1
|
Tuo Y, Peng S, Li Y, Dang J, Feng Z, Ding L, Du S, Liu X, Wang L. Quinoa protein and its hydrolysate improve the fatigue resistance of mice: a potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism. J Nutr Biochem 2025; 139:109863. [PMID: 39952621 DOI: 10.1016/j.jnutbio.2025.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Fatigue is commonly marked by reduced endurance and impaired function, often linked to overexertion and chronic conditions. Quinoa (Chenopodium quinoa Willd.), with its rich amino acids and resilience to harsh conditions, offers a novel strategy for combating fatigue. This study explored the antifatigue effects of quinoa protein (QPro) and its hydrolysate (QPH) in weight-loaded swimming mice. After 4 weeks of oral administration, QPro and QPH significantly prolonged swimming duration, reduced serum fatigue biomarkers (lactic acid, urea nitrogen, lactate dehydrogenase, creatine kinase), and elevated glycogen reserves in the liver and muscle. RT-qPCR analysis indicated that QPH activated hepatic gluconeogenesis via G6Pase and PEPCK signaling and enhanced mitochondrial function through PGC-1α/NRF1/TFAM signaling in muscle. Additionally, QPro and QPH boosted antioxidant defenses by improving antioxidant enzyme activity, reducing malondialdehyde through the Nrf2/HO-1 pathway, and suppressing inflammation by reducing TNF-α and IL-6 levels. Network pharmacology identified 31 key targets involved in energy metabolism and inflammation, providing novel insights into the molecular mechanisms underlying the antifatigue properties of quinoa peptides. These findings highlight the potential of QPro and QPH as natural and bioactive ingredients in functional foods for enhancing endurance and mitigating fatigue.
Collapse
Affiliation(s)
- Yuanrong Tuo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Siwang Peng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yiju Li
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiamin Dang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhi Feng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Long Ding
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China.
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Zheng X, Fu Z, Qu H, Lu H, Jiang N, Liu N, Li M, Wang Z. Hybrid hydrolysates of soy protein and lactoferrin exerts synergistic antioxidant and anti-fatigue effect by modulating Keap1/Nrf2/HO-1 pathways. Int J Biol Macromol 2025; 307:142151. [PMID: 40101822 DOI: 10.1016/j.ijbiomac.2025.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Oxidative stress is an important cause of exercise fatigue formation. Nutritional intervention is an important way to modulate exercise fatigue. Lactoferrin (LF) and soybean protein (SP) are potential antioxidant bioactive components. Our findings demonstrate that SP-LF hybrid hydrolysates had effective 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging activity and iron ion reducing ability. The synergistic effect between these hybrid hydrolysates were found to be superior to the single hydrolysate in terms of antioxidant level by the joint index analysis. These hybrid hydrolysates are characterized by high levels of amino acids with potential anti-fatigue effect: tyrosine (Tyr), phenylalanine (Phe), hydrophobic amino acid (HAAs) and branched-chain amino acids (BCAAs). In murine models, hybrid hydrolysates significantly prolonged weight-bearing swimming time, increased muscle/liver glycogen levels, decreased lactate, urea nitrogen, and malondialdehyde levels, and increased glutathione peroxidase, superoxide dismutase, catalase and ATPase activities. Pearson's correlation analysis established significant associations between antioxidant capacity and anti-fatigue efficacy. It alleviated fatigue through activating the Keap1/Nrf2/HO-1 signaling pathway, while increasing the expression levels of PGC-1α. These results collectively suggest that SP-LF hybrid hydrolysates demonstrate significant synergistic antioxidant and anti-fatigue activity and could be incorporated into functional foods as a dietary supplement to reduce fatigue.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Zeshi Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Haowen Qu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Hongliang Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Nanyue Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Li S, Liu J, Yang Q, Lyu S, Han Q, Fu M, Du Z, Liu X, Zhang T. Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis. Food Funct 2025; 16:1683-1695. [PMID: 39871582 DOI: 10.1039/d4fo04220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice. Furthermore, there was a reduction in oxidative stress, inflammatory response, and the accumulation of unexpected metabolites generated under fatigue conditions. The intake of BEWPs increased the abundances of Lactobacillus, Akkermansia, and unclassified_f_Lachnospiraceae, while decreasing the abundance of Bacteroides. BEWPs also regulated the levels of key metabolites in mouse muscles, including L-glutamic acid by arginine biosynthesis and bile secretion pathways. Notably, Spearman's correlation analysis indicated that there was a significant correlation between these altered metabolites, microbial populations, and indicators of fatigue. In summary, our research demonstrated that BEWPs alleviated fatigue through the gut-muscle axis, which provided new insights into fatigue management and prevention.
Collapse
Affiliation(s)
- Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qingwen Han
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Menghan Fu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| |
Collapse
|
4
|
Zhang D, Yuan Y, Zeng Q, Xiong J, Gan Y, Jiang K, Xie N. Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design. Front Pharmacol 2025; 15:1468977. [PMID: 39898323 PMCID: PMC11783187 DOI: 10.3389/fphar.2024.1468977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Breast cancer causes the deaths of approximately 685,000 women annually, posing a severe threat to women's health. Consequently, there is an urgent need for low-cost, low-toxicity and effective therapeutic methods to prevent or mitigate breast cancer progression. PDBP are natural, non-toxic, and affordable substances and have demonstrated excellent anti-breast cancer activities in inhibiting proliferation, migration, and invasion, and promoting apoptosis both in vitro and in vivo, thus effectively preventing or inhibiting breast cancer. However, there are no comprehensive reviews summarizing the effects and mechanisms of PDBP on the treatment of breast cancer. Therefore, this review described the inhibitory effects and mechanisms of active peptides from different plant protein sources on breast cancer. Additionally, we summarized the advantages and preparation methods of plant protein-derived anticancer peptide-encapsulated nanoparticles and their effects in inhibiting breast cancer. This review provides a scientific basis for understanding the anti-breast cancer mechanisms of PDBP and offers guidance for the development of therapeutic adjuvants enriched with these peptides.
Collapse
Affiliation(s)
- Deju Zhang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Yuan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingdong Zeng
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Xiong
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiming Gan
- Plant Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kai Jiang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Hu N, Sun J, Cao Y, Zhao H, Sun M, Li G, Liu X, Cong S. Anti-Fatigue Activity of Corn Protein Hydrolysate Fermented by Lactic Acid Bacteria. Nutrients 2025; 17:199. [PMID: 39861329 PMCID: PMC11767320 DOI: 10.3390/nu17020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora. METHODS The fatigue model of mice was constructed by exercise endurance experiment. The anti-fatigue level of FCH was evaluated by measuring physiological and biochemical indexes in mouse serum, liver and skeletal muscle. The relationship between FCH, intestinal flora and fatigue was explored through the analysis of intestinal microbial diversity in mice, and the anti-fatigue mechanism of FCH was further analyzed. RESULTS The results showed that the weight-bearing swimming time of mice was prolonged by 1.96 times, and the running time of mice was prolonged by 2.63 times in the high-dose FCH (FCH-H) group. Moreover, the lactic acid contents in the blood were reduced by 16.00%, and lactate dehydrogenase activity and urea nitrogen contents basically returned to the normal level. Meanwhile, the malondialdehyde contents were reduced by 31.24%, and superoxide dismutase activity and glutathione contents were increased by 1.84 times and 1.72 times, respectively. In addition, the glycogen contents of the body were restored, and the muscle glycogen and liver glycogen were increased by 1.81 and 5.81 times, respectively. Analysis of intestinal microbial flora diversity in mice showed that the highest relative abundance was Lactobacillus, and the FCH group could recover and even increase its relative abundance. Lactobacillus was significantly positively correlated with muscle glycogen and SOD. CONCLUSIONS FCH can alleviate fatigue by regulating fatigue-related indicators and improving the intestinal microbial flora of the organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shanzi Cong
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
6
|
Duan H, Liu G, Liu J, Wang Z, Bao S, Chang X, Yan W. Review: Application of Protein-Based Raw Materials in Health Foods in China. Foods 2024; 14:20. [PMID: 39796310 PMCID: PMC11720526 DOI: 10.3390/foods14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Raw protein materials are beneficial for human health, so they are being increasingly used in health foods. In recent years, there has been more and more research on and applications of raw protein materials, but few teams have conducted a detailed review of the application status of raw protein materials in China's health foods, the basis for their compliance and use, and the research on their health care functions. Therefore, this review evaluates the application of animal and plant proteins in China's health foods, the impact of animal and plant proteins on human health, and future research recommendations for animal and plant proteins. This review analyzes and discusses the data on approved health foods that have been verified to contain raw protein materials (mainly including the number of protein health foods approved over the years, the classification of raw protein materials and types of relevant regulations, the analysis of the frequency of use of raw protein materials, and the functions of approved health foods). Through this process, the application of raw protein materials in health foods in China is systematically reviewed. In short, through data analysis, this study found that in 1996~2024, a total of 1142 health foods containing raw protein materials were approved in China, which are mainly divided into animal proteins, vegetable proteins, microbial proteins, and peptide raw materials, and peptide raw materials comprise the majority. The compliance applications of these ingredients are mainly related to China's five categories of food regulations. The results show the following for health foods containing raw protein materials: in terms of the dosage form, they are mainly solid preparations; according to their functional claims, they mainly help to enhance immunity, help improve bone density, help improve skin moisture, and relieve physical fatigue; and in the application of raw materials, it is found that the use of raw materials such as casein phosphopeptide, soybean protein isolate, whey protein, collagen, spirulina, and other raw materials in products is relatively high. Finally, based on these studies, this paper discusses suggestions for raw protein materials in the future development of health food in China and also discusses the limitations of the current research in this review.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Gaigai Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jiaqi Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Zhuoye Wang
- Xiangya School of Public Health, Central South University, Changsha 410083, China; (Z.W.); (S.B.)
| | - Shuyuan Bao
- Xiangya School of Public Health, Central South University, Changsha 410083, China; (Z.W.); (S.B.)
| | - Xinyue Chang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
| |
Collapse
|
7
|
Mao SY, Suo SK, Wang YM, Chi CF, Wang B. Systematical Investigation on Anti-Fatigue Function and Underlying Mechanism of High Fischer Ratio Oligopeptides from Antarctic Krill on Exercise-Induced Fatigue in Mice. Mar Drugs 2024; 22:322. [PMID: 39057431 PMCID: PMC11278274 DOI: 10.3390/md22070322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
High Fischer ratio oligopeptides (HFOs) have a variety of biological activities, but their mechanisms of action for anti-fatigue are less systematically studied at present. This study aimed to systematically evaluate the anti-fatigue efficacy of HFOs from Antarctic krill (HFOs-AK) and explore its mechanism of action through establishing the fatigue model of endurance swimming in mice. Therefore, according to the comparison with the endurance swimming model group, HFOs-AK were able to dose-dependently prolong the endurance swimming time, reduce the levels of the metabolites (lactic acid, blood urea nitrogen, and blood ammonia), increase the content of blood glucose, muscle glycogen, and liver glycogen, reduce lactate dehydrogenase and creatine kinase extravasation, and protect muscle tissue from damage in the endurance swimming mice. HFOs-AK were shown to enhance Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities and increase ATP content in muscle tissue. Meanwhile, HFOs-AK also showed significantly antioxidant ability by increasing the activities of superoxide dismutase and glutathione peroxidase in the liver and decreasing the level of malondialdehyde. Further studies showed that HFOs-AK could regulate the body's energy metabolism and thus exert its anti-fatigue effects by activating the AMPK signaling pathway and up-regulating the expression of p-AMPK and PGC-α proteins. Therefore, HFOs-AK can be used as an auxiliary functional dietary molecules to exert its good anti-fatigue activity and be applied to anti-fatigue functional foods.
Collapse
Affiliation(s)
- Sha-Yi Mao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| | - Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| |
Collapse
|
8
|
Qi S, Zeng T, Sun L, Yin M, Wu P, Ma P, Xu L, Xiao P. The effect of vine tea (Ampelopsis grossedentata) extract on fatigue alleviation via improving muscle mass. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117810. [PMID: 38266948 DOI: 10.1016/j.jep.2024.117810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vine Tea (VT, Ampelopsis grossedentata), boasts a venerable tradition in China, with a recorded consumption history exceeding 1200 years. Predominantly utilized by ethnic groups in southwest China, this herbal tea is celebrated for its multifaceted therapeutic attributes. Traditionally, VT has been employed to alleviate heat and remove toxins, exhibit anti-inflammatory properties, soothe sore throats, lower blood pressure, and fortify bones and muscles. In the realm of functional foods derived from plant resources, VT has garnered attention for its potential in crafting anti-fatigue beverages or foods, attributed to its promising efficacy and minimal side effects. Currently, in accordance with the Food Safety Standards set forth by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China, VT serves as a raw material in various beverages. AIM OF THE STUDY VT has an anti-fatigue or similar effect in folk. However, the underlying molecular mechanisms contributing to VT's anti-fatigue effects remain elusive. This study endeavors to investigate the influence of Vine Tea Aqueous Extract (VTE) on fatigue mitigation and to elucidate its operative mechanisms, with the objective of developing VTE as a functional beverage. MATERIALS AND METHODS The preparation of VTE involved heat extraction and freeze-drying processes, followed by the identification of its metabolites using UPLC-QTOF-MS to ascertain the chemical composition of VTE. A fatigue model was established using a forced swimming test in mice. Potential molecular targets were identified through network pharmacology, transcriptome analysis, and molecular docking. Furthermore, RT-PCR and Western blot techniques were employed to assess mRNA and protein expressions related to the AMPK and FoxO pathways. RESULTS VTE significantly prolonged the duration of swimming time in an exhaustive swimming test in a dose-dependent manner, while simultaneously reducing the concentrations of blood lactic acid (LA), lactate dehydrogenase (LDH), serum urea nitrogen (SUN), and creatine kinase (CK). Notably, the performance of the high-dose VTE group surpassed that of the well-recognized ginsenoside. VTE demonstrated a regulatory effect akin to ginsenoside on the AMPK energy metabolism pathway and induced downregulation in the expression of Gadd45α, Cdkn1a, FOXO1, and Fbxo32 genes, suggesting an enhancement in skeletal muscle mass. These findings indicate that VTE can improve energy metabolism and muscle mass concurrently. CONCLUSIONS VTE exhibits significant anti-fatigue effects, and its mechanism is intricately linked to the modulation of the AMPK and FoxO pathways. Crucially, no caffeine or other addictive substances with known side effects were detected in VTE. Consequently, vine tea shows substantial promise as a natural resource for the development of anti-fatigue beverages within the food industry.
Collapse
Affiliation(s)
- Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meiling Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Zhao R, Wu R, Jin J, Ning K, Wang Z, Yi X, Kapilevich L, Liu J. Signaling pathways regulated by natural active ingredients in the fight against exercise fatigue-a review. Front Pharmacol 2023; 14:1269878. [PMID: 38155906 PMCID: PMC10752993 DOI: 10.3389/fphar.2023.1269878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Exercise fatigue is a normal protective mechanism of the body. However, long-term fatigue hinders normal metabolism and exercise capacity. The generation and recovery from exercise fatigue involves alterations in multiple signaling pathways, mainly AMPK, PI3K/Akt, Nrf2/ARE, NF-κB, PINK1/Parkin, and BDNF/TrkB, as well as MAPK signaling pathways that mediate energy supply, reduction of metabolites, oxidative stress homeostasis, muscle fiber type switching, and central protective effects. In recent studies, a rich variety of natural active ingredients have been identified in traditional Chinese medicines and plant extracts with anti-fatigue effects, opening up the field of research in new anti-fatigue drugs. In this review we give an overview of the signaling pathways associated with the activity of natural food active ingredients against exercise fatigue. Such a comprehensive review is necessary to understand the potential of these materials as preventive measures and treatments of exercise fatigue. We expect the findings highlighted and discussed here will help guide the development of new health products and provide a theoretical and scientific basis for future research on exercise fatigue.
Collapse
Affiliation(s)
- Rongyue Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ruomeng Wu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Junjie Jin
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- Exercise and Health Research Center, Department of Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russia
| | - Jiao Liu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
10
|
Li M, Wang J, Zhang J, Lv Y, Guo S, Van der Meeren P. In vitro protein digestibility of different soy-based products: effects of microstructure, physico-chemical properties and protein aggregation. Food Funct 2023; 14:10964-10976. [PMID: 38013460 DOI: 10.1039/d3fo02410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This study investigates the effects of protein structure and food microstructure on the in vitro protein gastrointestinal digestibility of different soy-based products, such as soy drink, reconstituted soy drink powder, firm tofu, and yuba. The results of the chemical cross-linking analysis showed that hydrogen bonds and hydrophobic interactions were the main forces driving protein aggregation in (reconstituted) soy drink powder and firm tofu, whereas disulphide bonds were significantly more important for soy drink and yuba. The β-sheet content of soy drink (36.5%) was lower than that of yuba (43.3%), but significantly higher than those of soy drink powder (23.2%) and firm tofu (29.8%). The in vitro protein digestibility decreased in the order of firm tofu > reconstituted soy drink powder > yuba > soy drink. Principal component analysis showed that protein gastrointestinal digestibility was positively correlated with the surface SH content and soluble protein content released by SDS + urea (SB-SA) but negatively correlated with the disulphide bonds and β-sheet content for the four soybean products.
Collapse
Affiliation(s)
- Mengdi Li
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jing Wang
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Jiayu Zhang
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Ying Lv
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
11
|
Zhang G, Lu B, Wang E, Wang W, Li Z, Jiao L, Li H, Wu W. Panax ginseng improves physical recovery and energy utilization on chronic fatigue in rats through the PI3K/AKT/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:316-323. [PMID: 36695132 PMCID: PMC9879180 DOI: 10.1080/13880209.2023.2169719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/21/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
CONTEXT Panax ginseng C. A. Meyer (Araliaceae) is a tonic herb used in ancient Asia. OBJECTIVE This study investigated the antifatigue effect of P. ginseng on chronic fatigue rats. MATERIALS AND METHODS Sprague-Dawley rats were divided into control, model and EEP (ethanol extraction of P. ginseng roots) (50, 100 and 200 mg/kg) groups (n = 8). The rats were subcutaneously handled with loaded swimming once daily for 26 days, except for the control group. The animals were intragastrically treated with EEP from the 15th day. On day 30, serum, liver and muscles were collected, and the PI3K/Akt/mTOR signalling pathway was evaluated. RESULTS The swimming times to exhaust of the rats with EEP were significantly longer than that without it. EEP spared the amount of muscle glycogen, hepatic glycogen and blood sugar under the chronic state. In addition, EEP significantly (p < 0.05) decreased serum triglycerides (1.24 ± 0.17, 1.29 ± 0.04 and 1.20 ± 0.21 vs. 1.58 ± 0.13 mmol/L) and total cholesterol (1.64 ± 0.36, 1.70 ± 0.15 and 1.41 ± 0.19 vs. 2.22 ± 0.19 mmol/L) compared to the model group. Regarding the regulation of energy, EEP had a positive impact on promoting ATPase activities and relative protein expression of the PI3K/Akt/mTOR pathway. CONCLUSIONS Our results suggested that EEP effectively relieved chronic fatigue, providing evidence that P. ginseng could be a potential dietary supplement to accelerate recovery from fatigue.
Collapse
Affiliation(s)
- Guolei Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - BoFan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Enhui Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Zheng Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Wang Y, Sun H, He X, Chen M, Zang H, Liu X, Piao H. Phytochemical Analysis, Antioxidant and Enzyme-Inhibitory Activities, and Multivariate Analysis of Insect Gall Extracts of Picea koraiensis Nakai. Molecules 2023; 28:6021. [PMID: 37630273 PMCID: PMC10459859 DOI: 10.3390/molecules28166021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Picea koraiensis Nakai (PK) is an evergreen tree. It plays an important role in landscaping and road greening. Insect galls of PK are formed by parasitism of the adelgid Adelges laricis. Except for phenolics, other chemical constituents and biological activity of insect gall from PK are still unknown. Thus, here, we performed phytochemical and biological activity analyses of PK insect gall extracts, aiming to turn waste into treasure and serve human health. PK insect gall extracts were prepared using seven solvents. Antioxidant activities of the extracts were examined via antioxidant assays (radical and oxidizing substance quenching, metal chelating, and reducing power). The inhibitory activities of the extracts were determined toward the key human-disease-related enzymes α-glucosidase, α-amylase, cholinesterase, tyrosinase, urease, and xanthine oxidase. The content of numerous active constituents was high in the methanol and ethanol extracts of PK insect gall, and these extracts had the highest antioxidant and enzyme-inhibitory activities. They also showed excellent stability and low toxicity. These extracts have potential for use as stabilizers of olive and sunflower seed oils.
Collapse
Affiliation(s)
- Yanqiu Wang
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Tonghua Health School, Tonghua 134000, China
| | - Hui Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Xu He
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Meihua Chen
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Hao Zang
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Xuekun Liu
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Huri Piao
- College of Pharmacy, Yanbian University, Yanji 133000, China
| |
Collapse
|
13
|
Sun Y, Feng JX, Wei ZB, Sun H, Li L, Zhu JY, Xia GQ, Zang H. Phytochemical Analysis, Antioxidant Activities In Vitro and In Vivo, and Theoretical Calculation of Different Extracts of Euphorbia fischeriana. Molecules 2023; 28:5172. [PMID: 37446834 DOI: 10.3390/molecules28135172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Euphorbia fischeriana has a long-standing history of use in traditional medicine for the treatment of tuberculosis diseases. However, the plant's therapeutic potential extends beyond this specific ailment. The present study aimed to investigate the antioxidant properties of Euphorbia fischeriana and lay the groundwork for further research on its potential therapeutic applications. Phytochemical tests were performed on the plant, and 11 types of phytochemicals were identified. Ultraviolet-visible spectrophotometry was used to evaluate the active components and antioxidant properties of eight different solvent extracts, ultimately selecting acetone extract for further research. UHPLC-ESI-Q-TOF-MS identified 43 compounds in the acetone extract, and chemical calculations were used to isolate those with high content and antioxidant activity. Three stability experiments confirmed the extract's stability, while cell viability and oral acute toxicity studies demonstrated its relatively low toxicity. In rats, the acetone extract showed significant protective effects against D-galactosamine-induced liver damage through histopathological examination and biochemical analysis. These results suggest that Euphorbia fischeriana's acetone extract has potential in treating diseases related to oxidative imbalances. Therefore, this study highlights the plant's potential therapeutic applications while providing insight into its antioxidant properties.
Collapse
Affiliation(s)
- Yue Sun
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Jia-Xin Feng
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Zhong-Bao Wei
- Institute of Scientific and Technical Information of Jilin, Changchun 130033, China
| | - Hui Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Li Li
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Jun-Yi Zhu
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Guang-Qing Xia
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Zang
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| |
Collapse
|
14
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
15
|
Bian X, Wang Y, Yang R, Ma Y, Dong W, Guo C, Gao W. Anti-fatigue properties of the ethanol extract of Moringa oleifera leaves in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37062935 DOI: 10.1002/jsfa.12628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Moringa oleifera (M. oleifera) leaves are rich in nutrients and bioactive ingredients. This study was aimed at evaluating the anti-fatigue effect of the ethanol extract of M. oleifera leaves (MLEE) on mice and its primary mechanism of action using a weight-loaded forced swimming test. In the present study, MLEE was prepared by ultrasound-assisted extraction, and its anti-fatigue effect and antioxidant capacity were evaluated in mice. Mice were administrated MLEE (320 mg kg-1 body weight) for 15 days. RESULTS MLEE supplementation significantly increased levels of glucose and non-esterified fatty acids (NEFA), while decreasing levels of lactate and blood urea nitrogen in serum (P < 0.05); the levels of glycogen in the liver and muscle were also increased, as was the activity of glycogen synthase and the level of NEFA in muscle (P < 0.05). According to a Western blot analysis, MLEE increased the expression of AMPKα1, JNK, AKT and STAT3 in the muscle of mice. CONCLUSION Our findings indicate that MLEE has an anti-fatigue effect via the AMPK-linked route, which enables it to control energy metabolism and enhance antioxidant enzyme activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Yawen Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Renren Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Yuying Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Weiyun Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Zhou Y, Wu Q, Yu W, Ye F, Cao Y, Akan OD, Wu X, Xie T, Lu H, Cao F, Luo F, Lin Q. Gastrodin ameliorates exercise-induced fatigue via modulating Nrf2 pathway and inhibiting inflammation in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|