coefficient of friction during the wear test was also evaluated. Viscoelastic properties of healthy bovine cartilage were determined via stress relaxation indentation. The same specimens underwent an accelerated, in vitro wear test, and the amount of glycosaminoglycans (GAGs) and collagen released during the wear test were considered measures of wear. The frictional response during the wear test was also recorded. The GAG, collagen and water content and the concentration of the enzymatic collagen crosslink pyridinoline were quantified in tissue that was adjacent to each wear test specimen. Finally, correlation analysis was performed to identify potential relationships between wear characteristics of healthy articular cartilage with its composition, viscoelastic material properties and friction. The findings suggest that stiffer cartilage with higher GAG, collagen and water content has a higher wear resistance. Enzymatic collagen crosslinks also enhance the wear resistance of the collagen network. The parameters of wear, composition, and mechanical stiffness of cartilage were all correlated with one another, suggesting that they are interrelated. However, friction was largely independent of these in this study. The results identify characteristics of healthy articular cartilage that contribute to its remarkable wear resistance. These data may be useful for guiding techniques to restore, regenerate, and stabilize cartilage tissue.
Collapse
Affiliation(s)
- Amin Joukar
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hessam Noori-Dokht
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Stephen B Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Diane R Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Kowalski MA, Fernandes LM, Hammond KE, Labib S, Drissi H, Patel JM. Cartilage-penetrating hyaluronic acid hydrogel preserves tissue content and reduces chondrocyte catabolism. J Tissue Eng Regen Med 2022; 16:1138-1148. [PMID: 36178309 DOI: 10.1002/term.3352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023]
Abstract
Articular cartilage injuries have a limited healing capacity and, due to inflammatory and catabolic activities, often experience progressive degeneration towards osteoarthritis. Current repair techniques generally provide short-term symptomatic relief; however, the regeneration of hyaline cartilage remains elusive, leaving both the repair tissue and surrounding healthy tissue susceptible to long-term wear. Therefore, methods to preserve cartilage following injury, especially from matrix loss and catabolism, are needed to delay, or even prevent, the deteriorative process. The goal of this study was to develop and evaluate a cartilage-penetrating hyaluronic-acid (HA) hydrogel to improve damaged cartilage biomechanics and prevent tissue degeneration. At time zero, the HA-based hydrogel provided a 46.5% increase in compressive modulus and a decrease in permeability after simulated degeneration of explants (collagenase application). Next, in a degenerative culture model (interleukin-1β [IL-1β] for 2 weeks), hydrogel application prior to or midway through the culture mitigated detrimental changes to compressive modulus and permeability observed in non-treated explants. Furthermore, localized loss of proteoglycan was observed in degenerative culture conditions alone (non-treated), but hydrogel administration significantly improved the retention of matrix elements. Finally, NITEGE staining and gene expression analysis showed the ability of the HA gel to decrease chondrocyte catabolic activity. These results highlight the importance of reinforcing damaged cartilage with a biomaterial system to both preserve tissue content and reduce catabolism associated with injury and inflammation.
Collapse
Affiliation(s)
- Michael A Kowalski
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lorenzo M Fernandes
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kyle E Hammond
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sameh Labib
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hicham Drissi
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jay M Patel
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Zelinka A, Roelofs AJ, Kandel RA, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage 2022; 30:1547-1560. [PMID: 36150678 DOI: 10.1016/j.joca.2022.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
Articular cartilage (AC) has limited capacity for repair. The first attempt to repair cartilage using tissue engineering was reported in 1977. Since then, cell-based interventions have entered clinical practice in orthopaedics, and several tissue engineering approaches to repair cartilage are in the translational pipeline towards clinical application. Classically, these involve a scaffold, substrate or matrix to provide structure, and cells such as chondrocytes or mesenchymal stromal cells to generate the tissue. We discuss the advantages and drawbacks of the use of various cell types, natural and synthetic scaffolds, multiphasic or gradient-based scaffolds, and self-organizing or self-assembling scaffold-free systems, for the engineering of cartilage constructs. Several challenges persist including achieving zonal tissue organization and integration with the surrounding tissue upon implantation. Approaches to improve cartilage thickness, organization and mechanical properties include mechanical stimulation, culture under hypoxic conditions, and stimulation with growth factors or other macromolecules. In addition, advanced technologies such as bioreactors, biosensors and 3D bioprinting are actively being explored. Understanding the underlying mechanisms of action of cell therapy and tissue engineering approaches will help improve and refine therapy development. Finally, we discuss recent studies of the intrinsic cellular and molecular mechanisms of cartilage repair that have identified novel signals and targets and are inspiring the development of molecular therapies to enhance the recruitment and cartilage reparative activity of joint-resident stem and progenitor cells. A one-fits-all solution is unrealistic, and identifying patients who will respond to a specific targeted treatment will be critical.
Collapse
Affiliation(s)
- A Zelinka
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - A J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - R A Kandel
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - C De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
12
|
Warren MR, Vedadghavami A, Bhagavatula S, Bajpayee AG. Effects of polycationic drug carriers on the electromechanical and swelling properties of cartilage. Biophys J 2022; 121:3542-3561. [PMID: 35765244 PMCID: PMC9515003 DOI: 10.1016/j.bpj.2022.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Cationic nanocarriers offer a promising solution to challenges in delivering drugs to negatively charged connective tissues, such as to articular cartilage for the treatment of osteoarthritis (OA). However, little is known about the effects that cationic macromolecules may have on the mechanical properties of cartilage at high interstitial concentrations. We utilized arginine-rich cationic peptide carriers (CPCs) with varying net charge (from +8 to +20) to investigate the biophysical mechanisms of nanocarrier-induced alterations to cartilage biomechanical properties. We observed that CPCs increased the compressive modulus of healthy bovine cartilage explants by up to 70% and decreased the stiffness of glycosaminoglycan-depleted tissues (modeling OA) by 69%; in both cases, the magnitude of the change in stiffness correlated with the uptake of CPC charge variants. Next, we directly measured CPC-induced osmotic deswelling in cartilage tissue due to shielding of charge repulsions between anionic extracellular matrix constituents, with magnitudes of reductions between 36 and 64 kPa. We then demonstrated that electrostatic interactions were required for CPC-induced stiffening to occur, evidenced by no observed increase in tissue stiffness when measured in hypertonic bathing salinity. We applied a non-ideal Donnan osmotic model (under triphasic theory) to separate bulk modulus measurements into Donnan and non-Donnan components, which further demonstrated the conflicting charge-shielding and matrix-stiffening effects of CPCs. These results show that cationic drug carriers can alter tissue mechanical properties via multiple mechanisms, including the expected charge shielding as well as a novel stiffening phenomenon mediated by physical linkages. We introduce a model for how the magnitudes of these mechanical changes depend on tunable physical properties of the drug carrier, including net charge, size, and spatial charge distribution. We envision that the results and theory presented herein will inform the design of future cationic drug-delivery systems intended to treat diseases in a wide range of connective tissues.
Collapse
Affiliation(s)
- Matthew R Warren
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Sanjana Bhagavatula
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts; Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
13
|
Noori-Dokht H, Joukar A, Karnik S, Williams T, Trippel SB, Wagner DR. A Photochemical Crosslinking Approach to Enhance Resistance to Mechanical Wear and Biochemical Degradation of Articular Cartilage. Cartilage 2022; 13:19476035221093064. [PMID: 35819016 PMCID: PMC9280829 DOI: 10.1177/19476035221093064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate photochemical crosslinking using Al(III) phthalocyanine chloride tetrasulfonic acid (CASPc) and light with a wavelength of 670 nm as a potential therapy to strengthen articular cartilage and prevent tissue degradation. DESIGN Changes in viscoelastic properties with indentation were used to identify 2 crosslinking protocols for further testing. Crosslinked cartilage was subjected to an in vitro, accelerated wear test. The ability of the crosslinked tissue to resist biochemical degradation via collagenase was also measured. To better understand how photochemical crosslinking with CASPc varies through the depth of the tissue, the distribution of photo-initiator and penetration of light through the tissue depth was characterized. Finally, the effect of CASPc on chondrocyte viability and of co-treatment with an antioxidant was evaluated. RESULTS The equilibrium modulus was the most sensitive viscoelastic measure of crosslinking. Crosslinking decreased both mechanical wear and collagenase digestion compared with control cartilage. These beneficial effects were realized despite the fact that crosslinking appeared to be localized to a region near the articular surface. In addition, chondrocyte viability was maintained in crosslinked tissue treated with antioxidants. CONCLUSION These results suggest that photochemical crosslinking with CASPc and 670 nm light holds promise as a potential therapy to prevent cartilage degeneration by protecting cartilage from mechanical wear and biochemical degradation. Limitations were also evident, however, as an antioxidant treatment was necessary to maintain chondrocyte viability in crosslinked tissue.
Collapse
Affiliation(s)
- Hessam Noori-Dokht
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Amin Joukar
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sonali Karnik
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| | - Taylor Williams
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen B. Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Diane R. Wagner
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA,Diane R. Wagner, Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, 723 W. Michigan Street, SL 260, Indianapolis, IN 46220, USA.
| |
Collapse
|
14
|
Utami Nike D, Md Fadilah NI, Sallehuddin N, Nor Azlan AYH, Imran FH, Maarof M, Fauzi MB. Genipin-Crosslinking Effects on Biomatrix Development for Cutaneous Wound Healing: A Concise Review. Front Bioeng Biotechnol 2022; 10:865014. [PMID: 35677301 PMCID: PMC9169157 DOI: 10.3389/fbioe.2022.865014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Split skin graft (SSG), a standard gold treatment for wound healing, has numerous limitations such as lack of fresh skin to be applied, tedious process, severe scarring, and keloid formation followed by higher risks of infection. Thus, there is a gap in producing polymeric scaffolds as an alternative for wound care management. Bioscaffold is the main component in tissue engineering technology that provides porous three-dimensional (3D) microarchitecture for cells to survive. Upon skin tissue reconstruction, the 3D-porous structure ensures sufficient nutrients and gaseous diffusion and cell penetration that improves cell proliferation and vascularization for tissue regeneration. Hence, it is highly considered a promising candidate for various skin wound healing applications. To date, natural-based crosslinking agents have been extensively used to tailor the physicochemical and mechanical properties of the skin biomatrix. Genipin (GNP) is preferable to other plant-based crosslinkers due to its biological activities, such as antiinflammatory and antioxidant, which are key players to boost skin wound healing. In addition, it has shown a noncytotoxic effect and is biocompatible with human skin cells. This review validated the effects of GNP in biomatrix fabrication for skin wound healing from the last 7 years of established research articles and stipulated the biomaterial development-scale point of view. Lastly, the possible role of GNP in the skin wound healing cascade is also discussed. Through the literature output, it can be concluded that GNP has the capability to increase the stability of biomatrix and maintain the skin cells viability, which will contribute in accelerating wound healing.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nusaibah Sallehuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yasser Hamdi Nor Azlan
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Farrah Hani Imran
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mh Busra Fauzi,
| |
Collapse
|
15
|
Jiang YH, Lou YY, Li TH, Liu BZ, Chen K, Zhang D, Li T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am J Transl Res 2022; 14:1146-1159. [PMID: 35273719 PMCID: PMC8902548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Cartilage defects are one of the hardest injures to cure, given the limited regenerative ability of cartilage tissues. Moreover, cartilage defects affect an increasing number of people worldwide. Therefore, scientists have attempted to develop effective strategies to repair cartilage defects in recent years. Recent advances in tissue engineering have led to the strategies for inducing cartilage regeneration. Among the emerging strategies, scaffolds are commonly used in cartilage tissue engineering (CTE) as they provide favorable environment for the growth and proliferation of chondrocytes. An ideal scaffolding material should be highly biocompatible. Type I collagen is one such material, which is widely used in CTE. However, type I collagen has poor mechanical properties and stability, which limit its use. Cross-linking is a simple method known to improve degradability, biological and mechanical properties of biomaterials by enhancing chemical and physical interactions between polymers. Cross-linking can be induced through chemical, physical or biological processes. In this review, we present cross-linking methods that can enhance the mechanical strength of type I collagen for CTE and highlight future directions in this field.
Collapse
|
16
|
Augustine E, Deng P, Mou C, Okamura M, Woolley B, Horowitz M, Bettinger CJ. Control Release and Diffusion-Reaction Kinetics of Genipin-Eluting Fibers Using an in Vitro Aneurysm Flow Model. ACS Biomater Sci Eng 2021; 7:5144-5153. [PMID: 34597026 DOI: 10.1021/acsbiomaterials.1c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The minimally invasive treatment of intracranial aneurysms by endovascular coiling is attractive yet faces challenges related to the degradation of fibrin clots in the aneurysm sac over time. Fibrin gels cross-linked with genipin exhibit enhanced mechanical and chemical stability, but there are many unknowns related to best practices for delivery from endovascular devices and subsequent integration of cross-linkers with the nascent clot. Here, we describe the in vitro characterization of genipin-eluting polymer fibers prepared by coextrusion with poly(ethylene-co-vinyl acetate). Genipin incorporation and release from these fibers are characterized by various gravimetric and spectroscopic techniques. Genipin release adheres to Higuchi kinetics with Higuchi constants varying between (2.44 ± 0.83) × 10-7 and (8.41 ± 0.82) × 10-7 mol·h-0.5 depending on genipin loading and vinyl acetate concentration in the polymer matrix. The diffusion-reaction kinetics of genipin released from polymeric fibers within fibrin hydrogels was investigated using an in vitro aneurysm flow model. Spatiotemporal maps of genipin cross-linking density in fibrin gels produced by absorbance measurements suggest that genipin cross-link concentrations up to 9,993.87 ± 909.01 μM can be achieved. This work describes relevant diffusion-reaction parameters of genipin in fibrin gels and establishes the viability of genipin-eluting fibers as a platform for improving endovascular embolization of intracranial aneurysms.
Collapse
Affiliation(s)
- Emily Augustine
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Puqing Deng
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenchen Mou
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Malia Okamura
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brian Woolley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Horowitz
- First Coast Neurosurgery, 1887 Kingsley Avenue, Suite 1900, Orange Park, Florida 32073, United States
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Partain BD, Zhang Q, Unni M, Aldrich J, Rinaldi-Ramos CM, Narayanan S, Allen KD. Spatially-resolved nanometer-scale measurement of cartilage extracellular matrix mobility. Osteoarthritis Cartilage 2021; 29:1351-1361. [PMID: 34052396 PMCID: PMC8543368 DOI: 10.1016/j.joca.2021.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tissues have complex structures, comprised of solid and fluid phases. Improved understanding of interactions between joint fluid and extracellular matrix (ECM) is required in models of cartilage mechanics. X-ray photon correlation spectroscopy (XPCS) directly measures nanometer-scale dynamics and can provide insight into biofluid-biosolid interactions in cartilage. This study applies XPCS to evaluate dynamic interactions between intact cartilage and biofluids. DESIGN Cartilage biopsies were collected from bovine femoral condyles. During XPCS measurements, cartilage samples were exposed to different fluids: deionized water, PBS, synovial fluid, or sonicated synovial fluid. ECM-biofluid interactions were also assessed at different length scales and different depths from the cartilage surface. RESULTS Using XPCS, cartilage ECM mobility was detected at length scales from 50 to 207 nm. As length scale decreased, time scale for autocorrelation decay decreased, suggesting smaller ECM components are more mobile. ECM dynamics were slowed by dehydrating the sample, demonstrating XPCS assesses matrix mobility in hydrated environments. At all length scales, the matrix was more mobile in deionized water and slowest in synovial fluid. Using the 207 nm length scale assessment, ECM dynamics in synovial fluid were fastest at the cartilage surface and progressively slowed as depth into the sample increased, demonstrating XPCS can assess spatial distribution of ECM dynamics. Finally, ECM mobility increased for degraded synovial fluid. CONCLUSIONS This study demonstrates the potential of XPCS to provide unique insights into nanometer-scale cartilage ECM mobility in a spatially resolved manner and illustrates the importance of biosolid-biofluid interactions in dictating ECM dynamics.
Collapse
Affiliation(s)
- B D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Q Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - M Unni
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - J Aldrich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - C M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - S Narayanan
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - K D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Bansal S, Floyd ER, Kowalski MA, Aikman E, Elrod P, Burkey K, Chahla J, LaPrade RF, Maher SA, Robinson JL, Patel JM. Meniscal repair: The current state and recent advances in augmentation. J Orthop Res 2021; 39:1368-1382. [PMID: 33751642 PMCID: PMC8249336 DOI: 10.1002/jor.25021] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Meniscal injuries represent one of the most common orthopedic injuries. The most frequent treatment is partial resection of the meniscus, or meniscectomy, which can affect joint mechanics and health. For this reason, the field has shifted gradually towards suture repair, with the intent of preservation of the tissue. "Save the Meniscus" is now a prolific theme in the field; however, meniscal repair can be challenging and ineffective in many scenarios. The objectives of this review are to present the current state of surgical management of meniscal injuries and to explore current approaches being developed to enhance meniscal repair. Through a systematic literature review, we identified meniscal tear classifications and prevalence, approaches being used to improve meniscal repair, and biological- and material-based systems being developed to promote meniscal healing. We found that biologic augmentation typically aims to improve cellular incorporation to the wound site, vascularization in the inner zones, matrix deposition, and inflammatory relief. Furthermore, materials can be used, both with and without contained biologics, to further support matrix deposition and tear integration, and novel tissue adhesives may provide the mechanical integrity that the meniscus requires. Altogether, evaluation of these approaches in relevant in vitro and in vivo models provides new insights into the mechanisms needed to salvage meniscal tissue, and along with regulatory considerations, may justify translation to the clinic. With the need to restore long-term function to injured menisci, biologists, engineers, and clinicians are developing novel approaches to enhance the future of robust and consistent meniscal reparative techniques.
Collapse
Affiliation(s)
- Sonia Bansal
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Kyley Burkey
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Jay M. Patel
- Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
19
|
Song W, Cheng Y, Yan X, Yang S. Long-Term Study of Corneal Stroma and Endothelium on Structure and Cells After Genipin Treatment of Rabbit Corneas. Transl Vis Sci Technol 2021; 10:9. [PMID: 34529024 PMCID: PMC8447043 DOI: 10.1167/tvst.10.5.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To study the long-term safety of genipin treatment using a vacuum device with or without epithelial cells at different crosslinking times. Methods Twenty-five healthy New Zealand white rabbits were separated into five treatment groups: 0.25% genipin with epithelial cells for 5 minutes (G1), 0.25% genipin without epithelial cells for 5 minutes (G2), 0.25% genipin without epithelial cells for 10 minutes (G3), ultraviolet A–riboflavin collagen crosslinking (UVA), and controls (C). Before and 2, 4, 6, and 8 weeks after crosslinking treatment, anterior segment optical coherence tomography (ASOCT), in vivo confocal microscopy (IVCM), and the Pentacam system were used to evaluate the right eyes. Results A demarcation line (DL) was observed in the corneal stroma in the G2, G3, and UVA groups. The DL depths in the G2 and G3 groups were stable but decreased in the UVA group over time. The density of keratocytes in these groups increased. Endothelial cell density was decreased in the UVA group. There were no differences in the endothelium before and after treatment in the G1, G2, G3, and C groups. The densitometry, as determined using the Pentacam system, significantly increased in the G2, G3, and UVA groups and was positively correlated with keratocyte densities. Conclusions A vacuum ring assisting local genipin immersion crosslinking without corneal epithelium can activate the keratocytes in the corneal stroma and was safe enough for the thin cornea. Translational Relevance Genipin can not only crosslink the collagen fibers but also activate the keratocytes and even may promote collagen fiber secretion.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Songlin Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
20
|
|
21
|
Elder SH, Mosher ML, Jarquin P, Smith P, Chironis A. Effects of short-duration treatment of cartilage with punicalagin and genipin and the implications for treatment of osteoarthritis. J Biomed Mater Res B Appl Biomater 2020; 109:818-828. [PMID: 33103838 DOI: 10.1002/jbm.b.34747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/07/2022]
Abstract
Punicalagin (PA) not only binds type II collagen, but also blocks its MMP-13-mediated degradation, and genipin (GNP) is a collagen cross-linking agent. We hypothesized that these drugs could mitigate the loss of cartilage if administered in the early phase of osteoarthritis, and experiments were designed to provide proof-of-concept. Porcine cartilage was exposed to both drugs in a manner designed to simulate intra-articular (IA) injection. Based on penetration of PA into cartilage, the rate of drug diffusion was conservatively estimated at 2 μm per minute. GNP caused a measurable degree of cross-linking, increased compressive resistance and coefficient of friction, and substantially inhibited degradation by collagenase, but not by hyaluronidase. Pre-incubation of GNP with collagenase had no effect on enzymatic activity. PA did not cross-link collagen nor affect the mechanical properties of cartilage. It did, however, increase resistance to degradation by collagenase and hyaluronidase. Furthermore, it reacted with collagenase in solution and inhibited its subsequent enzymatic activity. Effects of PA and GNP were not additive. The chondroprotective effect of semi-weekly IA injections was investigated in the monoiodoacetate-induced model of OA in rats. Quantitative histology suggested that injection of PA decreased the amount of cartilage lost compared to saline-injected controls, and the addition of GNP made no difference. This study supports the notion that IA delivery of PA could mitigate OA-induced cartilage erosion.
Collapse
Affiliation(s)
- Steven H Elder
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi, USA
| | - Mark L Mosher
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi, USA
| | - Paulino Jarquin
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi, USA
| | - Preston Smith
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi, USA
| | - Andrea Chironis
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
22
|
Rivera-Delgado E, Learn GD, Kizek DJ, Kashyap T, Lai EJ, von Recum HA. A Polymeric Delivery System Enables Controlled Release of Genipin for Spatially-Confined In Situ Crosslinking of Injured Connective Tissues. J Pharm Sci 2020; 110:815-823. [PMID: 33190799 DOI: 10.1016/j.xphs.2020.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
An emerging approach toward repair of connective tissues applies exogenous crosslinkers to mechanically augment injured structures in vivo. One crosslinker that has been explored for this purpose is the plant-derived small molecule genipin. However, genipin's high reactivity to primary amines in proteins, small size, and high diffusion coefficient necessitate localizing and controlling its delivery to avoid off-target or adverse effects. In this study, genipin-loaded polymers were evaluated for sustained local administration. Insoluble polymers comprising subunits of α-, β-, or γ-cyclodextrin, cyclic oligosaccharides possessing increasing cavity sizes, were compared to polymers comprising subunits of the non-cyclic polysaccharide dextran. Polymers made from β-cyclodextrin showed prolonged genipin release for over ten times longer than polymers made from α- or γ-cyclodextrins or dextran, indicating that genipin possesses molecular affinity for the β-cyclodextrin cavity. Modeling of complexation between genipin and cyclodextrin hosts supported this finding. Genipin released from all polymers was confirmed to be functional by exogenous collagen crosslinking through fluorometric and mechanical readouts. Co-incubation of genipin-loaded polymers with bovine tendon explants showed genipin crosslink-mediated coloration that was confined to the sites of exposure. Altogether, results indicate that host-guest interactions within a polymeric delivery vehicle can help to control and confine genipin release.
Collapse
Affiliation(s)
| | - Greg D Learn
- Department of Biomedical Engineering, Case Western Reserve University
| | - Dominic J Kizek
- Department of Biomedical Engineering, Case Western Reserve University
| | - Tejas Kashyap
- Department of Biomedical Engineering, Case Western Reserve University
| | - Emerson J Lai
- Department of Biomedical Engineering, Case Western Reserve University
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University.
| |
Collapse
|
23
|
Anisotropic properties of articular cartilage in an accelerated in vitro wear test. J Mech Behav Biomed Mater 2020; 109:103834. [PMID: 32543401 DOI: 10.1016/j.jmbbm.2020.103834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022]
Abstract
Many material properties of articular cartilage are anisotropic, particularly in the superficial zone where collagen fibers have a preferential direction. However, the anisotropy of cartilage wear had not been previously investigated. The objective of this study was to evaluate the anisotropy of cartilage material behavior in an in vitro wear test. The wear and coefficient of friction of bovine condylar cartilage were measured with loading in directions parallel (longitudinal) and orthogonal (transverse) to the collagen fiber orientation at the articular surface. An accelerated cartilage wear test was performed against a T316 stainless-steel plate in a solution of phosphate buffered saline with protease inhibitors. A constant load of 160 N was maintained for 14000 cycles of reciprocal sliding motion at 4 mm/s velocity and a travel distance of 18 mm in each direction. The contact pressure during the wear test was approximately 2 MPa, which is in the range of that reported in the human knee and hip joint. Wear was measured by biochemically quantifying the glycosaminoglycans (GAGs) and collagen that was released from the tissue during the wear test. Collagen damage was evaluated with collagen hybridizing peptide (CHP), while visualization of the tissue composition after the wear test was provided with histologic analysis. Results demonstrated that wear in the transverse direction released about twice as many GAGs than in the longitudinal direction, but that no significant differences were seen in the amount of collagen released from the specimens. Specimens worn in the transverse direction had a higher intensity of CHP stain than those worn in the longitudinal direction, suggesting more collagen damage from wear in the transverse direction. No anisotropy in friction was detected at any point in the wear test. Histologic and CHP images demonstrate that the GAG loss and collagen damage extended through much of the depth of the cartilage tissue, particularly for wear in the transverse direction. These results highlight distinct differences between cartilage wear and the wear of traditional engineering materials, and suggest that further study on cartilage wear is warranted. A potential clinical implication of these results is that orienting osteochondral grafts such that the direction of wear is aligned with the primary fiber direction at the articular surface may optimize the life of the graft.
Collapse
|
24
|
Kočí Z, Sridharan R, Hibbitts AJ, Kneafsey SL, Kearney CJ, O'Brien FJ. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits. ACTA ACUST UNITED AC 2020; 4:e1900212. [PMID: 32293152 DOI: 10.1002/adbi.201900212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/06/2019] [Indexed: 11/09/2022]
Abstract
A number of natural polymer biomaterial-based nerve guidance conduits (NGCs) are developed to facilitate repair of peripheral nerve injuries. Cross-linking ensures mechanical integrity and desired degradation properties of the NGCs; however, common methods such as formaldehyde are associated with cellular toxicity. Hence, there is an unmet clinical need for alternative nontoxic cross-linking agents. In this study, collagen-based NGCs with a collagen/chondroitin sulfate luminal filler are used to study the effect of cross-linking on mechanical and structural properties, degradation, biocompatibility, and immunological response. A simplified manufacturing method of genipin cross-linking is developed, by incorporating genipin into solution prior to freeze-drying the NGCs. This leads to successful cross-linking as demonstrated by higher cross-linking degree and similar tensile strength of genipin cross-linked conduits compared to formaldehyde cross-linked conduits. Genipin cross-linking also preserves NGC macro and microstructure as observed through scanning electron microscopy and spectral analysis. Most importantly, in vitro cell studies show that genipin, unlike the formaldehyde cross-linked conduits, supports the viability of Schwann cells. Moreover, genipin cross-linked conduits direct macrophages away from a pro-inflammatory and toward a pro-repair state. Overall, genipin is demonstrated to be an effective, safe, biocompatible, and anti-inflammatory alternative to formaldehyde for cross-linking clinical grade NGCs.
Collapse
Affiliation(s)
- Zuzana Kočí
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Rukmani Sridharan
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Alan J Hibbitts
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Simone L Kneafsey
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| |
Collapse
|
25
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
26
|
GU T, SHUAI J, CHEN C, FENG J. [Effect of genipin pretreatment on type Ⅰ collagen mineralization]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:638-643. [PMID: 31955538 PMCID: PMC8800766 DOI: 10.3785/j.issn.1008-9292.2019.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effects of bio-crosslinker genipin pretreatment on type Ⅰ collagen mineralization. METHODS Type Ⅰ collagen gels were prepared and pretreated with 0.5wt%genipin (experimental group) and deionized water (control group) for 2 h, respectively. The pretreated products were subjected to Fourier transform infrared spectroscopy (FT-IR). Reconstituted collagen fibrils were pretreated with genipin or deionized water for 2 h and were mineralized for 4 h. The collagen density and mineralization degree were examined with transmission electron microscopy (TEM) and analyzed with ImageJ software. Then scanning electron microscopy (SEM) and TEM were used to observe the mineralization of cross-linked demineralized dentin collagen. RESULTS FT-IR spectrum showed that the genipin was crosslinked with collagen. TEM observation and ImageJ results showed that after 4 h mineralization, the mineralization effect of 0.5wt% genipin group was significantly better than that of the control group[(73.3±5.3)%vs.(7.4±3.5)%,P<0.01]. TEM and SEM observation showed that the mineralization rate of type Ⅰ collagen and demineralized dentin pretreated with genipin were significantly faster than that of the control group. CONCLUSIONS The study demonstrates that 0.5 wt% concentration of genipin can significantly promote the mineralization of type Ⅰ collagen.
Collapse
Affiliation(s)
| | | | | | - Jianying FENG
- 冯剑颖(1976-), 女, 博士, 副教授, 主要从事正畸正颌手术联合治疗和颞下颌关节病正畸治疗研究, E-mail:
;
https://orcid.org/0000-0002-6403-9663
| |
Collapse
|
27
|
Carriel V, Vizcaíno-López G, Chato-Astrain J, Durand-Herrera D, Alaminos M, Campos A, Sánchez-Montesinos I, Campos F. Scleral surgical repair through the use of nanostructured fibrin/agarose-based films in rabbits. Exp Eye Res 2019; 186:107717. [PMID: 31265829 DOI: 10.1016/j.exer.2019.107717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Scleral defects can result as a consequence of trauma, infectious diseases or cancer and surgical repair with allogeneic scleral grafts can be required. However, this method has limitations and novel alternatives are needed. Here, the efficacy of acellular nanostructured fibrin-agarose hydrogel-based substitutes (NFAH) in the repair of scleral defects in rabbits was studied. For this, scleral defects of 5-mm diameter were made on 18 adult-male New Zealand rabbits and repaired with acellular NFAH, NFAH crosslinked with genipin (NFAH-GP) or glutaraldehyde (NFAH-GA), allogeneic scleral grafts as control (C-CTR) or not repaired (negative control N-CTR) (n = 3 each). Macroscopic and histological analyses were performed after 40-days. Macroscopy confirmed the repair of all defects in a comparable manner than the C-CTR. Histology showed no degradation nor integration in C-CTR while NFAH-GP and NFAH-GA biomaterials were encapsulated by connective and inflammatory tissues with partial biodegradation. The NFAH were fully biodegraded and replaced by a loose connective tissue and sclera covering the defects. This in vivo study demonstrated that the NFAH are a promising biocompatible and pro-regenerative alternative to the use of allogeneic cadaveric grafts. However, large defects and long-term studies are needed to demonstrate the potential clinical usefulness of these substitutes.
Collapse
Affiliation(s)
- Víctor Carriel
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain.
| | - Gerson Vizcaíno-López
- Doctoral Program in Biomedicine, University of Granada, Spain; Department of Histology, Autonomous University of Santo Domingo, Dominican Republic
| | - Jesús Chato-Astrain
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain
| | - Daniel Durand-Herrera
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain
| | - Miguel Alaminos
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| | - Antonio Campos
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain; Department of Human Anatomy & Embryology, Faculty of Medicine, University of Granada, Spain.
| | - Fernando Campos
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| |
Collapse
|
28
|
Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:588-595. [PMID: 31029352 DOI: 10.1016/j.msec.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Articular cartilage lacks self-healing capacity, and there is no effective therapy facilitating cartilage repair. Osteoarthritis (OA) due to cartilage defects represents large and increasing healthcare burdens worldwide. Nowadays, the generation of scaffolds to preserve bioactive factors and the biophysical environment has received increasing attention. Furthermore, improved decellularization technology has provided novel insights into OA treatment. This review provides a comparative account of different cartilage defect therapies. Furthermore, some recent effective decellularization protocols have been discussed. In particular, this review focuses on the decellularization ratio of each protocol. Moreover, these protocols were compared particularly on the basis of immunogenicity and mechanical functionality. Further, various recellularization methods have been enlisted and the reparative capacity of decellularized cartilage scaffolds is evaluated herein. The advantages and limitations of different recellularization processes have been described herein. This provides a basis for the generation of decellularized cartilage scaffolds, thereby potentially promoting the possibility of decellularization as a clinical therapeutic target.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tongtong Lu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yongming Jin
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
29
|
Xue A, Zheng L, Tan G, Wu S, Wu Y, Cheng L, Qu J. Genipin-Crosslinked Donor Sclera for Posterior Scleral Contraction/Reinforcement to Fight Progressive Myopia. Invest Ophthalmol Vis Sci 2019; 59:3564-3573. [PMID: 30025077 DOI: 10.1167/iovs.17-23707] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Myopia has become a global public health problem, particularly in East Asia where myopic retinopathy has become one of the leading causes of blindness and visual impairment in the elderly population. The purpose of this study was to evaluate the efficacy of posterior scleral contraction/reinforcement (PSCR) surgery on controlling the progressive elongation of axial length of highly myopic eyes in young patients. Methods This is a prospective self-controlled interventional case series. Forty young patients (<18-years old) with progressive high myopia received PSCR with a genipin-crosslinked donor scleral strip for one eye and the fellow eye served as concurrent control without surgery. The main outcome measurement was the change of axial length over 2 to 3 years of follow-up. Results Immediately after the surgery, axial length was shortened and subsequently increased by 0.32 mm over the follow-up period. In contrast, axial length of the fellow eyes increased by 0.82 mm over the same period (P < 0.001, paired t-test). PSCR delayed axial elongation in eyes with or without staphyloma. No significant change of visual acuity, cornea refractive power, or retina thickness was noted between the surgery and fellow eyes. None of the patients lost visual acuity compared with the baseline. The procedure was well tolerated with only temporary corneal refractive axis shifts that recovered by the 6-month postsurgical visit. Conclusions PSCR with genipin-crosslinked sclera is safe and effective to restrain eye globe elongation in young patients within a 2- to 3-year follow-up period.
Collapse
Affiliation(s)
- Anquan Xue
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical College, Zhejiang, China
| | - Linyan Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical College, Zhejiang, China
| | - Guilin Tan
- Institute of Ocular Pharmacology, School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Shaoqun Wu
- Institute of Ocular Pharmacology, School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yue Wu
- Institute of Ocular Pharmacology, School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Lingyun Cheng
- Institute of Ocular Pharmacology, School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China.,Jacob's Retina Center at Shiley Eye Institute, Department of Ophthalmology, University of California San Diego, San Diego, California, United States
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical College, Zhejiang, China
| |
Collapse
|
30
|
POSTERIOR SCLERAL CONTRACTION TO TREAT RECURRENT OR PERSISTENT MACULAR DETACHMENT AFTER PREVIOUS VITRECTOMY IN HIGHLY MYOPIC EYES. Retina 2019; 39:193-201. [DOI: 10.1097/iae.0000000000002217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Lv S, Ding Y, Zhao H, Liu S, Zhang J, Wang J. Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease. Aging Dis 2018; 9:1153-1164. [PMID: 30574425 PMCID: PMC6284761 DOI: 10.14336/ad.2018.0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gardeniae fructus (GF), an evergreen Rubiaceae shrub, is one of the most commonly used Chinese herbs in traditional Chinese medicine (TCM) and has been used for over a thousand years. It is usually prescribed for the treatment of brain aging, vascular aging, bone and joint aging, and other age-related diseases. It has been demonstrated that several effective compounds of GF, such as geniposide, genipin and crocin, have neuroprotective or related activities which are involved in senile disease treatment. These bioactivities include the mitochondrion dysfunction, antioxidative activity, apoptosis regulation and an anti-inflammatory activity, which related to multiple signaling pathways such as the nuclear factor-κB pathway, AMP-activated protein kinase signaling pathway, and the mitogen-activated protein kinase pathway. To lay the ground for fully elucidating the potential mechanisms of GF in treating age-related pathologies, we summarized the available research conducted in the last fifteen years about GF and its effective components, which have been studied in vivo and in vitro
Collapse
Affiliation(s)
- Shichao Lv
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ding
- 3Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haiping Zhao
- 4Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shihao Liu
- 5Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Junping Zhang
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Wang
- 1Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Faivre J, Montembault A, Sudre G, Shrestha BR, Xie G, Matyjaszewski K, Benayoun S, Banquy X, Delair T, David L. Lubrication and Wear Protection of Micro-Structured Hydrogels Using Bioinspired Fluids. Biomacromolecules 2018; 20:326-335. [DOI: 10.1021/acs.biomac.8b01311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jimmy Faivre
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Qc H3T 1J4, Canada
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Buddha Ratna Shrestha
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Qc H3T 1J4, Canada
| | - Guojun Xie
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stéphane Benayoun
- Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
| | - Xavier Banquy
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Qc H3T 1J4, Canada
| | - Thierry Delair
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Laurent David
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| |
Collapse
|
33
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
34
|
Singh A, Lee D, Jeong H, Yu C, Li J, Fang CH, Sabnekar P, Liu X, Yoshida T, Sopko N, Bivalacqua TJ. Tissue-Engineered Neo-Urinary Conduit from Decellularized Trachea. Tissue Eng Part A 2018; 24:1456-1467. [PMID: 29649957 DOI: 10.1089/ten.tea.2017.0436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decellularized tissues have been increasingly popular for constructing scaffolds for tissue engineering applications due to their beneficial biological compositions and mechanical properties. It is therefore natural to consider decellularized trachea for construction of tissue-engineered trachea, as well as other tubular organs. A Neo-Urinary Conduit (NUC) is such a tubular organ that works as a passage for urine removal in bladder cancer patients who need a urinary diversion after their diseased bladder is removed. In this study, we report our findings on the feasibility of using a decellularized trachea for NUC applications. As a NUC scaffold, decellularized trachea provides benefits of having not only naturally occurring biological components but also having sufficient mechanical properties and structural integrity. We, therefore, decellularized rabbit trachea, evaluated its mechanical performance, and investigated its ability to support in vitro growth of human smooth muscle cells (hSMCs) and human urothelial cells (hUCs). The decellularized trachea had appropriate biomechanical properties with ultimate tensile strength of ∼0.34 MPa in longitudinal direction and ∼1.0 MPa in circumferential direction and resisted a radial burst pressure of >155 mm Hg. Cell morphology study by scanning electron microscopy further showed that hUCs grown on decellularized trachea adopted a typical flatten and interconnected network structure in the lumen of the scaffold, while they formed a round spherical shape and did not spread on the outer surfaces. SMCs, on the other hand, spread well throughout the scaffold. The gene expression analysis by real time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence studies further confirmed scaffold's ability to support long-term growth of hSMCs. Since uroepithelium has been shown to regenerate itself over time in vivo, these findings suggest that it is possible to construct a NUC from decellularized trachea without any preseeding of UCs. In future, we plan to translate decellularized trachea in a preclinical animal model and evaluate its biological performance.
Collapse
Affiliation(s)
- Anirudha Singh
- 1 Department of Urology, The James Buchanan Brady Urological Institute , The Johns Hopkins School of Medicine, Baltimore, Maryland
- 2 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
- 3 Translational Tissue Engineering Center, Johns Hopkins University , Baltimore, Maryland
| | - David Lee
- 3 Translational Tissue Engineering Center, Johns Hopkins University , Baltimore, Maryland
| | - Harrison Jeong
- 2 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Christine Yu
- 4 Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Jiuru Li
- 2 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Chen Hao Fang
- 2 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Praveena Sabnekar
- 1 Department of Urology, The James Buchanan Brady Urological Institute , The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xiaopu Liu
- 1 Department of Urology, The James Buchanan Brady Urological Institute , The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Takahiro Yoshida
- 1 Department of Urology, The James Buchanan Brady Urological Institute , The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Nikolai Sopko
- 1 Department of Urology, The James Buchanan Brady Urological Institute , The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Trinity J Bivalacqua
- 1 Department of Urology, The James Buchanan Brady Urological Institute , The Johns Hopkins School of Medicine, Baltimore, Maryland
- 5 Department of Surgery, Johns Hopkins Medical Institutions and Sidney Kimmel Comprehensive Cancer Center (SKCC) , Baltimore, Maryland
- 6 Department of Oncology, Johns Hopkins Medical Institutions and Sidney Kimmel Comprehensive Cancer Center (SKCC) , Baltimore, Maryland
| |
Collapse
|
35
|
Campos F, Bonhome-Espinosa AB, Vizcaino G, Rodriguez IA, Duran-Herrera D, López-López MT, Sánchez-Montesinos I, Alaminos M, Sánchez-Quevedo MC, Carriel V. Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. ACTA ACUST UNITED AC 2018; 13:025021. [PMID: 29420310 DOI: 10.1088/1748-605x/aa9ad2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of biomimetic and biocompatible artificial tissues is the basic research objective for tissue engineering (TE). In this sense, the biofabrication of scaffolds that resemble the tissues' extracellular matrix is an essential aim in this field. Uncompressed and nanostructured fibrin-agarose hydrogels (FAH and NFAH, respectively) have emerged as promising scaffolds in TE, but their structure and biomechanical properties must be improved in order to broaden their TE applications. Here, we generated and characterized novel membrane-like models with increased structural and biomechanical properties based on the chemical cross-linking of FAH and NFAH with genipin (GP at 0.1%, 0.25%, 0.5% and 0.75%). Furthermore, the scaffolds were subjected to rheological (G, G', G″ modulus), ultrastructural and ex vivo biocompatibility analyses. Results showed that all GP concentrations increased the stiffness (G) and especially the elasticity (G') of FAH and NFAH. Ultrastructural analyses demonstrated that GP and nanostructuration of FAH allowed us to control the porosity of FAH. In addition, biological studies revealed that higher concentration of GP (0.75%) started to compromise the cell function and viability. Finally, this study demonstrated the possibility to generate natural and biocompatible FAH and NFAH with improved structural and biomechanical properties by using 0.1%-0.5% of GP. However, further in vivo studies are needed in order to demonstrate the biocompatibility, biodegradability and regeneration capability of these cross-linked scaffolds.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Suitability of EGCG as a Means of Stabilizing a Porcine Osteochondral Xenograft. J Funct Biomater 2017; 8:jfb8040043. [PMID: 28946629 PMCID: PMC5748550 DOI: 10.3390/jfb8040043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023] Open
Abstract
As a non-crosslinked osteochondral xenograft would be mechanically inferior to native cartilage and vulnerable to premature degradation, we seek a safe and effective method of xenograft stabilization. The purpose of this study was to evaluate the capacity for epigallocatechin gallate (EGCG) to stabilize a decellularized porcine osteochondral xenograft through collagen crosslinking. Our objectives were to assess the effects of EGCG on the degree of crosslinking, mechanical properties, collagenase resistance, cytotoxicity, and in vitro biocompatibility. EGCG is a green tea polyphenol that acts as a collagen crosslinker. Porcine osteochondral plugs were decellularized and then crosslinked by soaking in EGCG. The degree of crosslinking, cartilage compressive stiffness, cartilage-bone interface strength, coefficient of friction, and residual mass after collagenase exposure all increased with an increasing EGCG concentration. With the exception of the coefficient of friction, EGCG treatment could restore mechanical properties to levels equal to, or exceeding those, of native cartilage. EGCG treatment profoundly increased the enzymatic resistance, and 1% EGCG provided protection equivalent to 1% glutaraldehyde. EGCG up to 0.5 mM was essentially not cytotoxic to chondrocytes embedded in alginate, and autologous chondrocytes attached to decellularized, EGCG-fixed cartilage were all viable five days after seeding. Results demonstrate that EGCG has many beneficial effects on a decellularized osteochondral xenograft, and may be suitable for use in stabilizing such a graft prior to implantation for the repair of a defect.
Collapse
|
37
|
Elder S, Pinheiro A, Young C, Smith P, Wright E. Evaluation of genipin for stabilization of decellularized porcine cartilage. J Orthop Res 2017; 35:1949-1957. [PMID: 27859554 PMCID: PMC6784830 DOI: 10.1002/jor.23483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
We speculate that an acellular osteochondral xenograft may be a good alternative to allografts for repair of focal articular cartilage lesions. In order to make a xenograft resistant to enzymatic degradation and to prevent a chronic immune response it may be beneficial to stabilize it through crosslinking. The concept is analogous to treatment of porcine bioprosthetic heart valves with glutaraldehyde. The purpose of this study was to evaluate genipin, a natural crosslinking agent with low cytotoxicity, for stabilization of decellularized cartilage. Porcine articular cartilage discs were decellularized in SDS and nucleases and then crosslinked in genipin. The utility of genipin was determined from its effects on degree of crosslinking, mechanical properties, dimensional stability, enzymatic resistance, and in vitro biocompatibility. Degree of crosslinking, compressive moduli, and collagenase resistance varied over a wide range depending on genipin concentration. The equilibrium compressive modulus could be increased from approximately 50% to more than 120% that of native cartilage, and the time to complete degradation by collagenase could be extended from less than 12 h to more than 15 days. Radial shrinkage of approximately 4% was observed at a genipin concentration of 0.1% wt/vol, and cartilage coefficient of friction against glass increased in a concentration-dependent manner. Autologous chondrocytes displayed little difference in viability or their ability to attach and spread over the surface of genipin-fixed cartilage compared to non-crosslinked cartilage during 6 weeks of culture. These results indicate that genipin may be efficacious for stabilization of a decellularized porcine osteochondral xenograft. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1949-1957, 2017.
Collapse
Affiliation(s)
- Steven Elder
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, MS, 39762
| | - Amanda Pinheiro
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, 44325
| | - Christian Young
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, MS, 39762
| | - Preston Smith
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, MS, 39762
| | - Emily Wright
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, MS, 39762
| |
Collapse
|
38
|
Bonitsky CM, McGann ME, Selep MJ, Ovaert TC, Trippel SB, Wagner DR. Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro. J Orthop Res 2017; 35:558-565. [PMID: 27584857 PMCID: PMC5518482 DOI: 10.1002/jor.23411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/29/2016] [Indexed: 02/04/2023]
Abstract
High energy trauma to cartilage causes surface fissures and microstructural damage, but the degree to which this damage renders the tissue more susceptible to wear and contributes to the progression of post-traumatic osteoarthritis (PTOA) is unknown. Additionally, no treatments are currently available to strengthen cartilage after joint trauma and to protect the tissue from subsequent degradation and wear. The purposes of this study were to investigate the role of mechanical damage in the degradation and wear of cartilage, to evaluate the effects of impact and subsequent genipin crosslinking on the changes in the viscoelastic parameters of articular cartilage, and to test the hypothesis that genipin crosslinking is an effective treatment to enhance the resistance to biochemical degradation and mechanical wear. Results demonstrate that cartilage stiffness decreases after impact loading, likely due to the formation of fissures and microarchitectural damage, and is partially or fully restored by crosslinking. The wear resistance of impacted articular cartilage was diminished compared to undamaged cartilage, suggesting that mechanical damage that is directly induced by the impact may contribute to the progression of PTOA. However, the decrease in wear resistance was completely reversed by the crosslinking treatments. Additionally, the crosslinking treatments improved the resistance to collagenase digestion at the impact-damaged articular surface. These results highlight the potential therapeutic value of collagen crosslinking via genipin in the prevention of cartilage degeneration after traumatic injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:558-565, 2017.
Collapse
Affiliation(s)
- Craig M. Bonitsky
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Megan E. McGann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Michael J. Selep
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Timothy C. Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Stephen B. Trippel
- Deparment of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Diane R. Wagner
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, 723 W. Michigan St. SL 260, Indianapolis, Indiana 46202
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
39
|
Heterocycles of Natural Origin as Non-Toxic Reagents for Cross-Linking of Proteins and Polysaccharides. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Delgado LM, Fuller K, Zeugolis DI. * Collagen Cross-Linking: Biophysical, Biochemical, and Biological Response Analysis. Tissue Eng Part A 2017; 23:1064-1077. [PMID: 28071973 DOI: 10.1089/ten.tea.2016.0415] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracted forms of collagen are subjected to chemical cross-linking to enhance their stability. However, traditional cross-linking approaches are associated with toxicity and inflammation. This work investigates the stabilization capacity, cytotoxicity and inflammatory response of collagen scaffolds cross-linked with glutaraldehyde (GTA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, 4-arm polyethylene glycol (PEG) succinimidyl glutarate (4SP), genipin (GEN), and oleuropein. Although all cross-linking methods reduced free amine groups, variable data were obtained with respect to denaturation temperature, resistance to collagenase digestion, and mechanical properties. With respect to biological analysis, fibroblast cultures showed no significant difference between the treatments. Although direct cultures with human-derived leukemic monocyte cells (THP-1) clearly demonstrated the cytotoxic effect of GTA, THP-1 cultures supplemented with conditioned medium from the various groups showed no significant difference between the treatments. With respect to cytokine profile, no significant difference in secretion of proinflammatory (e.g., interleukin [IL]-1β, IL-8, tumor necrosis factor-α) and anti-inflammatory (e.g., vascular endothelial growth factor) cytokines was observed between the noncross-linked and the 4SP and GEN cross-linked groups, suggesting the suitability of these agents as collagen cross-linkers.
Collapse
Affiliation(s)
- Luis M Delgado
- 1 Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland .,2 Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Kieran Fuller
- 1 Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland .,2 Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Dimitrios I Zeugolis
- 1 Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland .,2 Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| |
Collapse
|
41
|
Pinheiro A, Cooley A, Liao J, Prabhu R, Elder S. Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. J Orthop Res 2016; 34:1037-46. [PMID: 26632206 PMCID: PMC6791374 DOI: 10.1002/jor.23121] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/28/2015] [Indexed: 02/04/2023]
Abstract
Osteochondral xenografts are potentially inexpensive, widely available alternatives to fresh allografts. However, antigen removal from xenogenic cartilage may damage the extracellular matrix and reduce compressive stiffness. Non-crosslinked xenogenic cartilage may also undergo rapid enzymatic degradation in vivo. We hypothesized that natural crosslinking agents could be used in place of glutaraldehyde to improve the mechanical properties and enzymatic resistance of decellularized cartilage. This study compared the effects of genipin (GNP), proanthocyanidin (PA), and epigallocatechin gallate (EGCG), on the physical and mechanical properties of decellularized porcine cartilage. Glutaraldehyde (GA) served as a positive control. Porcine articular cartilage discs were decellularized in 2% sodium dodecyl sulfate and DNase I followed by fixation in 0.25% GNP, 0.25% PA, 0.25% EGCG, or 2.5% GA. Decellularization decreased DNA by 15% and GAG by 35%. For natural crosslinkers, the average degree of crosslinking ranged from approximately 50% (EGCG) to 78% (GNP), as compared to 83% for the GA control. Among the natural crosslinkers, only GNP significantly affected the disc diameter, and shrinkage was under 2%. GA fixation had no significant effect on disc diameter. Decellularization decreased aggregate modulus; GA and GNP, but not EGCG and PA, were able to restore it to its original level. GNP, PA, and GA conferred a similar, almost complete resistance to collagenase degradation. EGCG also conferred substantial resistance but to a lesser degree. Overall, the data support our hypothesis and suggest that natural crosslinkers may be suitable alternatives to glutaraldehyde for stabilization of decellularized cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1037-1046, 2016.
Collapse
Affiliation(s)
- Amand Pinheiro
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, 44325, USA
| | - Avery Cooley
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Jun Liao
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Raj Prabhu
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Steven Elder
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, Mississippi, 39762, USA
| |
Collapse
|