1
|
Reihs E, Fischer A, Gerner I, Windhager R, Toegel S, Zaucke F, Rothbauer M, Jenner F. Beyond symptomatic alignment: evaluating the integration of causal mechanisms in matching animal models with human pathotypes in osteoarthritis research. Arthritis Res Ther 2025; 27:109. [PMID: 40382623 PMCID: PMC12084918 DOI: 10.1186/s13075-025-03561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/14/2025] [Indexed: 05/20/2025] Open
Abstract
Osteoarthritis (OA) is a highly prevalent and disabling condition lacking curative treatments, with only symptomatic relief available. Recognizing OA as a heterogenous disorder with diverse aetiologies and molecular foundations underscores the need to classify patients by both phenotypes and molecular pathomechanisms (endotypes). Such stratification could enable the development of targeted therapies to surmount existing treatment barriers. From a scientific, economic, and ethical perspective, it is crucial to employ animal models that accurately represent the endotype of the target patient population, not merely their clinical symptoms. These models must also account for intrinsic and extrinsic factors, like age, sex, metabolic status, and comorbidities, which impact OA's pathogenesis and its clinical and molecular variability and can profoundly influence not only structural and symptomatic disease severity and progression but also the underlying molecular pathophysiology. The molecular definition of the OA subpopulation must also be reflected in the read-outs, as the traditional methods-macroscopic and histological scoring, along with limited gene expression profiling of established biomarkers for cartilage degradation, extracellular matrix (ECM) turnover, and synovial inflammation-are inadequate for discovering new, phenotype- and endotype-specific biomarkers or therapeutic targets. Thus, animal model characterisation should evolve to include both clinically and pathophysiologically pertinent measures of disease progression and response to treatment. This review evaluates the utility and accuracy of current animal models in OA research, focusing on their capacity to replicate the disease's pathophysiological processes.
Collapse
Affiliation(s)
- Eva Reihs
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
- Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Getreidemarkt 9/163, 1060, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
| | - Iris Gerner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Veterinärplatz 1, 1210, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim GmbH, Maienburgstr. 2, Frankfurt/Main, 60528, Germany
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria.
- Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Getreidemarkt 9/163, 1060, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria.
| | - Florien Jenner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Veterinärplatz 1, 1210, Austria
| |
Collapse
|
2
|
Dyer O, Cone S. Morphometric Analysis of Rat and Mouse Musculoskeletal Tissues using High Field MRI. RESEARCH SQUARE 2025:rs.3.rs-5356582. [PMID: 40297679 PMCID: PMC12036453 DOI: 10.21203/rs.3.rs-5356582/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The knee is a complex articulating joint composed of bones and fibrous connective tissues with anatomy retained across species including humans, pigs, dogs, rats, and mice. Imaging developments in high field magnetic resonance imaging (MRI) has enabled non-destructive 3D structural analysis of small animal joints to further these preclinical models. The goal of this work was to apply MRI techniques for rodent knee joints using a high field MRI scanner and to characterize the morphometry of the four primary ligaments and medial and lateral menisci. Briefly, female rat and mouse knees were imaged in a 9.4T MRI scanner and the cross-sectional area (CSA) of the ligaments and the meniscal heights and widths were recorded. Tissue dependent relationships were observed in the rat and mouse ligaments. The PCL was the largest ligament in the rats with a CSA of 0.35 ± 0.08 mm2, while the LCL was the largest ligament in the mice, with a CSA of 0.054 ± 0.017 mm2. Rat and mouse meniscal width had an anatomical location dependent relationship, while meniscal height did not. This will support future work exploring morphometric effects due to aging, injury, and disease in preclinical animal models.
Collapse
|
3
|
McCool JL, Sebastian A, Hum NR, Wilson SP, Davalos OA, Murugesh DK, Amiri B, Morfin C, Christiansen BA, Loots GG. CD206+ Trem2+ macrophage accumulation in the murine knee joint after injury is associated with protection against post-traumatic osteoarthritis in MRL/MpJ mice. PLoS One 2025; 20:e0312587. [PMID: 39752388 PMCID: PMC11698337 DOI: 10.1371/journal.pone.0312587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/09/2024] [Indexed: 01/06/2025] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve. To better understand molecular programs contributing to PTOA development or resolution, we examined injury-induced fluctuations in immune cell populations and transcriptional shifts by single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and PTOA-resistant MRL/MpJ (MRL) mice. We identified significant differences in monocyte and macrophage subpopulations between MRL and B6 joints. A potent myeloid-driven anti-inflammatory response was observed in MRL injured joints that significantly contrasted the pro-inflammatory signaling seen in B6 joints. Multiple CD206+ macrophage populations classically described as M2 were found enriched in MRL injured joints. These CD206+ macrophages also robustly expressed Trem2, a receptor involved in inflammation and myeloid cell activation. These data suggest that the PTOA resistant MRL mouse strain displays an enhanced capacity of clearing debris and apoptotic cells induced by inflammation after injury due to an increase in activated M2 macrophages within the synovial tissue and joint space.
Collapse
Affiliation(s)
- Jillian L. McCool
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
- School of Natural Sciences, University of California Merced, Merced, CA, United States of America
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Stephen P. Wilson
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Oscar A. Davalos
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Beheshta Amiri
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Cesar Morfin
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States of America
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States of America
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
- School of Natural Sciences, University of California Merced, Merced, CA, United States of America
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States of America
| |
Collapse
|
4
|
Diab RG, Deeb G, Roda R, Karam M, Faraj M, Harajli M, Damiati LA, Mhanna R. Maintaining the Cartilage Phenotype of Late-Passage Chondrocytes Using Salidroside, TGF-β, and Sulfated Alginate for Cartilage Tissue Engineering Applications. Int J Mol Sci 2024; 25:13623. [PMID: 39769386 PMCID: PMC11727720 DOI: 10.3390/ijms252413623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
The limited self-repair capacity of cartilage due to its avascular and aneural nature leads to minimal regenerative ability. Autologous chondrocyte transplantation (ACT) is a popular treatment for cartilage defects but faces challenges due to chondrocyte dedifferentiation in later passages, which results in undesirable fibroblastic phenotypes. A promising treatment for cartilage injuries and diseases involves tissue engineering using cells (e.g., chondrocytes), scaffolds (e.g., Alginate Sulfate (AlgSulf)), and biochemical signals (e.g., Salidroside and TGF-β). This study focuses on investigating the effects of AlgSulf scaffolds with varying degrees of sulfation, Salidroside, and TGF-β on the proliferation, viability, and phenotype maintenance of chondrocytes. The findings demonstrate that AlgSulf films with a degree of sulfation (DS) = 2, treated with a combination of Salidroside and TGF-β, significantly enhanced chondrocyte proliferation (p < 0.001 and p < 0.0001 in P2 and P4, respectively), preserved round cell morphology, and maintained cartilage-specific gene expression (Col2, Aggrecans, and SOX9) while downregulating fibroblastic markers (Col1, MMP13, IL-1β, and IL-6). Our findings suggest the potential of this combination for enhancing cartilage regeneration in tissue engineering applications.
Collapse
Affiliation(s)
- Rita G. Diab
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| | - George Deeb
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| | - Rena Roda
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| | - Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| | - Marwa Faraj
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| | - Mohamad Harajli
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (R.G.D.); (G.D.); (R.R.); (M.K.); (M.F.); (M.H.)
| |
Collapse
|
5
|
Dauenhauer LA, Hislop BD, Brahmachary P, Devine C, Gibbs D, June RK, Heveran CM. Aging alters the subchondral bone response 7 days after noninvasive traumatic joint injury in C57BL/6JN mice. J Orthop Res 2024; 42:2450-2460. [PMID: 38923623 DOI: 10.1002/jor.25921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Posttraumatic osteoarthritis (PTOA) commonly develops following anterior cruciate ligament (ACL) injuries, affecting around 50% of individuals within 10-20 years. Recent studies have highlighted early changes in subchondral bone structure after ACL injury in adolescent or young adult mice, which could contribute to the development of PTOA. However, ACL injuries do not only occur early in life. Middle-aged and older patients also experience ACL injuries and PTOA, but whether the aged subchondral bone also responds rapidly to injury is unknown. This study utilized a noninvasive, single overload mouse injury model to assess subchondral bone microarchitecture, turnover, and material properties in both young adults (5 months) and early old age (22 months) female C57BL/6JN mice at 7 days after injury. Mice underwent either joint injury (i.e., produces ACL tears) or sham injury procedures on both the loaded and contralateral limbs, allowing evaluation of the impacts of injury versus loading. The subchondral bone response to ACL injury is distinct for young adult and aged mice. While 5-month mice show subchondral bone loss and increased bone resorption postinjury, 22-month mice did not show loss of bone structure and had lower bone resorption. Subchondral bone plate modulus increased with age, but not with injury. Both ages of mice showed several bone measures were altered in the contralateral limb, demonstrating the systemic skeletal response to joint injury. These data motivate further investigation to discern how osteochondral tissues differently respond to injury in aging, such that diagnostics and treatments can be refined for these demographics.
Collapse
Affiliation(s)
- Lexia A Dauenhauer
- Department of Biomedical Engineering, Montana State University, Bozeman, Montana, USA
| | - Brady D Hislop
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, USA
| | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, USA
| | - Connor Devine
- Department of Chemical Engineering, Montana State University, Bozeman, Montana, USA
| | - Dustin Gibbs
- Gallatin College, Montana State University, Bozeman, Montana, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, USA
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
6
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Arnold KM, Weaver SR, Zars EL, Tschumperlin DJ, Westendorf JJ. Inhibition of Phlpp1 preserves the mechanical integrity of articular cartilage in a murine model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2024; 32:680-689. [PMID: 38432607 PMCID: PMC11127785 DOI: 10.1016/j.joca.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Phlpp1 inhibition is a potential therapeutic strategy for cartilage regeneration and prevention of post-traumatic osteoarthritis (PTOA). To understand how Phlpp1 loss affects cartilage structure, cartilage elastic modulus was measured with atomic force microscopy (AFM) in male and female mice after injury. METHODS Osteoarthritis was induced in male and female Wildtype (WT) and Phlpp1-/- mice by destabilization of the medial meniscus (DMM). At various timepoints post-injury, activity was measured, and knee joints examined with AFM and histology. In another cohort of WT mice, the PHLPP inhibitor NSC117079 was intra-articularly injected 4 weeks after injury. RESULTS Male WT mice showed decreased activity and histological signs of cartilage damage at 12 but not 6-weeks post-DMM. Female mice showed a less severe response to DMM by comparison, with no histological changes seen at any time point. In both sexes the elastic modulus of medial condylar cartilage was decreased in WT mice but not Phlpp1-/- mice after DMM as measured by AFM. By 6-weeks, cartilage modulus had decreased from 2 MPa to 1 MPa in WT mice. Phlpp1-/- mice showed no change in modulus at 6-weeks and only a 25% decrease at 12-weeks. The PHLPP inhibitor NSC117079 protected cartilage structure and prevented signs of OA 6-weeks post-injury. CONCLUSIONS AFM is a sensitive method for detecting early changes in articular cartilage post-injury. Phlpp1 suppression, either through genetic deletion or pharmacological inhibition, protects cartilage degradation in a model of PTOA, validating Phlpp1 as a therapeutic target for PTOA.
Collapse
Affiliation(s)
- Katherine M Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | | | - Elizabeth L Zars
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
9
|
Wheeler TA, Antoinette AY, Bhatia E, Kim MJ, Ijomanta CN, Zhao A, van der Meulen MCH, Singh A. Mechanical loading of joint modulates T cells in lymph nodes to regulate osteoarthritis. Osteoarthritis Cartilage 2024; 32:287-298. [PMID: 38072172 PMCID: PMC10955501 DOI: 10.1016/j.joca.2023.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE The crosstalk of joint pathology with local lymph nodes in osteoarthritis (OA) is poorly understood. We characterized the change in T cells in lymph nodes following load-induced OA and established the association of the presence and migration of T cells to the onset and progression of OA. METHODS We used an in vivo model of OA to induce mechanical load-induced joint damage. After cyclic tibial compression of mice, we analyzed lymph nodes for T cells using flow cytometry and joint pathology using histology and microcomputed tomography. The role of T-cell migration and the presence of T-cell type was examined using T-cell receptor (TCR)α-/- mice and an immunomodulatory drug, Sphingosine-1-phosphate (S1P) receptor inhibitor-treated mice, respectively. RESULTS We demonstrated a significant increase in T-cell populations in local lymph nodes in response to joint injury in 10, 16, and 26-week-old mice, and as a function of load duration, 1, 2, and 6 weeks. T-cell expression of inflammatory cytokine markers increased in the local lymph nodes and was associated with load-induced OA progression in the mouse knee. Joint loading in TCRα-/- mice reduced both cartilage degeneration (Osteoarthritis Research Society International (OARSI) scores: TCRα 0.568, 0.981-0.329 confidence interval (CI); wild type (WT) 1.328, 2.353-0.749 CI) and osteophyte formation. Inhibition of T-cell egress from lymph nodes attenuated load-induced cartilage degradation (OARSI scores: Fingolimod: 0.509, 1.821-0.142 CI; Saline 1.210, 1.932-0.758 CI) and decreased localization of T cells in the synovium. CONCLUSIONS These results establish the association of lymph node-resident T cells in joint damage and suggest that the S1P receptor modulators and T-cell immunotherapies could be used to treat OA.
Collapse
Affiliation(s)
- Tibra A Wheeler
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adrien Y Antoinette
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eshant Bhatia
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Kim
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ann Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, USA; Research Division, Hospital for Special Surgery, New York, NY, USA.
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Haubruck P, Heller R, Blaker CL, Clarke EC, Smith SM, Burkhardt D, Liu Y, Stoner S, Zaki S, Shu CC, Little CB. Streamlining quantitative joint-wide medial femoro-tibial histopathological scoring of mouse post-traumatic knee osteoarthritis models. Osteoarthritis Cartilage 2023; 31:1602-1611. [PMID: 37716405 DOI: 10.1016/j.joca.2023.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVES Histological scoring remains the gold-standard for quantifying post-traumatic osteoarthritis (ptOA) in animal models, allowing concurrent evaluation of numerous joint tissues. Available systems require scoring multiple sections/joint making analysis laborious and expensive. We investigated if a single section allowed equivalent quantitation of pathology in different joint tissues and disease stages, in three ptOA models. METHOD Male 10-12-week-old C57BL/6 mice underwent surgical medial-meniscal-destabilization, anterior-cruciate-ligament (ACL) transection, non-invasive-ACL-rupture, or served as sham-surgical, non-invasive-ACL-strain, or naïve/non-operated controls. Mice (n = 12/group) were harvested 1-, 4-, 8-, and 16-week post-intervention. Serial sagittal toluidine-blue/fast-green stained sections of the medial-femoro-tibial joint (n = 7/joint, 84 µm apart) underwent blinded scoring of 40 histology-outcomes. We evaluated agreement between single-slide versus entire slide-set maximum or median scores (weighted-kappa), and sensitivity/specificity of single-slide versus median/maximum to detect OA pathology. RESULTS A single optimal mid-sagittal section showed excellent agreement with median (weighted-kappa 0.960) and maximum (weighted-kappa 0.926) scores. Agreement for individual histology-outcomes was high with only 19/240 median and 15/240 maximum scores having a weighted-kappa ≤0.4, the majority of these (16/19 and 11/15) in control groups. Statistically-significant histology-outcome differences between ptOA models and their controls detected with the entire slide-set were reliably reproduced using a single slide (sensitivity >93.15%, specificity >93.10%). The majority of false-negatives with single-slide scoring were meniscal and subchondral bone histology-outcomes (89%) and occurred in weeks 1-4 post-injury (84%). CONCLUSION A single mid-sagittal slide reduced the time needed to score diverse histopathological changes by 87% without compromising the sensitivity or specificity of the analysis, across a variety of ptOA models and time-points.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, D-69118 Heidelberg, Germany; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Raban Heller
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, D-69118 Heidelberg, Germany; Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
| | - Carina L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia; Murray Maxwell Biomechanics Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Daniel Burkhardt
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Yolanda Liu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Shihani Stoner
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia
| | - Cindy C Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
11
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Mancino C, Pasto A, De Rosa E, Dolcetti L, Rasponi M, McCulloch P, Taraballi F. Immunomodulatory biomimetic nanoparticles target articular cartilage trauma after systemic administration. Heliyon 2023; 9:e16640. [PMID: 37313169 PMCID: PMC10258364 DOI: 10.1016/j.heliyon.2023.e16640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is one of the leading causes of disability in developed countries and accounts for 12% of all osteoarthritis cases in the United States. After trauma, inflammatory cells (macrophages amongst others) are quickly recruited within the inflamed synovium and infiltrate the joint space, initiating dysregulation of cartilage tissue homeostasis. Current therapeutic strategies are ineffective, and PTOA remains an open clinical challenge. Here, the targeting potential of liposome-based nanoparticles (NPs) is evaluated in a PTOA mouse model, during the acute phase of inflammation, in both sexes. NPs are composed of biomimetic phospholipids or functionalized with macrophage membrane proteins. Intravenous administration of NPs in the acute phase of PTOA and advanced in vivo imaging techniques reveal preferential accumulation of NPs within the injured joint for up to 7 days post injury, in comparison to controls. Finally, imaging mass cytometry uncovers an extraordinary immunomodulatory effect of NPs that are capable of decreasing the amount of immune cells infiltrating the joint and conditioning their phenotype. Thus, biomimetic NPs could be a powerful theranostic tool for PTOA as their accumulation in injury sites allows their identification and they have an intrinsic immunomodulatory effect.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Anna Pasto
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Luigi Dolcetti
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Patrick McCulloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Sun K, Hou L, Guo Z, Wang G, Guo J, Xu J, Zhang X, Guo F. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy. Free Radic Biol Med 2023; 200:87-101. [PMID: 36907253 DOI: 10.1016/j.freeradbiomed.2023.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Interruption of iron homeostasis is correlated with cell ferroptosis and degenerative diseases. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been reported as a vital mechanism to control cellular iron levels, but its impact on osteoarthritis (OA) pathology and the underline mechanism are unknown. Herein we aimed to investigate the role and regulatory mechanism of NCOA4 in chondrocyte ferroptosis and OA pathogenesis. We demonstrated that NCOA4 was highly expressed in cartilage of patients with OA, aged mice, post-traumatic OA mice, and inflammatory chondrocytes. Importantly, Ncoa4 knockdown inhibited IL-1β-induced chondrocyte ferroptosis and extracellular matrix degradation. Contrarily, overexpression of NCOA4 promoted chondrocyte ferroptosis and the delivery of Ncoa4 adeno-associated virus 9 into knee joint of mice aggravated post-traumatic OA. Mechanistic study revealed that NCOA4 was upregulated in a JNK-JUN signaling-dependent manner in which JUN could directly bind to the promoter of Ncoa4 and initial the transcription of Ncoa4. NCOA4 could interact with ferritin and increase autophagic degradation of ferritin and iron levels, which caused chondrocyte ferroptosis and extracellular matrix degradation. In addition, inhibition of JNK-JUN-NCOA4 axis by SP600125, a specific inhibitor of JNK, attenuated development of post-traumatic OA. This work highlights the role of JNK-JUN-NCOA4 axis and ferritinophagy in chondrocyte ferroptosis and OA pathogenesis, suggesting this axis as a potential target for OA treatment.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 481] [Impact Index Per Article: 240.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Chen B, Hong H, Sun Y, Chen C, Wu C, Xu G, Bao G, Cui Z. Role of macrophage polarization in osteoarthritis (Review). Exp Ther Med 2022; 24:757. [PMID: 36561979 PMCID: PMC9748658 DOI: 10.3892/etm.2022.11693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
Osteoarthritis (OA) is a disease involving the whole joint that seriously reduces the living standards of individuals. Traditional treatments include physical therapy, administration of anti-inflammatory and analgesic drugs and injection of glucocorticoids or hyaluronic acid into the joints. However, these methods have limited efficacy and it is difficult to reverse the progression of OA, therefore it is urgent to find new effective treatment methods. Immune microenvironment is significant in the occurrence and development of OA. Recent studies have shown that macrophages are important targets for the treatment of OA. Macrophages are polarized into M1 pro-inflammatory phenotype and M2 anti-inflammatory phenotype under stimulation of different factors, which release and regulate inflammatory response and cartilage growth. Accumulating studies have tried to alleviate OA by regulating macrophage homeostasis. The present study summarized the related studies, discuss the mechanism of various therapeutic reagents on OA, expound the molecular mechanism of drug effect on OA and attempted to provide clues for the treatment of OA.
Collapse
Affiliation(s)
- Baisen Chen
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongxiang Hong
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People's Hospital, Nantong, Jiangsu 226003, P.R. China
| | - Chu Chen
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunshuai Wu
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guanhua Xu
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guofeng Bao
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China,Correspondence to: Professor Zhiming Cui, Department of Orthopedics, Nantong City No 1 People's Hospital and Second Affiliated Hospital of Nantong University, 6 North Road, Haierxiang, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
16
|
Rios JL, Sapède D, Djouad F, Rapp AE, Lang A, Larkin J, Ladel C, Mobasheri A. Animal Models of Osteoarthritis Part 1-Preclinical Small Animal Models: Challenges and Opportunities for Drug Development. Curr Protoc 2022; 2:e596. [PMID: 36342311 DOI: 10.1002/cpz1.596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability in the adult population. There is a significant unmet medical need for the development of effective pharmacological therapies for the treatment of OA. In addition to spontaneously occurring animal models of OA, many experimental animal models have been developed to provide insights into mechanisms of pathogenesis and progression. Many of these animal models are also being used in the drug development pipeline. Here, we provide an overview of commonly used and emerging preclinical small animal models of OA and highlight the strengths and limitations of small animal models in the context of translational drug development. There is limited information in the published literature regarding the technical reliability of these small animal models and their ability to accurately predict clinical drug development outcomes. The cost and complexity of the available models however is an important consideration for pharmaceutical companies, biotechnology startups, and contract research organizations wishing to incorporate preclinical models in target validation, discovery, and development pipelines. Further considerations relevant to industry include timelines, methods of induction, the key issue of reproducibility, and appropriate outcome measures needed to objectively assess outcomes of experimental therapeutics. Preclinical small animal models are indispensable tools that will shine some light on the pathogenesis of OA and its molecular endotypes in the context of drug development. This paper will focus on small animal models used in preclinical OA research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Percuros BV, Leiden, The Netherlands
| | - Dora Sapède
- IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Farida Djouad
- IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopaedics (Friedrichsheim), University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Annemarie Lang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | | | | | - Ali Mobasheri
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopaedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| |
Collapse
|
17
|
Little CB, Zaki S, Blaker CL, Clarke EC. Animal models of osteoarthritis. Bone Joint Res 2022; 11:514-517. [PMID: 35909339 PMCID: PMC9396918 DOI: 10.1302/2046-3758.118.bjr-2022-0217.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cite this article: Bone Joint Res 2022;11(8):514–517.
Collapse
Affiliation(s)
- Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - Carina L. Blaker
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
| | - Elizabeth C. Clarke
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
| |
Collapse
|
18
|
Drevet S, Favier B, Lardy B, Gavazzi G, Brun E. New imaging tools for mouse models of osteoarthritis. GeroScience 2022; 44:639-650. [PMID: 35129777 PMCID: PMC9135906 DOI: 10.1007/s11357-022-00525-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by a disruption of articular joint cartilage homeostasis. Mice are the most commonly used models to study OA. Despite recent reviews, there is still a lack of knowledge about the new development in imaging techniques. Two types of modalities are complementary: those that assess structural changes in joint tissues and those that assess metabolism and disease activity. Micro MRI is the most important imaging tool for OA research. Automated methodologies for assessing periarticular bone morphology with micro-CT have been developed allowing quantitative assessment of tibial surface that may be representative of the whole OA joint changes. Phase-contrast X-ray imaging provides in a single examination a high image precision with good differentiation between all anatomical elements of the knee joint (soft tissue and bone). Positron emission tomography, photoacoustic imaging, and fluorescence reflectance imaging provide molecular and functional data. To conclude, innovative imaging technologies could be an alternative to conventional histology with greater resolution and more efficiency in both morphological analysis and metabolism follow-up. There is a logic of permanent adjustment between innovations, 3R rule, and scientific perspectives. New imaging associated with artificial intelligence may add to human clinical practice allowing not only diagnosis but also prediction of disease progression to personalized medicine.
Collapse
Affiliation(s)
- S. Drevet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- University Hospital Grenoble Alpes, Orthogeriatric Unit, Clinic of Geriatric Medicine, 38 000 Grenoble, France
| | - B. Favier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - B. Lardy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- Laboratoire de Biochimie des Enzymes et des Protéines, Centre Hospitalier Universitaire Grenoble Alpes, 38 000 Grenoble, France
| | - G. Gavazzi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- University Hospital Grenoble Alpes, Clinic of Geriatric Medicine, 38 000 Grenoble, France
| | - E. Brun
- Univ. Grenoble Alpes, Inserm, UA7, STROBE Laboratory, 38 000 Grenoble, France
| |
Collapse
|
19
|
Wang G, Xing D, Liu W, Zhu Y, Liu H, Yan L, Fan K, Liu P, Yu B, Li JJ, Wang B. Preclinical studies and clinical trials on mesenchymal stem cell therapy for knee osteoarthritis: A systematic review on models and cell doses. Int J Rheum Dis 2022; 25:532-562. [PMID: 35244339 DOI: 10.1111/1756-185x.14306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
AIM To provide a systematic analysis of the study design in knee osteoarthritis (OA) preclinical studies, focusing on the characteristics of animal models and cell doses, and to compare these to the characteristics of clinical trials using mesenchymal stem cells (MSCs) for the treatment of knee OA. METHOD A systematic and comprehensive search was conducted using the PubMed, Web of Science, Ovid, and Embase electronic databases for research papers published in 2009-2020 on testing MSC treatment in OA animal models. The PubMed database and ClinicalTrials.gov website were used to search for published studies reporting clinical trials of MSC therapy for knee OA. RESULTS In total, 9234 articles and two additional records were retrieved, of which 120 studies comprising preclinical and clinical studies were included for analysis. Among the preclinical studies, rats were the most commonly used species for modeling knee OA, and anterior cruciate ligament transection was the most commonly used method for inducing OA. There was a correlation between the cell dose and body weight of the animal. In clinical trials, there was large variation in the dose of MSCs used to treat knee OA, ranging from 1 × 106 to 200 × 106 cells with an average of 37.91 × 106 cells. CONCLUSION Mesenchymal stem cells have shown great potential in improving pain relief and tissue protection in both preclinical and clinical studies of knee OA. Further high-quality preclinical and clinical studies are needed to explore the dose effectiveness relationship of MSC therapy and to translate the findings from preclinical studies to humans.
Collapse
Affiliation(s)
- Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China.,Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Beijing, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Kenan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Peidong Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jiao Jiao Li
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bin Wang
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China.,Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
21
|
Drevet S, Favier B, Brun E, Gavazzi G, Lardy B. Mouse Models of Osteoarthritis: A Summary of Models and Outcomes Assessment. Comp Med 2022; 72:3-13. [PMID: 34986927 DOI: 10.30802/aalas-cm-21-000043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease. It has a substantial impact onpatient quality of life and is a common cause of pain and mobility issues in older adults. The functional limitations, lack of curative treatments, and cost to society all demonstrate the need for translational and clinical research. The use of OA models in mice is important for achieving a better understanding of the disease. Models with clinical relevance are needed to achieve 2 main goals: to assess the impact of the OA disease (pain and function) and to study the efficacy of potential treatments. However, few OA models include practical strategies for functional assessment of the mice. OA signs in mice incorporate complex interrelations between pain and dysfunction. The current review provides a comprehensive compilation of mousemodels of OA and animal evaluations that include static and dynamic clinical assessment of the mice, merging evaluationof pain and function by using automatic and noninvasive techniques. These new techniques allow simultaneous recordingof spontaneous activity from thousands of home cages and also monitor environment conditions. Technologies such as videographyand computational approaches can also be used to improve pain assessment in rodents but these new tools must first be validated experimentally. An example of a new tool is the digital ventilated cage, which is an automated home-cage monitor that records spontaneous activity in the cages.
Collapse
|
22
|
Roos EM, Risberg MA, Little CB. Prevention and early treatment, a future focus for OA research. Osteoarthritis Cartilage 2021; 29:1627-1629. [PMID: 34903333 DOI: 10.1016/j.joca.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023]
Affiliation(s)
- E M Roos
- Center for Muscle and Joint Health, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| | - M A Risberg
- Department of Sport Medicine, Norwegian School Sport Sciences and Division of Orthopedic Surgery, Oslo University Hospital, Norway
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
23
|
Aizah N, Chong PP, Kamarul T. Early Alterations of Subchondral Bone in the Rat Anterior Cruciate Ligament Transection Model of Osteoarthritis. Cartilage 2021; 13:1322S-1333S. [PMID: 31569963 PMCID: PMC8804754 DOI: 10.1177/1947603519878479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in research have shown that the subchondral bone plays an important role in the propagation of cartilage loss and progression of osteoarthritis (OA), but whether the subchondral bone changes precede or lead to articular cartilage loss remains debatable. In order to elucidate the subchondral bone and cartilage changes that occur in early OA, an experiment using anterior cruciate ligament transection (ACLT) induced posttraumatic OA model of the rat knee was conducted. DESIGN Forty-two Sprague Dawley rats were divided into 2 groups: the ACLT group and the nonoperated control group. Surgery was conducted on the ACLT group, and subsequently rats from both groups were sacrificed at 1, 2, and 3 weeks postsurgery. Subchondral bone was evaluated using a high-resolution peripheral quantitative computed tomography scanner, while cartilage was histologically evaluated and scored. RESULTS A significant reduction in the subchondral trabecular bone thickness and spacing was found as early as 1 week postsurgery in ACLT rats compared with the nonoperated control. This was subsequently followed by a reduction in bone mineral density and bone fractional volume at week 2, and finally a decrease in the trabecular number at week 3. These changes occurred together with cartilage degeneration as reflected by an increasing Mankin score over all 3 weeks. CONCLUSIONS Significant changes in subchondral bone occur very early in OA concurrent with surface articular cartilage degenerative change suggest that factors affecting bone remodeling and resorption together with cartilage matrix degradation occur very early in the disease.
Collapse
Affiliation(s)
- Nik Aizah
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Nik Aizah, National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic
Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia.
| | - Pan Pan Chong
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Current opinions on the mechanism, classification, imaging diagnosis and treatment of post-traumatic osteomyelitis. Chin J Traumatol 2021; 24:320-327. [PMID: 34429227 PMCID: PMC8606609 DOI: 10.1016/j.cjtee.2021.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023] Open
Abstract
Post-traumatic osteomyelitis (PTO) is a worldwide problem in the field of orthopaedic trauma. So far, there is no ideal treatment or consensus-based gold standard for its management. This paper reviews the representative literature focusing on PTO, mainly from the following four aspects: (1) the pathophysiological mechanism of PTO and the interaction mechanism between bacteria and the body, including fracture stress, different components of internal fixation devices, immune response, occurrence and development mechanisms of inflammation in PTO, as well as the occurrence and development mechanisms of PTO in skeletal system; (2) clinical classification, mainly the etiological classification, histological classification, anatomical classification and the newly proposed new classifications (a brief analysis of their scope and limitations); (3) imaging diagnosis, including non-invasive examination and invasive examination (this paper discusses their advantages and disadvantages respectively, and briefly compares the sensitivity and effectiveness of the current examinations); and (4) strategies, including antibiotic administration, surgical choices and other treatment programs. Based on the above-mentioned four aspects, we try to put forward some noteworthy sections, in order to make the existing opinions more specific.
Collapse
|
25
|
Zaki S, Smith MM, Little CB. Pathology-pain relationships in different osteoarthritis animal model phenotypes: it matters what you measure, when you measure, and how you got there. Osteoarthritis Cartilage 2021; 29:1448-1461. [PMID: 34332049 DOI: 10.1016/j.joca.2021.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether osteoarthritis (OA) pain characteristics and mechanistic pathways in pre-clinical models are phenotype-specific. DESIGN Male 11-week-old C57BL6 mice had unilateral medial-meniscal-destabilization (DMM) or antigen-induced-arthritis (AIA), vs sham-surgery/immunised-controls (Sham/Im-CT). Pain behaviour (allodynia, mechanical- and thermal-hyperalgesia, hindlimb static weight-bearing, stride-length) and lumbar dorsal root ganglia (DRG) gene-expression were measured at baseline, day-3, week-1/-2/-4/-8/-16, and pain-behaviour:gene-expression:joint-pathology associations investigated. RESULTS DMM and AIA induced structural OA defined by progressively increasing cartilage erosion, subchondral bone sclerosis and osteophyte size and maturation. All pain-behaviours were modified, with model-specific differences in severity and temporal pattern. Tactile allodynia developed acutely in both models and persisted to week-16. During early-OA (wk4-8) there was; reduced right hindlimb weight-bearing in AIA; thermal-hyperalgesia and reduced stride-length in DMM. During chronic-OA (wk12-16); mechanical-hyperalgesia and reduced right hindlimb weight-bearing were observed in DMM only. There were no associations in either model between different pain-behaviour outcomes. A coordinated DRG-expression profile was observed in sham and Im-CT for all 11 genes tested, but not in AIA and DMM. At wk-16 despite equivalent joint pathology, changes in DRG-expression (Calca, Trpa1, Trpv1, Trpv4) were observed only in DMM. In AIA mechanical-hyperalgesia was associated with Trpv1 (r = -0.79) and Il1b (r = 0.53). In DMM stride-length was associated with Calca, Tac1, Trpv1, Trpv2, Trpv4 and Adamts5 (r = 0.4-0.57). DRG gene-expression change was correlated with subchondral-bone sclerosis in DMM, and cartilage damage in AIA. Positive pain-behaviour:joint-pathology associations were only present in AIA - for synovitis, subchondral-bone resorption, chondrocyte-hypertrophy and cartilage damage. CONCLUSION Pain and peripheral sensory neuronal responses are OA-phenotype-specific with distinct pathology:pain-outcome:molecular-mechanism relationships.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, at Royal North Shore Hospital, Australia.
| | - M M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, at Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, at Royal North Shore Hospital, Australia.
| |
Collapse
|
26
|
Hart DA, Martin CR, Scott M, Shrive NG. The instrumented sheep knee to elucidate insights into osteoarthritis development and progression: A sensitive and reproducible platform for integrated research efforts. Clin Biomech (Bristol, Avon) 2021; 87:105404. [PMID: 34171651 DOI: 10.1016/j.clinbiomech.2021.105404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteoarthritis of the knee is a very common condition that has been difficult to treat. The majority of cases are considered idiopathic. Much research effort remains focused on biology rather than the biomechanics of such joints. Some new methods were developed and validated to better appreciate the subtleties of the biomechanical integrity of joints, and how changes in biomechanics can contribute to osteoarthritis. METHODS Over the past 15 years our lab has enhanced the sensitivity of the assessment of knee biomechanics of an instrumented, trained large animal model (sheep) of osteoarthritis and integrated the findings with biological and histological assessments. These new methods include gait analysis before and after injury followed by robotic validation post-sacrifice, and more recently using Fibre Bragg Grating sensors to detect alterations in cartilage stresses. RESULTS A review of the findings obtained with this model are presented. The findings indicate that sheep, like humans, exhibit individual characteristics. They also indicate that joint kinetics, rather than kinematics may better define the alterations induced by injury. With the addition of Fibre Bragg Grating sensors, it has been possible to measure with good accuracy, alterations to cartilage stresses following a controlled knee injury. INTERPRETATION Using this model as Proof of Concept, this sheep system can now be viewed as a sensitive platform to address many questions related to risk for development of idiopathic osteoarthritis of the human knee, the efficacy of potential interventions to correct biomechanical disruptions, and how joint biomechanics and biology are integrated during aging.
Collapse
Affiliation(s)
- David A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada; Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.
| | - C Ryan Martin
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada; Section of Orthopedics, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Michael Scott
- Department of Veterinary Clinical & Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nigel G Shrive
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada; Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Motherwell JM, Hendershot BD, Goldman SM, Dearth CL. Gait biomechanics: A clinically relevant outcome measure for preclinical research of musculoskeletal trauma. J Orthop Res 2021; 39:1139-1151. [PMID: 33458856 DOI: 10.1002/jor.24990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injuries to the musculoskeletal system are the most prevalent of those suffered by United States Military Service members and accounts for two-thirds of initial hospital costs to the Department of Defense. These combat-related wounds often leave survivors with life-long disability and represent a significant impediment to the readiness of the fighting force. There are immense opportunities for the field of tissue engineering and regenerative medicine (TE/RM) to address these musculoskeletal injuries through regeneration of damaged tissues as a means to restore limb functionality and improve quality of life for affected individuals. Indeed, investigators have made promising advancements in the treatment for these injuries by utilizing small and large preclinical animal models to validate therapeutic efficacy of next-generation TE/RM-based technologies. Importantly, utilization of a comprehensive suite of functional outcome measures, particularly those designed to mimic data collected within the clinical setting, is critical for successful translation and implementation of these therapeutics. To that end, the objective of this review is to emphasize the clinical relevance and application of gait biomechanics as a functional outcome measure for preclinical research studies evaluating the efficacy of TE/RM therapies to treat traumatic musculoskeletal injuries. Specifically, common musculoskeletal injuries sustained by service members-including volumetric muscle loss, post-traumatic osteoarthritis, and composite tissue injuries-are examined as case examples to highlight the use of gait biomechanics as an outcome measure using small and large preclinical animal models.
Collapse
Affiliation(s)
- Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D Hendershot
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Long wait times for knee and hip total joint replacement in Canada: An isolated health system problem, or a symptom of a larger problem? OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100141. [DOI: 10.1016/j.ocarto.2021.100141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
|
29
|
Luna M, Guss JD, Vasquez-Bolanos LS, Alepuz AJ, Dornevil S, Strong J, Alabi D, Shi Q, Pannellini T, Otero M, Brito IL, van der Meulen MCH, Goldring SR, Hernandez CJ. Obesity and load-induced posttraumatic osteoarthritis in the absence of fracture or surgical trauma. J Orthop Res 2021; 39:1007-1016. [PMID: 32658313 PMCID: PMC7855296 DOI: 10.1002/jor.24799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is increasingly viewed as a heterogeneous disease with multiple phenotypic subgroups. Obesity enhances joint degeneration in mouse models of posttraumatic osteoarthritis (PTOA). Most models of PTOA involve damage to surrounding tissues caused by surgery/fracture; it is unclear if obesity enhances cartilage degeneration in the absence of surgery/fracture. We used a nonsurgical animal model of load-induced PTOA to determine the effect of obesity on cartilage degeneration 2 weeks after loading. Cartilage degeneration was caused by a single bout of cyclic tibial loading at either a high or moderate load magnitude in adult male mice with severe obesity (C57Bl6/J + high-fat diet), mild obesity (toll-like receptor 5 deficient mouse [TLR5KO]), or normal adiposity (C57Bl6/J mice + normal diet and TLR5KO mice in which obesity was prevented by manipulation of the gut microbiome). Two weeks after loading, cartilage degeneration occurred in limbs loaded at a high magnitude, as determined by OARSI scores (P < .001). However, the severity of cartilage damage did not differ among groups. Osteophyte width and synovitis of loaded limbs did not differ among groups. Furthermore, obesity did not enhance cartilage damage in limbs evaluated 6 weeks after loading. Constituents of the gut microbiota differed among groups. Our findings suggest that, in the absence of surgery/fracture, obesity may not influence cartilage loss after a single mechanical insult, suggesting that either damage to surrounding tissues or repeated mechanical insult is necessary for obesity to influence cartilage degeneration. These findings further illustrate heterogeneity in PTOA phenotypes and complex interactions between mechanical/metabolic factors in cartilage loss.
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D. Guss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Adrian J. Alepuz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie Dornevil
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Jasmin Strong
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Denise Alabi
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C. H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| | | | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
30
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|
31
|
Blaker CL, Zaki S, Little CB, Clarke EC. Long-term Effect of a Single Subcritical Knee Injury: Increasing the Risk of Anterior Cruciate Ligament Rupture and Osteoarthritis. Am J Sports Med 2021; 49:391-403. [PMID: 33378213 DOI: 10.1177/0363546520977505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rupture of the anterior cruciate ligament (ACL) is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA), but patients with the "same injury" can have vastly different trajectories for the onset and progression of disease. Minor subcritical injuries preceding the critical injury event may drive this disparity through preexisting tissue pathologies and sensory changes. PURPOSE To investigate the role of subcritical injury on ACL rupture risk and PTOA through the evaluation of pain behaviors, joint mechanics, and tissue structural change in a mouse model of knee injury. STUDY DESIGN Controlled laboratory study. METHODS Ten-week-old male C57BL/6J mice were allocated to naïve control and subcritical knee injury groups. Injury was induced by a single mechanical compression to the right hindlimb, and mice were evaluated using joint histopathology, anteroposterior joint biomechanics, pain behaviors (mechanical allodynia and hindlimb weightbearing), and isolated ACL tensile testing to failure at 1, 2, 4, or 8 weeks after injury. RESULTS Subcritical knee injury produced focal osteochondral lesions in the patellofemoral and lateral tibiofemoral compartments with no resolution for the duration of the study (8 weeks). These lesions were characterized by focal loss of proteoglycan staining, cartilage structural change, chondrocyte pathology, microcracks, and osteocyte cell loss. Injury also resulted in the rapid onset of allodynia (at 1 week), which persisted over time and reduced ACL failure load (P = .006; mean ± SD, 7.91 ± 2.01 N vs 9.37 ± 1.01 N in naïve controls at 8 weeks after injury), accompanied by evidence of ACL remodeling at the femoral enthesis. CONCLUSION The present study in mice establishes a direct effect of a single subcritical knee injury on the development of specific joint tissue pathologies (osteochondral lesions and progressive weakening of the ACL) and allodynic sensitization. These findings demonstrate a predisposition for secondary critical injuries (eg, ACL rupture) and an increased risk of PTOA onset and progression (structurally and symptomatically). CLINICAL RELEVANCE Subcritical knee injuries are a common occurrence and, based on this study, can cause persistent sensory and structural change. These findings have important implications for the understanding of risk factors of ACL injury and subsequent PTOA, particularly with regard to prevention and management strategies following an often underreported event.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia.,Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| |
Collapse
|
32
|
von Loga IS, Miotla-Zarebska J, Huang YS, Williams R, Jostins L, Vincent TL. Comparison of LABORAS with static incapacitance testing for assessing spontaneous pain behaviour in surgically-induced murine osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100101. [PMID: 33381766 PMCID: PMC7762826 DOI: 10.1016/j.ocarto.2020.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Evoked responses following mechanical or thermal stimulation are typically used to assess pain behaviour in murine osteoarthritis (OA). However, there is no consensus on how best to measure spontaneous pain behaviour. Method OA by partial meniscectomy (PMX), or sham surgery was performed in 10-week old C57BL/6 male mice. Collagen-induced arthritis (CIA) was induced in 10 week old DBA1 male mice. Spontaneous pain behaviour, either at the time of active inflammatory disease (CIA), or over the 12 weeks after induction of OA, was assessed by static incapacitance testing (measuring percentage of weight placed through each hindlimb), and Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS) (translating cage vibrations of singly house animals into specific activities). Data were analysed by repeated measures two way ANOVA with post hoc testing comparing experimental groups with either sham operated or naïve controls. Results By incapacitance testing, two phases of painful behaviour were evident after PMX: a transient, post-operative phase, which resolved within one week, and a late OA pain phase starting 8 weeks post surgery and reaching statistical significance at week 12 (95% CI: sham 89.51-98.19, PMX 76.18-98.16). LABORAS, was able to detect pain behaviour in mice with CIA, but no statistically significant pain behaviour was observed in OA mice either post operatively (once analgesia had been controlled for) or at any later time points for any activity compared with the sham group. Conclusion Static incapacitance testing is superior to LABORAS for measuring spontaneous pain behaviour in surgically induced murine OA.
Collapse
Affiliation(s)
- Isabell S von Loga
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Yi-Shu Huang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Richard Williams
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Luke Jostins
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
33
|
Blaker CL, Ashton DM, Doran N, Little CB, Clarke EC. Sex- and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis. J Biomech 2020; 114:110152. [PMID: 33285491 DOI: 10.1016/j.jbiomech.2020.110152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/14/2023]
Abstract
Sex and joint injury are risk factors implicated in the onset and progression of osteoarthritis (OA). In mouse models of post-traumatic OA (ptOA), the pathogenesis of disease is notably impacted by sex (often worse in males) and injury model (e.g. meniscal versus ligament injury). Increasing ptOA progression and severity is often associated with greater relative instability of the joint but few studies have directly quantified changes in joint mechanics after injury and compared outcomes across multiple models in both male and female mice. Passive anterior-posterior knee biomechanics were evaluated in 10-week-old, male and female C57BL/6J mice. PtOA injury models included destabilisation of the medial meniscus (DMM), anterior cruciate ligament transection (ACLT) or mechanical rupture (ACLR), and combined DMM and ACLT (DMM + ACLT). Sham operated and non-operated controls (NOC) were included for baseline comparisons. The test apparatus loaded hindlimbs at 60° flexion between ± 1 N at 0.5 mm/s (build specifications available for download: https://doi.org/10.17632/z754455x3c.1). Measures of joint laxity (range of motion, neutral zone) and stiffness were calculated. Joint laxity was comparable between male and female mice while joint stiffness was greater in females (P ≤ 0.002, correcting for body-mass and injury-model). Anterior-posterior joint mechanics were minimally altered by DMM but significantly affected by loss of the ACL (P < 0.001), with equivalent changes between ACL-injury models despite different injury mechanisms and adjacent meniscal damage. These findings suggest that despite the important role of joint injury; sex- and model-specific differences in ptOA progression and severity are not primarily driven by altered anterior-posterior knee biomechanics.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia; Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Dylan M Ashton
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Nathan Doran
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia; School of Biomedical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia.
| |
Collapse
|
34
|
Casper‐Taylor ME, Barr AJ, Williams S, Wilcox RK, Conaghan PG. Initiating factors for the onset of OA: A systematic review of animal bone and cartilage pathology in OA. J Orthop Res 2020; 38:1810-1818. [PMID: 31975435 PMCID: PMC7383628 DOI: 10.1002/jor.24605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
There is controversy over whether bone or cartilage is primarily involved in osteoarthritis (OA) pathogenesis; this is important for targeting early interventions. We explored evidence from animal models of knee OA by preforming a systematic review of PubMed, Scopus, and Web of Science for original articles reporting subchondral bone and cartilage pathology in animal models with epiphyseal closure. Extracted data included: method of induction; animal model; cartilage and bone assessment and method; meniscal assessment; skeletal maturity; controls; and time points assessed. Quality scoring was performed. The best evidence was synthesized from high-quality skeletally mature models, without direct trauma to tissues of interest and with multiple time points. Altogether, 2849 abstracts were reviewed. Forty-seven papers were included reporting eight different methods of inducing OA, six different species, six different methods of assessing cartilage, five different bone structural parameters, and four assessed meniscus as a potential initiator. Overall, the simultaneous onset of OA in cartilage and bone was reported in 82% of datasets, 16% reported bone onset, and 2% reported cartilage onset. No dataset containing meniscal data reported meniscal onset. However, using the best evidence synthesis (n = 8), five reported simultaneous onset when OA was induced, while three reported bone onset when OA occurred spontaneously; none reported cartilage onset. In summary, there is a paucity of well-designed studies in this area which makes the conclusions drawn conjectures rather than proven certainties. However, within the limitation of data quality, this review suggests that in animal models, the structural onset of knee OA occurs either in bone prior to cartilage pathology or simultaneously.
Collapse
Affiliation(s)
- Michelle E. Casper‐Taylor
- School of Mechanical Engineering, Institute of Medical and Biological EngineeringUniversity of LeedsLeedsUK
| | - Andrew J. Barr
- NIHR Leeds Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| | - Sophie Williams
- School of Mechanical Engineering, Institute of Medical and Biological EngineeringUniversity of LeedsLeedsUK
| | - Ruth K. Wilcox
- School of Mechanical Engineering, Institute of Medical and Biological EngineeringUniversity of LeedsLeedsUK
| | - Philip G. Conaghan
- NIHR Leeds Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
35
|
Differential patterns of pathology in and interaction between joint tissues in long-term osteoarthritis with different initiating causes: phenotype matters. Osteoarthritis Cartilage 2020; 28:953-965. [PMID: 32360537 DOI: 10.1016/j.joca.2020.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if osteoarthritis (OA) progression and joint tissue-pathology associations link specific animal models to different human OA phenotypes. DESIGN Male 11-week-old C57BL6 mice had unilateral medial-meniscal-destabilization (DMM) or antigen-induced-arthritis (AIA). Joint tissue histopathology was scored day-3 to week-16. Tissue-pathology associations (corrected for time and at week-16) were determined by partial correlation coefficients, and odds ratios (OR) calculated for likelihood of cartilage damage and joint inflammation by ordinal-logistic-regression. RESULTS Despite distinct temporal patterns of progression, by week-16 joint-wide OA pathology in DMM and AIA was equivalent. Significant pathology associations common to both models included: osteophyte size and maturity (r > 0.4); subchondral bone (SCB) sclerosis and osteophyte maturity (r > 0.25); cartilage erosion and chondrocyte hypertrophy/apoptosis (r > 0.4), SCB sclerosis (r > 0.26), osteophyte size (r > 0.3), and maturity (r > 0.32). DMM-specific associations were between cartilage proteoglycan loss and structural damage (r = 0.56), osteophyte maturity (r = 0.49), size (r = 0.45), and SCB sclerosis (r = 0.28). AIA-specific associations were between SCB sclerosis and chondrocyte hypertrophy/apoptosis (r = 0.40) and osteophyte size (r = 0.37); and synovitis with cartilage structural damage (r = 0.18). No tissue-pathology associations were common to both models at week-16. Increased likelihood of cartilage structural damage was associated with: chondrocyte hypertrophy/apoptosis (OR>1.7), and osteophyte size (OR>2.3) in both models; SCB sclerosis (OR = 2.0) and proteoglycan loss (OR = 2.4) in DMM; and synovitis (OR = 1.2) in AIA. Joint inflammation was associated positively with cartilage proteoglycan loss (OR = 1.4) and inversely with osteophyte size (OR = 0.21) in AIA only. CONCLUSION This study highlights the importance of defining OA-models by initiating mechanisms and progression, not just end-stage joint-tissue pathology.
Collapse
|
36
|
Stiffel V, Rundle CH, Sheng MHC, Das S, Lau KHW. A Mouse Noninvasive Intraarticular Tibial Plateau Compression Loading-Induced Injury Model of Posttraumatic Osteoarthritis. Calcif Tissue Int 2020; 106:158-171. [PMID: 31559470 PMCID: PMC6995773 DOI: 10.1007/s00223-019-00614-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
This study sought to develop a noninvasive, reliable, clinically relevant, and easy-to-implement mouse model that can be used for investigation of the pathophysiology of PTOA and for preclinical testing of new therapies of PTOA. Accordingly, we have established a closed intraarticular tibial plateau compression loading-induced injury model of PTOA in C57BL/6J mice. In this model, a single application of a defined loading force was applied with an indenter to the tibial plateau of the right knee to create injuries to the synovium, menisci, ligaments, and articular cartilage. The limiting loading force was set at 55 N with the loading speed of 60 N/s. This loading regimen limits the distance that the indenter would travel into the joint, but still yields substantial compression loading energy to cause significant injuries to the synovium, meniscus, and articular cartilage. The joint injury induced by this loading protocol consistently yielded evidence for key histological hallmarks of PTOA at 5-11 weeks post-injury, including loss of articular cartilage, disorganization of chondrocytes, meniscal hyperplasia and mineralization, osteophyte formation, and degenerative remodeling of subchondral bone. These arthritic changes were highly reproducible and of a progressive nature. Because 50% of patients with meniscal and/or ligament injuries without intraarticular fractures developed PTOA over time, this intraarticular tibial plateau compression loading-induced injury model is clinically relevant. In summary, we have developed a noninvasive intraarticular tibial plateau compression loading-induced injury model in the mouse that can be used to investigate the pathophysiology of PTOA and for preclinical testing for new therapies.
Collapse
Affiliation(s)
- Virginia Stiffel
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Subhashri Das
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
37
|
Sebastian A, Murugesh DK, Mendez ME, Hum NR, Rios-Arce ND, McCool JL, Christiansen BA, Loots GG. Global Gene Expression Analysis Identifies Age-Related Differences in Knee Joint Transcriptome during the Development of Post-Traumatic Osteoarthritis in Mice. Int J Mol Sci 2020; 21:ijms21010364. [PMID: 31935848 PMCID: PMC6982134 DOI: 10.3390/ijms21010364] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that could contribute to OA. Using RNA-seq, first we profiled the knee joint transcriptome of 10-week-old, 62-week-old, and 95-week-old mice and found that the expression of several inflammatory-response related genes increased as a result of aging, whereas the expression of several genes involved in cartilage metabolism decreased with age. To determine how aging impacts post-traumatic arthritis (PTOA) development, the right knee joints of 10-week-old and 62-week-old mice were injured using a non-invasive tibial compression injury model and injury-induced structural and molecular changes were assessed. At six-week post-injury, 62-week-old mice displayed significantly more cartilage degeneration and osteophyte formation compared with young mice. Although both age groups elicited similar transcriptional responses to injury, 62-week-old mice had higher activation of inflammatory cytokines than 10-week-old mice, whereas cartilage/bone metabolism genes had higher expression in 10-week-old mice, suggesting that the differential expression of these genes might contribute to the differences in PTOA severity observed between these age groups.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
| | - Melanie E. Mendez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
| | - Naiomy D. Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
| | - Jillian L. McCool
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-925-423-0923
| |
Collapse
|
38
|
Blaker CL, Clarke EC, Little CB. Adding insult to injury: synergistic effect of combining risk-factors in models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2019; 27:1731-1734. [PMID: 31276817 DOI: 10.1016/j.joca.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
Affiliation(s)
- C L Blaker
- Murray Maxwell Biomechanics Laboratory, St Leonards, NSW, Australia
| | - E C Clarke
- Murray Maxwell Biomechanics Laboratory, St Leonards, NSW, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Royal North Shore Hospital, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, St Leonards, NSW, Australia.
| |
Collapse
|
39
|
Singleton Q, Bapat S, Fulzele S. Post-traumatic osteoarthritis (PTOA) animal model to understand pathophysiology of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S81. [PMID: 31576290 DOI: 10.21037/atm.2019.04.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Santul Bapat
- Departments of Orthopaedic Surgery, Augusta University, GA, USA
| | - Sadanand Fulzele
- Departments of Orthopaedic Surgery, Augusta University, GA, USA.,Institute of Regenerative and Reparative Medicine, Augusta University, GA, USA
| |
Collapse
|
40
|
Allen MJ. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2018; 100:2082-2086. [PMID: 30516632 DOI: 10.2106/jbjs.18.01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Matthew J Allen
- Department of Veterinary Medicine, Surgical Discovery Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Utomo L, Eijgenraam SM, Meuffels DE, Bierma‐Zeinstra SMA, Bastiaansen‐Jenniskens YM, van Osch GJVM. Meniscal extrusion and degeneration during the course of osteoarthritis in the Murine collagenase-induced osteoarthritis model. J Orthop Res 2018; 36:2416-2420. [PMID: 29624738 PMCID: PMC6175183 DOI: 10.1002/jor.23909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/30/2018] [Indexed: 02/04/2023]
Abstract
Meniscal damage is, despite its major role in knee osteoarthritis (OA), often neglected in OA animal models. We evaluated structural meniscal degeneration during the course of OA in the murine collagenase-induced OA (CIOA) model. To investigate this, OA was induced in the knee joints of 33 male C57BL/6 mice by an intra-articular injection of 10U collagenase. The mice were sacrificed after 1, 3, 7, 14, 28, and 56 days, and the knees were harvested and processed for histological analysis. As control, six knees were obtained from 16-week-old mice in which no OA was induced. Meniscal damage, meniscal extrusion, and articular cartilage damage were evaluated on thionin-stained sections. Associations between parameters of interest were evaluated with Spearman rho correlation tests. When compared to non-OA knees, meniscal extrusion was visible from day 1 onwards and meniscal degeneration had a tendency to increase over time. The meniscus damage appeared around the same time as articular cartilage damage (day 14-28) and was statistically significantly more pronounced anterior than posterior, and no differences were seen between medial and lateral menisci. Meniscus and articular cartilage damage were moderately associated in the CIOA knees (ρ = 0.57; 95%CI [0.23-0.78]). Our findings suggest that the CIOA model is a valuable model to study the role of meniscal damage during OA progression and can support the development of future preventative treatment strategies. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:2416-2420, 2018.
Collapse
Affiliation(s)
- Lizette Utomo
- Department of Orthopaedic Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Susanne M. Eijgenraam
- Department of Orthopaedic Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Radiology and Nuclear Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Duncan E. Meuffels
- Department of Orthopaedic Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Sita M. A. Bierma‐Zeinstra
- Department of Orthopaedic Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of General Practice, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | - Gerjo J. V. M. van Osch
- Department of Orthopaedic Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Otorhinolaryngology, Erasmus MCUniversity Medical Center RotterdamWytemaweg 80, Room Ee 16.55, 3015 CNRotterdamThe Netherlands
| |
Collapse
|
42
|
Wang Q, Tan Q, Xu W, Kuang L, Zhang B, Wang Z, Ni Z, Su N, Jin M, Li C, Jiang W, Huang J, Li F, Zhu Y, Chen H, Du X, Chen D, Deng C, Qi H, Xie Y, Chen L. Postnatal deletion of Alk5 gene in meniscal cartilage accelerates age-dependent meniscal degeneration in mice. J Cell Physiol 2018; 234:595-605. [PMID: 30078186 DOI: 10.1002/jcp.26802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Activation of transforming growth factor-β (TGF-β) signaling has been used to enhance healing of meniscal degeneration in several models. However, the exact role and molecular mechanism of TGF-β signaling in meniscus maintenance and degeneration are still not understood due to the absence of in vivo evidence. In this study, we found that the expression of activin receptor-like kinases 5 (ALK5) in the meniscus was decreased with the progression of age and/or osteoarthritis induced meniscal degeneration. Col2α1 positive cells were found to be specifically distributed in the superficial and inner zones of the anterior horn, as well as the inner zone of the posterior horn in mice, indicating that Col2α1-CreERT2 mice can be a used for studying gene function in menisci. Furthermore, we deleted Alk5 in Col2α1 positive cells in meniscus by administering tamoxifen. Alterations in the menisci structure were evaluated histologically. The expression levels of genes and proteins associated with meniscus homeostasis and TGF-β signaling were analyzed by quantitative real-time PCR analysis (qRT-PCR) and immunohistochemistry (IHC). Our results revealed severe and progressive meniscal degeneration phenotype in 3- and 6-month-old Alk5 cKO mice compared with Cre-negative control, including aberrantly increased hypertrophic meniscal cells, severe fibrillation, and structure disruption of meniscus. qRT-PCR and IHC results showed that disruption of anabolic and catabolic homeostasis of chondrocytes may contribute to the meniscal degeneration phenotype observed in Alk5 cKO mice. Thus, TGF-β/ALK5 signaling plays a chondro-protective role in menisci homeostasis, in part, by inhibiting matrix degradation and maintaining extracellular matrix proteins levels in meniscal tissues.
Collapse
Affiliation(s)
- Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bin Zhang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Can Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fangfang Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Kotelsky A, Woo CW, Delgadillo LF, Richards MS, Buckley MR. An Alternative Method to Characterize the Quasi-Static, Nonlinear Material Properties of Murine Articular Cartilage. J Biomech Eng 2018; 140:2657496. [PMID: 29049670 DOI: 10.1115/1.4038147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/08/2022]
Abstract
With the onset and progression of osteoarthritis (OA), articular cartilage (AC) mechanical properties are altered. These alterations can serve as an objective measure of tissue degradation. Although the mouse is a common and useful animal model for studying OA, it is extremely challenging to measure the mechanical properties of murine AC due to its small size (thickness < 50 μm). In this study, we developed novel and direct approach to independently quantify two quasi-static mechanical properties of mouse AC: the load-dependent (nonlinear) solid matrix Young's modulus (E) and drained Poisson's ratio (ν). The technique involves confocal microscope-based multiaxial strain mapping of compressed, intact murine AC followed by inverse finite element analysis (iFEA) to determine E and ν. Importantly, this approach yields estimates of E and ν that are independent of the initial guesses used for iterative optimization. As a proof of concept, mechanical properties of AC on the medial femoral condyles of wild-type mice were obtained for both trypsin-treated and control specimens. After proteolytic tissue degradation induced through trypsin treatment, a dramatic decrease in E was observed (compared to controls) at each of the three tested loading conditions. A significant decrease in ν due to trypsin digestion was also detected. These data indicate that the method developed in this study may serve as a valuable tool for comparative studies evaluating factors involved in OA pathogenesis using experimentally induced mouse OA models.
Collapse
Affiliation(s)
- Alexander Kotelsky
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Chandler W Woo
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Michael S Richards
- Department of Surgery, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rm 2.4153, Rochester, NY 14627 e-mail:
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| |
Collapse
|
44
|
Zhang Y, Xiong C, Kudelko M, Li Y, Wang C, Wong YL, Tam V, Rai MF, Cheverud J, Lawson HA, Sandell L, Chan WCW, Cheah KSE, Sham PC, Chan D. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events. Matrix Biol 2018; 70:123-139. [PMID: 29649547 DOI: 10.1016/j.matbio.2018.03.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD. Genetic studies of risk factors for IDD using human cohorts are limited by small sample size and low statistical power. Animal models amenable to genetic and functional studies of IDD provide desirable alternatives. Despite differences in size and cellular content as compared to human intervertebral discs (IVDs), the mouse is a powerful model for genetics and assessment of cellular changes relevant to human biology. Here, we provide evidence for early onset disc degeneration in SM/J relative to LG/J mice with poor and good tissue healing capacity respectively. In the first few months of life, LG/J mice maintain a relatively constant pool of notochordal-like cells in the nucleus pulposus (NP) of the IVD. In contrast, chondrogenic events are observed in SM/J mice beginning as early as one-week-old, with progressive fibrotic changes. Further, the extracellular matrix changes in the NP are consistent with IVD degeneration. Leveraging on the genomic data of two parental and two recombinant inbred lines, we assessed the genetic contribution to the NP changes and identified processes linked to the regulation of ion transport systems. Significantly, "transport" system is also in the top three gene ontology (GO) terms from a comparative proteomic analysis of the mouse NP. These findings support the potential of the SM/J, LG/J and their recombinant inbred lines for future genetic and biological analysis in mice and validation of candidate genes and biological relevance in human cohort studies. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD008784.
Collapse
Affiliation(s)
- Ying Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Xiong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mateusz Kudelko
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yan Li
- Centre for Genomic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Cheng Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuk Lun Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - James Cheverud
- Department of Biology, Loyola University of Chicago, IL 60660, USA
| | - Heather A Lawson
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Linda Sandell
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Wilson C W Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; The University of Hong Kong - Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pak C Sham
- Centre for Genomic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; The University of Hong Kong - Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China.
| |
Collapse
|
45
|
Gilbert SJ, Bonnet CS, Stadnik P, Duance VC, Mason DJ, Blain EJ. Inflammatory and degenerative phases resulting from anterior cruciate rupture in a non-invasive murine model of post-traumatic osteoarthritis. J Orthop Res 2018; 36:2118-2127. [PMID: 29453795 PMCID: PMC6120532 DOI: 10.1002/jor.23872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Joint injury is the predominant risk factor for post-traumatic osteoarthritis development (PTOA). Several non-invasive mouse models mimicking human PTOA investigate molecular mechanisms of disease development; none have characterized the inflammatory response to this acute traumatic injury. Our aim was to characterize the early inflammatory phase and later degenerative component in our in vivo non-invasive murine model of PTOA induced by anterior cruciate ligament (ACL) rupture. Right knees of 12-week-old C57Bl6 mice were placed in flexion at a 30° offset position and subjected to a single compressive load (12N, 1.4 mm/s) to induce ACL rupture with no obvious damage to surrounding tissues. Tissue was harvested 4 h post-injury and on days 3, 14, and 21; contralateral left knees served as controls. Histological, immunohistochemical, and gene analyzes were performed to evaluate inflammatory and degenerative changes. Immunohistochemistry revealed time-dependent expression of mature (F4/80 positive) and inflammatory (CD11b positive) macrophage populations within the sub-synovial infiltrate, developing osteophytes, and inflammation surrounding the ACL in response to injury. Up-regulation of genes encoding acute pro-inflammatory markers, inducible nitric oxide synthase, interleukin-6 and interleukin-17, and the matrix degrading enzymes, ADAMTS-4 and MMP3 was detected in femoral cartilage, concomitant with extensive cartilage damage and bone remodelling over 21-days post-injury. Our non-invasive model describes pathologically distinct phases of the disease, increasing our understanding of inflammatory episodes, the tissues/cells producing inflammatory mediators and the early molecular changes in the joint, thereby defining the early phenotype of PTOA. This knowledge will guide appropriate interventions to delay or arrest disease progression following joint injury. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-10, 2018.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Cleo S. Bonnet
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Paulina Stadnik
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Victor C. Duance
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Deborah J. Mason
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
46
|
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int 2018. [PMID: 29535784 PMCID: PMC5832141 DOI: 10.1155/2018/9079538] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Collapse
|
47
|
Chan DD, Li J, Luo W, Predescu DN, Cole BJ, Plaas A. Pirfenidone reduces subchondral bone loss and fibrosis after murine knee cartilage injury. J Orthop Res 2018; 36. [PMID: 28646530 PMCID: PMC5742076 DOI: 10.1002/jor.23635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pirfenidone is an anti-inflammatory and anti-fibrotic drug that has shown efficacy in lung and kidney fibrosis. Because inflammation and fibrosis have been linked to the progression of osteoarthritis, we investigated the effects of oral Pirfenidone in a mouse model of cartilage injury, which results in chronic inflammation and joint-wide fibrosis in mice that lack hyaluronan synthase 1 (Has1-/- ) in comparison to wild-type. Femoral cartilage was surgically injured in wild-type and Has1-/- mice, and Pirfenidone was administered in food starting after 3 days. At 4 weeks, Pirfenidone reduced the appearance, on micro-computed tomography, of pitting in subchondral bone at, and cortical bone surrounding, the site of cartilage injury. This corresponded with a reduction in fibrotic tissue deposits as observed with gross joint surface photography. Pirfenidone resulted in significant recovery of trabecular bone parameters affected by joint injury in Has1-/- mice, although the effect in wild-type was less pronounced. Pirfenidone also increased Safranin-O staining of growth plate cartilage after cartilage injury and sham operation in both genotypes. Taken together with the expression of selected extracellular matrix, inflammation, and fibrosis genes, these results indicate that Pirfenidone may confer chondrogenic and bone-protective effects, although the well-known anti-fibrotic effects of Pirfenidone may occur earlier in the wound-healing response than the time point examined in this study. Further investigations to identify the specific cell populations in the joint and signaling pathways that are responsive to Pirfenidone are warranted, as Pirfenidone and other anti-fibrotic drugs may encourage tissue repair and prevent progression of post-traumatic osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:365-376, 2018.
Collapse
Affiliation(s)
- Deva D. Chan
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,Corresponding author: Deva D. Chan, 110 Eighth St., BT 3141, Troy, NY 12180, Phone: (518) 276-4272
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biochemistry, Rush University Medical Center
| | - Wei Luo
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Brian J. Cole
- Midwest Orthopaedics at Rush, Rush University Medical Center,Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Anna Plaas
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biochemistry, Rush University Medical Center
| |
Collapse
|
48
|
Sandell L. Journal of Orthopaedic Research® update, January 2018. J Orthop Res 2018; 36:9. [PMID: 29425400 DOI: 10.1002/jor.23852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Miller RE, Malfait AM. Osteoarthritis pain: What are we learning from animal models? Best Pract Res Clin Rheumatol 2017; 31:676-687. [PMID: 30509413 PMCID: PMC6284232 DOI: 10.1016/j.berh.2018.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022]
Abstract
All experimental models of osteoarthritis (OA)-like joint damage are accompanied by behaviors indicative of pain. In experimental knee OA, evoked pain responses to exogenously applied stimuli suggest that animals become sensitized to mechanical stimuli. Neurobiological techniques including electrophysiology and in vivo calcium imaging confirm that joint damage is associated with mechanical stimuli through peripheral sensitization. Several mediators present in the OA joint can cause peripheral sensitization, most notably the neurotrophin nerve growth factor (NGF). Furthermore, experimental OA is associated with neuroinflammation in the peripheral nervous system and central nervous system (CNS), including macrophage infiltration of the dorsal root ganglia and microglial activation in the spinal cord. Increasingly, researchers are employing models that are slowly progressive, and this approach has revealed that distinct pain mechanisms operate in a time-dependent manner, which may have important translational significance. While the study of pain in experimental OA is rapidly evolving, with the application of increasingly sophisticated techniques to assess pain and unravel the neurobiology of its genesis, important gaps and limitations in our current approaches exist, which our research community needs to address.
Collapse
Affiliation(s)
- Rachel E Miller
- Department of Medicine, Division of Rheumatology, Rush University Medical Center, 1735 W Harrison St, Room 714, Chicago, IL, 60612, United States
| | - Anne-Marie Malfait
- Department of Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL, 60612, United States.
| |
Collapse
|
50
|
Daily oral consumption of hydrolyzed type 1 collagen is chondroprotective and anti-inflammatory in murine posttraumatic osteoarthritis. PLoS One 2017; 12:e0174705. [PMID: 28384173 PMCID: PMC5383229 DOI: 10.1371/journal.pone.0174705] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease for which there are no disease modifying therapies. Thus, strategies that offer chondroprotective or regenerative capability represent a critical unmet need. Recently, oral consumption of a hydrolyzed type 1 collagen (hCol1) preparation has been reported to reduce pain in human OA and support a positive influence on chondrocyte function. To evaluate the tissue and cellular basis for these effects, we examined the impact of orally administered hCol1 in a model of posttraumatic OA (PTOA). In addition to standard chow, male C57BL/6J mice were provided a daily oral dietary supplement of hCol1 and a meniscal-ligamentous injury was induced on the right knee. At various time points post-injury, hydroxyproline (hProline) assays were performed on blood samples to confirm hCol1 delivery, and joints were harvested for tissue and molecular analyses were performed, including histomorphometry, OARSI and synovial scoring, immunohistochemistry and mRNA expression studies. Confirming ingestion of the supplements, serum hProline levels were elevated in experimental mice administered hCol1. In the hCol1 supplemented mice, chondroprotective effects were observed in injured knee joints, with dose-dependent increases in cartilage area, chondrocyte number and proteoglycan matrix at 3 and 12 weeks post-injury. Preservation of cartilage and increased chondrocyte numbers correlated with reductions in MMP13 protein levels and apoptosis, respectively. Supplemented mice also displayed reduced synovial hyperplasia that paralleled a reduction in Tnf mRNA, suggesting an anti-inflammatory effect. These findings establish that in the context of murine knee PTOA, daily oral consumption of hCol1 is chondroprotective, anti-apoptotic in articular chondrocytes, and anti-inflammatory. While the underlying mechanism driving these effects is yet to be determined, these findings provide the first tissue and cellular level information explaining the already published evidence of symptom relief supported by hCol1 in human knee OA. These results suggest that oral consumption of hCol1 is disease modifying in the context of PTOA.
Collapse
|