1
|
Vanaclocha A, Vanaclocha V, Atienza CM, Jordá-Gómez P, Primo-Capella V, Blasco JR, Portolés L, Saiz-Sapena N, Vanaclocha L. Effect of Ti6Al4V Alloy Surface and Porosity on Bone Osseointegration: In Vivo Pilot Study in Rabbits. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2141. [PMID: 40363646 DOI: 10.3390/ma18092141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Unmodified Ti6Al4V can osseointegrate, but sometimes this capacity needs to be improved. This study aimed to see how much porosity improves osseointegration in a Ti6Al4V implant. Three types of Ti6Al4V cylindrical-shaped implants (13.00 mm length × 5.00 mm diameter) were evaluated: solid sandblasted acid-etched, sintered, and porous 3D-printed (681.00 µm average pore size). Fifteen 20-week-old nullipara female parasite-free New Zealand California white rabbits were used, employing the femoral condyle defect model and undertaking µ-CT analysis and pull-out testing eight weeks later. On µ-CT densitometric analysis, the solid sandblasted rod showed the highest new bone growth around the implant. Bone growth was higher inside the implants for the porous 3D-printed (54.00 ± 5.00 mm3) than for the sintered (1.00 ± 0.05 mm3) and zero for the sandblasted implants. In the pull-out test, there were no statistically significant differences in the ANOVA analysis between the sintered (900.00 N ± 310.00 N) and porous 3D-printed (700.00 N ± 220.00 N) implants. Such differences did exist between the sandblasted material (220.00 N ± 50.00 N) and the two other materials (sintered p 0.002, porous p 0.034). The porous 3D-printed and sintered implant pull-out strength were significantly better than that of the solid rod sandblasted implant. Still, there were no statistically significant differences between the first two.
Collapse
Affiliation(s)
- Amparo Vanaclocha
- Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Vicente Vanaclocha
- Department of Surgery, Division of Neurosurgery, University of Valencia, 46010 Valencia, Spain
| | - Carlos M Atienza
- Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Pablo Jordá-Gómez
- Hospital General Universitario de Castellón, 12004 Castellón de la Plana, Spain
| | - Víctor Primo-Capella
- Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Jose R Blasco
- AIDIMME-Metal Processing, Furniture, Wood and Packaging Technology Institute, Parque Tecnológico, Avda. Leonardo Da Vinci 38, 46980 Paterna, Spain
| | - Luis Portolés
- AIDIMME-Metal Processing, Furniture, Wood and Packaging Technology Institute, Parque Tecnológico, Avda. Leonardo Da Vinci 38, 46980 Paterna, Spain
| | | | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Germany
| |
Collapse
|
2
|
Modi SR, Dongare A, Jha K. Strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis. J Med Eng Technol 2025:1-14. [PMID: 40319337 DOI: 10.1080/03091902.2025.2498748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
In the proposed work, strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis is carried out. Strain shielding is a significant concern during total hip arthroplasty (THA) since it reduces bone growth and results in aseptic implant loosening due to the mismatch of femur and implant characteristics. The study examined solid and porous implanted femur bone under three loading conditions: standing, walking and stair climbing. The results show that strains on bone due to porous implants as compared to solid implants have been increased by 31, 24.3% and reduced by 12.18% for standing, walking, and stair climbing human activities, respectively. The findings show that porous implants promote bone growth and reduce aseptic implant loosening by lowering the strain and stress shielding effect.
Collapse
Affiliation(s)
- Sita Ram Modi
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Amardeep Dongare
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Kailash Jha
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
3
|
Alqahtani SM, Chaturvedi S, Alkhurays M, Al Mansoori MA, Mehta V, Chaturvedi M. Clinical effectiveness of Zirconia versus titanium dental implants in anterior region: an overview of systematic reviews. Eur J Med Res 2025; 30:290. [PMID: 40235013 PMCID: PMC12001583 DOI: 10.1186/s40001-025-02488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Nowadays dental implants are commonly used and to fulfil esthetic demands, zirconia has been suggested as an implant material as an alternative to titanium. Many researchers and systematic reviews are documented on it, but the results have been often inconsistent. This overview of systematic reviews aimed to report on the factors that influence the clinical effectiveness of zirconia (Zi) versus titanium (Ti) dental implants in anterior region. METHODS This overview of systematic reviews (Registration Number CRD42023396206) is in accordance with the Transparent Reporting of Systematic Reviews and Meta-analyses. PubMed, Cochrane, Scopus, Embase and Google Scholar databases were sourced for systematic review and meta-analyses. Joanna Briggs Institute (JBI) criteria and Measurement Tool to Assess systematic Reviews" (AMSTAR-2), evaluated the quality. The PICO-focused question of this overview of systematic reviews was "What are the various factors influencing the clinical performance of Zi versus Ti implants in the anterior area?", Evaluations were assessed by two assessors. In case there was any uncertainty or dispute among the reviewers, the work was included for further screening. Using Cohen's kappa, the inter-reviewer reliability was evaluated. RESULTS Six reviews were chosen from 57 suitable reviews for this data analysis. Although the survival and effectiveness rates backed titanium implants, there was no conclusive proof of marginal bone loss. Zirconium implants performed better in terms of aesthetics. CONCLUSION Clinical performance of zirconia could be considered at par with titanium implants in the anterior area. Titanium has exhibited greater mechanical performance but no significant difference between two recorded. In future, studies with improved design are needed to identify biological and technical factors that affect implant's efficacy. NOVELTY AND RELEVANCE This is the first overview of systematic reviews focusing specifically on the anterior region, evaluates both aesthetic and biomechanical performance of Zi and Ti Implants, offers detailed insight into material-specific advantages and limitations. In the present clinical scenario it addresses a critical gap by comparing the performance of Zi and Ti implants and evaluates patient-centred priorities, particularly in the highly visible anterior region.
Collapse
Affiliation(s)
- Saeed M Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, 62529, Abha, Saudi Arabia
| | - Saurabh Chaturvedi
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, 62529, Abha, Saudi Arabia.
- Department of Prosthetic Dentistry, SPDC, DMIHER (DU), Wardha, Maharashtra, 422001, India.
| | - Mohammed Alkhurays
- Department of Prosthetic Dental Sciences, Ministry of Health, Abha Dental Speciality Centre, Abha, Saudi Arabia
| | | | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| | - Mudita Chaturvedi
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
4
|
Meade SM, Scariano G, Shost M, Sundar SJ, Krishnaney AA, Dudzinski D, Waldorff E, Sultan A, Mroz TE, Steinmetz MP, Benzel EC, Habboub G. Automated Analysis of Surface Roughness and Waviness in Vertebral Bodies by Computed Tomography: Implications for Device Design in Spine Surgery. World Neurosurg 2025; 197:123951. [PMID: 40187644 DOI: 10.1016/j.wneu.2025.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE The interactions between interbody devices, corpectomy cages, and vertebral bodies are influenced by surface characteristics such as roughness and waviness, impacting fusion quality and patient outcomes. Understanding vertebral surface morphology is crucial for improving cage design and avoiding complications like subsidence, neural injury, and reoperation. This study aims to characterize the variability in vertebral morphology along the spine. METHODS A retrospective analysis of a spinal computed tomography (CT) scan database of 159 patients (mean age 59 ± 17) from an open-source database, encompassing 1895 vertebral bodies, was performed. Vertebral morphology was analyzed using an automated pipeline and clustered based on roughness and waviness to identify unique morphologic subgroups. RESULTS Mean surface roughness (MSR) was highest in the cervical, upper thoracic, and lower lumbar spine, while mean surface waviness (MSW) peaked in the lower lumbar spine. Clustering revealed heterogeneous subgroups below C6, while the upper cervical spine had more homogeneous morphology (high roughness, low waviness). MSR and MSW were negatively correlated with sagittal slope at C3-6 and C7-T1. MSR was positively correlated with sagittal slope at T2-T11 and L4-L5, while MSW was positively correlated from T12-L3. CONCLUSIONS This study presents an automated method to measure MSR and MSW of spinal vertebral bodies. These parameters could aid in simulating the interaction between interbody devices and vertebral bodies preoperatively to allow for optimization of device design to enhance osseous integration. Future work will explore the relationship between these measures and clinical outcomes, particularly fusion quality.
Collapse
Affiliation(s)
- Seth M Meade
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA; School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA.
| | - Gabrielle Scariano
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Orthopedic Surgery, Cleveland Clinic, Orthopedics and Rheumatological Institute, Cleveland, Ohio, USA
| | - Michael Shost
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Swetha J Sundar
- Department of Neurosurgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ajit A Krishnaney
- Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - David Dudzinski
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Erik Waldorff
- Department of Innovations, Cleveland Clinic, Cleveland, Ohio, USA
| | - Assem Sultan
- Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Department of Orthopedic Surgery, Cleveland Clinic, Orthopedics and Rheumatological Institute, Cleveland, Ohio, USA
| | - Thomas E Mroz
- Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Edward C Benzel
- Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Ghaith Habboub
- Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA; Center for Spine Health, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Sergienko KV, Konushkin SV, Morozova YA, Kaplan MA, Gorbenko AD, Rumyantsev BA, Prutskov ME, Baranov EE, Nasakina EO, Sevostyanova TM, Mikhlik SA, Chizhikov AP, Shatova LA, Simakin AV, Baimler IV, Sudarchikova MA, Kheifetz ML, Kolmakov AG, Sevostyanov MA. Study of the Structure and Mechanical Properties of Ti-38Zr-11Nb Alloy. J Funct Biomater 2025; 16:126. [PMID: 40278234 PMCID: PMC12027529 DOI: 10.3390/jfb16040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Hip joint implants are among the most prevalent types of medical implants utilized for the replacement of damaged joints. The utilization of modern implant materials, such as cobalt-chromium alloys, stainless steel, titanium, and other titanium alloys, is accompanied by challenges, including the toxicity of certain elements (e.g., aluminum, vanadium, nickel) and excessive Young's modulus, which adversely impact biomechanical compatibility. A mismatch between the stiffness of the implant material and the bone tissue, known as stress shielding, can lead to adverse outcomes such as bone resorption and implant loosening. Recent studies have shifted the focus to β-titanium alloys due to their exceptional biocompatibility, corrosion resistance, and low Young's modulus, which is close to the Young's modulus of bone tissue (10-30 GPa). In this study, the microstructure, mechanical properties, and phase stability of the Ti-38Zr-11Nb alloy were investigated. Energy dispersion spectrometry was employed to confirm the homogeneous distribution of Ti, Zr, and Nb in the alloy. A subsequent microstructural analysis revealed the presence of elongated β-grains subsequent to rolling and quenching. Furthermore, grinding contributed to the process of recrystallization and the formation of subgrains. X-ray diffraction analysis confirmed the presence of a stable β-phase under any heat treatment conditions, which can be explained by the use of Nb as a β-stabilizer and Zr as a neutral element with a weak β-stabilizing effect in the presence of other β-stabilizers. Furthermore, the modulus of elasticity, as determined by tensile testing, exhibited a decline from 85 GPa to 81 GPa after annealing. Mechanical tests demonstrated a substantial enhancement in tensile strength (from 529 MPa to 628 MPa) concurrent with a 32% reduction in elongation to fracture of the samples. These alterations are attributed to microstructural transformations, including the formation of subgrains and the rearrangement of dislocations. This study's findings suggest that the Ti-38Zr-11Nb alloy has potential as a material of choice due to its lower Young's modulus compared to traditional materials and its stable β-phase, which enhances the implant's durability and reduces the risk of brittle phases forming over time. This study demonstrates that the corrosion resistance of titanium grade 2 and Ti-38Zr-11Nb is comparable. The material in question exhibited no evidence of cytotoxic activity in the context of mammalian cells.
Collapse
Affiliation(s)
- Konstantin V. Sergienko
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Sergei V. Konushkin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Yaroslava A. Morozova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Mikhail A. Kaplan
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Artem D. Gorbenko
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Boris A. Rumyantsev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Mikhail E. Prutskov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Evgeny E. Baranov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Elena O. Nasakina
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Tatiana M. Sevostyanova
- National Medical and Surgical Center Named after N.I. Pirogov of the Ministry of Health of the Russian Federation, 117513 Moscow, Russia;
- Moscow Regional Research and Clinical Institute (“MONIKI”), 129110 Moscow, Russia
| | - Sofia A. Mikhlik
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Andrey P. Chizhikov
- Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (ISMAN), 142432 Chernogolovka, Russia
| | - Lyudmila A. Shatova
- Faculty of Radio Engineering and Electronics, Voronezh State Technical University, 394026 Voronezh, Russia;
| | - Aleksandr V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, 119991 Moscow, Russia; (A.V.S.); (I.V.B.)
| | - Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, 119991 Moscow, Russia; (A.V.S.); (I.V.B.)
| | - Maria A. Sudarchikova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | | | - Alexey G. Kolmakov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
| | - Mikhail A. Sevostyanov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), 119334 Moscow, Russia; (S.V.K.); (Y.A.M.); (M.A.K.); (A.D.G.); (B.A.R.); (M.E.P.); (E.E.B.); (E.O.N.); (S.A.M.); (M.A.S.); (A.G.K.); (M.A.S.)
- Federal State Budgetary Scientific Establishment the All-Russian Scientific Research Institute of a Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
6
|
Nakajo Y, Kaneuji A, Takano N. Effect of the friction coefficient between bone cement and polished stem on subsidence of the stem in total hip arthroplasty. J Orthop 2025; 62:148-151. [PMID: 40241858 PMCID: PMC11997331 DOI: 10.1016/j.jor.2025.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The effect of the friction coefficient between bone cement and polished stems on stem subsidence was investigated in total hip arthroplasty (THA) using nonlinear finite element analysis. Stem subsidence results from both stem slip and shear deformation of the cement. On the lateral side, subsidence is mainly caused by stem slip, while on the medial side, cement deformation is involved. With low friction coefficients, "Reverse subsidence" occurs after load release, where the stem moves upward, and compressive stress is transmitted to the cement. On the other hand, with high friction coefficients, more significant shear deformation of the cement mantle occurs, and residual strain accumulates in the proximal region. The present study implies a trade-off relationship: high friction increases the risk of periprosthetic fractures (PPFs) in the proximal region, while low friction increases the risk in the distal region.
Collapse
Affiliation(s)
- Yuta Nakajo
- Graduate Program in Mechanical Engineering, 3-1Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Ayumi Kaneuji
- Department of Orthopaedic Surgery, Kanazawa Medical University, 1-1 Uchinada, Kahoku-gun, 920-0293, Ishikawa, Japan
| | - Noriyuki Takano
- Integrated Technology Research Center of Medical Science and Engineering, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| |
Collapse
|
7
|
Guo C, Ding T, Cheng Y, Zheng J, Fang X, Feng Z. The rational design, biofunctionalization and biological properties of orthopedic porous titanium implants: a review. Front Bioeng Biotechnol 2025; 13:1548675. [PMID: 40078794 PMCID: PMC11897010 DOI: 10.3389/fbioe.2025.1548675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants. Subsequently, the pore size and structural design of porous titanium alloy materials are presented, then we introduce the application of porous titanium alloy implants in orthopedic clinical practice, including spine surgery, joint surgery, and the treatment of bone tumors. Following that, we describe the surface modifications applied to porous titanium implants to obtain better biological functions. Finally, we discuss incorporating environmental responsive mechanisms into porous titanium alloy materials to achieve additional functionalities.
Collapse
Affiliation(s)
- Chunliang Guo
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ding
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| | - Jianqing Zheng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiule Fang
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyun Feng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Wang J, Jiang H, Li H, Jia H, Wang L. Strain analysis of intra- and extra-medullary implants for fixing the subtrochanteric femoral fractures. Orthop Traumatol Surg Res 2025:104192. [PMID: 39983864 DOI: 10.1016/j.otsr.2025.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Intra or extra medullary fixation for subtrochanteric fractures (STF) is still controversial. And the strain on fracture site and implant have not been reported. The aim of our study is to evaluate the differences in strain at the medial and lateral cortex of the subtrochanteric region with PFNA, 'upside-down' LISS and PFLP fixing different types of subtrochanteric femoral fractures under static loads. HYPOTHESIS Our hypothesis was that the PFNA was superior than LISS and PFLP for fixation of STF. However, PFNA also had some weakness. METHODS Thirty composite femurs with PFNA, LISS or PFLP fixation were divided into three groups. Four models of implant-femur constructs were tested under axial compression load with strain recording by gauges. While finite element analysis (FEA) was performed to simulate the biomechanical test with synthetic bone and implant construct finite element model in order to measure the strain on femur and implant. RESULTS In model I, both of the strains recorded by gauge 2 of PFNA and LISS were significantly lower than that of PFLP (PFNA: p = 0.002; LISS: p = 0.038). In model II, both of the strains recorded by gauge 2 (PFNA: p = 0.019; LISS: p = 0.016) and 3 (PFNA: p = 0.016; LISS: p = 0.006) of PFNA and LISS were significantly lower than that of PFLP. In model III, the strain recorded by gauge 2 (p = 0.007) and 3 (p = 0.002) of PFNA were significantly lower than that of LISS. While the strain recorded by gauge 1 (p = 0.028) and 2 (p < 0.0001) of PFNA were significantly lower than that of PFLP. The strain value recorded by four gauges in each femur construct group changed from model I to IV similar to the results of FEA, except for individual gauges. DISCUSSION Our study demonstrated that PFNA and reverse LISS fixation were superior to PFLP for stable subtrochanteric fractures and unstable subtrochanteric fractures that have restored medial bone support. For comminuted subtrochanteric fracture, PFNA fixation was slightly superior to reverse LISS and PFLP. However, it was needed to know that the main nail of PFNA had huge compress force on the subtrochanteric medial bone area. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin, China.
| | - Hongqiang Jiang
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin, China
| | - Haomin Li
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin, China
| | - Haobo Jia
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin, China
| | - Lei Wang
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin, China.
| |
Collapse
|
9
|
Vajapey SP, Shah VM, Li M, Estok DM. Cementless fixation in total joint arthroplasty: Factors impacting osseointegration. J Clin Orthop Trauma 2025; 61:102871. [PMID: 39816715 PMCID: PMC11732076 DOI: 10.1016/j.jcot.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
•The success of cementless fixation in TJA depends on a multitude of factors including biological, mechanical, implant, surgical, and material properties.•Biologic fixation has become the primary mode of fixation for the majority of primary total hip arthroplasty (THA) surgeries done today in the United States (US) due to its low complication rate and superior longevity compared to cemented fixation.•Cementless fixation has yet to gain wider acceptance in total knee arthroplasty (TKA) and hip hemiarthroplasty due to several factors including host bone quality, implant design, and surgical technique.•Understanding a) the properties of the different biomaterials, b) the bone-implant interface characteristics of the different ingrowth and ongrowth surfaces, and c) the various factors that affect osseointegration can lead to:i)appropriate choice of implants for individual patients with consequent increase in revision-free survival, andii)the development of new techniques that can reduce the risk of aseptic loosening.
Collapse
Affiliation(s)
- Sravya P. Vajapey
- Orthopaedic Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - Vivek M. Shah
- Orthopedic Surgery, Brigham & Women's Hospital, Harvard University, Boston, MA, USA
| | - Mengnai Li
- Orthopedic Surgery, Yale University, New Haven, CT, USA
| | - Daniel M. Estok
- Orthopedic Surgery, Brigham & Women's Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
10
|
Bae M, Kang BJ, Kim J. Application of Hybrid External Skeletal Fixation with Bone Tissue Engineering Techniques for Comminuted Fracture of the Proximal Radius in a Dog. Animals (Basel) 2024; 14:3480. [PMID: 39682444 DOI: 10.3390/ani14233480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
A seven-month-old male Pomeranian presented with left forelimb lameness after a fall. Radiographic assessment confirmed proximal radial head and ulnar comminuted fracture. The initial surgical intervention involved the use of hybrid external skeletal fixation (ESF) to stabilize the radial head, concomitant with the application of a composite of bone morphogenetic protein type 2 (BMP-2)-loaded hydroxyapatite and gelatin microparticles at the fracture site. Although successful radial head healing was achieved, the ESF pinholes caused a defect in the proximal ulnar diaphysis. Subsequently, the ESF was removed, and a locking plate was applied in conjunction with the BMP-2-loaded collagen membrane to correct the radius defect. Clinical follow-up at 4.8 years postoperatively revealed a mildly decreased range of motion of the affected elbow joint, but no clinical symptoms such as lameness. Radiography revealed minimal degenerative changes and a radioulnar synostosis. Computed tomography revealed differences in the leg length and bone density. Gait analysis revealed that the left forelimb had a significant improvement in weight-bearing capacity based on weight distribution-peak vertical force metrics, compared with the right forelimb. Based on clinical outcomes, the combined application of hybrid ESF and bone tissue engineering techniques can be considered a feasible alternative treatment for radial head fractures.
Collapse
Affiliation(s)
- Minji Bae
- Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhyung Kim
- Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Ceddia M, Solarino G, Dramisino P, De Giosa G, Rizzo S, Trentadue B. Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials. JOURNAL OF COMPOSITES SCIENCE 2024; 8:449. [DOI: 10.3390/jcs8110449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
This study aims to evaluate the mechanical behavior, by ways of the FEM, of three femoral stems made of a Ti-6Al-4V titanium alloy with transverse holes in the proximal zone and a stem made of a β-type titanium alloy with a stiffness varying from 65 GPa in the proximal zone to 110 GPa in the distal zone and the CFRP composite material. The purpose of the study was to evaluate the effect of stress shielding on an intact femoral bone. A three-dimensional model of the intact femur was created, and the three prostheses were inserted with perfect stem bone fit. Applying constraint conditions such as fixation in all directions of the distal part of the femur and the application of a static load simulating standing still during a gait cycle allowed the stresses of both the implants and the bone to be compared. Evaluating the stress shielding for the three proposed materials was possible by identifying the seven Gruen zones. We can see from the results obtained that the metal alloys produced observable stress shielding in all the Gruen zones. There was a difference for the β-type alloy which, as a result of its stiffness variation from the proximal to the distal zone, did not show any level of stress shielding in Gruen zones 1 and 2. The CFRP composite, in contrast, showed no stress shielding in all of the Gruen zones and is an excellent material for the fabrication of total hip replacements. Further in vitro and in vivo validation studies are needed to make the modeling more accurate and understand the biological effects of the use of the three materials.
Collapse
Affiliation(s)
- Mario Ceddia
- Department of Mechanics, Mathematics and Management, Polytechnic of Bari, 70125 Bari, Italy
| | - Giuseppe Solarino
- Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, Policlinic Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Pasquale Dramisino
- Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, Policlinic Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giuseppe De Giosa
- Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, Policlinic Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Stefano Rizzo
- Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, Policlinic Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Bartolomeo Trentadue
- Department of Mechanics, Mathematics and Management, Polytechnic of Bari, 70125 Bari, Italy
| |
Collapse
|
12
|
Dou X, Liu X, Liu Y, Wang L, Jia F, Shen F, Ma Y, Liang C, Jin G, Wang M, Liu Z, Zhu B, Liu X. Biomimetic Porous Ti6Al4V Implants: A Novel Interbody Fusion Cage via Gel-Casting Technique to Promote Spine Fusion. Adv Healthc Mater 2024; 13:e2400550. [PMID: 39031096 DOI: 10.1002/adhm.202400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Indexed: 07/22/2024]
Abstract
An interbody fusion cage (Cage) is crucial in spinal decompression and fusion procedures for restoring normal vertebral curvature and rebuilding spinal stability. Currently, these Cages suffer from issues related to mismatched elastic modulus and insufficient bone integration capability. Therefore, a gel-casting technique is utilized to fabricate a biomimetic porous titanium alloy material from Ti6Al4V powder. The biomimetic porous Ti6Al4V is compared with polyetheretherketone (PEEK) and 3D-printed Ti6Al4V materials and their respective Cages. Systematic validation is performed through mechanical testing, in vitro cell, in vivo rabbit bone defect implantation, and ovine anterior cervical discectomy and fusion experiments to evaluate the mechanical and biological performance of the materials. Although all three materials demonstrate good biocompatibility and osseointegration properties, the biomimetic porous Ti6Al4V, with its excellent mechanical properties and a structure closely resembling bone trabecular tissue, exhibited superior bone ingrowth and osseointegration performance. Compared to the PEEK and 3D-printed Ti6Al4V Cages, the biomimetic porous Ti6Al4V Cage outperforms in terms of intervertebral fusion performance, achieving excellent intervertebral fusion without the need for bone grafting, thereby enhancing cervical vertebra stability. This biomimetic porous Ti6Al4V Cage offers cost-effectiveness, presenting significant potential for clinical applications in spinal surgery.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Jia
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Fei Shen
- Laboratory Animal Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Liang
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Meina Wang
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopaedics, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
13
|
Kitchen G, Sun B, Omar MM, Eisape A, Kang SH. Self-limiting material growth triggered and tunable by force through piezocharge-induced mineralization. MATERIALS HORIZONS 2024; 11:4705-4710. [PMID: 38984449 DOI: 10.1039/d4mh00498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Controlling the growth of material is crucial in material processing for desired properties. Current approaches often involve sophisticated equipment for controlling precursors and monitoring material formation. Here we report a self-limiting material growth mechanism controlled by the experienced mechanical loading without the need for precise control over precursors or monitoring material growth. Material formation that reduces the driving force for growth is hypothesized to result in a saturation thickness that is dependent on the maximum driving force. Analytical relations based on the growth model are derived and verified using a piezoelectric substrate immersed in an electrolyte solution under fixed frequency cyclic loading to attract surrounding mineral ions to form mineral layers. Accumulating mineral layers decrease the driving force for further growth and the material eventually reaches a saturation thickness. This allows for loading force to control the saturation thickness of the self-limiting material growth. Experimental data supports the predicted exponential relations, offering guides to predict the saturation thickness and control the growth profile. The findings are envisioned to contribute to the fundamental understanding of the self-limiting material growth mechanism and could benefit a range of applications including coatings for orthopedic implants as well as marine surface and underwater vehicles.
Collapse
Affiliation(s)
- Grant Kitchen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, 21218, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, 21218, USA
| | - Bohan Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218, USA.
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, 21218, USA
| | - Mostafa M Omar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218, USA.
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, 21218, USA
| | - Adebayo Eisape
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, 21218, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, 21218, USA
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218, USA.
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, 21218, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Olawumi MA, Omigbodun FT, Oladapo BI, Olugbade TO, Olawade DB. Innovative PEEK in Dentistry of Enhanced Adhesion and Sustainability through AI-Driven Surface Treatments. Bioengineering (Basel) 2024; 11:924. [PMID: 39329666 PMCID: PMC11429295 DOI: 10.3390/bioengineering11090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
This research investigates using Polyether ether ketone (PEEK) in dental prosthetics, focusing on enhancing the mechanical properties, adhesion capabilities, and environmental sustainability through AI-driven data analysis and advanced surface treatments. The objectives include improving PEEK's adhesion to dental types of cement, assessing its biocompatibility, and evaluating its environmental impact compared to traditional materials. The methodologies employed involve surface treatments such as plasma treatment and chemical etching, mechanical testing under ASTM standards, biocompatibility assessments, and lifecycle analysis. AI models predict and optimize mechanical properties based on extensive data. Significant findings indicate that surface-treated PEEK exhibits superior adhesion properties, maintaining robust mechanical integrity with no cytotoxic effects and supporting its use in direct contact with human tissues. Lifecycle analysis suggests PEEK offers a reduced environmental footprint due to lower energy-intensive production processes and recyclability. AI-driven analysis further enhances the material's performance prediction and optimization, ensuring better clinical outcomes. The study concludes that with improved surface treatments and AI optimization, PEEK is a promising alternative to conventional dental materials, combining enhanced performance with environmental sustainability, paving the way for broader acceptance in dental applications.
Collapse
Affiliation(s)
- Mattew A. Olawumi
- Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Francis T. Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK;
| | - Bankole I. Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| | | | - David B. Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK;
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| |
Collapse
|
15
|
Khan PA, Raheem A, Kalirajan C, Prashanth KG, Manivasagam G. In Vivo Assessment of a Triple Periodic Minimal Surface Based Biomimmetic Gyroid as an Implant Material in a Rabbit Tibia Model. ACS MATERIALS AU 2024; 4:479-488. [PMID: 39280806 PMCID: PMC11393938 DOI: 10.1021/acsmaterialsau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024]
Abstract
Biomimetic approaches to implant construction are a rising frontier in implantology. Triple Periodic Minimal Surface (TPMS)-based additively manufactured gyroid structures offer a mean curvature of zero, rendering this structure an ideal porous architecture. Previous studies have demonstrated the ability of these structures to effectively mimic the mechanical cues required for optimal implant construction. The porous nature of gyroid materials enhances bone ingrowth, thereby improving implant stability within the body. This enhancement is attributed to the increased surface area of the gyroid structure, which is approximately 185% higher than that of a dense material of the same form factor. This larger surface area allows for enhanced cellular attachment and nutrient circulation facilitated by the porous channels. This study aims to evaluate the biological performance of a gyroid-based Ti6Al-4V implant material compared to a dense alloy counterpart. Cellular viability was assessed using the lactate dehydrogenase (LDH) assay, which demonstrated that the gyroid surface allowed marginally higher viability than dense material. The in vivo integration was studied over 6 weeks using a rabbit tibia model and characterized using X-ray, micro-CT, and histopathological examination. With a metal volume of 8.1%, the gyroid exhibited a bone volume/total volume (BV/TV) ratio of 9.6%, which is 11-fold higher than that of dense metal (0.8%). Histological assessments revealed neovascularization, in-bone growth, and the presence of a Haversian system in the gyroid structure, hinting at superior osteointegration.
Collapse
Affiliation(s)
- Pearlin Amaan Khan
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
- Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
16
|
Sulaiman MY, Wicaksono S, Dirgantara T, Mahyuddin AI, Sadputranto SA, Oli'i EM. Influence of bite force and implant elastic modulus on mandibular reconstruction with particulate-cancellous bone marrow grafts healing: An in silico investigation. J Mech Behav Biomed Mater 2024; 157:106654. [PMID: 39042972 DOI: 10.1016/j.jmbbm.2024.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
This study aims to investigate tissue differentiation during mandibular reconstruction with particulate cancellous bone marrow (PCBM) graft healing using biphasic mechanoregulation theory under four bite force magnitudes and four implant elastic moduli to examine its implications on healing rate, implant stress distribution, new bone elastic modulus, mandible equivalent stiffness, and load-sharing progression. The finite element model of a half Canis lupus mandible, symmetrical about the midsagittal plane, with two marginal defects filled by PCBM graft and stabilized by porous implants, was simulated for 12 weeks. Eight different scenarios, which consist of four bite force magnitudes and four implant elastic moduli, were tested. It was found that the tissue differentiation pattern corroborates the experimental findings, where the new bone propagates from the superior side and the buccal and lingual sides in contact with the native bone, starting from the outer regions and progressing inward. Faster healing and quicker development of bone graft elastic modulus and mandible equivalent stiffness were observed in the variants with lower bite force magnitude and or larger implant elastic modulus. A load-sharing condition was found as the healing progressed, with M3 (Ti6Al4V) being better than M4 (stainless steel), indicating the higher stress shielding potentials of M4 in the long term. This study has implications for a better understanding of mandibular reconstruction mechanobiology and demonstrated a novel in silico framework that can be used for post-operative planning, failure prevention, and implant design in a better way.
Collapse
Affiliation(s)
- Muhammad Yusril Sulaiman
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Satrio Wicaksono
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia.
| | - Tatacipta Dirgantara
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Andi Isra Mahyuddin
- Dynamics and Control Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Seto Adiantoro Sadputranto
- Oral and Maxillofacial Medical Staff Group, Hasan Sadikin General Hospital, Jalan Pasteur 38, Bandung, 40161, West Java, Indonesia; Oral and Maxillofacial Department, Faculty of Dentistry, Universitas Padjajaran, Jalan Sekeloa Selatan 1, Bandung, 40132, West Java, Indonesia
| | - Eka Marwansyah Oli'i
- Oral and Maxillofacial Medical Staff Group, Hasan Sadikin General Hospital, Jalan Pasteur 38, Bandung, 40161, West Java, Indonesia; Oral and Maxillofacial Department, Faculty of Dentistry, Universitas Padjajaran, Jalan Sekeloa Selatan 1, Bandung, 40132, West Java, Indonesia; Mechanical Engineering Graduate Program, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| |
Collapse
|
17
|
V B, Magesh V, Harikrishnan P. Effect of cortical bone thickness on shear stress and force in orthodontic miniscrew-bone interface - A finite element analysis. Biomed Phys Eng Express 2024; 10:055013. [PMID: 38986445 DOI: 10.1088/2057-1976/ad6160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Miniscrews are widely used in orthodontics as an anchorage device while aligning teeth. Shear stress in the miniscrew-bone interface is an important factor when the miniscrew makes contact with the bone. The objective of this study was to analyze the shear stress and force in the screw-bone interface for varying Cortical Bone Thickness (CBT) using Finite Element Analysis (FEA). Varying CBT of 1.09 mm (1.09CBT) and 2.66 mm (2.66CBT) with miniscrews of Ø1.2 mm, 10 mm length (T1), Ø1.2 mm, 6 mm length (T2) and Ø1.6 mm, 8 mm length (T3) were analyzed. Six Finite Element (FE) models were developed with cortical, cancellous bone, miniscrews and gingiva as a prism. A deflection of 0.1 mm was applied on the neck of the miniscrews at 0°, +30° and -30° angles. The shear stress and force in the screw-bone interface were assessed. The results showed that the CBT affects the shear stress and force in the screw-bone interface region in addition to the screw dimensions and deflection angulations. T1 screw generated lesser shear stress in 1.09CBTand 2.66CBTcompared to T2 and T3 screws. Higher CBT is preferred for better primary stability in shear aspect. Clinically applied forces of 200 gms to 300 gms to an anchorage device induces shear stress in the miniscrew-bone interface region might cause stress shielding. Thus, clinicians need to consider the effect of varying CBT and the size of the miniscrews for the stability, reduced stress shielding and better anchorage during orthodontic treatment.
Collapse
Affiliation(s)
- Balamurali V
- Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, Tamil Nadu, India
| | - Varadaraju Magesh
- Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, Tamil Nadu, India
| | - Pandurangan Harikrishnan
- Craniofacial Orthodontist and Oral Surgeon, Teeth 'N' Jaws Center, No. 23 & 25, 1st Cross Street, Lake Area, Nungambakkam, Chennai - 600034, Tamil Nadu, India
| |
Collapse
|
18
|
Ruggeri M, Miele D, Caliogna L, Bianchi E, Jepsen JM, Vigani B, Rossi S, Sandri G. Hydroxyapatite-Coated Ti6Al4V ELI Alloy: In Vitro Cell Adhesion. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1181. [PMID: 39057858 PMCID: PMC11279432 DOI: 10.3390/nano14141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The high rate of rejection and failure of orthopedic implants is primarily attributed to incomplete osseointegration and stress at the implant-to-bone interface due to significant differences in the mechanical properties of the implant and the surrounding bone. Various surface treatments have been developed to enhance the osteoconductive properties of implants. The aim of this work was the in vitro characterization of titanium alloy modified with a nanocrystalline hydroxyapatite surface layer in relative comparison to unmodified controls. This investigation focused on the behavior of the surface treatment in relation to the physiological environment. Moreover, the osteogenic response of human osteoblasts and adipose stem cells was assessed. Qualitative characterization of cellular interaction was performed via confocal laser scanning microscopy focusing on the cell nuclei and cytoskeletons. Filipodia were assessed using scanning electron microscopy. The results highlight that the HA treatment promotes protein adhesion as well as gene expression of osteoblasts and stem cells, which is relevant for the inorganic and organic components of the extracellular matrix and bone. In particular, cells grown onto HA-modified titanium alloy are able to promote ECM production, leading to a high expression of collagen I and non-collagenous proteins, which are crucial for regulating mineral matrix formation. Moreover, they present an impressive amount of filipodia having long extensions all over the test surface. These findings suggest that the HA surface treatment under investigation effectively enhances the osteoconductive properties of Ti6Al4V ELI.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (D.M.); (E.B.); (B.V.); (S.R.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (D.M.); (E.B.); (B.V.); (S.R.)
| | - Laura Caliogna
- Orthopaedic and Traumatology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (D.M.); (E.B.); (B.V.); (S.R.)
| | - Johannes Maui Jepsen
- Stryker Trauma GmbH, Professor Küntscher-Straße 1-5, 24232 Schönkirchen, Germany;
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (D.M.); (E.B.); (B.V.); (S.R.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (D.M.); (E.B.); (B.V.); (S.R.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (D.M.); (E.B.); (B.V.); (S.R.)
| |
Collapse
|
19
|
Hussain M, Khan SM, Shafiq M, Abbas N, Sajjad U, Hamid K. Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon 2024; 10:e32713. [PMID: 39027458 PMCID: PMC11254538 DOI: 10.1016/j.heliyon.2024.e32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Mg-based and Zn-based biodegradable materials have the potential to become the next-generation implant materials to treat bone diseases, because of their desired degradation and mechanical properties. This article reviews the status of these implant materials. The required properties of biodegradable materials such as biodegradability, mechanical properties, and biocompatibility for performance evaluation were briefly discussed. The influence of fabrication techniques, microstructure, alloying elements, and post-processing techniques on the properties of Mg and Zn-based materials was addressed. The degradation mechanism by dissolution, oxidation, and interaction with human body cells was discussed. The biocompatibility of Mg and Zn-based biodegradable materials was analyzed. The significance of in vitro and in vivo biocompatibility testing was highlighted, emphasizing the superiority of in vivo results over cell line studies. This article identifies the many Mg and Zn-based biodegradable materials and summarizes the key findings.
Collapse
Affiliation(s)
- Muzamil Hussain
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Shafiq
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Khalid Hamid
- Process and Power Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
20
|
Abar B, Vail E, Mathey E, Park E, Allen NB, Adams SB, Gall K. A bending model for assessing relative stiffness and strength of orthopaedic fixation constructs. Clin Biomech (Bristol, Avon) 2024; 111:106135. [PMID: 37948989 DOI: 10.1016/j.clinbiomech.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The purpose of this study is to develop a simple and reproducible bending model that is compatible with a wide range of orthopaedic fixation devices and 3D printed spacers. METHODS A robust 4-point bending model was constructed by securing sawbones blocks with different orthopaedic fixation device constructs. Stress strain curves derived from a fundamental mechanics model were used to assess the effect of bone density, type of hardware (staple vs intramedullary beam), the use of dynamic compression, orientation of staples (dorsal vs plantar), and the use of 3D printed titanium spacers. FINDINGS The high throughput 4-point bending model is simple enough that the methods can be easily repeated to assess a wide range of fixation methods, while complex enough to provide clinically relevant information. INTERPRETATIONS It is recommended that this model is used to assess a large initial set of fixation methods in direct and straightforward comparisons.
Collapse
Affiliation(s)
- Bijan Abar
- Duke University, Department of Mechanical Engineering and Material Sciences, USA; Duke University, Department of Orthopaedic Surgery, USA
| | - Elijah Vail
- Duke University, Department of Mechanical Engineering and Material Sciences, USA
| | - Elizabeth Mathey
- University of Colorado Denver, Department of Mechanical Engineering, USA
| | - Ella Park
- Duke University, Department of Mechanical Engineering and Material Sciences, USA
| | | | | | - Ken Gall
- Duke University, Department of Mechanical Engineering and Material Sciences, USA.
| |
Collapse
|
21
|
Chmielewska A, Dean D. The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater 2024; 173:51-65. [PMID: 37972883 DOI: 10.1016/j.actbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
It is well documented that overly stiff skeletal replacement and fixation devices may fail and require revision surgery. Recent attempts to better support healing and sustain healed bone have looked at stiffness-matching of these devices to the desired role of limiting the stress on fractured or engrafted bone to compressive loads and, after the reconstructed bone has healed, to ensure that reconstructive medical devices (implants) interrupt the normal loading pattern as little as possible. The mechanical performance of these devices can be optimized by adjusting their location, integration/fastening, material(s), geometry (external and internal), and surface properties. This review highlights recent research that focuses on the optimal design of skeletal reconstruction devices to perform during and after healing as the mechanical regime changes. Previous studies have considered auxetic materials, homogeneous or gradient (i.e., adaptive) porosity, surface modification to enhance device/bone integration, and choosing the device's attachment location to ensure good osseointegration and resilient load transduction. By combining some or all of these factors, device designers work hard to avoid problems brought about by unsustainable stress shielding or stress concentrations as a means of creating sustainable stress-strain relationships that best repair and sustain a surgically reconstructed skeletal site. STATEMENT OF SIGNIFICANCE: Although standard-of-care skeletal reconstruction devices will usually allow normal healing and improved comfort for the patient during normal activities, there may be significant disadvantages during long-term use. Stress shielding and stress concentration are amongst the most common causes of failure of a metallic device. This review highlights recent developments in devices for skeletal reconstruction that match the stiffness, while not interrupting the normal loading pattern of a healthy bone, and help to combat stress shielding and stress concentration. This review summarises various approaches to achieve stiffness-matching: application of materials with modulus close to that of the bone; adaptation of geometry with pre-defined mechanical properties; and/or surface modification that ensures good integration and proper load transfer to the bone.
Collapse
Affiliation(s)
- Agnieszka Chmielewska
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - David Dean
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
22
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
23
|
Larrañaga X, Sarasua JR, Zuza E. Role of Inorganic Fillers on the Physical Aging and Toughness Loss of PLLA/BaSO 4 Composites. ACS APPLIED POLYMER MATERIALS 2023; 5:9620-9631. [PMID: 38021210 PMCID: PMC10653123 DOI: 10.1021/acsapm.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
The addition of inorganic fillers has been reported to increase the toughness of poly(l-lactide) (PLLA), but the effect of physical aging in such composites has been neglected. The present work discusses the effect of the still ongoing segmental relaxation in PLLA-based composites filled with BaSO4 inorganic particles in regard of the filler quantity. By means of differential scanning calorimetry, X-ray diffraction, and tensile testing of progressively aged PLLA filled with particles ranging from 0.5-10 wt %, we observed an increase in the mechanical energy required to activate the plastic flow of the primary structure in the PLLA matrix, which resulted in the embrittlement of the majority of composites upon enough aging. Results further clarify the role of debonding in the activation process of PLLA, and the behavior of the composite is described at the segmental level. Only an addition of 10% of particles has effectively preserved a ductile behavior of the samples beyond 150 aging days; therefore, we strongly remark the significance of studying the effect of physical aging in such composites.
Collapse
Affiliation(s)
- Xabier Larrañaga
- Department of Mining-Metallurgy
Engineering and Materials Science & POLYMAT, Faculty of Engineering, University
of the Basque Country (UPV/EHU), Alameda de Urquijo s/n, Bilbao 48013, Spain
| | - Jose R. Sarasua
- Department of Mining-Metallurgy
Engineering and Materials Science & POLYMAT, Faculty of Engineering, University
of the Basque Country (UPV/EHU), Alameda de Urquijo s/n, Bilbao 48013, Spain
| | - Ester Zuza
- Department of Mining-Metallurgy
Engineering and Materials Science & POLYMAT, Faculty of Engineering, University
of the Basque Country (UPV/EHU), Alameda de Urquijo s/n, Bilbao 48013, Spain
| |
Collapse
|
24
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Zhang Y, Cheng Z, Liu Z, Shen X, Cai C, Li M, Luo Z. Functionally Tailored Metal-Organic Framework Coatings for Mediating Ti Implant Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303958. [PMID: 37705110 PMCID: PMC10582459 DOI: 10.1002/advs.202303958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Indexed: 09/15/2023]
Abstract
Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Zhuo Cheng
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Xinkun Shen
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Chunyuan Cai
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Menghuan Li
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zhong Luo
- School of Life ScienceChongqing UniversityChongqing400044China
| |
Collapse
|
26
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
27
|
Gupta T, Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Is it possible to 3D bioprint load-bearing bone implants? A critical review. Biofabrication 2023; 15:042003. [PMID: 37669643 DOI: 10.1088/1758-5090/acf6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Rehabilitative capabilities of any tissue engineered scaffold rely primarily on the triad of (i) biomechanical properties such as mechanical properties and architecture, (ii) chemical behavior such as regulation of cytokine expression, and (iii) cellular response modulation (including their recruitment and differentiation). The closer the implant can mimic the native tissue, the better it can rehabilitate the damage therein. Among the available fabrication techniques, only 3D bioprinting (3DBP) can satisfactorily replicate the inherent heterogeneity of the host tissue. However, 3DBP scaffolds typically suffer from poor mechanical properties, thereby, driving the increased research interest in development of load-bearing 3DBP orthopedic scaffolds in recent years. Typically, these scaffolds involve multi-material 3D printing, comprising of at-least one bioink and a load-bearing ink; such that mechanical and biological requirements of the biomaterials are decoupled. Ensuring high cellular survivability and good mechanical properties are of key concerns in all these studies. 3DBP of such scaffolds is in early developmental stages, and research data from only a handful of preliminary animal studies are available, owing to limitations in print-capabilities and restrictive materials library. This article presents a topically focused review of the state-of-the-art, while highlighting aspects like available 3DBP techniques; biomaterials' printability; mechanical and degradation behavior; and their overall bone-tissue rehabilitative efficacy. This collection amalgamates and critically analyses the research aimed at 3DBP of load-bearing scaffolds for fulfilling demands of personalized-medicine. We highlight the recent-advances in 3DBP techniques employing thermoplastics and phosphate-cements for load-bearing applications. Finally, we provide an outlook for possible future perspectives of 3DBP for load-bearing orthopedic applications. Overall, the article creates ample foundation for future research, as it gathers the latest and ongoing research that scientists could utilize.
Collapse
Affiliation(s)
- Tanmay Gupta
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mohini Sain
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Abdullah M, Mubashar A, Uddin E. Structural optimization of orthopedic hip implant using parametric and non-parametric optimization techniques. Biomed Phys Eng Express 2023; 9:055026. [PMID: 37536305 DOI: 10.1088/2057-1976/aced0d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
This research investigates the reduction in weight of hip implant by the application of parametric and non-parametric optimization techniques. Orthopaedic hip implants can be made from metals, ceramics, composites, or metallic alloys and are generally solid structures. The stiffness of orthopaedic hip implant is a pertaining problem when implanted in the human body as Hip implant are stiffer than bone material and causes stress shielding. This results in bone weakening which causes osteoporosis. Reduction in mass of femur stem results in stiffness reduction of femur stem. Non-Parametric topology optimization results in 34.9% mass reduction and parametric optimization based on Central Composite Design technique in Design of Experiments (DoE) uses hole diameters as parameters and performs structural optimization that results in 22% mass reduction.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Post Graduate Student at the School of Mechanical & Manufacturing Engineering, (SMME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Aamir Mubashar
- School of Mechanical & Manufacturing Engineering, (SMME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Emad Uddin
- School of Mechanical & Manufacturing Engineering, (SMME), National University of Science and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
29
|
Nayak GS, Palkowski H, Carradò A. Enhancing Polymethyl Methacrylate Prostheses for Cranioplasty with Ti mesh Inlays. J Funct Biomater 2023; 14:420. [PMID: 37623664 PMCID: PMC10455644 DOI: 10.3390/jfb14080420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Biocompatible polymers such as polymethyl methacrylate (PMMA), despite fulfilling biomedical aspects, lack the mechanical strength needed for hard-tissue implant applications. This gap can be closed by using composites with metallic reinforcements, as their adaptable mechanical properties can overcome this problem. Keeping this in mind, novel Ti-mesh-reinforced PMMA composites were developed. The influence of the orientation and volume fraction of the mesh on the mechanical properties of the composites was investigated. The composites were prepared by adding Ti meshes between PMMA layers, cured by hot-pressing above the glass transition temperature of PMMA, where the interdiffusion of PMMA through the spaces in the Ti mesh provided sufficient mechanical clamping and adhesion between the layers. The increase in the volume fraction of Ti led to a tremendous improvement in the mechanical properties of the composites. A significant anisotropic behaviour was analysed depending on the direction of the mesh. Furthermore, the shaping possibilities of these composites were investigated via four-point bending tests. High shaping possibility was found for these composites when they were shaped at elevated temperature. These promising results show the potential of these materials to be used for patient-specific implant applications.
Collapse
Affiliation(s)
- Gargi Shankar Nayak
- Institute of Metallurgy (IMET), Clausthal University of Technology, Robert-Koch-Strasse 42, 38678 Clausthal-Zellerfeld, Germany; (G.S.N.); (H.P.)
- Department of Applied Mechanics, Saarland University, Campus A4 2, 66123 Saarbruecken, Germany
| | - Heinz Palkowski
- Institute of Metallurgy (IMET), Clausthal University of Technology, Robert-Koch-Strasse 42, 38678 Clausthal-Zellerfeld, Germany; (G.S.N.); (H.P.)
| | - Adele Carradò
- CNRS UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, 23 rue du Lœss BP 43, 67034 Strasbourg, France
| |
Collapse
|
30
|
Bozyiğit B, Oymak MA, Bahçe E, Uzunyol ÖF. Finite element analysis of lattice designed lumbar interbody cage based on the additive manufacturing. Proc Inst Mech Eng H 2023; 237:991-1000. [PMID: 37366582 DOI: 10.1177/09544119231184379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Additive manufacturing (AM) methods, which facilitate the production of complex structures with different geometries, have been used in producing interbody cages in recent years. In this study, the effects of Ti6Al4V alloy interbody lattice designed fusion cages between the third and fourth lumbar vertebrae where degenerative disc diseases occur were investigated using the finite element method. Face centered cubic (FCC), body centered cubic (BCC), and diamond structures were selected as the lattice structure suitable for the interbody cage. A kidney shaped interbody lumbar cage was designed. The designated lattice structures were selected by adjusting the cell sizes suitable for the designed geometry, and the mesh configuration was made by the lumbar lattice structure. 400 N Axial force and 7.5 N.m moments were applied to the spine according to lateral bending, flexion, and torsion. 400 N axial force and 7.5 N.m flexion moment is shown high strain and total deformation then lateral bending and torsion on BCC FCC and diamond lattice structured interbody cages. In addition, the effects of lattice structures under high compression forces were investigated by applying 1000 N force to the lattice structures. When von Mises stresses were examined, lower von Mises stress and strains were observed in the BCC structure. However, a lower total deformation was observed in the FCC. Due to the design of the BCC and the diamond structure, it is assumed that bone implant adhesion will increase. In the finite element analysis (FEA), the best results were shown in BCC structures.
Collapse
Affiliation(s)
| | - Mehmet Akif Oymak
- Department of Mechanical Engineering, Inonu University, Malatya, Turkey
| | - Erkan Bahçe
- Department of Mechanical Engineering, Inonu University, Malatya, Turkey
| | | |
Collapse
|
31
|
Hendea RE, Raducanu D, Claver A, García JA, Cojocaru VD, Nocivin A, Stanciu D, Serban N, Ivanescu S, Trisca-Rusu C, Campian RS. Biodegradable Magnesium Alloys for Personalised Temporary Implants. J Funct Biomater 2023; 14:400. [PMID: 37623645 PMCID: PMC10455490 DOI: 10.3390/jfb14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD-X-ray diffraction, and SEM-scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.
Collapse
Affiliation(s)
- Radu Emil Hendea
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.E.H.); (R.S.C.)
| | - Doina Raducanu
- Department of Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.S.)
| | - Adrián Claver
- Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (A.C.); (J.A.G.)
| | - José Antonio García
- Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (A.C.); (J.A.G.)
| | - Vasile Danut Cojocaru
- Department of Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.S.)
| | - Anna Nocivin
- Faculty of Mechanical, Industrial and Maritime Engineering, OVIDIUS University of Constanta, 900527 Constanța, Romania;
| | - Doina Stanciu
- Zircon Dent SRL, 400690 Cluj-Napoca, Romania; (D.S.); (S.I.)
| | - Nicolae Serban
- Department of Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.S.)
| | | | - Corneliu Trisca-Rusu
- National Institute for Research and Development in Micro-Technologies, 077190 Bucharest, Romania;
| | - Radu Septimiu Campian
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.E.H.); (R.S.C.)
| |
Collapse
|
32
|
Yang G, Liu H, Li A, Liu T, Lu Q, He F. Antibacterial Structure Design of Porous Ti6Al4V by 3D Printing and Anodic Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5206. [PMID: 37569910 PMCID: PMC10420244 DOI: 10.3390/ma16155206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Titanium alloy Ti6Al4V is a commonly used bone implant material, primarily prepared as a porous material to better match the elastic modulus of human bone. However, titanium alloy is biologically inert and does not have antibacterial properties. At the same time, the porous structure with a large specific surface area also increases the risk of infection, leading to surgical failure. In this paper, we prepared three porous samples with different porosities of 60%, 75%, and 85%, respectively (for short, 3D-60, 3D-75, and 3D-85) using 3D printing technology and clarified the mechanical properties. Through tensile experiments, when the porosity was 60%, the compressive modulus was within the elastic modulus of human bone. Anodic oxidation technology carried out the surface modification of a 3D-printed porous titanium alloy with 60% porosity. Through change, the different voltages and times on the TiO2 oxide layer on the 3D-printed porous titanium alloy are different, and it reveals the growth mechanism of the TiO2 oxide layer on a 3D-printed unique titanium alloy. The surface hydrophilic and antibacterial properties of 3D-printed porous titanium alloy were significantly improved after modification by anodic oxidation.
Collapse
Affiliation(s)
- Guijun Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Houjiang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| | - Ang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| | - Tiansheng Liu
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Qiqin Lu
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Fang He
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| |
Collapse
|
33
|
Cassel JB, Tronco MC, de Melo BA, Oliveira FDSD, Dos Santos LAL. α-Tricalcium phosphate cement reinforced with silk fibroin: A high strength biomimetic bone cement with chloride-substituted hydroxyapatite. J Mech Behav Biomed Mater 2023; 143:105936. [PMID: 37244074 DOI: 10.1016/j.jmbbm.2023.105936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
In the past decades, bone defects have become an increasing factor in the development of disability in patients, impacting their quality of life. Large bone defects have minor chances to self-repair, requiring surgical intervention. Therefore, α-TCP-based cements are rigorously studied for the development of bone filling and replacement applications due to the possibility of application in minimally invasive procedures. However, α-TCP-based cements do not present adequate mechanical properties for most orthopedic applications. The aim of this study is to develop a biomimetic α-TCP cement reinforced with 0.250-1.000 wt% of silk fibroin using non-dialyzed SF solutions. Samples with SF additions higher than 0.250 wt% presented complete transformation of the α-TCP to a biphasic CDHA/HAp-Cl material, which could enhance the osteoconductivity of the material. Samples reinforced with concentrations of 0.500 wt% SF showed an increase of 450% of the fracture toughness and 182% of the compressive strength of the control sample, even with 31.09% porosity, which demonstrates good coupling between the SF and the CPs. All samples reinforced with SF showed a microstructure with smaller needle-like crystals when compared to the control sample, which possibly contributed to the material's reinforcement. Moreover, the composition of reinforced samples did not affect the cytotoxicity of the CPCs and enhanced the cell viability presented by the CPC without SF addition. Hence, biomimetic CPCs with mechanical reinforcement through the addition of SF were successfully obtained through the developed methodology, with the potential to be further evaluated as a suitable material for bone regeneration.
Collapse
Affiliation(s)
- Júlia B Cassel
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Matheus C Tronco
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Beatriz A de Melo
- Embriology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Fernanda Dos Santos de Oliveira
- Embriology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Luís A L Dos Santos
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
Johnston A, Callanan A. Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications. Biomimetics (Basel) 2023; 8:205. [PMID: 37218791 PMCID: PMC10204517 DOI: 10.3390/biomimetics8020205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The limited regenerative capacity of the human body, in conjunction with a shortage of healthy autologous tissue, has created an urgent need for alternative grafting materials. A potential solution is a tissue-engineered graft, a construct which supports and integrates with host tissue. One of the key challenges in fabricating a tissue-engineered graft is achieving mechanical compatibility with the graft site; a disparity in these properties can shape the behaviour of the surrounding native tissue, contributing to the likelihood of graft failure. The purpose of this review is to examine the means by which researchers have altered the mechanical properties of tissue-engineered constructs via hybrid material usage, multi-layer scaffold designs, and surface modifications. A subset of these studies which has investigated the function of their constructs in vivo is also presented, followed by an examination of various tissue-engineered designs which have been clinically translated.
Collapse
Affiliation(s)
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
35
|
Marek R, Eichler J, Schwarze UY, Fischerauer S, Suljevic O, Berger L, Löffler JF, Uggowitzer PJ, Weinberg AM. Long-term in vivo degradation of Mg-Zn-Ca elastic stable intramedullary nails and their influence on the physis of juvenile sheep. BIOMATERIALS ADVANCES 2023; 150:213417. [PMID: 37087913 DOI: 10.1016/j.bioadv.2023.213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/28/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
The use of bioresorbable magnesium (Mg)-based elastic stable intramedullary nails (ESIN) is highly promising for the treatment of pediatric long-bone fractures. Being fully resorbable, a removal surgery is not required, preventing repeated physical and psychological stress for the child. Further, the osteoconductive properties of the material support fracture healing. Nowadays, ESIN are exclusively implanted in a non-transphyseal manner to prevent growth discrepancies, although transphyseal implantation would often be required to guarantee optimized fracture stabilization. Here, we investigated the influence of trans-epiphyseally implanted Mg-Zinc (Zn)-Calcium (Ca) ESIN on the proximal tibial physis of juvenile sheep over a period of three years, until skeletal maturity was reached. We used the two alloying systems ZX10 (Mg-1Zn-0.3Ca, in wt%) and ZX00 (Mg-0.3Zn-0.4Ca, in wt%) for this study. To elaborate potential growth disturbances such as leg-length differences and axis deviations we used a combination of in vivo clinical computed tomography (cCT) and ex vivo micro CT (μCT), and also performed histology studies on the extracted bones to obtain information on the related tissue. Because there is a lack of long-term data regarding the degradation performance of magnesium-based implants, we used cCT and μCT data to evaluate the implant volume, gas volume and degradation rate of both alloying systems over a period of 148 weeks. We show that transepiphyseal implantation of Mg-Zn-Ca ESIN has no negative influence on the longitudinal bone growth in juvenile sheep, and that there is no axis deviation observed in all cases. We also illustrate that 95 % of the ESIN degraded over nearly three years, converging the time point of full resorption. We thus conclude that both, ZX10 and ZX00, constitute promising implant materials for the ESIN technique.
Collapse
Affiliation(s)
- R Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria.
| | - J Eichler
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - U Y Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria; Department of Dental Medicine and Oral Health, Medical University of Graz, 8010 Graz, Austria
| | - S Fischerauer
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - O Suljevic
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - L Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - P J Uggowitzer
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland; Chair of Nonferrous Metallurgy, Montanuniversitaet Leoben, 8700 Leoben, Austria
| | - A-M Weinberg
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
36
|
Liu Z, Zhu J, Li Z, Liu H, Fu C. Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration. Front Bioeng Biotechnol 2023; 11:1140393. [PMID: 36815893 PMCID: PMC9932600 DOI: 10.3389/fbioe.2023.1140393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Bones are important for maintaining motor function and providing support for internal organs. Bone diseases can impose a heavy burden on individuals and society. Although bone has a certain ability to repair itself, it is often difficult to repair itself alone when faced with critical-sized defects, such as severe trauma, surgery, or tumors. There is still a heavy reliance on metal implants and autologous or allogeneic bone grafts for bone defects that are difficult to self-heal. However, these grafts still have problems that are difficult to circumvent, such as metal implants that may require secondary surgical removal, lack of bone graft donors, and immune rejection. The rapid advance in tissue engineering and a better comprehension of the physiological mechanisms of bone regeneration have led to a new focus on promoting endogenous bone self-regeneration through the use of biomaterials as the medium. Although bone regeneration involves a variety of cells and signaling factors, and these complex signaling pathways and mechanisms of interaction have not been fully understood, macrophages undoubtedly play an essential role in bone regeneration. This review summarizes the design strategies that need to be considered for biomaterials to regulate macrophage function in bone regeneration. Subsequently, this review provides an overview of therapeutic strategies for biomaterials to intervene in all stages of bone regeneration by regulating macrophages.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Zhuohan Li
- Department of Gynecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Hanyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Thant AA, Ruangpornvisuti V, Sangvanich P, Banlunara W, Limcharoen B, Thunyakitpisal P. Characterization of a bioscaffold containing polysaccharide acemannan and native collagen for pulp tissue regeneration. Int J Biol Macromol 2023; 225:286-297. [PMID: 36356879 DOI: 10.1016/j.ijbiomac.2022.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Dental pulp regeneration exploits tissue engineering concepts using stem cells/scaffolds/growth-factors. Extracted collagen is commonly used as a biomaterial-scaffold due to its biocompatibility/biodegradability and mimics the natural extracellular matrix. Adding biomolecules into a collagen-scaffold enhanced pulp regeneration. Acemannan, β-(1-4)-acetylated-polymannose, is a polysaccharide extracted from aloe vera. Acemannan is a regenerative biomaterial. Therefore, acemannan could be a biomolecule in a collagen-scaffold. Here, acemannan and native collagen were obtained and characterized. The AceCol-scaffold's physical properties were investigated using FTIR, SEM, contact angle, swelling, pore size, porosity, compressive modulus, and degradation assays. The AceCol-scaffold's biocompatibility, growth factor secretion, osteogenic protein expression, and calcification were evaluated in vitro. The AceCol-scaffolds demonstrated higher hydrophilicity, swelling, porosity, and larger pore size than the collagen scaffolds (p < 0.05). Better cell-cell and cell-scaffold adhesion, and dentin extracellular matrix protein (BSP/OPN/DSPP) expression were observed in the AceCol-scaffold, however, DSPP expression was not detected in the collagen group. Significantly increased cellular proliferation, VEGF and BMP2 expression, and mineralization were detected in the AceCol-scaffold compared with the collagen-scaffold (p < 0.05). Computer simulation revealed that acemannan's 3D structure changes to bind with collagen. In conclusion, the AceCol-scaffold synergistically provides better physical and biological properties than collagen. The AceCol-scaffold is a promising material for tissue regeneration.
Collapse
Affiliation(s)
- Aye Aye Thant
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pasutha Thunyakitpisal
- Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
38
|
Poudrel AS, Nguyen VH, Rosi G, Haiat G. Influence of the biomechanical environment on the femoral stem insertion and vibrational behavior: a 3-D finite element study. Biomech Model Mechanobiol 2022; 22:611-628. [PMID: 36542227 DOI: 10.1007/s10237-022-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
The long-term success of cementless surgery strongly depends on the implant primary stability. The femoral stem initial fixation relies on multiple geometrical and material factors, but their influence on the biomechanical phenomena occurring during the implant insertion is still poorly understood, as they are difficult to quantify in vivo. The aim of the present study is to evaluate the relationship between the resonance frequencies of the bone-implant-ancillary system and the stability of the femoral stem under various biomechanical environments. The interference fit IF, the trabecular bone Young's modulus [Formula: see text] and the bone-implant contact friction coefficient [Formula: see text] are varied to investigate their influence on the implant insertion phenomena and on the system vibration behavior. The results exhibit for all the configurations, a nonlinear increase in the bone-implant contact throughout femoral stem insertion, until the proximal contact is reached. While the pull-out force increases with [Formula: see text], IF and [Formula: see text], the bone-implant contact ratio decreases, which shows that a compromise on the set of parameters could be found in order to achieve the largest bone-implant contact while maintaining sufficient pull-out force. The modal analysis on the range [2-7] kHz shows that the resonance frequencies of the bone-implant-ancillary system increase with the bone-implant contact ratio and the trabecular bone Young's modulus, with a sensitivity that varies over the modes. Both the pull-out forces and the vibration behavior are consistent with previous experimental studies. This study demonstrates the potential of using vibration methods to guide the surgeons for optimizing implant stability in various patients and surgical configurations.
Collapse
|
39
|
Bin SJB, Fong KS, Chua BW, Gupta M. Development of Biocompatible Bulk MgZnCa Metallic Glass with Very High Corrosion Resistance in Simulated Body Fluid. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8989. [PMID: 36556794 PMCID: PMC9784780 DOI: 10.3390/ma15248989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Magnesium-zinc-calcium (Mg-Zn-Ca) alloys as a biomaterial have attracted much attention recently, owing to their excellent biocompatibility, similar mechanical properties to natural bone, and biodegradable properties. Despite the numerous advantages of MgZnCa alloys, the rapid degradation of magnesium proved challenging as the implant in unable to retain its structural integrity for a sufficient duration of time. For metallic glasses, the capability to produce a bulk sample that is sufficiently large for useful applications have been far less successful owing to challenging processing parameters that are required for rapid cooling. In this study, Mg65Zn30Ca5 melt-spun ribbons were produced using melt-spinning followed by spark plasma sintering under high pressure (60 MPa) at different temperatures (130-170 °C) to provide an insight into the consolidation, mechanical, and corrosion behavior. Microstructural interfaces were characterized using scanning electron microscopy while the thermal stability of the amorphous phase was characterized using differential scanning calorimetry and X-ray diffraction. Here, pellets with 10 mm diameter and 10 mm height with a complete amorphous structure were achieved at a sintering temperature of 150 °C with densification as high at ~98%. Sintering at higher temperatures, while achieving higher densification, resulted in the presence of nano-crystallites. The mechanical properties were characterized using microhardness and compression tests. The hardness values of the sintered products were relatively higher to those containing crystallite phases while the ultimate compressive strength increased with increasing sintering temperature. Bio-corrosion properties were characterized via electrochemical testing with PBS as the electrolyte at 37 °C. The corrosion results suggest that the sintered samples have a significantly improved corrosion resistance as compared to as-cast samples. More notably, SPS150 (samples sintered at 150 °C) exhibited the best corrosion resistance (35× compared to as-cast in the context of corrosion current density), owing to its single-phase amorphous nature. This study clearly shows the potential of spark plasma sintering in consolidating amorphous ribbons to near-full density bulk pellets with high corrosion resistance for bio-applications.
Collapse
Affiliation(s)
- Shi Jie Bryan Bin
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Kai Soon Fong
- Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, Singapore 637662, Singapore
| | - Beng Wah Chua
- Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, Singapore 637662, Singapore
| | - Manoj Gupta
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
40
|
Effective Treatment of Femur Diaphyseal Fracture with Compression Plate - A Finite Element and In Vivo Study Comparing the Healing Outcomes of Nailing and Plating. Indian J Orthop 2022; 57:146-158. [PMID: 36660487 PMCID: PMC9789296 DOI: 10.1007/s43465-022-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The rigidity in osteosynthesis causes primary healing, and it takes longer to heal. The flexibility provided to the fixation allows micromotion between fragments which accelerates secondary healing. METHODS In this study, the healing outcomes of nailing and plating in different fixation stabilities were investigated and compared by using a finite element tool. The clinical observational study was also performed to verify the results of the finite element analysis. The nonlinear contact analysis was performed on 5 different fixation configurations capturing nail and plate in immediate post-surgery. RESULTS The finite element analysis results showed that flexibility instead of rigidity in interlock nail implantation increases the axial and shear micromotion near the fracture site by 47.4% (P < 0.05) and 12.4% (P < 0.05), respectively. For LCDCP implantation, the flexible fixation increases the axial and shear micromotion near fracture site by 75.7% (P < 0.05) and 25.3% (P < 0.05), respectively. CONCLUSION Our findings suggest that flexible fixations of interlock nail and LCDCP provide a preferred mechanical environment for healing, and hence, the LCDCP in flexible mode can be an effective alternative to interlock nail for the femur diaphyseal fracture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43465-022-00795-1.
Collapse
|
41
|
Zhang Q, Guan Y. Review: Application of metal additive manufacturing in oral dentistry. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Moreno J, Merlo JL, Renno AC, Canizo J, Buchelly F, Pastore JI, Katunar MR, Cere S. In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading. Med Biol Eng Comput 2022; 60:3281-3293. [DOI: 10.1007/s11517-022-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
|
44
|
Wang R, Ni S, Ma L, Li M. Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Front Bioeng Biotechnol 2022; 10:973297. [PMID: 36091459 PMCID: PMC9452912 DOI: 10.3389/fbioe.2022.973297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Titanium and titanium alloy implants are essential for bone tissue regeneration engineering. The current trend is toward the manufacture of implants from materials that mimic the structure, composition and elasticity of bones. Titanium and titanium alloy implants, the most common materials for implants, can be used as a bone conduction material but cannot promote osteogenesis. In clinical practice, there is a high demand for implant surfaces that stimulate bone formation and accelerate bone binding, thus shortening the implantation-to-loading time and enhancing implantation success. To avoid stress shielding, the elastic modulus of porous titanium and titanium alloy implants must match that of bone. Micro-arc oxidation technology has been utilized to increase the surface activity and build a somewhat hard coating on porous titanium and titanium alloy implants. More recently, a growing number of researchers have combined micro-arc oxidation with hydrothermal, ultrasonic, and laser treatments, coatings that inhibit bacterial growth, and acid etching with sand blasting methods to improve bonding to bone. This paper summarizes the reaction at the interface between bone and implant material, the porous design principle of scaffold material, MAO technology and the combination of MAO with other technologies in the field of porous titanium and titanium alloys to encourage their application in the development of medical implants.
Collapse
Affiliation(s)
- Rui Wang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Shilei Ni
- Department of Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Ma
- Department of Fever Clinic, The Second Hospital of Jilin University, Changchun, China
| | - Meihua Li
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Meihua Li,
| |
Collapse
|
45
|
Li Q, Yang Q, Liu X, Liang W, Zhang X, Wang Y. Effect and mechanism of a novel Mg-Nd-Gd-Sr alloy on osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomater Appl 2022; 37:829-837. [PMID: 35977627 DOI: 10.1177/08853282221121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect and mechanism of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy on the osteogenic differentiation of bone marrow mesenchymal stem cells extracted from Sprague-Dawley rats. Cultured cells were divided into five groups: a control group cultured in osteogenic induction medium alone without Mg-Nd-Gd-Sr alloy extract, and four experimental groups cultured in the same medium with 25%, 50%, 75%, and 100% Mg-Nd-Gd-Sr alloy extracts, respectively. After 14 days of culture, ALP activity was determined and expressions of osteogenesis-related factors Runx2, OCN, and OPN at the mRNA level and Runx2, OCN, and OPN at the protein level were detected by RT-PCR and western blot, respectively. After 21 days of culture, mineralized nodules were detected by alizarin red staining. The results showed that bone marrow mesenchymal stem cells from Sprague-Dawley rats were successfully isolated in vitro using the whole bone marrow adherence method. Flow cytometry revealed that the cells expressed high levels of CD44 and CD90, but low levels of CD31 and CD45. Alizarin red staining indicated the formation of mineralized nodules in all five groups. Compared with the control group, the number of mineralized nodules was increased significantly in the four experimental groups (p < 0.05). The ALP activity in each group was significantly higher on day 14 than on day 7, and was significantly higher in the four experimental groups compared with the control group (p < 0.05). Moreover, the ALP activity was highest when the concentration of Mg-Nd-Gd-Sr alloy extract was 75% (p < 0.05). RT-PCR results showed that, compared with the control group, the mRNA expression of Runx2, OPN, and OCN was significantly higher in the four experimental groups (p < 0.05), and the highest mRNA expression of Runx2, OPN, and OCN was observed in the 75% experimental group (p < 0.05). Western blotting showed that Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of Runx2, OCN, and OPN compared with the control group (p < 0.05). Our data indicate that the novel Mg-Nd-Gd-Sr alloy can promotes the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from Sprague-Dawley rats. During this process, there is an increase in the expressions of Runx2, OPN, and OCN mRNAs and Runx2, OCN, and OPN proteins.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Qinglin Yang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaorong Liu
- College of Clinical Medicine, 12426Northwest University for Nationalities, Lanzhou, China.,Department of Laboratory, the Second People's Hospital of Gansu Province, Lanzhou, China
| | - Wenqiang Liang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaobo Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Yongping Wang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Electrochemical and electrophoretic coatings of medical implants by nanomaterials. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Hosseini-Faradonbeh SA, Katoozian HR. Biomechanical evaluations of the long-term stability of dental implant using finite element modeling method: a systematic review. J Adv Prosthodont 2022; 14:182-202. [PMID: 35855319 PMCID: PMC9259347 DOI: 10.4047/jap.2022.14.3.182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The aim of this study is to summarize various biomechanical aspects in evaluating the long-term stability of dental implants based on finite element method (FEM). MATERIALS AND METHODS A comprehensive search was performed among published studies over the last 20 years in three databases; PubMed, Scopus, and Google Scholar. The studies are arranged in a comparative table based on their publication date. Also, the variety of modeling is shown in the form of graphs and tables. Various aspects of the studies conducted were discussed here. RESULTS By reviewing the titles and abstracts, 9 main categories were extracted and discussed as follows: implant materials, the focus of the study on bone or implant as well as the interface area, type of loading, element shape, parts of the model, boundary conditions, failure criteria, statistical analysis, and experimental tests performed to validate the results. It was found that most of the studied articles contain a model of the jaw bone (cortical and cancellous bone). The material properties were generally derived from the literature. Approximately 43% of the studies attempted to examine the implant and surrounding bone simultaneously. Almost 42% of the studies performed experimental tests to validate the modeling. CONCLUSION Based on the results of the studies reviewed, there is no "optimal" design guideline, but more reliable design of implant is possible. This review study can be a starting point for more detailed investigations of dental implant longevity.
Collapse
Affiliation(s)
| | - Hamid Reza Katoozian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
48
|
Abstract
The principal optimum process parameters for printing Ti5Mo fused tracks and layers were determined. The laser power, scanning speed and hatch distance were varied to study their influence on fused track and layer formation. The morphology, geometry, homogeneity, surface roughness, solidification structure, microstructure and microhardness of the fused tracks and layers were analysed. It was observed that, based on the laser energy density, different fused tracks and layers can be achieved. It is only at a certain critical threshold that optimum process parameters could be obtained. Laser power of 200 W with a corresponding scanning speed of 1.0 m/s at a hatch distance of 80 µm was obtained as the optimum process parameter set. As opposed to previous research by the authors, the Mo powder particles in the current investigation melted completely in the Ti5Mo alloy matrix due to the small Mo powder particle size (1 µm). A 50% offset rescanning strategy also improved the surface quality of the layers. The solidification front is predominantly cellular, and the microhardness values obtained fall within the values reported in the current literature.
Collapse
|
49
|
Design, Simulation and Performance Research of New Biomaterial Mg30Zn30Sn30Sr5Bi5. COATINGS 2022. [DOI: 10.3390/coatings12040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study focused on the design and the preparation method of a new biomaterial, Mg30Zn30Sn30Sr5Bi5 (at%) alloy, and its simulation and property analyses. Based on the comprehensive consideration of the preparation of high-entropy alloys, the selection of biomaterial elements, and the existing research results of common Mg-based materials, the atomic percentage of various elements, that is, Mg:Zn:Sn:Sr:Bi = 30:30:30:5:5, was determined. Using the theoretical methods of thermodynamic performance analysis and solidification performance analysis, the proposed composition was simulated and analyzed. The analysis results showed that the mechanical properties of the new material can meet the design requirements, and it can be prepared in physical form. XRD, SEM, PSD, compression tests, and other experimental tests were conducted on the material, and the alloy composition and distribution law showed various characteristics, which conformed to the “chaotic” characteristics of high-entropy alloys. The elastic modulus of the material was 17.98 GPa, which is within the 0–20 GPa elastic modulus range of human bone. This means that it can avoid the occurrence of stress shielding problems more effectively during the material implantation process.
Collapse
|
50
|
Personalized Artificial Tibia Bone Structure Design and Processing Based on Laser Powder Bed Fusion. MACHINES 2022. [DOI: 10.3390/machines10030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone defects caused by bone diseases and bone trauma need to be implanted or replaced by surgery. Therefore, it is of great significance to design and prepare a tibial implant with good biocompatibility and excellent comprehensive mechanical properties. In this paper, with 316L stainless steel powder as the main material, a personalized artificial tibia design and processing method based on laser powder bed fusion is proposed. Firstly, the personalized model of the damaged part of the patient is reconstructed. Then, the porous structure of human tibia is manufactured by selective laser melting technology. To research the factors affecting the quality of selective laser melting porous structure, a laser heat source model, heat transfer model and molten pool model of laser powder bed fusion process were constructed; then, by changing the laser process parameters (laser power, laser beam diameter, scanning speed, powder layer thickness, etc.) to conduct multiple sets of simulation experiments, it is obtained that when the “laser power is 180 W, the laser scanning speed is 1000 mm/s, the laser beam diameter is 80 μm, the powder layer thickness is 50 μm”, the porous stainless steel parts with better quality can be obtained. Finally, the porous structure was fabricated by selective laser processing, and its properties were tested and analyzed. The experimental results show that the cell side length of cube is 1.2 mm, the elastic modulus of octahedral porous structure with pillar diameter of 0.35 mm is about 17.88 GPa, which match well with tibial bone tissue.
Collapse
|