1
|
Zhang W, Teng H, Zhao T, Eglitis RI, Wang X, Yu Z, Qu S, Wang H, Zhao Y, Fan B, Liu S, Zhao Y. The chiisanoside derivatives present in the leaves of Acanthopanax sessiliflorus activate autophagy through the LRP6/GSK3β axis and thereafter inhibit oxidative stress, thereby counteracting cisplatin-induced ototoxicity. Front Pharmacol 2025; 15:1518810. [PMID: 39881873 PMCID: PMC11774919 DOI: 10.3389/fphar.2024.1518810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Cisplatin is extensively employed in the treatment of multiple solid malignant tumors. Nevertheless, side effects such as cisplatin-induced ototoxicity (CIO) pose obstacles to tumor therapy.The important natural product chiisanoside from Acanthopanax sessiliflorus has abundant activity against CIO. Methods In this study, 26 chiisanoside derivatives were screened, and compound 19 demonstrated significant protective activity against CIO damage. A cisplatin-induced HEI-OC1 cell injury model and a mouse ototoxicity model were established. The regulatory effects were revealed through transcriptome sequencing, and the protein expression levels were analyzed by molecular docking, ELISA, Western blotting, and immunofluorescence. Results It was found that compound 19 inhibited cell apoptosis, alleviated abnormal hearing and spiral ganglion damage. Transcriptome sequencing revealed its regulatory effects. Compound 19 treatment increased autophagy levels, thereby alleviating mitochondrial dysfunction and reducing the accumulation of reactive oxygen species (ROS).In-depth studies have found that the autophagy inhibitor 3-methyladenine (3-MA) weakens the regulatory effect of compound 19 on autophagy and inhibits the clearance of damaged cells, resulting in oxidative stress damage, apoptosis and necrosis. By knocking down LRP6, it was found that the protective effect of compound 19 was eliminated, the autophagy level was significantly reduced, oxidative stress and ROS production were induced, and apoptosis after cisplatin exposure was promoted. Finally, the inhibitor LiCl was used to suppress the expression of GSK3β. It was found that inhibiting GSK3β could protect cells from cisplatin-induced damage by activating autophagy. Discussion These findings suggest that compound 19 is capable of preventing ototoxicity by activating autophagy via the LRP6/GSK3β axis and consequently inhibiting oxidative stress, offering a new approach for treating CIO and sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Tianyi Zhao
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Changbai Mountain Biology Germplasm Resources, Tonghua Normal University, Tonghua, Jilin, China
| | | | - Xv Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhengxuan Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Shurong Qu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Haijing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Yaru Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Bowen Fan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
2
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
3
|
Liu Y, Wang Y, Jiang P, Han D, Wu J, Wang S, Zou H, Jiang Y, Li X, Pan J, Hao Z, Guan W, Naseem A, Mohammed Algradi A, Kuang H, Yang B. Triterpenoids from the leaves of Eleutherococcus sessiliflorus, and their antiproliferative activities in TNF-α induced HFLS-RA cells. PHYTOCHEMISTRY 2024; 223:114133. [PMID: 38710375 DOI: 10.1016/j.phytochem.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Five undescribed elesesterpenes L-U, along with nine known 3,4-seco-lupane-type triterpenoids were isolated from the leaves of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu. Elesesterpene L-S, and U were lupane-type triterpenoids, whereas elesesterpene T was an oleanane-type triterpenoid, probably artifact, as suggested by LC-MS analysis. Out of the nine known compounds, five were initially identified in E. sessiliflorus. Moreover, their structures were definitively determined using spectroscopic analyses, and the absolute configurations of elesesterpenes L-M and sachunogenin 3-O-glucoside were clarified using X-ray crystallographic techniques. The absolute configuration of elesesterpene T was determined by measuring and calculating its ECD. In addition, all compounds were tested to examine their ability to inhibit the proliferation of HFLS-RA cells induced by TNF-α in vitro. Elesesterpene M, chiisanogenin, chiisanoside, and 3-methylisochiisanoside significantly inhibited HFLS-RA proliferation.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuqing Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dong Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Haidan Zou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yikai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaomao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
4
|
Yun SE, Choi BBR, Nam SH, Kim GC. Antimicrobial Effects of Edible Mixed Herbal Extracts on Oral Microorganisms: An In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1771. [PMID: 37893489 PMCID: PMC10608150 DOI: 10.3390/medicina59101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.
Collapse
Affiliation(s)
- Se-Eun Yun
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Byul-Bo ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Hsu YL, Chen HJ, Gao JX, Yang MY, Fu RH. Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1782. [PMID: 37760085 PMCID: PMC10525196 DOI: 10.3390/antiox12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Jia-Xin Gao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Ming-Yang Yang
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
6
|
Sun H, Feng J, Sun Y, Sun S, Li L, Zhu J, Zang H. Phytochemistry and Pharmacology of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y.Hu: A Review. Molecules 2023; 28:6564. [PMID: 37764339 PMCID: PMC10536541 DOI: 10.3390/molecules28186564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y.Hu (E. sessiliflorus), a member of the Araliaceae family, is a valuable plant widely used for medicinal and dietary purposes. The tender shoots of E. sessiliflorus are commonly consumed as a staple wild vegetable. The fruits of E. sessiliflorus, known for their rich flavor, play a crucial role in the production of beverages and fruit wines. The root barks of E. sessiliflorus are renowned for their therapeutic effects, including dispelling wind and dampness, strengthening tendons and bones, promoting blood circulation, and removing stasis. To compile a comprehensive collection of information on E. sessiliflorus, extensive searches were conducted in databases such as Web of Science, PubMed, ProQuest, and CNKI. This review aims to provide a detailed exposition of E. sessiliflorus from various perspectives, including phytochemistry and pharmacological effects, to lay a solid foundation for further investigations into its potential uses. Moreover, this review aims to introduce innovative ideas for the rational utilization of E. sessiliflorus resources and the efficient development of related products. To date, a total of 314 compounds have been isolated and identified from E. sessiliflorus, encompassing terpenoids, phenylpropanoids, flavonoids, volatile oils, organic acids and their esters, nitrogenous compounds, quinones, phenolics, and carbohydrates. Among these, triterpenoids and phenylpropanoids are the primary bioactive components, with E. sessiliflorus containing unique 3,4-seco-lupane triterpenoids. These compounds have demonstrated promising properties such as anti-oxidative stress, anti-aging, antiplatelet aggregation, and antitumor effects. Additionally, they show potential in improving glucose metabolism, cardiovascular systems, and immune systems. Despite some existing basic research on E. sessiliflorus, further investigations are required to enhance our understanding of its mechanisms of action, quality assessment, and formulation studies. A more comprehensive investigation into E. sessiliflorus is warranted to delve deeper into its mechanisms of action and potentially expand its pharmaceutical resources, thus facilitating its development and utilization.
Collapse
Affiliation(s)
- Hui Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
| | - Jiaxin Feng
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Yue Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Shuang Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Li Li
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
| | - Junyi Zhu
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Zang
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| |
Collapse
|
7
|
Ghorbanpour A, Salari S, Baluchnejadmojarad T, Roghani M. Capsaicin protects against septic acute liver injury by attenuation of apoptosis and mitochondrial dysfunction. Heliyon 2023; 9:e14205. [PMID: 36938442 PMCID: PMC10018474 DOI: 10.1016/j.heliyon.2023.e14205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Capsaicin is the main pungent bioactive constituent in red chili with promising therapeutic properties due to its anti-oxidative and anti-inflammatory effects. No evidence exists on the beneficial effect of capsaicin on apoptosis and mitochondrial function in acute liver injury (ALI) under septic conditions. For inducing septic ALI, lipopolysaccharide (LPS, 50 μg/kg) and d-galactose (D-Gal, 400 mg/kg) was intraperitoneally injected and capsaicin was given orally at 5 or 20 mg/kg. Functional markers of liver function and mitochondrial dysfunction were determined as well as hepatic assessment of apoptotic, oxidative, and inflammatory factors. Capsaicin at the higher dose appropriately decreased serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in addition to reducing hepatic level of malondialdehyde (MDA), reactive oxygen species (ROS), nitrite, NF-kB, TLR4, IL-1β, TNF-α, caspase 3, DNA fragmentation and boosting sirtuin 1, Nrf2, superoxide dismutase (SOD) activity, and heme oxygenase (HO-1). These beneficial effects of capsaicin were associated with reversal and/or improvement of gene expression for pro-apoptotic Bax, anti-apoptotic Bcl2, mitochondrial and metabolic regulators PGC-1α, sirtuin 1, and AMPK, and inflammation-associated factors. Additionally, capsaicin exerted a hepatoprotective effect, as revealed by its reduction of liver histopathological changes. These findings evidently indicate hepatoprotective property of capsaicin under septic conditions that can be attributed to its down-regulation of oxidative and inflammatory processes besides its potential to attenuate mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
- Corresponding author.
| |
Collapse
|
8
|
Rosmarinic Acid Prevents Cisplatin-Induced Liver and Kidney Injury by Inhibiting Inflammatory Responses and Enhancing Total Antioxidant Capacity, Thereby Activating the Nrf2 Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227815. [PMID: 36431915 PMCID: PMC9695501 DOI: 10.3390/molecules27227815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Drug-induced liver and kidney damage is an emergent clinical issue that should be addressed. Rosmarinic acid (RA) has obvious anti-inflammatory and antioxidant effects, so we evaluated the anti-inflammatory and antioxidant effects of RA pretreatment on serum and liver and kidney tissues of cisplatin (CP)-treated mice and explored the possible mechanisms. The results showed that RA pretreatment effectively downregulated the serum, liver, and kidney levels of ALT, AST, BUN, and CRE and the inflammatory factors IL-1β, IL-6, and TNF-α, and simultaneously enhanced the total antioxidant capacity of the liver and kidney. RA pretreatment significantly reduced the levels of MPO, MDA, and NO in liver and kidney tissue, inhibited the mRNA expression of IL-1β, IL-6, and TNF-α in liver and kidney tissue, activated the Nrf2 signaling pathway, and upregulated the mRNA expression of downstream target genes. Our findings show that RA could effectively prevent and alleviate acute liver and kidney injury caused by CP.
Collapse
|
9
|
Yang J, Li G, Bao X, Suo Y, Xu H, Deng Y, Feng T, Deng G. Hepatoprotective effects of Phloridzin against isoniazid-rifampicin induced liver injury by regulating CYP450 and Nrf2/HO-1 pathway in mice. Chem Pharm Bull (Tokyo) 2022; 70:805-811. [PMID: 36070932 DOI: 10.1248/cpb.c22-00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protective effect of phloridzin (PHL) and its potential mechanism were examined in mice with liver injury induced by isoniazid (INH) and rifampicin (RFP). The mice were randomly divided into normal control group, model group, low (80 mg/kg), medium (160 mg/kg) and high (320 mg/kg) phloridzin-treated groups. After 28 days treatment, blood and liver tissue were collected and analysed. The results revealed that PHL regulated liver function related indicators and reduced the pathological tissue damage, indicating that PHL significantly alleviated the liver injury. Furthermore, the level of cytochrome P450 (CYP450) enzyme, the expression of cytochrome P450 3A4 (CYP3A4), cytochrome P450 2E1 (CYP2E1), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein were inhibited by PHL. These results indicated that PHL exerts a protecting effect against liver injury induced by combination of RFP and INH. The potential mechanisms may be concerned with the activation of Nrf2/HO-1 signaling pathway containing its key antioxidant enzymes and regulation of CYP3A4 and CYP2E1.
Collapse
Affiliation(s)
- Jiao Yang
- College of Medical Science, China Three Gorges University
| | - Guorong Li
- College of Medical Science, China Three Gorges University
| | - Xiaoai Bao
- College of Medical Science, China Three Gorges University
| | - Yujie Suo
- College of Medical Science, China Three Gorges University
| | - Hailong Xu
- College of Medical Science, China Three Gorges University
| | - Ying Deng
- College of Medical Science, China Three Gorges University
| | - Tianyan Feng
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University
| | - Gaigai Deng
- College of Medical Science, China Three Gorges University.,Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University
| |
Collapse
|
10
|
Yang Y, Han C, Sheng Y, Wang J, Li W, Zhou X, Ruan S. Antrodia camphorata polysaccharide improves inflammatory response in liver injury via the ROS/TLR4/NF-κB signal. J Cell Mol Med 2022; 26:2706-2716. [PMID: 35352469 PMCID: PMC9077287 DOI: 10.1111/jcmm.17283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022] Open
Abstract
Antrodia Camphorata Polysaccharide (ACP) refers to a kind of polysaccharide extracted from the natural porous fungus Antrodia camphorata. This study investigated the mechanism of action of ACP in protecting the liver. The results showed that ACP suppressed the LPS‐induced KC cell activation, reduced the expression of inflammatory factors, increased the SOD level and suppressed ROS expression. In addition, N‐acetylcysteine (NAC) was adopted for pre‐treatment to suppress ROS. The results indicated that NAC synergistically exerted its effect with ACP, suggesting that ACP played its role through suppressing ROS. Further detection revealed that ACP activated the Nrf2 signal. It was discovered in the mouse model that, ACP effectively improved liver injury in mice, decreased ALT and AST levels, and suppressed the expression of inflammatory factors. This study suggests that ACP can exert its effect against oxidative stress via the Nrf2‐ARE signalling, which further improves the production of ROS and the activation of TLR4‐NF‐κB signalling, and protects the liver against liver injury.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuiliang Ruan
- Department of Digestive, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Liu J, Ma Z, Li H, Li X. Chinese medicine in the treatment of autoimmune hepatitis: Progress and future opportunities. Animal Model Exp Med 2022; 5:95-107. [PMID: 35263512 PMCID: PMC9043711 DOI: 10.1002/ame2.12201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease occurring in individuals of all ages with a higher incidence in females and characterized by hypergammaglobulinemia, elevated serum autoantibodies and histological features of interface hepatitis. AIH pathogenesis remains obscure and still needs in‐depth study, which is likely associated with genetic susceptibility and the loss of immune homeostasis. Steroids alone and in combination with other immunosuppressant agents are the primary choices of AIH treatment in the clinic, whereas, in some cases, severe adverse effects and disease relapse may occur. Chinese medicine used for the treatment of AIH has proven its merits over many years and is well tolerated. To better understand the pathogenesis of AIH and to evaluate the efficacy of novel therapies, several animal models have been generated to recapitulate the immune microenvironment of patients with AIH. In the current review, we summarize recent advances in the study of animal models for AIH and their application in pharmacological research of Chinese medicine‐based therapies and also discuss current limitations. This review aims to provide novel insights into the discovery of Chinese medicine‐originated therapies for AIH using cutting‐edge animal models.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Han Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
12
|
Guo H, Ni M, Xu J, Chen F, Yao Z, Yao Y, Liu C, Du Q. Transcriptional enhancement of GBP-5 by BATF aggravates sepsis-associated liver injury via NLRP3 inflammasome activation. FASEB J 2021; 35:e21672. [PMID: 34042221 DOI: 10.1096/fj.202100234r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/11/2022]
Abstract
Strong inflammatory response triggered by the activation of the innate immune system is one typical characteristic of sepsis-associated liver injury (SALI). Guanylate-binding protein 5 (GBP-5) is a component of cell-autonomous immunity and known to be associated with inflammation. Currently, whether GBP-5 participates in SALI and its roles in this disease are yet to be investigated. Using a lipopolysaccharide (LPS)-induced SALI mouse model, we found GBP-5 was highly expressed in LPS-treated mice, and its expression was tightly related to the serum concentrations of live injury markers and inflammatory cytokines, liver damage scores by H&E staining, and amounts of apoptotic hepatocytes by TUNEL staining. Moreover, GBP-5 overexpression was found to aggravate LPS-induced SALI by promoting the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome, then facilitated the production of pro-inflammatory cytokines, eventually induced hepatocyte cell death. Direct transcriptional activation of GBP-5 by basic leucine zipper ATF-like transcription factor (BATF) was identified and further validated. This study unveils a transcriptional upregulation of GBP-5 by interacting with BATF, which promotes the progression of LPS-induced SALI through NLRP3 inflammasome activation, and provides novel therapeutic insights for halting the progression of liver injury in various liver diseases.
Collapse
Affiliation(s)
- Hongli Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Mingming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Zhaoying Yao
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yiqin Yao
- Pharmacy College, Xinjiang Medical University, Urumqi, P.R. China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P.R. China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, P.R. China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
13
|
Zhao Y, Wang X, Chen C, Shi K, Li J, Du R. Protective Effects of 3,4-Seco-Lupane Triterpenes from Food Raw Materials of the Leaves of Eleutherococcus Senticosus and Eleutherococcus Sessiliflorus on Arrhythmia Induced by Barium Chloride. Chem Biodivers 2021; 18:e2001021. [PMID: 33615691 DOI: 10.1002/cbdv.202001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 11/08/2022]
Abstract
As a traditional wild vegetable and food raw material, the leaves of Eleutherococcus senticosus and Eleutherococcus sessiliflorus are rich in 3,4-seco-lupane triterpenes, including chiisanoside (CSS), divaroside (DVS), sessiloside-A (SSA), and chiisanogenin (CSG). This study was conducted to evaluate the anti-arrhythmic effects of these 3,4-seco-lupane triterpenes. Evaluation of the cytotoxicity of compounds was performed by measuring cell viability and apoptosis with the CCK-8 assay. In vivo, arrhythmia was induced by rapid injection of BaCl2 via rat caudal vein. The occurrence time and duration of arrhythmias in rats were studied. The levels of SOD and MDA in serum, and Na+ -K+ -ATPase and Ca2+ -Mg2+ -ATPase in myocardial homogenate were detected by ELISA. The histopathological changes of rats myocardial were observed by HE staining. Changes in the expression of PKA and related proteins were detected by Western blot. The 3,4-seco-lupane triterpenes interactions with protein kinase A were analyzed by molecular docking. In the present study, we found that 3,4-seco-lupane triterpenes exhibited powerful anti-arrhythmic activity, especially DVS completely relieved the ventricular arrhythmia induced by BaCl2 . This study suggests that the leaves of E. senticosus and E. sessiliflorus might be used as functional food materials to prevent arrhythmia, and DVS can potentially be further developed as an anti-arrhythmic drug.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Xu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Chen Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, P. R. China.,Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Changchun, 130118, P. R. China
| |
Collapse
|
14
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
15
|
Dong W, Song E, Song Y. Co-administration of lipopolysaccharide and D-galactosamine induces genotoxicity in mouse liver. Sci Rep 2021; 11:1733. [PMID: 33462304 PMCID: PMC7814041 DOI: 10.1038/s41598-021-81383-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
The acute liver injury (ALI) and hepatic fibrosis caused by the co-treatment of lipopolysaccharide (LPS)/D-galactosamine (D-GalN) have been extensively studied. However, whether LPS/D-GalN are genotoxic has been left unknown. In this study, male mice were divided into eight groups with eight animals in each group. For acute challenge of LPS/D-GalN, the mice in each group received a combination of LPS/D-GalN via intraperitoneal injection at the dose of 25 μg/kg/250 mg/kg, 25 μg/kg/500 mg/kg, or 50 μg/kg/500 mg/kg body weight. An additional group for chronic administration of test compounds was conducted by i.p. injection of LPS/D-GalN (10 μg/kg/100 mg/kg) every other day for 8 weeks. Saline solution (0.9%) and cyclophosphamide (CTX) (50 mg/kg body weight) given by i.p. injection was used as the negative and positive control, respectively. The results of single cell gel electrophoresis (SCGE) assay indicated that acute exposure of the mice to LPS/D-GalN caused severe DNA damage in hepatic cells, but not in the brain, sperm or bone marrow cells, which evidenced the genotoxicity of LPS/D-GalN administrated in combination. Interestingly, the chronic administration of LPS/D-GalN triggered significant genotoxic effects not only in hepatic but also in brain cells, with negative results in sperm and bone marrow cells. Histopathological examination in the liver and brain tissues revealed changes consistent with the SCGE results. The present study indicates genotoxic potential of LPS/D-GalN co-administered in mice, which may serve as an in vivo experimental model for relevant genotoxic study.
Collapse
Affiliation(s)
- Wenjing Dong
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
16
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
17
|
Rousta AM, Mirahmadi SMS, Shahmohammadi A, Ramzi S, Baluchnejadmojarad T, Roghani M. S-allyl cysteine, an active ingredient of garlic, attenuates acute liver dysfunction induced by lipopolysaccharide/ d-galactosamine in mouse: Underlying mechanisms. J Biochem Mol Toxicol 2020; 34:e22518. [PMID: 32453893 DOI: 10.1002/jbt.22518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
In the present study, beneficial effect of S-allyl cysteine (SAC) was evaluated in the lipopolysaccharide/d-galactosamine (LPS/d-Gal) model of acute liver injury (ALI). To mimic ALI, LPS and d-Gal (50 μg/kg and 400 mg/kg, respectively) were intraperitoneally administered and animals received SAC per os (25 or 100 mg/kg/d) for 3 days till 1 hour before LPS/d-Gal injection. Pretreatment of LPS/d-Gal group with SAC-lowered activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and partially reversed inappropriate alterations of hepatic oxidative stress- and inflammation-related biomarkers including liver reactive oxygen species, malondialdehyde, and hepatic activity of the defensive enzyme superoxide dismutase, ferric reducing antioxidant power (FRAP), toll-like receptor-4 (TLR4), cyclooxygenase 2, NLR family pyrin domain containing 3 (NLRP3), caspase 1, nuclear factor κB (NF-κB), interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α, and myeloperoxidase activity. Additionally, SAC was capable to ameliorate apoptotic biomarkers including caspase 3 and DNA fragmentation. In summary, SAC can protect liver against LPS/d-Gal by attenuation of neutrophil infiltration, oxidative stress, inflammation, apoptosis, and pyroptosis which is partly linked to its suppression of TLR4/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
| | | | | | - Samira Ramzi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
18
|
Wu S, Huang X, Sun W, Chen L, Huang Y, Wang Y, Luo E, Qin A, Zhao W, Gan J. Role of the microRNA‑214/Bax axis in the progression of acute liver failure. Mol Med Rep 2020; 22:117-126. [PMID: 32377732 PMCID: PMC7248488 DOI: 10.3892/mmr.2020.11123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
Acute liver failure (ALF) is a fatal liver disease characterized by severe hepatocyte destruction. MicroRNAs (miRNAs/miRs) have been reported to serve a key role in a number of liver diseases. Therefore, the aim of the present study was to investigate the role and underlying mechanism of miR‑214 in ALF. ALF murine and hepatocyte models were established using D‑galactosamine (D‑GalN) and lipopolysaccharide (LPS) or D‑GalN + tumor necrosis factor (TNF)‑α, respectively. The expression levels of miR‑214 and Bax were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and/or western blotting. Furthermore, an automatic biochemical analyzer was used to measure the levels of aspartate aminotransferase (AST) or alanine aminotransferase (ALT). The levels of TNF‑α and interleukin (IL)‑6 were detected by ELISA and RT‑qPCR. In addition, TUNEL staining and flow cytometry were used to analyze cell apoptosis, and the protein expression of caspase‑3 was determined by western blotting. It was identified that the levels of AST and ALT were increased and that hepatocyte apoptosis was enhanced in the D‑GalN/LPS‑stimulated group compared with the control. Furthermore, higher expression of caspase‑3 was observed in the D‑GalN/LPS‑stimulated group. In addition, it was demonstrated that miR‑214 was downregulated, while Bax was upregulated in D‑GalN/LPS‑stimulated mice and D‑GalN/TNF‑α‑stimulated BNLCL2 cells. Moreover, in D‑GalN/TNF‑α‑stimulated BNLCL2 cells, miR‑214 overexpression suppressed apoptosis and decreased TNF‑α and IL‑6 levels, and these effects were reversed by the Bax plasmid. It was also identified that overexpression of miR‑214 significantly decreased Bax mRNA and protein expression levels in vitro. Collectively, the present results suggested that miR‑214 inhibited hepatocyte apoptosis during ALF development via targeting Bax, thus indicating that miR‑214 may be a potential target for ALF treatment.
Collapse
Affiliation(s)
- Shaohong Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
- Department of Emergency Critical Disease, Shanghai General Hospital, Shanghai 201620, P.R. China
| | - Xiaoping Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Erping Luo
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Ailan Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
19
|
Chu S, Niu Z, Guo Q, Bi H, Li X, Li F, Zhang Z, He W, Cao P, Chen N, Sun X. Combination of monoammonium glycyrrhizinate and cysteine hydrochloride ameliorated lipopolysaccharide/galactosamine-induced acute liver injury through Nrf2/ARE pathway. Eur J Pharmacol 2020; 882:173258. [PMID: 32544505 DOI: 10.1016/j.ejphar.2020.173258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Combination of monoammonium glycyrrhizinate and cysteine hydrochloride (MG-CH) has been used for treatment of chronic liver damage in clinic for several years, however, the effect of MG-CH on acute liver injury (ALI) is still obscure. In this study, we aimed to investigate the effect of MG-CH on ALI induced by co-injection of lipopolysaccharide (LPS) and d-galactosamine (GalN). Our results found that MG-CH produced the optimal therapeutic effect at the ratio of 2:1, as manifested by the increased survival percentage, decreased ALT and AST level and improved hepatic pathology. Both oxidative stress and inflammation induced by LPS/GalN were attenuated by MG-CH. Mechanism study showed that MG-CH promoted the nuclear accumulation of Nrf2 and its transcriptional activity, as well as improved Nrf2-target genes' expression. It was also found that activation of Nrf2 is dependent on the MG, not CH. Blockade of Nrf2 abolished the anti-inflammatory effect of MG-CHinduced by LPS/GalN, while inhibition of NFκB showed no effect on its anti-oxidative effect, though the inhibited phosphorylation of IκB and NFκB were detected in liver. The protective effect of MG-CH against ALI was abolished in Nrf2-/- mice. All of these results suggested that MG-CH ameliorated LPS/GalN induced ALI through Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ziquan Niu
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China
| | - Qingxin Guo
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China
| | - Haozhi Bi
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Xinyu Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyun Sun
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China.
| |
Collapse
|
20
|
Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S. Panaxynol from Saposhnikovia diviaricata exhibits a hepatoprotective effect against lipopolysaccharide + D-Gal N induced acute liver injury by inhibiting Nf-κB/IκB-α and activating Nrf2/HO-1 signaling pathways. Biotech Histochem 2020; 95:575-583. [PMID: 32295432 DOI: 10.1080/10520295.2020.1742932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We investigated the mechanism of action of panaxynol (PAL) extract from the root of Saposhnikovia diviaricata (Turcz.) Schischk for treating acute liver injury caused by lipopolysaccharide (LPS) and D-galactosamine (D-Gal N) in mice. A mouse model of acute liver failure induced by LPS/D-Gal N was established. Mice were divided randomly into three equal groups: control group, LPS/D-Gal N group and PAL group. After seven days of continuous PAL administration, all animals except controls were injected with 50 μg/kg LPS and 800 mg/kg D-Gal N; blood and liver samples were collected after 8 h. Compared to the LPS/D-Gal N group, the levels of catalase, glutathione and superoxide dismutase were increased in the liver of the PAL group. The inflammatory response index indicated that PAL attenuated LPS/D Gal N-induced liver pathological injury and decreased levels of hepatic malondialdehyde, serum alanine aminotransferase, aspartate transaminase, tumor necrosis factor-α, and interleukins 1β and 6. PAL also inhibited LPS/D-Gal N induced nuclear factor-kappa B (Nf-κB), inhibitor kappa B-α (IκB-α) activation, and up-regulated Nrf2 and heme oxygenase-1 (HO-1) expression. PAL can prevent LPS/D-Gal N induced acute liver injury by activating Nrf2/HO-1 to stimulate antioxidant defense and inhibit the IkB-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xialin Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Tingwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Application, Jilin Agricultural University , Changchun, Jilin, China
| |
Collapse
|
21
|
Chen L, Xin X, Feng H, Li S, Cao Q, Wang X, Vriesekoop F. Isolation and Identification of Anthocyanin Component in the Fruits of Acanthopanax Sessiliflorus (Rupr. & Maxim.) Seem. by Means of High Speed Counter Current Chromatography and Evaluation of Its Antioxidant Activity. Molecules 2020; 25:molecules25081781. [PMID: 32295006 PMCID: PMC7221754 DOI: 10.3390/molecules25081781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem. (Araliaceae) is one of the most abundant species of genus Acanthopanax. The fruits of A. sessiliflorus are used in traditional medical protocols as an analgesic, tonic, antidiabetic, antihypertensive, anti-inflammatory, antitumor, and immune-stimulating agent. In this work, we carried out a comprehensive investigation into the anthocyanin components in the fruits of A. sessiliflorus. The anthocyanin content in the fresh fruits of A. sessiliflorus was determined by high performance liquid chromatography-diode array detection (HPLC/DAD), and the anthocyanin component was isolated from these using high-speed counter-current chromatography (HSCCC) and elucidated by electro-spray ionization-mass spectrometry (ESI/MS), 1H- and 13C-NMR. Its antioxidant activity was evaluated by ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). We found that A. sessiliflorus contained a gross anthocyanin content of 121.35 mg/100 g. HSCCC was successfully used for separation and purification of the primary anthocyanin component, cyanidin 3-xylosyl-galactoside. The antioxidant and radical scavenging tests indicated that cyanidin 3-xylosyl-galactoside is a potent antioxidant.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (L.C.); (H.F.); (S.L.); (Q.C.)
| | - Xiulan Xin
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (L.C.); (H.F.); (S.L.); (Q.C.)
- Correspondence: (X.X.); (F.V.); Tel.: +44-1952-820-280 (F.V.)
| | - Hui Feng
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (L.C.); (H.F.); (S.L.); (Q.C.)
| | - Shuangshi Li
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (L.C.); (H.F.); (S.L.); (Q.C.)
| | - Qiguang Cao
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (L.C.); (H.F.); (S.L.); (Q.C.)
| | - Xinying Wang
- MSD R&D (China) Ltd. Co., Beijing 100029, China;
| | - Frank Vriesekoop
- Department of Food Technology and Innovation, Harper Adams University, Newport TF10 8NB, UK
- Correspondence: (X.X.); (F.V.); Tel.: +44-1952-820-280 (F.V.)
| |
Collapse
|
22
|
Anthraquinones Extract from Morinda angustifolia Roxb. Root Alleviates Hepatic Injury Induced by Carbon Tetrachloride through Inhibition of Hepatic Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9861571. [PMID: 32328146 PMCID: PMC7149410 DOI: 10.1155/2020/9861571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
In Southwestern China, the root of Morinda angustifolia Roxb. has been employed as a folk medicine for treating various types of hepatitis and jaundice. The purpose of this study was to evaluate the hepatoprotective effects of anthraquinones extract from M. angustifolia root (AEMA) in carbon tetrachloride- (CCl4-) induced liver injury in mice and identify the main bioactive components. Results indicated that AEMA pretreatment could significantly, in a dose-dependent manner, attenuate the increased levels of ALT and AST in mice serum induced by CCl4. At doses of 100 and 200 mg/kg, AEMA exhibited significant suppression of the elevated hepatic levels of malondialdehyde (MDA), as well as marked upregulatory effects on the activities of antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mice exposed to CCl4. However, AEMA treatment had no effect on the antioxidant enzyme catalase (CAT) or the nonenzymatic antioxidant glutathione (GSH). Furthermore, two anthraquinone constituents were isolated from AEMA and identified as soranjidiol and rubiadin-3-methyl ether. Soranjidiol exhibited similar protective effects to those of AEMA on liver damage induced by CCl4. Overall, our research clearly demonstrated the hepatoprotective effects of the AEMA, and anthraquinones, particularly soranjidiol, should be considered as the main hepatoprotective principles of M. angustifolia. In addition, the underlying mechanism may be, at least in part, related to its antioxidant properties.
Collapse
|
23
|
Curcumin and α/ β-Adrenergic Antagonists Cotreatment Reverse Liver Cirrhosis in Hamsters: Participation of Nrf-2 and NF- κB. J Immunol Res 2019; 2019:3019794. [PMID: 31183386 PMCID: PMC6515016 DOI: 10.1155/2019/3019794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Liver cirrhosis is the result of an uncontrolled fibrogenetic process, due to the activation and subsequent differentiation into myofibroblasts of the hepatic stellate cells (HSC). It is known that HSC express adrenoreceptors (AR), and the use of AR antagonists protects experimental animals from cirrhosis. However, several studies suggest that the toxicity generated by metabolism of these antagonists would hinder its use in cirrhotic patients. In addition, liver fibrosis may be associated with a decrease of the antioxidant response of the nuclear factor erythroid 2-related factor 2 (Nrf-2) and the overregulation of the proinflammatory pathway of nuclear factor kappa B (NF-κB). Therefore, in the present work, the capacity of doxazosin (α1 antagonist), carvedilol (nonselective beta-adrenoceptor blocker with alpha 1-blocking properties), and curcumin (antioxidant and anti-inflammatory compound) to reverse liver cirrhosis and studying the possible modulation of Nrf-2 and NF-κB were evaluated. Hamsters received CCl4 for 20 weeks, and then treatments were immediately administered for 4 weeks more. The individual administration of doxazosin or carvedilol showed less ability to reverse cirrhosis in relation to concomitantly curcumin administration. However, the best effect was the combined effect of doxazosin, carvedilol, and curcumin, reversing liver fibrosis and decreasing the amount of collagen I (Sirius red stain) without affecting the morphology of hepatocytes (hematoxylin and eosin stain), showing normal hepatic function (glucose, albumin, AST, ALT, total bilirubin, and total proteins). In addition, carvedilol treatment and the combination of doxazosin with curcumin increased Nrf-2/NF-κB mRNA ratio and its protein expression in the inflammatory cells in the livers, possibly as another mechanism of hepatoprotection. Therefore, these results suggest for the first time that α/β adrenergic blockers with curcumin completely reverse hepatic damage, possibly as a result of adrenergic antagonism on HSC and conceivably by the increase of Nrf-2/NF-κB mRNA ratio.
Collapse
|