1
|
Li Y, Huang B, Yuan M, Zhang C, Zhang X, Hao J, Tao F, Geng F, Wang G, Su P. Associations between serum metal mixtures and systemic inflammation indices among Chinese early adolescents: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117952. [PMID: 40014987 DOI: 10.1016/j.ecoenv.2025.117952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Research has demonstrated a link between metal exposure and inflammation. However, little is known about this relationship among adolescents, especially in prospective cohort studies. The aim of this study was to investigate the relationship between serum metal exposure and inflammatory status in Chinese early adolescents. METHODS In this study, 12 serum metals were detected at baseline in 1551 participants from the Chinese Early Adolescents Cohort. The participants' inflammatory status was assessed via three systemic inflammation indices (neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII)) at both baseline and follow-up. Generalized linear mixed models and restricted cubic splines regression were used to examine the linear and nonlinear relationships between single metal concentrations and systemic inflammation indices. Multiple mixture models were implemented to assess the relationships of mixed metals with systemic inflammation indices. Additionally, sex subgroup analyses were conducted to explore the sex-specific associations between serum metals and inflammatory status. RESULTS Single-exposure analysis revealed that exposure to multiple serum metals, such as chromium, cobalt, copper and lead, was positively associated with the NLR and SII, whereas iron was negatively correlated with the three systemic inflammation indices (PFDR<0.05). Additionally, inverted U-shaped associations were observed between vanadium, manganese and systemic inflammation indices. According to the mixture models, high levels of the serum metal mixture were positively correlated with the NLR and the SII. Cobalt had the highest positive weight in the mixed samples, whereas iron had the greatest negative weight in the serum-metal mixtures. Subgroup analyses revealed that serum exposure to the metal mixture had a more significant effect on systemic inflammation markers in females than in males. CONCLUSIONS This study reveals the impact of real-world mixed metal exposure on adolescents' inflammatory levels, which is of primary significance for protecting the healthy development of early adolescents.
Collapse
Affiliation(s)
- Yonghan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Mengyuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China.
| | - Puyu Su
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Xie L, Guan X, Zhou Y, He Y, Chen S, Xiao W, Yang J, Lu J, Hong L, Hu Q, Wang Q, Li C, Wang Q. Exploring Associations and Mediating Factors between Multiple Trace Metals with Anemia in US Adults: Insight from NHANES 2017-2020. Nutrients 2024; 16:3424. [PMID: 39408389 PMCID: PMC11478990 DOI: 10.3390/nu16193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Anemia significantly contributes to the global disease burden, with its incidence potentially influenced by the trace metal content within the body. OBJECTIVE This study aims to examine the associations between trace metals and anemia risk, with a particular focus on investigating the potential mediating roles of iron status and inflammation in these associations. METHODS Five trace metals (Ni, Co, Mn, Se, and Mo) were examined in 1274 US adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020. The individual and combined effects of these metals on anemia were assessed using logistic regression, quantile g-computation (QGC), and Bayesian kernel machine regression (BKMR). A sex-stratified analysis was conducted to discern any gender-specific susceptibilities. Additionally, mediation analysis was employed to explore the potential mediating roles of iron status and inflammation in the associations between these metals and anemia. RESULTS Increased risks of anemia were positively associated with Co and Ni levels but negatively correlated with Se and Mn levels (all with p < 0.05). The trace metal mixture was negatively associated with anemia, with the highest weights of Co and Se in different directions in both the QGC and BKMR models. In the sex-specific analysis, we observed less pronounced protective effects from trace metals in females. Moreover, the mediating proportion of the iron status and inflammation in these relationships ranged from 10.29% to 58.18%. CONCLUSION Our findings suggest that the trace element mixture was associated with decreased anemia risk, among which Se was a protective factor while Co was a risk factor, and females were more susceptible. The effects of these trace metals on anemia may be mediated by the iron status and inflammation.
Collapse
Affiliation(s)
- Lijie Xie
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinchao Guan
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yixiang Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujie He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shilin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanting Xiao
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Jilong Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Jianyong Lu
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Liecheng Hong
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuanwen Li
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Qing Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Grant MP, Alatassi R, Diab MO, Abushal M, Epure LM, Huk OL, Bergeron SG, Im Sampen HJ, Antoniou J, Mwale F. Cobalt ions induce a cellular senescence secretory phenotype in human synovial fibroblast-like cells that may be an early event in the development of adverse local tissue reactions to hip implants. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100490. [PMID: 38828014 PMCID: PMC11141261 DOI: 10.1016/j.ocarto.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Objectives Total hip arthroplasty is a successful procedure for treating advanced osteoarthritis (OA). Metal bearing surfaces remain one of the most widely implanted prosthesis, however approximately 10% of patients develop adverse local tissue reactions (ALTRs), namely lymphocytic predominant soft tissue reaction with or without necrosis and osteolysis resulting in high revision rates. The mechanism(s) for these reactions remains unclear although T lymphocyte mediated type IV hypersensitivity to cobalt (Co) and chromium (Cr) ions have been described. The purpose of this study was to determine the prolonged effects of Co and Cr metal ions on synovial fibroblasts to better understand the impact of the synovial membrane in the development of ALTRs. Methods Human synovial fibroblast-like cells were isolated from donors undergoing arthroplasty. DNA content and Alamar blue assay were used to determine cellular viability against exposure to Co and Cr. A beta-galactosidase assay was used to determine the development of cellular senescence. Western blotting and RT-qPCR were employed to determine changes in senescent associated secretory factors, signaling and anti-oxidant enzyme expression. A fluorescent assay was used to measure accumulation of hydrogen peroxide. Results We demonstrate that prolonged cobalt exposure results in a downregulation of the enzyme catalase resulting in cytosolic accumulation of hydrogen peroxide, decreased Akt activity and cellular senescence. Senescent fibroblasts demonstrated upregulation of proinflammatory cytokines IL-1β and TNFα in addition to the neurotrophic factor NGF. Conclusion Our results provide evidence that metal ions induce a senescent associated secretory phenotype in synovial fibroblasts that could contribute to the development of adverse local tissue reactions.
Collapse
Affiliation(s)
- Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | | | | | | | - Laura M. Epure
- Department of Surgery, McGill University, Montreal, Canada
| | - Olga L. Huk
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | - Stephane G. Bergeron
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | - Hee-Jeong Im Sampen
- Department of Biomedical Engineering, University of Illinois Chicago, IL, USA
| | - John Antoniou
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Room F-602, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
4
|
He YS, Cao F, Musonye HA, Xu YQ, Gao ZX, Ge M, He T, Zhang P, Zhao CN, Wang P, Pan HF. Serum albumin mediates the associations between heavy metals and two novel systemic inflammation indexes among U.S. adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115863. [PMID: 38134642 DOI: 10.1016/j.ecoenv.2023.115863] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The effects of heavy metal exposure on immunological function have sparked widespread concern, but unequivocal evidence on the association between mixed metal exposure and novel systemic inflammatory indexes remains scarce. OBJECTIVES This study aimed to analyze the associations of heavy metals with two novel systemic inflammation indexes and the mediated effects of serum albumin. METHODS Nineteen metals were detected among 4082 U.S. adults based on the NHANES. A linear regression, restricted cubic splines (RCS) regression, weighted quantile sum (WQS), Quantile-based Gcomputation (qgcomp), and Bayesian kernel machine regression (BKMR) were conducted to evaluate the associations of single metal and mixed metals with systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) levels, respectively. A series of subgroup analyses were used to identify potentially vulnerable populations. Furthermore, we conducted mediation analyses to investigate the mediated effects of serum albumin on the associations of metals with SII and SIRI. RESULTS In the single-exposure model, exposure to various metals such as urinary Co, As, and serum Zn, Cu was associated with SII and SIRI (PFDR<0.05). Simultaneously, the above metals were linear positively correlated with SII and SIRI. Mixed-exposure analyses consistently showed that overall mixed urinary metal levels were positively pertinent for SII and SIRI levels, and the metal Co played a significant role in the urinary metal mixtures. Subgroup analyses showed that exposure to urinary Cd in men and elderly people increased SII and SIRI levels. The results of mediation analyses suggested the association of urinary metal mixture with SII and SIRI was mediated by albumin, and the proportion of mediation was 14.45% and 9.49%, respectively. CONCLUSIONS Our findings suggested that metal exposure is strongly associated with the levels of system inflammation indexes and that serum albumin is, in part, a mediator of this association.
Collapse
Affiliation(s)
- Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, China; Department of clinical medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230016 Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China.
| |
Collapse
|
5
|
Li M, Wu J, Geng W, Gao P, Yang Y, Li X, Xu K, Liao Q, Cai K. Interaction pathways of implant metal localized corrosion and macrophage inflammatory reactions. Bioact Mater 2024; 31:355-367. [PMID: 37663618 PMCID: PMC10474585 DOI: 10.1016/j.bioactmat.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Macrophages play a central role in immunological responses to metallic species associated with the localized corrosion of metallic implants, and mediating in peri-implant inflammations. Herein, the pathways of localized corrosion-macrophage interactions were systematically investigated on 316L stainless steel (SS) implant metals. Electrochemical monitoring under macrophage-mediated inflammatory conditions showed a decreased pitting corrosion resistance of 316L SSs in the presence of RAW264.7 cells as the cells would disrupt biomolecule adsorbed layer on the metal surface. The pitting potentials were furtherly decreased when the RAW264.7 cells were induced to the M1 pro-inflammatory phenotype by the addition of lipopolysaccharide (LPS), and pitting corrosion preferentially initiated at the peripheries of macrophages. The overproduction of aggressive ROS under inflammatory conditions would accelerate the localized corrosion of 316L SS around macrophages. Under pitting corrosion condition, the viability and pro-inflammatory polarization of RAW264.7 cells were region-dependent, lower viability and more remarkable morphology transformation of macrophages in the pitting corrosion region than the pitting-free region. The pitting corrosion of 316L SS induced high expression of CD86, TNF-α, IL-6 and high level of intracellular ROS in macrophages. Uneven release of metallic species (Fe2+, Cr3+, Ni2+, etc) and uneven distribution of surface overpotential stimulated macrophage inflammatory responses near the corrosion pits. A synergetic effect of localized corrosion and macrophages was revealed, which could furtherly promote localized corrosion of 316L SS and macrophage inflammatory reactions. Our results provided direct evidence of corrosion-macrophage interaction in metallic implants and disclosed the pathways of this mutual stimulation effect.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, School of Energy and Power Engineering, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
6
|
Navratilova P, Emmer J, Tomas T, Ryba L, Burda J, Loja T, Veverkova J, Valkova L, Pavkova Goldbergova M. Plastic response of macrophages to metal ions and nanoparticles in time mimicking metal implant body environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4111-4129. [PMID: 38097843 DOI: 10.1007/s11356-023-31430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
The paradigm of using metal biomaterials could be viewed from two sides - treatment of wide spectrum of degenerative diseases, and debris release from materials. After implant insertion, metal nanoparticles (NPs) and ions are released not only upon the first contact with cells/tissues, but in continual manner, which is immediately recognized by immune cells. In this work, the effects of metal nanoparticles (TiO2, Ni) and ions (Ni2+, Co2+, Cr3+, Mo6+) on primary human M0 macrophages from the blood samples of osteoarthritic patients undergoing total arthroplasty were studied in order to monitor immunomodulatory effects on the cells in a real-time format. The highest NiNPs concentration of 10 µg/ml had no effect on any of macrophage parameters, while the Ni2+ ions cytotoxicity limit for the cells is 0.5 mM. The cytotoxic effects of higher Ni2+ concentration revealed mitochondrial network fragmentation leading to mitochondrial dysfunction, accompanied by increased lysosomal activity and changes in pro-apoptotic markers. The suppression of M2 cell formation ability was connected to presence of Ni2+ ions (0.5 mM) and TiO2NPs (10 µg/ml). The immunomodulatory effect of Mo6+ ions, controversially, inhibit the formation of the cells with M1 phenotype and potentiate the thread-like shape M2s with increased chaotic cell movement. To summarize, metal toxicity depends on the debris form. Both, metal ions and nanoparticles affect macrophage size, morphological and functional parameters, but the effect of ions is more complex and likely more harmful, which has potential impact on healing and determines post-implantation reactions.
Collapse
Affiliation(s)
- Polina Navratilova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jan Emmer
- 1st Department of Orthopaedics, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Tomas Tomas
- 1st Department of Orthopaedics, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Ludek Ryba
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Jan Burda
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Tomas Loja
- Centre for Molecular Medicine, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jana Veverkova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Lucie Valkova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | | |
Collapse
|
7
|
Ahmed A, Grabie Y, Loeffler J, Buchen Y, Acharya S. Reactive Peri-Arthroplasty Pseudotumors: A Rare Cause of Hip Pain and Iatrogenic Sciatica. Cureus 2023; 15:e47322. [PMID: 38022109 PMCID: PMC10657017 DOI: 10.7759/cureus.47322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Total hip arthroplasty (THA) is the preferred treatment for patients with hip joint disorders refractory to conservative management. While original implants were designed to articulate a metallic femoral head onto a polyethylene liner, the popularity of "metal-on-metal" (MoM) hip implants surged in the early 21st century due to their perceived superior long-term durability and lower revision rates. However, subsequent follow-up studies showed high failure rates due to inflammatory responses to periprosthetic metallic debris leading to lymphocytic proliferation, soft tissue necrosis or fibrosis, systemic metal toxicity, and/or the development of cystic pseudotumors. Although these discoveries resulted in a significant decrease in MoM THA and revision procedures, the majority of MoM hip implants persist in the adult population. In this case report and review, we report the presentation, diagnostic work-up, and management of an 84-year-old status-post MoM THA who presented with unilateral leg tenderness and poor ambulation secondary to pseudotumor-induced sciatica.
Collapse
Affiliation(s)
- Adham Ahmed
- Internal Medicine, City University of New York School of Medicine, New York, USA
| | - Yisroel Grabie
- Internal Medicine, Staten Island University Hospital-Northwell Health, New York, USA
| | - Jeffrey Loeffler
- Internal Medicine, Staten Island University Hospital-Northwell Health, New York, USA
| | - Yosef Buchen
- Internal Medicine, Staten Island University Hospital-Northwell Health, New York, USA
| | - Sudeep Acharya
- Pulmonary and Critical Care Medicine, Staten Island University Hospital-Northwell Health, New York, USA
| |
Collapse
|
8
|
Stołtny T, Dobrakowski M, Augustyn A, Kasperczyk S, Rokicka D, Skowroński R, Strojek K, Koczy B. Metal-on-metal metaphyseal and ceramic-on-ceramic femoral neck arthroplasty: the impact on clinical results, oxidative stress and concentration of metal ions in serum and blood. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3089-3097. [PMID: 37017738 PMCID: PMC10504388 DOI: 10.1007/s00590-023-03540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE Growing number of hip arthroplasty in Poland performed with the use of metaphyseal stems results from the decreasing age of patients qualified for procedures and is consistent with the corresponding trends in European countries. To this day, a significant population functions after undergoing hip replacement using metal-on-metal implant. This study was aimed at the assessment of the variability of the oxidative system, as well as the concentrations of chromium and cobalt ions in serum and blood and their potential impact on postoperative clinical status. MATERIAL AND METHODS The analysis included 58 men. The first group-operated using J&J DePuy ASR metal-on-metal implant with metaphyseal stem ProximaTm. Second group-operated using K-Implant SPIRON® femoral neck prosthesis in full ceramic articulation. Selected parameters of oxidative stress and the antioxidant system as well as the concentration of metal ions in blood were determined twice. Each patient underwent two clinical evaluations using acclaimed physical examination scale systems. RESULTS In the first group, significantly higher concentrations of Cr (p = 0.028) and Co (p = 0.002) were demonstrated compared to the group of femoral neck arthroplasty. The mean concentrations of Cr and Co, 10.45 and 9.26 μg/l, respectively, were higher in patients operated bilaterally. In the ASR group, greater pain intensity in the operated hip and higher indicators of oxidative stress were found. CONCLUSIONS Metal-on-metal articulation of the hip significantly increases the concentration of Cr and Co in blood, induces oxidative stress and modifies function of the antioxidant system and generates greater pain in the operated hip.
Collapse
Affiliation(s)
- Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie. Bytomska, St. 62, 41-940, Piekary Śląskie, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| | - Aleksander Augustyn
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie. Bytomska, St. 62, 41-940, Piekary Śląskie, Poland.
- , Solskiego St. 46 42-609, Tarnowskie Góry, Poland.
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| | - Dominika Rokicka
- Department of Internal Diseases, Diabetology, and Cardiometabolic Diseases, School of Medicine With the Division of Dentistry in Zabrze, Silesian Centre for Heart Diseases in Zabrze, Medical University of Silesia in Katowice, M. Curie-Skłodowskiej 9, 41-800, Zabrze, Poland
| | - Rafał Skowroński
- "ALFA" Orthopaedics and Traumatology Center Ul. Ogrodniczki, 51 15-763, Białystok, Poland
| | - Krzysztof Strojek
- Department of Internal Diseases, Diabetology, and Cardiometabolic Diseases, School of Medicine With the Division of Dentistry in Zabrze, Silesian Centre for Heart Diseases in Zabrze, Medical University of Silesia in Katowice, M. Curie-Skłodowskiej 9, 41-800, Zabrze, Poland
| | - Bogdan Koczy
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie. Bytomska, St. 62, 41-940, Piekary Śląskie, Poland
| |
Collapse
|
9
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Stołtny T, Dobrakowski M, Augustyn A, Rokicka D, Kasperczyk S. The concentration of chromium and cobalt ions and parameters of oxidative stress in serum and their impact on clinical outcomes after metaphyseal hip arthroplasty with modular metal heads. J Orthop Surg Res 2023; 18:225. [PMID: 36945025 PMCID: PMC10031909 DOI: 10.1186/s13018-023-03618-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
PURPOSE Current epidemiological data forecast an almost 40% increase in the number of hip arthroplasty performed in the population of patients with osteoarthritis in 2060, compared to year 2018. On the basis of 10 years of observation, the failure rate after a metal-on-metal hip replacement is between 56.7 and 88.9%, depending on the used implant. METHODS Seventy-six men operated using metaphyseal hip prostheses, with modular metal heads: the J&J DePuy ASR and Biomet Recap-Magnum systems, after a period of about 5-7 years after the procedure, were assessed twice (an interval of 6 months) in terms of the parameters of oxidative stress and the concentration of chromium, cobalt and ions nickel, as well as their impact on the current clinical status and quality of life. RESULTS The mean values of the Co and Cr ion concentrations increased in a statistically significant manner at the individual stages of the study (13.20 Co and 18.16 Cr) for J&J DePuy ASR. Using the WOMAC-hip, HHS and SF-12 rating scales, the functional status of operated patients in both study groups did not change in a statistically significant manner during subsequent visits. There was a statistically significant increase in perceived pain in patients operated bilaterally with the J&J DePuy ASR system. The severity of pain could be related to the increase in the concentration of Co and Cr ions; however, it concerned a small group of bilaterally operated patients (n = 3 + n = 4). CONCLUSIONS Metal-on-metal configuration in hip arthroplasty significantly influences with the increase in the concentration of chromium and cobalt ions in a double assessment. A statistically significant increase in the concentration of the tested Co and Cr ions in the blood correlates with an increase in the intensity of pain, especially in patients undergoing bilateral surgery. The limitation of this study is the relatively small number of bilaterally operated patients. Elevated levels of Co and Cr ions in the blood of patients operated on with the J&J DePuy ASR system increased steadily during both follow-up visits.
Collapse
Affiliation(s)
- Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska St. 62, 41-940, Piekary Śląskie, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| | - Aleksander Augustyn
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska St. 62, 41-940, Piekary Śląskie, Poland.
| | - Dominika Rokicka
- Department of Internal Diseases, Diabetology, and Cardiometabolic Diseases, School of Medicine With the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases in Zabrze, M. Curie-Skłodowskiej St. 9, 41-800, Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| |
Collapse
|
11
|
Sánchez-López L, Ropero de Torres N, Chico B, Soledad Fagali N, de los Ríos V, Escudero ML, García-Alonso MC, Lozano RM. Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages. METALS 2023; 13:598. [DOI: 10.3390/met13030598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The presence of a worn surface in the implanted material, as in the case of a replacement of a damaged osteoarticular joint, is the normal condition after implantation. This manuscript focuses precisely on the comparative study of the cellular behavior on worn CoCr surfaces, analyzing the effect of different surface modifications on macrophages’ responses. CoCr surfaces were modified by the deposition of electrochemically reduced graphene oxide (CoCrErGO), followed by additional surface functionalization with hyaluronic acid (CoCrErGOHA). After the wear corrosion processes, the macrophage response was studied. In addition, macrophage supernatants exposed to the surfaces, before and after wear, were also evaluated for osteoblast response through the analysis of the metabolic activity, plasma membrane damage, and phosphatase alkaline activity (ALP). The proteomic analysis and the quantitative TNF-α/IL-10 ratios of the J774A.1 macrophages exposed to the surfaces under study showed a polarization shift from M0 (basal state) to M1, associated with the pro-inflammatory response of all surfaces. A lower M1 polarization was observed upon exposure to the surface modification with ErGO, whereas posterior HA functionalization attenuated, even more, the M1 polarization. The wear corrosion process contributed to inflammation and exacerbated the M1 polarization response on macrophages to CoCr, which was diminished for the ErGO and attenuated the most for the ErGOHA surfaces. Comparative proteomics showed that the pathways related to M1 polarization were downregulated on the surfaces of CoCrErGOHA, which suggests mechanisms for the observed attenuation of M1 polarization. The suitable immuno-modulatory potential induced by the ErGOHA surface, with and without wear, together with the stimulation of ALP activity in osteoblasts induced by macrophage supernatants, promotes the mineralization processes necessary for bone repair. This makes it feasible to consider the adsorption of ErGOHA on CoCr as a recommended surface treatment for the use of biomaterials in osseous joint applications.
Collapse
Affiliation(s)
- Luna Sánchez-López
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- PhD Program in Advanced Materials and Nanotechnology, Doctoral School, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Noelia Ropero de Torres
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Belén Chico
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Natalia Soledad Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Vivian de los Ríos
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - María Lorenza Escudero
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - María Cristina García-Alonso
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Rosa María Lozano
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
12
|
The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields. Cell Tissue Res 2023; 391:357-373. [PMID: 36454270 DOI: 10.1007/s00441-022-03708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
Tissue engineering combines suitable cells, engineering methods, and proper biochemical factors to develop functional and biological tissues and repair damaged tissues. In this study, we focused on synthesizing and characterizing a nanocomposite scaffold based on glycerol and azelaic acid (Gl-Az) combined with copper chromite (CuCr2O4) nanoparticles in order to increase the osteogenic differentiation efficiency of human adipose-derived stem cells (hADSCs) on fabricated scaffolds. The degradability and hydrophobicity properties as well as mechanical and thermal behaviors of nanocomposite scaffolds were investigated. Next, the cell toxicity of glycerol, azelaic acid and CuCr2O4 nanoparticles was studied by MTT assay test and acridine orange staining. Finally, the osteogenic differentiation of hADSCs on Gl-Az-CuCr2O4 scaffolds was examined using alkaline phosphatase activity (ALP) and calcium content. The obtained results demonstrated that Gl-Az-1%CuCr2O4 not only showed appropriate mechanical strength, biocompatibility and degradability but also influenced the capability of hADSCs to differentiate into osteogenic lineages. The hADSCs culture in Gl-Az-1%CuCr2O4 showed a significant increase in ALP activity levels and calcium biomineralization after 14 days of osteogenic differentiation. In conclusion, the Gl-Az-1%CuCr2O4 nanocomposite could be used as a biocompatible and degradable scaffold to induce the bone differentiation of hADSCs and it could be a promising scaffold in bone regenerative medicine.
Collapse
|
13
|
Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022; 24:153-170. [PMID: 36606252 PMCID: PMC9793227 DOI: 10.1016/j.bioactmat.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.
Collapse
Affiliation(s)
- Taravat Khodaei
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | | | - Abhinav P. Acharya
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA,Biological Design, Arizona State University, Tempe, AZ, 85281, USA,Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State, University, Tempe, AZ, 85281, USA,Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA,Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA,Corresponding author. Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA.
| |
Collapse
|
14
|
Guo X, Li N, Wang H, Su W, Song Q, Liang Q, Liang M, Sun C, Li Y, Lowe S, Bentley R, Song EJ, Zhou Q, Ding X, Sun Y. Combined exposure to multiple metals on cardiovascular disease in NHANES under five statistical models. ENVIRONMENTAL RESEARCH 2022; 215:114435. [PMID: 36174761 DOI: 10.1016/j.envres.2022.114435] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It is well-documented that heavy metals are associated with cardiovascular disease (CVD). However, there is few studies exploring effect of metal mixture on CVD. Therefore, the primary objective of present study was to investigate the joint effect of heavy metals on CVD and to identify the most influential metals in the mixture. METHODS Original data for study subjects were obtained from the National Health and Nutrition Examination Survey. In this study, adults with complete data on 12 kinds of urinary metals (antimony, arsenic, barium, cadmium, cobalt, cesium, molybdenum, mercury, lead, thallium, tungsten, and uranium), cardiovascular disease, and core covariates were enrolled. We applied five different statistical strategies to examine the CVD risk with metal exposure, including multivariate logistic regression, adaptive elastic net combined with Environmental Risk Score, Quantile g-computation, Weighted Quantile Sum regression, and Bayesian kernel machine regression. RESULTS Higher levels of cadmium, tungsten, cobalt, and antimony were significantly associated with Increased risk of CVD when covariates were adjusted for multivariate logistic regression. The results from multi-pollutant strategies all indicated that metal mixture was positively associated with the risk of CVD. Based on the results of multiple statistical strategies, it was determined that cadmium, tungsten, cobalt, and antimony exhibited the strongest positive correlations, whereas barium, lead, molybdenum, and thallium were most associated with negative correlations. CONCLUSION Overall, our study demonstrates that exposure to heavy metal mixture is linked to a higher risk of CVD. Meanwhile, this association may be driven primarily by cadmium, tungsten, cobalt, and antimony. Further prospective studies are warranted to validate or refute our primary findings as well as to identify other important heavy metals linked with CVD.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Yaru Li
- Internal Medicine, Swedish Hospital, 5140 N California Ave, Chicago, IL, 60625, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Qin Zhou
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Chaohu Hospital, Anhui Medical University, Hefei, 238006, Anhui, PR China.
| |
Collapse
|
15
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
16
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
17
|
Panjali Z, Abdolmaleki P, Hajipour-Verdom B, Hahad O, Zendehdel R. Lung cell toxicity of co-exposure to airborne particulate matter and extremely low-frequency magnetic field. Xenobiotica 2022; 52:370-379. [PMID: 35608272 DOI: 10.1080/00498254.2022.2082342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although the toxic effects of urban airborne particulate matter (PM) have been known on lung cells, there is less attention to co-exposure to PM and extremely low frequency magnetic (ELF-MF) in occupational settings. The present study investigated the influences of PM and ELF-MF co-exposure on toxicity in human lung cells (A549).In this case, total PM (TPM) was evaluated according to NIOSH-0500. The TPM SiO2 and metal contents were determined based on NIOSH-7602 and 7302, respectively. Besides, 900 mG ELF-MF exposure was simulated based on field measurements. The toxicity mechanisms were assessed by examining malondialdehyde, glutathione ratio, gene expression, and DNA strand breaks. Also, the toxicity indicators of the TPM samples were MDA generation, glutathione depletion, and DNA damage, and their impacts were analysed at doses below the LD50 (4 µg).In addition, gene expression of OGG1 and MTH1 was upregulated after TPM exposure at the lowest dose (2 µg). But ITPA was upregulated in the presence of ELF-MF. The co-exposure to TPM and ELF-MF decreased oxidative stress and DNA damage levels compared to a single exposure to TPM.Although the ELF-MF reduced toxicity in response to TPM, this reduction was not lower than the unexposed cells.
Collapse
Affiliation(s)
- Zahra Panjali
- Department of Occupational Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modarres University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modarres University, Tehran, Iran
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
18
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
19
|
Zhang D, Li X, Zheng W, Gui L, Yang Y, Li A, Liu Y, Li T, Deng C, Liu J, Cheng J, Yang H, Gong M. Investigating the Biological Effect of Multidimensional Ti 3C 2 (MXene)-Based Nanomaterials through a Metabolomics Approach: a Multidimensional-Determined Alteration in Energy Metabolism. CHEMISTRY OF MATERIALS 2022. [DOI: 10.1021/acs.chemmater.2c00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luolan Gui
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Zhang M, Liu C, Li WD, Xu XD, Cui FP, Chen PP, Deng YL, Miao Y, Luo Q, Zeng JY, Lu TT, Shi T, Zeng Q. Individual and mixtures of metal exposures in associations with biomarkers of oxidative stress and global DNA methylation among pregnant women. CHEMOSPHERE 2022; 293:133662. [PMID: 35063557 DOI: 10.1016/j.chemosphere.2022.133662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to metals has been linked with adverse pregnancy outcomes. Oxidative stress and epigenetic changes are potential mechanisms of action. OBJECTIVES We aimed to examine the associations of individual and mixtures of metal exposures with oxidative stress and DNA methylation among pregnant women. METHODS We measured a panel of 16 metals and 3 oxidative stress biomarkers including 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) and 8-isoprostaglandin F2α (8-isoPGF2α) in urine from 113 pregnant women in a Chinese cohort. Biomarkers of global DNA methylation including Alu and long interspersed nucleotide element-1 (LINE-1) in cord blood were measured. Multivariable linear regression and Bayesian kernel machine regression (BKMR) models were separately applied to estimate the associations between individual and mixtures of metal exposures and biomarkers of oxidative stress and global DNA methylation. RESULTS In single-metal analyses, we observed positive associations between 11 metals [arsenic (As), cadmium (Cd), thallium (Tl), barium (Ba), nickel (Ni), vanadium (V), cobalt (Co), zinc (Zn), copper (Cu), selenium (Se) and molybdenum (Mo)] and at least one of oxidative stress biomarkers (all FDR-adjusted P-values < 0.05). In mixture analyses, we found positive overall associations of metal mixtures with 8-OHdG and 8-isoPGF2α, and Se was the most important predictor. There was no evidence on associations of urinary metals as individual chemicals and mixtures with Alu and LINE-1 methylation. CONCLUSION Urinary metals as individual chemicals and mixtures were associated with increased oxidative stress, especially Se.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Ding Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Dan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
21
|
Kovač V, Bergant M, Ščančar J, Primožič J, Jamnik P, Poljšak B. Causation of Oxidative Stress and Defense Response of a Yeast Cell Model after Treatment with Orthodontic Alloys Consisting of Metal Ions. Antioxidants (Basel) 2021; 11:antiox11010063. [PMID: 35052565 PMCID: PMC8772795 DOI: 10.3390/antiox11010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Misaligned teeth have a tremendous impact on oral and dental health, and the most efficient method of correcting the problem is orthodontic treatment with orthodontic appliances. The study was conducted to investigate the metal composition of selected orthodontic alloys, the release of metal ions, and the oxidative consequences that the metal ions may cause in the cell. Different sets of archwires, stainless steel brackets, and molar bands were incubated in artificial saliva for 90 days. The composition of each orthodontic material and quantification of the concentration of metal ions released were evaluated. Metal ion mixtures were prepared to determine the occurrence of oxidative stress, antioxidant enzyme defense system, and oxidative damage to proteins. The beta titanium alloy released the fewest metal ions and did not cause oxidative stress or protein damage. The metal ions from stainless steel and the cobalt-chromium alloy can cause oxidative stress and protein damage only at high concentrations. All metal ions from orthodontic alloys alter the activity of antioxidant enzymes in some way. The determined amounts of metal ions released from orthodontic appliances in a simulated oral environment are still below the maximum tolerated dose, and the concentrations of released metal ions are not capable of inducing oxidative stress, although some changes in antioxidant enzyme activity were observed at these concentrations.
Collapse
Affiliation(s)
- Vito Kovač
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia;
| | - Matic Bergant
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.B.); (J.Š.)
| | - Janez Ščančar
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.B.); (J.Š.)
| | - Jasmina Primožič
- Department of Dental and Jaw Orthopedics, Medical Faculty, University of Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia;
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|
22
|
Eltit F, Noble J, Sharma M, Benam N, Haegert A, Bell RH, Simon F, Duncan CP, Garbuz DS, Greidanus NV, Masri BA, Ng TL, Wang R, Cox ME. Cobalt ions induce metabolic stress in synovial fibroblasts and secretion of cytokines/chemokines that may be diagnostic markers for adverse local tissue reactions to hip implants. Acta Biomater 2021; 131:581-594. [PMID: 34192572 DOI: 10.1016/j.actbio.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Adverse local tissue reactions (ALTRs) are a prominent cause of hip implant failure. ALTRs are characterized by aseptic necrosis and leukocyte infiltration of synovial tissue. The prevalence of ALTRs in hips with failing metal implants, with highest rates occurring in patients with metal-on-metal articulations, suggests a role for CoCrMo corrosion in ALTR formation. Although hypersensitivity reactions are the most accepted etiology, the precise cellular mechanism driving ALTR pathogenesis remains enigmatic. Here we show that cobalt ions released by failing hip implants induce mitochondrial stress and cytokine secretion by synovial fibroblasts: the presumptive initiators of ALTR pathogenesis. We found that in-vitro treatment of synovial fibroblasts with cobalt, but not chromium, generated gene expression changes indicative of hypoxia and mitophagy responses also observed in ALTRs biopsies. Inflammatory factors secreted by cobalt-exposed synovial fibroblasts were among those most concentrated in ALTR synovial fluid. Furthermore, both conditioned media from cobalt-exposed synovial fibroblasts, and synovial fluid from ALTRs patients, elicit endothelial activation and monocyte migration. Finally, we identify the IL16/CTACK ratio in synovial fluid as a possible diagnostic marker of ALTRs. Our results provide evidence suggesting that metal ions induce cell stress in synovial fibroblasts that promote an inflammatory response consistent with initiating ALTR formation. STATEMENT OF SIGNIFICANCE: We demonstrate that the cytotoxic effects of cobalt ions on the synovial cells (fibroblast) is sufficient to trigger inflammation on hip joints with metal implants. Cobalt ions affect mitochondrial function, leading to the auto phagocytosis of mitochondria and trigger a hypoxic response. The cell's hypoxic response includes secretion of cytokines that are capable of trigger inflammation by activating blood vessels and enhancing leukocyte migration. Among the secreted cytokines is IL-16, which is highly concentrated in the synovial fluid of the patients with adverse local tissue reactions and could be use as diagnostic marker. In conclusion we define the cells of the hip joint as key players in triggering the adverse reactions to hip implants and providing biomarkers for early diagnosis of adverse reactions to hip implants.
Collapse
|
23
|
Zhu Q, Liao S, Lu X, Shi S, Gong D, Cheang I, Zhu X, Zhang H, Li X. Cobalt exposure in relation to cardiovascular disease in the United States general population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41834-41842. [PMID: 33786770 DOI: 10.1007/s11356-021-13620-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Cobalt exposure has adverse health effects on the cardiovascular system in occupational and laboratory studies, but these effects have not been assessed in the general population. We aimed to determine whether serum cobalt levels had relationship with the prevalence of cardiovascular disease (CVD) in the general population. Using data from the National Health and Nutrition Examination Survey (NHANES) (2015-2016), we performed the cross-sectional study. We analyzed the baseline characteristics of 3389 participants (1623 men and 1766 women). Generalized linear models and restricted cubic spline plots curve were undertaken to elucidate the relationship. Stratified subgroup analysis was tested to exclude interaction between different variates and cobalt. Our results showed that the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for CVD prevalence across the quartiles of cobalt were 0.94 (0.67, 1.30), 1.55 (1.15, 2.10), and 1.74 (1.28, 2.35) compared with lowest quartile. The restricted cubic spline curve also suggested nonlinear and positive association between cobalt and CVD (P for nonlinearity = 0.007). In summary, our cross-sectional results verify that higher cobalt levels are associated with a higher prevalence of cardiovascular disease.
Collapse
Affiliation(s)
- Qingqing Zhu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xinyi Lu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Dexing Gong
- Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, 510000, China
| | - Iokfai Cheang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xu Zhu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Haifeng Zhang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| |
Collapse
|
24
|
Díez-Tercero L, Delgado LM, Bosch-Rué E, Perez RA. Evaluation of the immunomodulatory effects of cobalt, copper and magnesium ions in a pro inflammatory environment. Sci Rep 2021; 11:11707. [PMID: 34083604 PMCID: PMC8175577 DOI: 10.1038/s41598-021-91070-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Biomaterials and scaffolds for Tissue Engineering are widely used for an effective healing and regeneration. However, the implantation of these scaffolds causes an innate immune response in which the macrophage polarization from M1 (pro-inflammatory) to M2 (anti-inflammatory) phenotype is crucial to avoid chronic inflammation. Recent studies have showed that the use of bioactive ions such as cobalt (Co2+), copper (Cu2+) and magnesium (Mg2+) could improve tissue regeneration, although there is limited evidence on their effect on the macrophage response. Therefore, we investigated the immunomodulatory potential of Co2+, Cu2+ and Mg2+ in macrophage polarization. Our results indicate that Mg2+ and concentrations of Cu2+ lower than 10 μM promoted the expression of M2 related genes. However, higher concentrations of Cu2+ and Co2+ (100 μM) stimulated pro-inflammatory marker expression, indicating a concentration dependent effect of these ions. Furthermore, Mg2+ were able to decrease M1 marker expression in presence of a mild pro-inflammatory stimulus, showing that Mg2+ can be used to modulate the inflammatory response, even though their application can be limited in a strong pro-inflammatory environment.
Collapse
Affiliation(s)
- Leire Díez-Tercero
- grid.410675.10000 0001 2325 3084Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona Spain
| | - Luis M. Delgado
- grid.410675.10000 0001 2325 3084Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona Spain
| | - Elia Bosch-Rué
- grid.410675.10000 0001 2325 3084Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona Spain
| | - Roman A. Perez
- grid.410675.10000 0001 2325 3084Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona Spain
| |
Collapse
|
25
|
Cao B, Fang C, Peng X, Li X, Hu X, Xiang P, Zhou L, Liu H, Huang Y, Zhang Q, Lin S, Wang M, Liu Y, Sun T, Chen S, Shan Z, Yin J, Liu L. U-shaped association between plasma cobalt levels and type 2 diabetes. CHEMOSPHERE 2021; 267:129224. [PMID: 33341733 DOI: 10.1016/j.chemosphere.2020.129224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/09/2020] [Accepted: 12/04/2020] [Indexed: 06/04/2023]
Abstract
AIMS We aimed to investigate the association of plasma cobalt with newly diagnosed type 2 diabetes (T2D) and further explore the potential interaction effects between cobalt and several redox metals, such as manganese, copper and selenium. DESIGN A large case-control study including 4564 subjects was conducted. 2282 cases with newly diagnosed T2D and 2282 controls were matched by sex and age. The concentrations of cobalt and other metals in plasma were detected with inductively coupled plasma mass spectrometry (ICPMS). RESULTS The medians of the cobalt concentrations in plasma were 1.68 μg/dL for controls and T2D. There was a U-shaped relation between T2D and plasma cobalt, which was categorized into quartiles. After multivariable adjusted for the confounding factors, the odds ratios (ORs) of T2D across quartiles were 1.22 (95% CI: 1.01, 1.46), 1.12 (95% CI: 0.94, 1.35), 1.00 (reference) and 1.46 (95% CI: 1.22, 1.75), respectively. The association was almost consistent in subgroup analyses. According to the restricted cubic spline analysis, the lowest ORs of T2D was observed at the plasma cobalt of 2.00 μg/dL. There was a significant interaction between plasma cobalt and copper (P < 0.01). The ORs of T2D in those with medium concentration of plasma cobalt and copper was the lowest. CONCLUSIONS Higher or lower concentrations of plasma cobalt were related to higher ORs of T2D. The inter-relationship among redox metals in T2D should be further investigated.
Collapse
Affiliation(s)
- Benfeng Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Fang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, 518051, People's Republic of China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueting Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Xiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijing Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Vladov I, Petrova E, Pavlova E, Tinkov AA, Ajsuvakova OP, Skalny AV, Gluhcheva Y. Alterations in Blood Metabolic Parameters of Immature Mice After Subchronic Exposure to Cobalt Chloride. Biol Trace Elem Res 2021; 199:588-593. [PMID: 32405686 DOI: 10.1007/s12011-020-02161-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
The wide use of cobalt (Co) in food, industry, and medical devices requires full elucidation of its biological effects on tissues and organs. The aim was to assess serum metabolic alterations in immature mice after subchronic exposure to CoCl2. Pregnant ICR mice were subjected to a daily dose of 75 mg cobalt chloride/kg body weight (CoCl2x6H2O) 2-3 days before they gave birth, and treatment continued until days 25 and 30 after delivery. The compound was dissolved in and obtained with regular tap water. ICP-DRC-MS analysis showed significantly elevated serum Co2+ and diverse alterations in metabolic parameters of 25- and 30-day-old pups after exposure to CoCl2. Cholesterol and urea levels were significantly elevated in day 25 mice while HDL-C and LDL-C were reduced. In day 30, Co-exposed mice LDL-C and triglycerides were significantly increased while the total cholesterol level remained unchanged. Alkaline phosphatase was significantly reduced in day 25 Co-exposed mice. Blood glucose level of Co-exposed mice remained close to the untreated controls. Total protein content was slightly increased in day 30 mice. Co-exposure reduced albumin content and albumin/globulin ratio but increased significantly globulin content. Co administration showed strong correlation with cholesterol, urea, and HDL-C in both day 25 and 30 mice. Inverse correlation was found with alkaline phosphatase and albumin for day 25 and with triglycerides, globulin, and total protein content in day 30 Co-exposed mice. Subchronic CoCl2 exposure of immature mice induced significant changes in key metabolic parameters suggesting possible further disturbances in energy metabolism, osteogenesis, and reproduction.
Collapse
Affiliation(s)
- Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Alexey A Tinkov
- Yaroslavl State University, Sovetskaya Str., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Olga P Ajsuvakova
- Yaroslavl State University, Sovetskaya Str., 14, Yaroslavl, 150000, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Sovetskaya Str., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria.
| |
Collapse
|
27
|
Salloum Z, Lehoux EA, Harper ME, Catelas I. Effects of cobalt and chromium ions on glycolytic flux and the stabilization of hypoxia-inducible factor-1α in macrophages in vitro. J Orthop Res 2021; 39:112-120. [PMID: 32462687 DOI: 10.1002/jor.24758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
Implant wear and corrosion have been associated with adverse tissue reactions that can lead to implant failure. Wear and corrosion products are therefore of great clinical concern. For example, Co2+ and Cr3+ originating from CoCrMo-based implants have been shown to induce a proinflammatory response in macrophages in vitro. Previous studies have also shown that the polarization of macrophages by some proinflammatory stimuli is associated with a hypoxia-inducible factor-1α (HIF-1α)-dependent metabolic shift from oxidative phosphorylation (OXPHOS) towards glycolysis. However, the potential of Co2+ and Cr3+ to induce this metabolic shift, which plays a determining role in the proinflammatory response of macrophages, remains largely unexplored. We recently demonstrated that Co2+ , but not Cr3+ , increased oxidative stress and decreased OXPHOS in RAW 264.7 murine macrophages. In the present study, we analyzed the effects of Co2+ and Cr3+ on glycolytic flux and HIF-1α stabilization in the same experimental model. Cells were exposed to 6 to 24 ppm Co2+ or 50 to 250 ppm Cr3+ . Glycolytic flux was determined by analyzing extracellular flux and lactate production, while HIF-1α stabilization was analyzed by immunoblotting. Results showed that Co2+ , and to a lesser extent Cr3+ , increased glycolytic flux; however, only Co2+ acted through HIF-1α stabilization. Overall, these results, together with our previous results showing that Co2+ increases oxidative stress and decreases OXPHOS, suggest that Co2+ (but not Cr3+ ) can induce a HIF-1α-dependent metabolic shift from OXPHOS towards glycolysis in macrophages. This metabolic shift may play an early and pivotal role in the inflammatory response induced by Co2+ in the periprosthetic environment.
Collapse
Affiliation(s)
- Zeina Salloum
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric A Lehoux
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Isabelle Catelas
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Wang Q, Eltit F, Garbuz D, Duncan C, Masri B, Greidanus N, Wang R. CoCrMo metal release in metal‐on‐highly crosslinked polyethylene hip implants. J Biomed Mater Res B Appl Biomater 2020; 108:1213-1228. [DOI: 10.1002/jbm.b.34470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Qiong Wang
- Department of Materials EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- School of Biomedical EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Hip Health and Mobility Vancouver British Columbia Canada
| | - Felipe Eltit
- Department of Materials EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- School of Biomedical EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Hip Health and Mobility Vancouver British Columbia Canada
| | - Donald Garbuz
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Clive Duncan
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Bassam Masri
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Nelson Greidanus
- Department of OrthopaedicsUniversity of British Columbia Vancouver British Columbia Canada
| | - Rizhi Wang
- Department of Materials EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- School of Biomedical EngineeringUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Hip Health and Mobility Vancouver British Columbia Canada
| |
Collapse
|
29
|
Techo T, Jindarungrueng S, Tatip S, Limcharoensuk T, Pokethitiyook P, Kruatrachue M, Auesukaree C. Vacuolar H + -ATPase is involved in preventing heavy metal-induced oxidative stress in Saccharomyces cerevisiae. Environ Microbiol 2020; 22:2403-2418. [PMID: 32291875 DOI: 10.1111/1462-2920.15022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/12/2020] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, vacuolar H+ -ATPase (V-ATPase) involved in the regulation of intracellular pH homeostasis has been shown to be important for tolerances to cadmium, cobalt and nickel. However, the molecular mechanism underlying the protective role of V-ATPase against these metals remains unclear. In this study, we show that cadmium, cobalt and nickel disturbed intracellular pH balance by triggering cytosolic acidification and vacuolar alkalinization, likely via their membrane permeabilizing effects. Since V-ATPase plays a crucial role in pumping excessive cytosolic protons into the vacuole, the metal-sensitive phenotypes of the Δvma2 and Δvma3 mutants lacking V-ATPase activity were supposed to result from highly acidified cytosol. However, we found that the metal-sensitive phenotypes of these mutants were caused by increased production of reactive oxygen species, likely as a result of decreased expression and activities of manganese superoxide dismutase and catalase. In addition, the loss of V-ATPase function led to aberrant vacuolar morphology and defective endocytic trafficking. Furthermore, the sensitivities of the Δvma mutants to other chemical compounds (i.e. acetic acid, H2 O2 , menadione, tunicamycin and cycloheximide) were a consequence of increased endogenous oxidative stress. These findings, therefore, suggest the important role of V-ATPase in preventing endogenous oxidative stress induced by metals and other chemical compounds.
Collapse
Affiliation(s)
- Todsapol Techo
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supat Jindarungrueng
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
The progress on physicochemical properties and biocompatibility of tantalum-based metal bone implants. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
31
|
Eltit F, Wang Q, Wang R. Mechanisms of Adverse Local Tissue Reactions to Hip Implants. Front Bioeng Biotechnol 2019; 7:176. [PMID: 31417898 PMCID: PMC6683860 DOI: 10.3389/fbioe.2019.00176] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Adverse Local Tissue Reactions (ALTRs) are one of the main causes of hip implant failures. Although the metal release from the implants is considered as a main etiology, the mechanisms, and the roles of the released products are topics of ongoing research. The alloys used in the hip implants are considered biocompatible and show negligible corrosion in the body environment under static conditions. However, modularity and its associated mechanically assisted corrosion have been shown to release metal species into the body fluids. ALTRs associated with metal release have been observed in hip implants with metal-on-metal articulation initially, and later with metal-on-polyethylene articulation, the most commonly used design in current hip replacement. The etiological factors in ALTRs have been the topics of many studies. One commonly accepted theory is that the interactions between the metal species and body proteins and cells generate a delayed type IV hypersensitivity reaction leading to ALTRs. However, lymphocyte reactions are not always observed in ALTRS, and the molecular mechanisms have not been clearly demonstrated. A more accepted mechanism is that cell damage generated by metal ions may trigger the secretion of cytokines leading to the inflammatory reactions observed in ALTRs. In this inflammatory environment, some patients would develop hypersensitivity that is associated with poor outcomes. Concerns over ALTRS have brought significant impact to both the clinical selection and development of hip implants. This review is focused on the mechanisms of ALTRs, specifically, the metal release process and the roles of the metal species released in the etiology and pathogenesis of the disease. Hopefully, our presentation and discussion of this biological process from a material perspective could improve our current understanding on the ALTRs and provide useful guidance in developing preventive solutions.
Collapse
Affiliation(s)
- Felipe Eltit
- Department of Materials Engineering, University of British Columba, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columba, Vancouver, BC, Canada.,Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Qiong Wang
- Department of Materials Engineering, University of British Columba, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columba, Vancouver, BC, Canada.,Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columba, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columba, Vancouver, BC, Canada.,Centre for Hip Health and Mobility, Vancouver, BC, Canada
| |
Collapse
|
32
|
Xiao T, Zhang L, Huang Y, Shi Y, Wang J, Ji Q, Ye J, Lin Y, Liu H. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci 2018; 218:132-138. [PMID: 30594664 DOI: 10.1016/j.lfs.2018.12.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Previous studies have demonstrated that oxidative stress is closely related to aortic dissection (AD). Sestrin2 (Sesn2) is an important antioxidant protein, and this study aimed to investigate whether Sesn2 participates in AD and the possible mechanisms. METHODS Sesn2 expression was detected in aortas collected from AD patients and normal donors. In addition, blood samples were collected from AD patients and non-AD (NAD) patients, and the plasma Sesn2 levels were measured. Furthermore, the effects of Sesn2 on angiotensin (Ang) II-induced smooth muscle cell (SMC) apoptosis were investigated in vitro. RESULTS Compared with the aortas from normal donors, aortas from AD patients had significantly increased Sesn2. Sesn2 was mainly secreted by macrophages, and low levels were secreted by CD4+ T lymphocytes, but not SMCs. Plasma Sesn2 levels were also increased in AD patients compared with NAD patients. Sesn2 levels were negatively corrected with superoxide dismutase (SOD) levels but positively corrected with malondialdehyde (MDA) levels in AD patients. In co-cultures of macrophages and SMCs, Sesn2 overexpression in macrophages significantly reduced Ang II-induced SMC apoptosis, and this effect could be reversed by Nrf2 silencing. CONCLUSIONS Sesn2 is increased in both aortas and plasma from AD patients. Sesn2 may alleviate Ang II-induced SMC apoptosis and participate in AD via the Nrf2 pathway. Sesn2 may be a new target in the treatment and prevention of AD.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, Guangdong Province 518110, China
| | - Le Zhang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, Guangdong Province 518110, China
| | - Ying Huang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ying Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jing Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China; Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Hongtao Liu
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, Guangdong Province 518110, China.
| |
Collapse
|