1
|
van Marwick B, Sevastyanova TN, Wühler F, Schneider-Wald B, Loy C, Gravius S, Rädle M, Schilder A. A novel MIR imaging approach for precise detection of S. epidermidis biofilms in seconds. Biofilm 2025; 9:100270. [PMID: 40130066 PMCID: PMC11931313 DOI: 10.1016/j.bioflm.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The impact of microbial biofilm growth poses a threat to both human health and the performance of industrial systems, manifesting as a global crisis with noteworthy economic implications for modern society. Exploring new methods and alternative approaches for the detection of biofilm signatures are imperative for developing optimized and cost-effective strategies that can help to identify early-stage biofilm formation. Clinical diagnostic technologies are constantly looking for more affordable, practical and faster methods of prevention and detection of chronic infections in periprosthetic joint infections (PJIs), which are often characterized by biofilm formation on implant surfaces. Staphylococcus epidermidis (SE) is especially known for its strong biofilm production and is considered a leading cause of biomaterial-associated infections, including PJIs. Implant-associated infections are severe and difficult to treat, therefore it is crucial to continue identifying bacterial biomarkers that contribute to its structural stability and attachment to implant surfaces. This study presents a pioneering approach for fast spectral detection of biofilm formation with a novel mid-infrared (MIR) scanning system. To highlight the advantages of our MIR system, we performed a comparative analysis with measurements from a commercially available Fourier-transform infrared (FTIR) scanner. We have assessed SE biofilms grown for 3 days comparing the processing times between a commercially available infrared (IR) scanning system (∼8 h/cm2), and our innovative scanning approach with rapid self-built MIR detection, achieving a reduction in scanning time to seconds. K-means clustering analysis identified pronounced differences in distribution of clusters, representing a significant variation between biofilm producing (RP62A) and non-biofilm producing (ATCC 12228) bacterial strains. The distribution serves as a critical tool for identifying biofilm phenotypes, particularly where poly-N-acetylglucosamine (PNAG), a key constituent of extracellular polymeric substances (EPS) in S. epidermidis, represents the dominant mass fraction in the samples analyzed by our infrared (IR) scanning systems. In addition to faster processing times, our novel MIR system demonstrated significantly higher sensitivity compared to FTIR, enabling clear differentiation between the chemical signatures of biofilm and planktonic strains. The corresponding novel approach integrates advanced data analytics with a newly designed rapid MIR prototype, enabling optimized and swift detection of biofilm signatures. These signatures, now recognized as critical targets in diagnosing complex infections, provide an alternative to traditional microbial detection methods in clinical diagnostics.
Collapse
Affiliation(s)
- Björn van Marwick
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Tatyana N. Sevastyanova
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Felix Wühler
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Barbara Schneider-Wald
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cornelia Loy
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sascha Gravius
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Rädle
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Andreas Schilder
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
2
|
Sandbakken ET, Høyer E, Witsø E, Søgaard CK, Díez-Sánchez A, Hoang L, Wik TS, Bergh K. Biofilm and the effect of sonication in a chronic Staphylococcus epidermidis orthopedic in vivo implant infection model. J Orthop Surg Res 2024; 19:820. [PMID: 39633500 PMCID: PMC11616123 DOI: 10.1186/s13018-024-05309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND In diagnosing chronic orthopedic implant infections culture of sonicate represents a supplement to tissue cultures. However, the extent to which biofilm forms on implant surfaces and the degree of dislodgement of bacteria by sonication remains unclear. In this in vivo study using a low bacterial inoculum, we aimed to determine whether a variable effect of sonication could be observed in a standardized in vivo model. MATERIALS AND METHODS Seven Wistar rats underwent surgery with intramuscular implantation of two bone xenograft implants, each containing two steel plates. The grafts were inoculated with approximately 500 colony forming units (CFU) of Staphylococcus epidermidis ATCC 35984. After 20 days the rats were sacrificed, and the steel plates were removed from the bone grafts. Epifluorescence microscopy and scanning electron microscopy (SEM) were used to visualize biofilm formation and dislodgement on the plate surfaces. In addition to cultures of sonicate, a quantitative S. epidermidis specific PCR was developed for enumeration of bacteria. RESULTS A chronic, low-grade implant infection was successfully established, with all animals remaining in good health. All infected bone graft implants yielded abundant growth of S. epidermidis, with a median of 3.25 (1.6-4.6) × 10⁷ CFU per/graft. We were unable to distinguish infected plates from negative controls using epifluorescence microscopy. On infected plates small colonies of staphylococci were identified by SEM. The number of bacteria detected in the sonicate was low with 500 (100-2400) CFU/plate and 475 (140-1821) copies/plate by qPCR. The difference in area covered by fluorescent material before and after sonication was 10.1 (5.7-12.3) %, p = 0.018. CONCLUSION Despite the pronounced infection in the surrounding tissue, only few bacteria were detected on the surface of the steel implants. This is evident from the minimal findings by SEM before sonication, as well as the very low CFU counts and DNA copies in the sonicate. Sonication did not show variable effectiveness, indicating it is a valuable addition to, but not a replacement for biopsy cultures in cases of implant-associated infections with low-virulence microorganisms.
Collapse
Affiliation(s)
- Erik Thorvaldsen Sandbakken
- Department of Orthopedic Surgery, St. Olavs Hospital, Olav Kyrres Gate 13, 7030, Trondheim, Norway.
- Department of Neuromedicine and Movement Science, NTNU, Olav Kyrres Gate 13, 7030, Trondheim, Norway.
| | - Erling Høyer
- Departement of Medical Microbiology, St. Olavs Hospital, Erling Skjalgsons Gate 1, 7030, Trondheim, Norway
| | - Eivind Witsø
- Department of Orthopedic Surgery, St. Olavs Hospital, Olav Kyrres Gate 13, 7030, Trondheim, Norway
| | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine, NTNU, Erling Skjalgsons Gate 1, 7030, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Cellular and Molecular Imaging Core Facility (CMIC), NTNU, Olav Kyrres Gate 10, 7030, Trondheim, Norway
| | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), NTNU, Olav Kyrres Gate 10, 7030, Trondheim, Norway
| | - Tina Strømdal Wik
- Department of Orthopedic Surgery, St. Olavs Hospital, Olav Kyrres Gate 13, 7030, Trondheim, Norway
- Department of Neuromedicine and Movement Science, NTNU, Olav Kyrres Gate 13, 7030, Trondheim, Norway
| | - Kåre Bergh
- Departement of Medical Microbiology, St. Olavs Hospital, Erling Skjalgsons Gate 1, 7030, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Erling Skjalgsons Gate 1, 7030, Trondheim, Norway
| |
Collapse
|
3
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
4
|
Bell RD, Cann EA, Mishra B, Valencia M, Zhang Q, Huang M, Yang X, Carli A, Bostrom M, Ivashkiv LB. Staphyloccocus aureus biofilm, in absence of planktonic bacteria, produces factors that activate counterbalancing inflammatory and immune-suppressive genes in human monocytes. J Orthop Res 2024; 42:2582-2592. [PMID: 38922976 PMCID: PMC11481048 DOI: 10.1002/jor.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Staphyloccocus aureus (S. aureus) is a major bacterial pathogen in orthopedic periprosthetic joint infection (PJI). S. aureus forms biofilms that promote persistent infection by shielding bacteria from immune cells and inducing an antibiotic-tolerant metabolic state. We developed an in vitro system to study S. aureus biofilm interactions with primary human monocytes in the absence of planktonic bacteria. In line with previous in vivo data, S. aureus biofilm induced expression of inflammatory genes such as TNF and IL1B, and their anti-inflammatory counter-regulator IL10. S. aureus biofilm also activated expression of PD-1 ligands, and IL-1RA, molecules that have the potential to suppress T cell function or differentiation of protective Th17 cells. Gene induction did not require monocyte:biofilm contact and was mediated by a soluble factor(s) produced by biofilm-encased bacteria that was heat resistant and >3 kD in size. Activation of suppressive genes by biofilm was sensitive to suppression by Jak kinase inhibition. These results support an evolving paradigm that biofilm plays an active role in modulating immune responses, and suggest this occurs via production of a soluble vita-pathogen-associated molecular pattern, a molecule that signals microbial viability. Induction of T cell suppressive genes by S. aureus biofilm provides insights into mechanisms that can suppress T cell immunity in PJI.
Collapse
Affiliation(s)
- Richard D Bell
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - E. Abrefi Cann
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Bikash Mishra
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| | - Melanie Valencia
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Qiong Zhang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Mary Huang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Xu Yang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Alberto Carli
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Lionel B Ivashkiv
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| |
Collapse
|
5
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Botros M, de Mesy Bentley KL, Schloemann DT, Saito M, Constantine R, Ricciardi BF, Muthukrishnan G. Cutibacterium acnes invades submicron osteocyte lacuno-canalicular networks following implant-associated osteomyelitis. J Orthop Res 2024; 42:2593-2603. [PMID: 39044717 DOI: 10.1002/jor.25929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Cutibacterium acnes, part of normal skin flora, is increasingly recognized as an opportunistic pathogen capable of causing chronic prosthetic joint infections (PJI) associated with total hip and knee arthroplasty. However, there is a paucity of literature examining the pathogenesis of C. acnes during PJI. To study this, we developed an implant-associated osteomyelitis murine model in which 8-10-week-old C57BL6 mice were subjected to transtibial implantation of titanium or stainless-steel L-shaped pins contaminated with C. acnes. Postsurgery, mice were killed on Days 14 and 28 for terminal assessments of (1) bacterial load in bone, implant, and internal organs (heart, spleen, kidney, and liver), (2) bone osteolysis (micro-CT), (3) abscess formation (histology), and (4) systematic electron microscopy (EM). In vitro scanning EM (SEM) confirmed that C. acnes can form biofilms on stainless-steel and titanium implants. In mice, C. acnes could persist for 28 days in the tibia. Also, we observed C. acnes dissemination to internal organs. C. acnes chronic osteomyelitis revealed markedly reduced bone osteolysis and abscess formation compared to Staphylococcus aureus infections. Importantly, transmission EM (TEM) investigation revealed the presence of C. acnes within canaliculi, demonstrating that C. acnes can invade the osteocyte lacuno-canalicular networks (OLCN) within bone. Our preliminary pilot study, for the first time, revealed that the OLCN in bone can be a reservoir for C. acnes and potentially provides a novel mechanism of why C. acnes chronic implant-associated bone infections are difficult to treat.
Collapse
Affiliation(s)
- Mina Botros
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Derek T Schloemann
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert Constantine
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
8
|
Gómez-Alonso IS, Betanzos-Cabrera G, Moreno-Lafont MC, Cancino-Diaz ME, García-Pérez BE, Cancino-Diaz JC. Non-biofilm-forming Staphylococcus epidermidis planktonic cell supernatant induces alterations in osteoblast biological function. Sci Rep 2024; 14:1807. [PMID: 38245549 PMCID: PMC10799936 DOI: 10.1038/s41598-024-51899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Staphylococcal biofilms significantly contribute to prosthetic joint infection (PJI). However, 40% of S. epidermidis PJI isolates do not produce biofilms, which does not explain the role of biofilms in these cases. We studied whether the supernatant from planktonic S. epidermidis alters osteoblast function. Non-biofilm-forming S. epidermidis supernatants (PJI- clinical isolate, healthy skin isolate (HS), and ATCC12228 reference strain) and biofilm-forming supernatants (PJI+ clinical isolate, ATCC35984 reference strain, and Staphylococcus aureus USA300 reference strain) were included. Osteoblasts stimulated with supernatants from non-biofilm-forming isolates for 3, 7, and 14 days showed significantly reduced cellular DNA content compared with unstimulated osteoblasts, and apoptosis was induced in these osteoblasts. Similar results were obtained for biofilm-forming isolates, but with a greater reduction in DNA content and higher apoptosis. Alkaline phosphatase activity and mineralization were significantly reduced in osteoblasts treated with supernatants from non-biofilm-forming isolates compared to the control at the same time points. However, the supernatants from biofilm-forming isolates had a greater effect than those from non-biofilm-forming isolates. A significant decrease in the expression of ATF4, RUNX2, ALP, SPARC, and BGLAP, and a significant increase in RANK-L expression were observed in osteoblasts treated with both supernatants. These results demonstrate that the supernatants of the S. epidermidis isolate from the PJI- and HS (commensal) with a non-biofilm-forming phenotype alter the function of osteoblasts (apoptosis induction, failure of cell differentiation, activation of osteoblasts, and induction of bone resorption), similar to biofilm-forming isolates (PJI+, ATCC35984, and S. aureus USA300), suggesting that biofilm status contributes to impaired osteoblast function and that the planktonic state can do so independently of biofilm production.
Collapse
Affiliation(s)
- Itzia Sidney Gómez-Alonso
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla S/N., Pueblo San Juan Tilcuautla, 42160, Pachuca Hidalgo, Mexico
| | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico.
| |
Collapse
|
9
|
Hinz N, Butscheidt S, Jandl NM, Rohde H, Keller J, Beil FT, Hubert J, Rolvien T. Increased local bone turnover in patients with chronic periprosthetic joint infection. Bone Joint Res 2023; 12:644-653. [PMID: 37813394 PMCID: PMC10562080 DOI: 10.1302/2046-3758.1210.bjr-2023-0071.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aims The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations.
Collapse
Affiliation(s)
- Nico Hinz
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma, Surgery and Sports Traumatology, BG Trauma Hospital Hamburg, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico M. Jandl
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Instiute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank T. Beil
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Hubert
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Gao X, Zhao Y, Wang M, Liu C, Luo J. Theoretical modeling approach for adsorption of fibronectin on the nanotopographical implants. Proc Inst Mech Eng H 2023; 237:1102-1115. [PMID: 37606321 DOI: 10.1177/09544119231188297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The success of orthopedic implants depends on the sufficient integration between tissue and implant, which is influenced by the cellular responses to their microenvironment. The conformation of adsorbed extracellular matrix is crucial for cellular behavior instruction via manipulating the physiochemical features of materials. To investigate the electrostatic adsorption mechanism of fibronectin on nanotopographies, a theoretical model was established to determine surface charge density and Coulomb's force of nanotopography - fibronectin interactions using a Laplace equation satisfying the boundary conditions. Surface charge density distribution of nanotopographies with multiple random fibronectin was simulated based on random number and Monte Carlo hypothesis. The surface charge density on the nanotopographies was compared to the experimental measurements, to verify the effectiveness of the theoretical model. The model was implemented to calculate the Coulomb force generated by nanotopographies to compare the fibronectin adsorption. This model has revealed the multiple random quantitative fibronectin electrostatic adsorption to the nanotopographies, which is beneficial for orthopedic implant surface design.Significance: The conformation and distribution of adsorbed extracellular matrix on biomedical implants are crucial for directing cellular behaviors. However, the Ti nanotopography-ECM interaction mechanism remains largely unknown. This is mostly because of the interactions that are driven by electrostatic force, and any experimental probe could interfere with the electric field between the charged protein and Ti surface. A theoretical model is hereby proposed to simulate the adsorption between nanotopographies and fibronectin. Random number and Monte Carlo hypothesis were applied for multiple random fibronectin simulation, and the Coulomb's force between nanoconvex and nanoconcave structures was comparatively analyzed.
Collapse
Affiliation(s)
- Xiangsheng Gao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Yuhang Zhao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, London, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Seebach E, Kraus FV, Elschner T, Kubatzky KF. Staphylococci planktonic and biofilm environments differentially affect osteoclast formation. Inflamm Res 2023:10.1007/s00011-023-01745-9. [PMID: 37329360 DOI: 10.1007/s00011-023-01745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Franziska V Kraus
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Institute for Cardiovascular Sciences and Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Li J, Cheung WH, Chow SK, Ip M, Leung SYS, Wong RMY. Current therapeutic interventions combating biofilm-related infections in orthopaedics : a systematic review of in vivo animal studies. Bone Joint Res 2022; 11:700-714. [PMID: 36214177 PMCID: PMC9582863 DOI: 10.1302/2046-3758.1110.bjr-2021-0495.r3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aims Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K. Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Y. S. Leung
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M. Y. Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China, Ronald Man Yeung Wong. E-mail:
| |
Collapse
|
13
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
14
|
Pietsch M, Hochegger M, Djahani O, Hofmann S, Mlaker G, Eder-Halbedl M, Hofstätter T. A two-stage approach to primary TKA using articulating antibiotic-loaded spacers improve function and eradicate infection in septic arthritic knees. Knee Surg Sports Traumatol Arthrosc 2021; 29:3186-3194. [PMID: 32556435 DOI: 10.1007/s00167-020-06106-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE The treatment of an infected arthritic knee might be challenging. The failure rate has been reported to be high for open or arthroscopic debridement. A subsequently high rate of infection has been noted in these patients undergoing primary total knee arthroplasty (TKA). In the present study, a two-stage approach using an articulating spacer was used. The hypothesis was that the procedure would eradicate the infection and improve pain and function in these patients. METHODS A total of 16 consecutive patients were enrolled in this retrospective study. The mean follow-up time was 6.1 years (range 2.0-9.9 years). Patients with advanced osteoarthritis and infection of the knee were included. All patients had previously undergone one or more failed arthroscopic or open procedures for the eradication of infection. All patients received the same homemade metal-on-plastic articulating antibiotic spacer. Double antibiotic therapy was given for 2 weeks intravenously and orally for 4 weeks. TKA implantation was performed 6 weeks after the first stage. RESULTS The infection was eradicated without recurrence in all patients. The functional results were significantly improved, and pain was significantly reduced after spacer and TKA implantation. The mean amount of knee flexion was 95 ± 30° preoperatively, and it increased to 109 ± 14° (p = 0.012) after spacer implantation and to 119 ± 10° (p = 0.002) after TKA implantation. The mean KSS objective was 58 ± 12 preoperatively, and it increased to 75 ± 14 (p < 0.0001) after spacer implantation and to 96 ± 3 (p < 0.0001) after TKA implantation. The mean KSS function was 17 ± 11 preoperatively, and it increased to 46 ± 10 (p < 0.0001) after spacer implantation and to 86 ± 6 (p < 0.0001) after TKA implantation. The mean VAS score was 65 ± 11 preoperatively, and it decreased to 2 ± 4 (p < 0.0001) after spacer implantation and to 1 ± 2 (p < 0.0001) after TKA implantation. CONCLUSION The two-stage procedure for the treatment of infected arthritic knees after failed eradication surgery was effective in all patients. Using an antibiotic articulating metal-on-plastic cement spacer showed improved functional results between the stages and at the final follow-up. No intra- or postoperative complications occurred.
Collapse
Affiliation(s)
- M Pietsch
- Department of Orthopaedic Surgery, Orthopaedic Hospital Stolzalpe (LKH Murtal), Stolzalpe 38, 8852, Stolzalpe, Austria.
| | - M Hochegger
- Department of Orthopaedic Surgery, Orthopaedic Hospital Stolzalpe (LKH Murtal), Stolzalpe 38, 8852, Stolzalpe, Austria
| | - O Djahani
- Department of Orthopaedic Surgery, Orthopaedic Hospital Stolzalpe (LKH Murtal), Stolzalpe 38, 8852, Stolzalpe, Austria
| | - S Hofmann
- Department of Orthopaedic Surgery, Orthopaedic Hospital Stolzalpe (LKH Murtal), Stolzalpe 38, 8852, Stolzalpe, Austria
| | - G Mlaker
- Department of Orthopaedic Surgery, Orthopaedic Hospital Stolzalpe (LKH Murtal), Stolzalpe 38, 8852, Stolzalpe, Austria
| | - M Eder-Halbedl
- Department of Orthopaedic Surgery, Orthopaedic Hospital Stolzalpe (LKH Murtal), Stolzalpe 38, 8852, Stolzalpe, Austria
| | - Th Hofstätter
- Department of Orthopaedic and Trauma Surgery, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
15
|
Superinfection with Difficult-to-Treat Pathogens Significantly Reduces the Outcome of Periprosthetic Joint Infections. Antibiotics (Basel) 2021; 10:antibiotics10101145. [PMID: 34680726 PMCID: PMC8532792 DOI: 10.3390/antibiotics10101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Periprosthetic joint infection (PJI) is a serious complication after total joint arthroplasty. In the course of a PJI, superinfections with pathogens that do not match the primary infecting micro-organism may occur. To our knowledge, there are no published data on the outcome of such infections in the literature. The aim of this study was to assess the outcome of PJI with superinfections with a difficult-to-treat (DTT) pathogen. Data of 169 consecutive patients with PJI were retrospectively analyzed in this single-center study. Cases were categorized into: Group 1 including non-DTT-PJI without superinfection, Group 2 DTT-PJI without superinfection, Group 3 non-DTT-PJI with DTT superinfection, and Group 4 non-DTT-PJI with non-DTT superinfection. Group 3 comprised 24 patients and showed, after a mean follow-up of 13.5 ± 10.8 months, the worst outcome with infection resolution in 17.4% of cases (p = 0.0001), PJI-related mortality of 8.7% (p = 0.0001), mean revision rate of 6 ± 3.6 (p < 0.0001), and duration of antibiotic treatment of 71.2 ± 45.2 days (p = 0.0023). PJI caused initially by a non-DTT pathogen with a superinfection with a DTT pathogen is significantly associated with the worst outcome in comparison to non-DTT-PJI, PJI caused initially by a DTT pathogen, and to non-DTT-PJI with a non-DTT superinfection.
Collapse
|
16
|
Rodríguez-Merchán EC, Davidson DJ, Liddle AD. Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. Int J Mol Sci 2021; 22:10243. [PMID: 34638591 PMCID: PMC8549706 DOI: 10.3390/ijms221910243] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related implant infections (BRII) are a disastrous complication of both elective and trauma orthopaedic surgery and occur when an implant becomes colonised by bacteria. The definitive treatment to eradicate the infections once a biofilm has established is surgical excision of the implant and thorough local debridement, but this carries a significant socioeconomic cost, the outcomes for the patient are often poor, and there is a significant risk of recurrence. Due to the large volumes of surgical procedures performed annually involving medical device implantation, both in orthopaedic surgery and healthcare in general, and with the incidence of implant-related infection being as high as 5%, interventions to prevent and treat BRII are a major focus of research. As such, innovation is progressing at a very fast pace; the aim of this study is to review the latest interventions for the prevention and treatment of BRII, with a particular focus on implant-related approaches.
Collapse
Affiliation(s)
- Emérito Carlos Rodríguez-Merchán
- Department of Orthopaedic Surgery, La Paz University Hospital, 28046 Madrid, Spain
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain
| | - Donald J. Davidson
- Eastman Dental Institute, University College London, London WC1E 6BT, UK; (D.J.D.); (A.D.L.)
| | - Alexander D. Liddle
- Eastman Dental Institute, University College London, London WC1E 6BT, UK; (D.J.D.); (A.D.L.)
- MSk Lab, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
17
|
Masters EA, Muthukrishnan G, Ho L, Gill AL, de Mesy Bentley KL, Galloway CA, McGrath JL, Awad HA, Gill SR, Schwarz EM. Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis. Front Microbiol 2021; 12:723498. [PMID: 34484165 PMCID: PMC8415456 DOI: 10.3389/fmicb.2021.723498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (μSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lananh Ho
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Chad A Galloway
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
18
|
Patient-specific effects of soluble factors from Staphylococcus aureus and Staphylococcus epidermidis biofilms on osteogenic differentiation of primary human osteoblasts. Sci Rep 2021; 11:17282. [PMID: 34446785 PMCID: PMC8390505 DOI: 10.1038/s41598-021-96719-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Due to the frequency of biofilm-forming Staphylococcus aureus and Staphylococcus epidermidis in orthopedics, it is crucial to understand the interaction between the soluble factors produced by prokaryotes and their effects on eukaryotes. Our knowledge concerning the effect of soluble biofilm factors (SBF) and their virulence potential on osteogenic differentiation is limited to few studies, particularly when there is no direct contact between prokaryotic and eukaryotic cells. SBF were produced by incubating biofilm from S. aureus and S. epidermidis in osteogenic media. Osteoblasts of seven donors were included in this study. Our results demonstrate that the detrimental effects of these pathogens do not require direct contact between prokaryotic and eukaryotic cells. SBF produced by S. aureus and S. epidermidis affect the metabolic activity of osteoblasts. However, the effect of SBF derived from S. aureus seems to be more pronounced compared to that of S. epidermidis. The influence of SBF of S. aureus and S. epidermidis on gene expression of COL1A1, ALPL, BGLAP, SPP1, RUNX2 is bacteria-, patient-, concentration-, and incubation time dependent. Mineralization was monitored by staining the calcium and phosphate deposition and revealed that the SBF of S. epidermidis markedly inhibits calcium deposition; however, S. aureus shows a less inhibitory effect. Therefore, these new findings support the hypotheses that soluble biofilm factors affect the osteogenic processes substantially, particularly when there is no direct interaction between bacteria and osteoblast.
Collapse
|
19
|
Veis DJ, Cassat JE. Infectious Osteomyelitis: Marrying Bone Biology and Microbiology to Shed New Light on a Persistent Clinical Challenge. J Bone Miner Res 2021; 36:636-643. [PMID: 33740314 DOI: 10.1002/jbmr.4279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Infections of bone occur in a variety of clinical settings, ranging from spontaneous isolated infections arising from presumed hematogenous spread to those associated with skin and soft tissue wounds or medical implants. The majority are caused by the ubiquitous bacterium Staphyloccocus (S.) aureus, which can exist as a commensal organism on human skin as well as an invasive pathogen, but a multitude of other microbes are also capable of establishing bone infections. While studies of clinical isolates and small animal models have advanced our understanding of the role of various pathogen and host factors in infectious osteomyelitis (iOM), many questions remain unaddressed. Thus, there are many opportunities to elucidate host-pathogen interactions that may be leveraged toward treatment or prevention of this troublesome problem. Herein, we combine perspectives from bone biology and microbiology and suggest that interdisciplinary approaches will bring new insights to the field. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Deborah J Veis
- Division of Bone and Mineral Diseases, Departments of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Shriners Hospitals for Children, St. Louis, MO, USA
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville,, TN, USA.,Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Masters EA, Hao SP, Kenney HM, Morita Y, Galloway CA, de Mesy Bentley KL, Ricciardi BF, Boyce BF, Schwarz EM, Oh I. Distinct vasculotropic versus osteotropic features of S. agalactiae versus S. aureus implant-associated bone infection in mice. J Orthop Res 2021; 39:389-401. [PMID: 33336806 PMCID: PMC7882123 DOI: 10.1002/jor.24962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis is a devastating complication of orthopaedic surgery and commonly caused by Staphylococcus aureus (S. aureus) and Group B Streptococcus (GBS, S. agalactiae). Clinically, S. aureus osteomyelitis is associated with local inflammation, abscesses, aggressive osteolysis, and septic implant loosening. In contrast, S. agalactiae orthopaedic infections generally involve soft tissue, with acute life-threatening vascular spread. While preclinical models that recapitulate the clinical features of S. aureus bone infection have proven useful for research, no animal models of S. agalactiae osteomyelitis exist. Here, we compared the pathology caused by these bacteria in an established murine model of implant-associated osteomyelitis. In vitro scanning electron microscopy and CFU quantification confirmed similar implant inocula for both pathogens (~105 CFU/pin). Assessment of mice at 14 days post-infection demonstrated increased S. aureus virulence, as S. agalactiae infected mice had significantly greater body weight, and fewer CFU on the implant and in bone and adjacent soft tissue (p < 0.05). X-ray, µCT, and histologic analyses showed that S. agalactiae induced significantly less osteolysis and implant loosening, and fewer large TRAP+ osteoclasts than S. aureus without inducing intraosseous abscess formation. Most notably, transmission electron microscopy revealed that although both bacteria are capable of digesting cortical bone, S. agalactiae have a predilection for colonizing blood vessels embedded within cortical bone while S. aureus primarily colonizes the osteocyte lacuno-canalicular network. This study establishes the first quantitative animal model of S. agalactiae osteomyelitis, and demonstrates a vasculotropic mode of S. agalactiae infection, in contrast to the osteotropic behavior of S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chad A. Galloway
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F. Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F. Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
21
|
Tomizawa T, Nishitani K, Ito H, Okae Y, Morita Y, Doi K, Saito M, Ishie S, Yoshida S, Murata K, Yoshitomi H, Kuroda Y, Matsuda S. The limitations of mono- and combination antibiotic therapies on immature biofilms in a murine model of implant-associated osteomyelitis. J Orthop Res 2021; 39:449-457. [PMID: 33325059 DOI: 10.1002/jor.24956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Treatment of implant-associated orthopedic infections remains challenging, partly because antimicrobial treatment is ineffective after a mature biofilm covers the implant surface. Currently, the relative efficacy of systemic mono- and combination standard-of-care (SOC) antibiotic therapies over the course of mature biofilm formation is unknown. Thus, we assessed the effects of cefazoline (CEZ), gentamicin (GM), and vancomycin, with or without rifampin (RFP), on Staphylococcus aureus biofilm formation during the establishment of implant-associated osteomyelitis in a murine tibia model. Quantitative scanning electron microscopy of the implants harvested on Days 0, 3, and 7 revealed that all treatments except CEZ monotherapy significantly reduced biofilm formation when antibiotics started at Day 0 (0.46- to 0.25-fold; p < 0.05). When antibiotics commenced 3 days after the infection, only GM monotherapy significantly inhibited biofilm growth (0.63-fold; p < 0.05), while all antibiotics inhibited biofilm formation in combination with RFP (0.56- to 0.44-fold; p < 0.05). However, no treatment was effective when antibiotics commenced on Day 7. To confirm these findings, we assessed bacterial load via colony-forming unit and histology. The results showed that GM monotherapy and all combination therapies reduced the colony-forming unit in the implant (0.41- to 0.23-fold; p < 0.05); all treatments except CEZ monotherapy reduced the colony-forming unit and staphylococcus abscess communities in the tibiae (0.40- to 0.10-fold; p < 0.05). Collectively, these findings demonstrate that systemic SOC antibiotics can inhibit biofilm formation within 3 days but not after 7 days of infection. The efficacy of SOC monotherapies, CEZ particularly, is very limited. Thus, combination treatment with RFP may be necessary to inhibit implant-associated osteomyelitis.
Collapse
Affiliation(s)
- Takuya Tomizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Okae
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Doi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoo Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Ishie
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|