1
|
Xia J, Zheng L, Zhang H, Fan Q, Liu H, Wang O, Yan H. Drug Resistance Analysis of Pancreatic Cancer Based on Universally Differentially Expressed Genes. Int J Mol Sci 2025; 26:3936. [PMID: 40362181 PMCID: PMC12071644 DOI: 10.3390/ijms26093936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
The high heterogeneity between patients can complicate the diagnosis and treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we explored the association of universally differentially expressed genes (UDEGs) with resistance to chemotherapy and immunotherapy in the context of pancreatic cancer. In this work, sixteen up-regulated and three down-regulated genes that were dysregulated in more than 85% of 102 paired and 5% of 521 unpaired PDAC samples were identified and defined as UDEGs. A single-cell level analysis further validated the high expression levels of the up-UDEGs and the low levels of the down-UDEGs in cancer-related ductal cells, which could represent the malignant changes seen in pancreatic cancer. Based on a drug sensitivity analysis, we found that ANLN, GPRC5A and SERPINB5 are closely related to the resistance mechanism of PDAC, and their high expression predicted worse survival for PDAC patients. This suggests that targeting these genes could be a potential way to reduce drug resistance and improve survival. Based on the immune infiltration analysis, the abnormal expression of the UDEGs was found to be related to the formation of an immunosuppressive tumor microenvironment. In conclusion, these UDEGs are common features of PDAC and could be involved in the resistance of pancreatic cancer and might serve as novel drug targets to guide research into drug repurposing.
Collapse
Affiliation(s)
- Jie Xia
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China;
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| | - Linyong Zheng
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| | - Huarong Zhang
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| | - Qi Fan
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| | - Hui Liu
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| | - Ouxi Wang
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| | - Haidan Yan
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350100, China; (L.Z.); (H.Z.); (Q.F.); (H.L.); (O.W.)
| |
Collapse
|
2
|
Buchholz K, Durślewicz J, Klimaszewska-Wiśniewska A, Wiśniewska M, Słupski M, Grzanka D. SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma. Int J Mol Sci 2024; 25:5134. [PMID: 38791174 PMCID: PMC11120893 DOI: 10.3390/ijms25105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The spindle and kinetochore-associated complex subunit 3 (SKA3) is a protein essential for proper chromosome segregation during mitosis and thus responsible for maintaining genome stability. Although its involvement in the pathogenesis of various cancer types has been reported, the potential clinicopathological significance of SKA3 in pancreatic ductal adenocarcinoma (PDAC) has not been fully elucidated. Therefore, this study aimed to assess clinicopathological associations and prognostic value of SKA3 in PDAC. For this purpose, in-house immunohistochemical analysis on tissue macroarrays (TMAs), as well as a bioinformatic examination using publicly available RNA-Seq dataset, were performed. It was demonstrated that SKA3 expression at both mRNA and protein levels was significantly elevated in PDAC compared to control tissues. Upregulated mRNA expression constituted an independent unfavorable prognostic factor for the overall survival of PDAC patients, whereas altered SKA3 protein levels were associated with significantly better clinical outcomes. The last observation was particularly clear in the early-stage tumors. These findings render SKA3 a promising prognostic biomarker for patients with pancreatic ductal adenocarcinoma. However, further studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| | - Magdalena Wiśniewska
- Department of Oncology and Brachytherapy, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-796 Bydgoszcz, Poland;
- Clinical Department of Oncology, Professor Franciszek Lukaszczyk Oncology Center in Bydgoszcz, 85-796 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of General, Hepatobiliary and Transplant Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| |
Collapse
|
3
|
Sun LP, Bai WQ, Zhou DD, Wu XF, Zhang LW, Cui AL, Xie ZH, Gao RJ, Zhen YS, Li ZR, Miao QF. hIMB1636-MMAE, a Novel TROP2-Targeting Antibody-Drug Conjugate Exerting Potent Antitumor Efficacy in Pancreatic Cancer. J Med Chem 2023; 66:14700-14715. [PMID: 37883180 DOI: 10.1021/acs.jmedchem.3c01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.
Collapse
Affiliation(s)
- Li-Ping Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Wei-Qi Bai
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Xiao-Fan Wu
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - A-Long Cui
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zhuo-Rong Li
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
4
|
Ren M, Feng L, Zong R, Sun H. Novel prognostic gene signature for pancreatic ductal adenocarcinoma based on hypoxia. World J Surg Oncol 2023; 21:257. [PMID: 37605192 PMCID: PMC10464224 DOI: 10.1186/s12957-023-03142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Currently, there is lack of marker to accurately assess the prognosis of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC). This study aims to establish a hypoxia-related risk scoring model that can effectively predict the prognosis and chemotherapy outcomes of PDAC patients. METHODS Using unsupervised consensus clustering algorithms, we comprehensively analyzed The Cancer Genome Atlas (TCGA) data to identify two distinct hypoxia clusters and used the weighted gene co-expression network analysis (WGCNA) to examine gene sets significantly associated with these hypoxia clusters. Then univariate Cox regression, the least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression were used to construct a signature and its efficacy was evaluated using the International Cancer Genome Consortium (ICGC) PDAC cohort. Further, the correlation between the risk scores obtained from the signature and carious clinical, pathological, immunophenotype, and immunoinfiltration factors as well as the differences in immunotherapy potential and response to common chemotherapy drugs between high-risk and low-risk groups were evaluated. RESULTS From a total of 8 significantly related modules and 4423 genes, 5 hypoxia-related signature genes were identified to construct a risk model. Further analysis revealed that the overall survival rate (OS) of patients in the low-risk group was significantly higher than the high-risk group. Univariate and multivariate Cox regression analysis showed that the risk scoring signature was an independent factor for prognosis prediction. Analysis of immunocyte infiltration and immunophenotype showed that the immune score and the anticancer immune response in the high-risk were significantly lower than that in the low-risk group. CONCLUSION The constructed hypoxia-associated prognostic signature demonstrated could be used as a potential risk classifier for PDAC.
Collapse
Affiliation(s)
- Min Ren
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Liaoliao Feng
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Rongrong Zong
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Huiru Sun
- College of Life Science, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
5
|
Zhang Y, Wang Y, He X, Yao R, Fan L, Zhao L, Lu B, Pang Z. Genome instability-related LINC02577, LINC01133 and AC107464.2 are lncRNA prognostic markers correlated with immune microenvironment in pancreatic adenocarcinoma. BMC Cancer 2023; 23:430. [PMID: 37173624 PMCID: PMC10176692 DOI: 10.1186/s12885-023-10831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a leading cause of malignancy-related deaths worldwide, and the efficacy of immunotherapy on PAAD is limited. Studies report that long non-coding RNAs (lncRNAs) play an important role in modulating genomic instability and immunotherapy. However, the identification of genome instability-related lncRNAs and their clinical significance has not been investigated in PAAD. METHODS The current study developed a computational framework for mutation hypothesis based on lncRNA expression profile and somatic mutation spectrum in pancreatic adenocarcinoma genome. We explored the potential of GInLncRNAs(genome instability-related lncRNAs) through co-expression analysis and function enrichment analysis. We further analyzed GInLncRNAs by Cox regression and used the results to construct a prognostic lncRNA signature. Finally, we analyzed the relationship between GILncSig (genomic instability derived 3-lncRNA signature) and immunotherapy. RESULTS A GILncSig was developed using bioinformatics analyses. It could divide patients into high-risk and low-risk groups, and there was a significant difference in OS between the two groups. In addition, GILncSig was associated with genome mutation rate in pancreatic adenocarcinoma, indicating its potential value as a marker for genomic instability. The GILncSig accurately grouped wild type patients of KRAS into two risk groups. The prognosis of the low-risk group was significantly improved. GILncSig was significantly correlated with the level of immune cell infiltration and immune checkpoint. CONCLUSIONS In summary, the current study provides a basis for further studies on the role of lncRNA in genomic instability and immunotherapy. The study provides a novel method for identification of cancer biomarkers related to genomic instability and immunotherapy.
Collapse
Affiliation(s)
- Yinjiang Zhang
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Yao Wang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xu He
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Rongfei Yao
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Lu Fan
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Linyi Zhao
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China.
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China.
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China.
| |
Collapse
|
6
|
Lin Z, Lv Z, Liu X, Huang K. Palmitoyl transferases act as novel drug targets for pancreatic cancer. J Transl Med 2023; 21:249. [PMID: 37038141 PMCID: PMC10084701 DOI: 10.1186/s12967-023-04098-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is one of the most leading causes of cancer-related death across the world with the limited efficiency and response rate of immunotherapy. Protein S-palmitoylation, a powerful post-translational lipid modification, is well-known to regulate the stability and cellular distribution of cancer-related proteins, which is mediated by a family of 23 palmitoyl transferases, namely zinc finger Asp-His-His-Cys-type (ZDHHC). However, whether palmitoyl transferases can determine tumor progression and the efficacy of immunotherapy in PAAD remains unknown. METHODS Bioinformatics methods were used to identify differential ZDHHCs expression in PAAD. A systematic pan-cancer analysis was conducted to assess the immunological role of ZDHHC3 using RNA sequencing data from The Cancer Genome Atlas database. In vivo Panc 02 subcutaneous tumor model validated the anti-tumor effect of knockdown of ZDHHC3 or intraperitoneal injection of 2-bromopalmitate (2-BP), a typical broad-spectrum palmitoyl transferases inhibitor. Furthermore, we explored therapeutic strategies with combinations of 2-BP with PD-1/PD-L1-targeted immunotherapy in C57BL/6 mice bearing syngeneic Panc 02 pancreatic tumors. RESULTS ZDHHC enzymes were associated with distinct prognostic values of pancreatic cancer. We identified that ZDHHC3 expression promotes an immunosuppressive tumor microenvironment in PAAD. 2-BP suppressed pancreatic-tumor cell viability and tumor sphere-forming activities, as well as increased cell apoptosis in vitro, without affecting normal human pancreatic ductal epithelial cells. Furthermore, genetic inactivation of ZDHHC3 or intraperitoneal injection of 2-BP impeded tumor progression in Panc 02 pancreatic tumors with enhanced anti-tumor immunity. 2-BP treatment significantly enhanced the therapeutic efficacy of PD-1/PD-L1 inhibitors in Panc 02 pancreatic tumors. CONCLUSION This study revealed some ZDHHC enzyme genes for predicting the prognosis of pancreatic cancer, and demonstrated that ZDHHC3 plays a critical oncogenic role in pancreatic cancer progression, highlighting its potential as an immunotherapeutic target of pancreatic cancer. In addition, combination therapy of 2-BP and PD-1/PD-L1 achieved synergic therapy effects in a mouse model of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiqing Lin
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziru Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Vogel A, Bridgewater J, Edeline J, Kelley RK, Klümpen HJ, Malka D, Primrose JN, Rimassa L, Stenzinger A, Valle JW, Ducreux M. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34:127-140. [PMID: 36372281 DOI: 10.1016/j.annonc.2022.10.506] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- A Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School of Hannover, Hannover, Germany
| | - J Bridgewater
- Cancer Institute, University College London (UCL), London, UK
| | - J Edeline
- Department of Medical Oncology, CLCC Eugène Marquis, Rennes, France; Chemistry, Oncogenesis, Stress and Signaling (COSS), INSERM, University of Rennes, Rennes, France
| | - R K Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - H J Klümpen
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - D Malka
- Department of Medical Oncology, Institut Mutualiste Montsouris, Paris, France; INSERM U1279, Université Paris-Saclay, Villejuif, France
| | - J N Primrose
- University Department of Surgery, University Hospital Southampton, Southampton, UK
| | - L Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - A Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - J W Valle
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - M Ducreux
- INSERM U1279, Université Paris-Saclay, Villejuif, France; Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| |
Collapse
|
8
|
Bibliometric Analysis of Hotspots and Frontiers of Immunotherapy in Pancreatic Cancer. Healthcare (Basel) 2023; 11:healthcare11030304. [PMID: 36766879 PMCID: PMC9914338 DOI: 10.3390/healthcare11030304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant neoplasms with an increasing incidence, low rate of early diagnosis, and high degree of malignancy. In recent years, immunotherapy has made remarkable achievements in various cancer types including pancreatic cancer, due to the long-lasting antitumor responses elicited in the human body. Immunotherapy mainly relies on mobilizing the host's natural defense mechanisms to regulate the body state and exert anti-tumor effects. However, no bibliometric research about pancreatic cancer immunotherapy has been reported to date. This study aimed to assess research trends and offer possible new research directions in pancreatic cancer immunotherapy. METHODS The articles and reviews related to pancreatic cancer immunotherapy were collected from the Web of Science Core Collection. CiteSpace, VOSviewer, and an online platform, and were used to analyze co-authorship, citation, co-citation, and co-occurrence of terms retrieved from the literature highlighting the scientific advances in pancreatic cancer immunotherapy. RESULTS We collected 2475 publications and the number of articles was growing year by year. The United States had a strong presence worldwide with the most articles. The most contributing institution was Johns Hopkins University (103 papers). EM Jaffee was the most productive researcher with 43 papers, and L Zheng and RH Vonderheide ranked second and third, with 34 and 29 papers, respectively. All the keywords were grouped into four clusters: "immunotherapy", "clinical treatment study", "tumor immune cell expression", "tumor microenvironment". In the light of promising hotspots, keywords with recent citation bursts can be summarized into four aspects: immune microenvironment, adaptive immunotherapy, immunotherapy combinations, and molecular and gene therapy. CONCLUSIONS In recent decades, immunotherapy showed great promise for many cancer types, so various immunotherapy approaches have been introduced to treat pancreatic cancer. Understanding the mechanisms of immunosuppressive microenvironment, eliminating immune suppression and blocking immune checkpoints, and combining traditional treatments will be hotspots for future research.
Collapse
|
9
|
Li J, Li W, Wang H, Ni B, Liu Y. Development and validation of a novel ferroptosis‑related lncRNA prognostic signature for pancreatic adenocarcinoma. Mol Med Rep 2023; 27:56. [PMID: 36660936 PMCID: PMC9879080 DOI: 10.3892/mmr.2023.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/29/2022] [Indexed: 01/19/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) serve a pivotal role in the regulation of cancer cell ferroptosis. However, the prognostic value of ferroptosis‑related lncRNAs in pancreatic adenocarcinoma (PAAD) largely remains unclear. We aimed at constructing a lncRNA‑based signature to improve the prognosis prediction of PAAD. In the present study, the transcriptome profiling data and clinical information of patients with PAAD were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Gene Consortium (ICGC) databases. Univariate Cox regression analysis of the TCGA cohort demonstrated that 26 ferroptosis‑related lncRNAs had significant prognostic value for PAAD (all P<0.01). Least absolute shrinkage and selection operator regression and multivariate Cox proportional hazards regression analyses were performed to construct a prognostic ferroptosis‑related lncRNA signature (FRLS) comprising nine ferroptosis‑related lncRNAs. The efficacy of this FRLS was verified in the training (TCGA) and validation (ICGC) cohorts. Based on the risk model, high risk scores were significantly correlated with poor overall survival (OS) (hazard ratio, 1.314; 95% confidence interval, 1.218‑1.418; P<0.001). The receiver operating characteristic curves and principal component analysis further demonstrated the robust prognostic ability of the FRLS. Furthermore, a nomogram with favorable predictive efficacy for the prediction of OS was constructed based on the FRLS and clinical features. Gene set enrichment analysis demonstrated that the genes in the FRLS participated in a number of cancer‑associated immunoregulatory pathways. Importantly, it was demonstrated that immune infiltration and response to cancer immunotherapy differed significantly between the high and low‑risk groups according to the FRLS. In conclusion, the risk signature based on the FRLS has potential for the clinical prediction of prognosis and immunotherapy response in patients with PAAD.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China,Department of General Surgery, Air Force Hospital of Western Theater Command, Chengdu, Sichuan 610065, P.R. China,Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenhua Li
- Department of Cadre Ward, Air Force Hospital of Western Theater Command, Chengdu, Sichuan 610065, P.R. China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China,Correspondence to: Professor Bing Ni, Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, 30 Gaotanyan Main Street, Shapingba, Chongqing 400038, P.R. China, E-mail:
| | - Yongkang Liu
- Department of General Surgery, Air Force Hospital of Western Theater Command, Chengdu, Sichuan 610065, P.R. China,Dr Yongkang Liu, Department of General Surgery, Air Force Hospital of Western Theater Command, 18 Shunjiang Street, Jinjiang, Chengdu, Sichuan 610065, P.R. China, E-mail:
| |
Collapse
|
10
|
Akhuba L, Tigai Z, Shek D. Where Do We Stand with Immunotherapy for Advanced Pancreatic Ductal Adenocarcinoma: A Synopsis of Clinical Outcomes. Biomedicines 2022; 10:biomedicines10123196. [PMID: 36551952 PMCID: PMC9775646 DOI: 10.3390/biomedicines10123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related mortality in both sexes across the globe. It is associated with extremely poor prognosis and remains a critical burden worldwide due to its low survival rates. Histologically, pancreatic ductal adenocarcinoma (PDAC) accounts for 80% of all pancreatic cancers; the majority of which are diagnosed at advanced stages, which makes them ineligible for curative surgery. Conventional chemotherapy provides a five-year overall survival rate of less than 8% forcing scientists and clinicians to search for better treatment strategies. Recent discoveries in cancer immunology have resulted in the incorporation of immunotherapeutic strategies for cancer treatment. Particularly, immune-checkpoint inhibitors, adoptive cell therapies and cancer vaccines have already shifted guidelines for some malignancies, although their efficacy in PDAC has yet to be elucidated. In this review, we summarize the existing clinical data on immunotherapy clinical outcomes in patients with advanced or metastatic PDAC.
Collapse
Affiliation(s)
- Liia Akhuba
- Blacktown Mt Druitt Hospital, Sydney, NSW 2148, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW 2150, Australia
| | - Zhanna Tigai
- Accreditation Centre, RUDN University, Moscow 117198, Russia
| | - Dmitrii Shek
- Blacktown Mt Druitt Hospital, Sydney, NSW 2148, Australia
- Blacktown Clinical School, Western Sydney University, Sydney, NSW 2148, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Correspondence: ; Tel.: +61-412-03-55-33
| |
Collapse
|
11
|
Chen Y, Yin B, Liu Z, Wang H, Fu Z, Ji X, Tang W, Ni D, Peng W. Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal—organic nanosonosensitizer. NANO RESEARCH 2022; 15:6340-6347. [DOI: 10.1007/s12274-022-4284-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2025]
|
12
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
13
|
Geller AE, Shrestha R, Woeste MR, Guo H, Hu X, Ding C, Andreeva K, Chariker JH, Zhou M, Tieri D, Watson CT, Mitchell RA, Zhang HG, Li Y, Martin Ii RCG, Rouchka EC, Yan J. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat Commun 2022; 13:759. [PMID: 35140221 PMCID: PMC8828725 DOI: 10.1038/s41467-022-28407-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Despite the remarkable success of immunotherapy in many types of cancer, pancreatic ductal adenocarcinoma has yet to benefit. Innate immune cells are critical to anti-tumor immunosurveillance and recent studies have revealed that these populations possess a form of memory, termed trained innate immunity, which occurs through transcriptomic, epigenetic, and metabolic reprograming. Here we demonstrate that yeast-derived particulate β-glucan, an inducer of trained immunity, traffics to the pancreas, which causes a CCR2-dependent influx of monocytes/macrophages to the pancreas that display features of trained immunity. These cells can be activated upon exposure to tumor cells and tumor-derived factors, and show enhanced cytotoxicity against pancreatic tumor cells. In orthotopic models of pancreatic ductal adenocarcinoma, β-glucan treated mice show significantly reduced tumor burden and prolonged survival, which is further enhanced when combined with immunotherapy. These findings characterize the dynamic mechanisms and localization of peripheral trained immunity and identify an application of trained immunity to cancer.
Collapse
Affiliation(s)
- Anne E Geller
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Matthew R Woeste
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Division of Surgical Oncology, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kalina Andreeva
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Julia H Chariker
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Mingqian Zhou
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Robert C G Martin Ii
- Division of Surgical Oncology, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
14
|
Li HB, Yang ZH, Guo QQ. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: limitations and prospects: a systematic review. Cell Commun Signal 2021; 19:117. [PMID: 34819086 PMCID: PMC8611916 DOI: 10.1186/s12964-021-00789-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is an extremely malignant tumor with the lowest 5-year survival rate among all tumors. Pancreatic ductal adenocarcinoma (PDAC), as the most common pathological subtype of pancreatic cancer, usually has poor therapeutic results. Immune checkpoint inhibitors (ICIs) can relieve failure of the tumor-killing effect of immune effector cells caused by immune checkpoints. Therefore, they have been used as a novel treatment for many solid tumors. However, PDAC is not sensitive to monotherapy with ICIs, which might be related to the inhibitory immune microenvironment of pancreatic cancer. Therefore, the way to improve the microenvironment has raised a heated discussion in recent years. Here, we elaborate on the relationship between different immune cellular components in this environment, list some current preclinical or clinical attempts to enhance the efficacy of ICIs by targeting the inhibitory tumor microenvironment of PDAC or in combination with other therapies. Such information offers a better understanding of the sophisticated tumor-microenvironment interactions, also providing insights on therapeutic guidance of PDAC targeting. Video Abstract.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Zi-Han Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Qing-Qu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| |
Collapse
|
15
|
Sunagawa Y, Hayashi M, Yamada S, Tanabe H, Kurimoto K, Tanaka N, Sonohara F, Inokawa Y, Takami H, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. Impact of molecular surgical margin analysis on the prediction of pancreatic cancer recurrences after pancreaticoduodenectomy. Clin Epigenetics 2021; 13:172. [PMID: 34530906 PMCID: PMC8444591 DOI: 10.1186/s13148-021-01165-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the lethal cancers among solid malignancies. Pathological diagnosis of surgical margins is sometimes unreliable due to tissue shrinkage, invisible field cancerization and skipped lesions like tumor budding. As a result, tumor recurrences sometimes occur even from the pathologically negative surgical margins. METHODS We applied molecular surgical margin (MSM) analysis by tissue imprinting procedure to improve the detection sensitivity of tiny cancerous cells on the surgical specimen surface after pancreatoduodenectomy. Surgical specimens were collected from 45 pancreatic cancer cases who received subtotal stomach preserving pancreatoduodenectomy at Nagoya University Hospital during 2017-2019. Quantitative methylation-specific PCR (QMSP) of the original methylation marker panel (CD1D, KCNK12, PAX5) were performed and analyzed with postoperative survival outcomes. RESULTS Among 45 tumors, 26 cases (58%) were QMSP-positive for CD1D, 25 (56%) for KCNK12 and 27 (60%) for PAX5. Among the 38 tumors in which at least one of the three markers was positive, CD1D-positive cancer cells, KCNK12-positive cancer cells, and PAX5-positive cancer cells were detected at the surgical margin in 8 cases, 7 cases and 10 cases, respectively. Consequently, a total of 17 patients had at least one marker detected at the surgical margin by QMSP, and these patients were defined as MSM-positive. They were associated with significantly poor recurrence-free survival (p = 0.002) and overall survival (p = 0.005) than MSM-negative patients. Multivariable analysis showed that MSM-positive was the only significant independent factor for worse recurrence-free survival (hazard ratio: 3.522, 95% confidence interval: 1.352-9.179, p = 0.010). On the other hand, a significant proportion of MSM-negative cases were found to have received neoadjuvant chemotherapy (p = 0.019). CONCLUSION Pancreatic cancer-specific methylation marker panel was established to perform MSM analysis. MSM-positive status might represent microscopically undetectable cancer cells on the surgical margin and might influence the postoperative long-term outcomes.
Collapse
Affiliation(s)
- Yuki Sunagawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Tanabe
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Keisuke Kurimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Nobutake Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| |
Collapse
|
16
|
Chen Z, Zhang S, Han N, Jiang J, Xu Y, Ma D, Lu L, Guo X, Qiu M, Huang Q, Wang H, Mo F, Chen S, Yang L. A Neoantigen-Based Peptide Vaccine for Patients With Advanced Pancreatic Cancer Refractory to Standard Treatment. Front Immunol 2021; 12:691605. [PMID: 34484187 PMCID: PMC8414362 DOI: 10.3389/fimmu.2021.691605] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Neoantigens are critical targets to elicit robust antitumor T-cell responses. Personalized cancer vaccines developed based on neoantigens have shown promising results by prolonging cancer patients' overall survival (OS) for several cancer types. However, the safety and efficacy of these vaccine modalities remains unclear in pancreatic cancer patients. Methods This retrospective study enrolled 7 advanced pancreatic cancer patients. Up to 20 neoantigen peptides per patient identified by our in-house pipeline iNeo-Suite were selected, manufactured and administered to these patients with low tumor mutation burden (TMB) (less than 10 mutations/Mb). Each patient received multiple doses of vaccine depending on the progression of the disease. Peripheral blood samples of each patient were collected pre- and post-vaccination for the analysis of the immunogenicity of iNeo-Vac-P01 through ELISpot assay and flow cytometry. Results No severe vaccine-related adverse effects were witnessed in patients enrolled in this study. The mean OS, OS associated with vaccine treatment and progression free survival (PFS) were reported to be 24.1, 8.3 and 3.1 months, respectively. Higher peripheral IFN-γ titer and CD4+ or CD8+ effector memory T cells count post vaccination were found in patients with relatively long overall survival. Remarkably, for patient P01 who had a 21-month OS associated with vaccine treatment, the abundance of antigen-specific TCR clone drastically increased from 0% to nearly 100%, indicating the potential of iNeo-Vac-P01 in inducing the activation of a specific subset of T cells to kill cancer cells. Conclusions Neoantigen identification and selection were successfully applied to advanced pancreatic cancer patients with low TMB. As one of the earliest studies that addressed an issue in treating pancreatic cancer with personalized vaccines, it has been demonstrated that iNeo-Vac-P01, a personalized neoantigen-based peptide vaccine, could improve the currently limited clinical efficacy of pancreatic cancer. Clinical Trial Registration ClinicalTrials.gov, identifier (NCT03645148).Registered August 24, 2018 - Retrospectively registered.
Collapse
Affiliation(s)
- Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shanshan Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China.,Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
| | - Ning Han
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Jiahong Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunyun Xu
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dongying Ma
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Lantian Lu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaojie Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qinxue Huang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Huimin Wang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Fan Mo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Hangzhou AI-Force Therapeutics Co., Ltd., Hangzhou, China
| | - Shuqing Chen
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China.,Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Serra F, Bonaduce I, De Ruvo N, Cautero N, Gelmini R. Short-term and long term morbidity in robotic pancreatic surgery: a systematic review. Gland Surg 2021; 10:1767-1779. [PMID: 34164320 DOI: 10.21037/gs-21-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Pancreatic cancer is one of the most aggressive and lethal tumours in Western society. Pancreatic surgery can be considered a challenge for open and laparoscopic surgeons, even if the accuracy of gland dissection, due to the close relationship between pancreas, the portal vein, and mesenteric vessels, besides the reconstructive phase (in pancreaticoduodenectomy), lead to significant difficulties for laparoscopic technique. Minimally invasive pancreatic surgery changed utterly with the development of robotic surgery. However, this review aims to make more clarity on the influence of robotic surgery on long-term morbidity. Methods A systematic literature search was performed in PubMed, Cochrane Library, and Scopus to identify and analyze studies published from November 2011 to September 2020 concerning robotic pancreatic surgery. The following terms were used to perform the search: "long term morbidity robotic pancreatic surgery". Results Eighteen articles included in the study were published between November 2011 and September 2020. The review included 2041 patients who underwent robotic pancreatic surgery, mainly for a malignant tumour. The two most common robotic surgical procedures adopted were the robotic distal pancreatectomy (RDP) and the robotic pancreaticoduodenectomy (RPD). In two studies, patients were divided into groups; on the one hand, those who underwent a robotic pancreaticoduodenectomy (RPD), on the other hand, those who underwent robotic distal pancreatectomy (RDP). The remaining items included surgical approach such as robotic middle pancreatectomy (RMP), robotic distal pancreatectomy and splenectomy, robotic-assisted laparoscopic pancreatic dissection (RALPD), robotic enucleation of pancreatic neuroendocrine tumours. Conclusions Comparison between robotic surgery and open surgery lead to evidence of different advantages of the robotic approach. A multidisciplinary team and a surgical centre at high volume are essential for better postoperative morbidity and mortality.
Collapse
Affiliation(s)
- Francesco Serra
- Department of Surgery, University of Modena and Reggio Emilia - Policlinico of Modena, Modena, Italy
| | - Isabella Bonaduce
- Department of Surgery, University of Modena and Reggio Emilia - Policlinico of Modena, Modena, Italy
| | - Nicola De Ruvo
- Department of Surgery, University of Modena and Reggio Emilia - Policlinico of Modena, Modena, Italy
| | - Nicola Cautero
- Department of Surgery, University of Modena and Reggio Emilia - Policlinico of Modena, Modena, Italy
| | - Roberta Gelmini
- Department of Surgery, University of Modena and Reggio Emilia - Policlinico of Modena, Modena, Italy
| |
Collapse
|
18
|
Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and Functional Analyses Implicate Potential Roles for EOGT and L-fringe in Pancreatic Cancers. Molecules 2021; 26:molecules26040882. [PMID: 33562410 PMCID: PMC7915272 DOI: 10.3390/molecules26040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Notch signaling receptors, ligands, and their downstream target genes are dysregulated in pancreatic ductal adenocarcinoma (PDAC), suggesting a role of Notch signaling in pancreatic tumor development and progression. However, dysregulation of Notch signaling by post-translational modification of Notch receptors remains poorly understood. Here, we analyzed the Notch-modifying glycosyltransferase involved in the regulation of the ligand-dependent Notch signaling pathway. Bioinformatic analysis revealed that the expression of epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) and Lunatic fringe (LFNG) positively correlates with a subset of Notch signaling genes in PDAC. The lack of EOGT or LFNG expression inhibited the proliferation and migration of Panc-1 cells, as observed by the inhibition of Notch activation. EOGT expression is significantly increased in the basal subtype, and low expression of both EOGT and LFNG predicts better overall survival in PDAC patients. These results imply potential roles for EOGT- and LFNG-dependent Notch signaling in PDAC.
Collapse
Affiliation(s)
- Rashu Barua
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
| | - Kazuyuki Mizuno
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
- Correspondence: ; Tel.: +81-52-744-2068; Fax: +81-52-744-2069
| |
Collapse
|
19
|
Luo Y, Hu J, Liu Y, Li L, Li Y, Sun B, Kong R. Invadopodia: A potential target for pancreatic cancer therapy. Crit Rev Oncol Hematol 2021; 159:103236. [PMID: 33482351 DOI: 10.1016/j.critrevonc.2021.103236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Dissemination of cancer cells is an intricate multistep process that represents the most deadly aspect of cancer. Cancer cells form F-actin-rich protrusions known as invadopodia to invade surrounding tissues, blood vessels and lymphatics. A number of studies have demonstrated the significant roles of invadopodia in cancer. Therefore, the specific cells and molecules involved in invadopodia activity can provide as therapeutic targets. In this review, we included a thorough overview of studies in invadopodia and discussed their functions in cancer metastasis. We then presented the specific cells and molecules involved in invadopodia activity in pancreatic cancer and analyzed their suitability to be effective therapeutic targets. Currently, drugs targeting invadopodia and relevant clinical trials are negligible. Here, we highlighted the significance of potential drugs and discussed future obstacles in implementing clinical trials. This review presents a new perspective on invadopodia-induced pancreatic cancer metastasis and may prosper the development of targeted therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Deng Z, Li X, Shi Y, Lu Y, Yao W, Wang J. A Novel Autophagy-Related IncRNAs Signature for Prognostic Prediction and Clinical Value in Patients With Pancreatic Cancer. Front Cell Dev Biol 2020; 8:606817. [PMID: 33384999 PMCID: PMC7769875 DOI: 10.3389/fcell.2020.606817] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 01/10/2023] Open
Abstract
Autophagy is an important bioprocess throughout the occurrence and development of cancer. However, the role of autophagy-related lncRNAs in pancreatic cancer (PC) remains obscure. In the study, we identified the autophagy-related lncRNAs (ARlncRNAs) and divided the PC patients from The Cancer Genome Atlas into training and validation set. Firstly, we constructed a signature in the training set by the least absolute shrinkage and selection operator penalized cox regression analysis and the multivariate cox regression analysis. Then, we validated the independent prognostic role of the risk signature in both training and validation set with survival analysis, receiver operating characteristic analysis, and Cox regression. The nomogram was established to demonstrate the predictive power of the signature. Moreover, high risk scores were significantly correlated to worse outcomes and severe clinical characteristics. The Pearson’s analysis between risk scores with immune cells infiltration, tumor mutation burden, and the expression level of chemotherapy target molecules indicated that the signature could predict efficacy of immunotherapy and targeted therapy. Next, we constructed an lncRNA–miRNA–mRNA regulatory network and identified several potential small molecule drugs in the Connectivity Map (CMap). What’s more, quantitative real-time PCR (qRT-PCR) analysis showed that serum LINC01559 could serve as a diagnostic biomarker. In vitro analysis showed inhibition of LINC01559 suppressed PC cell proliferation, migration, and invasion. Additionally, silencing LINC01559 suppressed gemcitabine-induced autophagy and promoted the sensitivity of PC cells to gemcitabine. In conclusion, we identified a novel ARlncRNAs signature with valuable clinical utility for reliable prognostic prediction and personalized treatment of PC patients. And inhibition of LINC01559 might be a novel strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, Ziogas D, Psyrri A, Karamouzis MV. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev 2020; 86:102016. [PMID: 32247999 DOI: 10.1016/j.ctrv.2020.102016] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma (PAC) is associated with extremely poor prognosis and remains a lethal malignancy. The main cure for PAC is surgical resection. Further treatment modalities, such as surgery, chemotherapy, radiotherapy and other locoregional therapies provide low survival rates. Currently, many clinical trials seek to assess the efficacy of immunotherapeutic strategies in PAC, including immune checkpoint inhibitors, cancer vaccines, adoptive cell transfer, combinations with other immunotherapeutic agents, chemoradiotherapy or other molecularly targeted agents; however, none of these studies have shown practice changing results. There seems to be a synergistic effect with increased response rates when a combinatorial approach of immunotherapy in conjunction with other modalities is being exploited. In this review, we illustrate the current role of immunotherapy in PAC.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Christo Kole
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Gkotsis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J. FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics 2020; 4:26-39. [PMID: 31911892 PMCID: PMC6940204 DOI: 10.7150/ntno.38092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized with abundant tumor stroma, is a highly malignant tumor with poor prognosis. The tumor stroma largely consists of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), and is known to promote tumor growth and progression as well as acts as a barrier to chemotherapy. Inhibition of tumor stroma is highly crucial to induce the effect of chemotherapy. In this study, we delivered fibroblast growth factor 2 (FGF2) to human pancreatic stellate cells (hPSCs), the precursors of CAFs, using superparamagnetic iron oxide nanoparticles (SPIONs). FGF2 was covalently conjugated to functionalized PEGylated dextran-coated SPIONs. FGF2-SPIONs significantly reduced TGF-β induced hPSCs differentiation (α-SMA and collagen-1 expression) by inhibiting pSmad2/3 signaling and inducing ERK1/2 activity, as shown with western blot analysis. Then, we established a stroma-rich self-assembling 3D heterospheroid model by co-culturing PANC-1 and hPSCs in 3D environment. We found that FGF2-SPIONs treatment alone inhibited the tumor stroma-induced spheroid growth. In addition, they also potentiated the effect of gemcitabine, as shown by measuring the spheroid size and ATP content. These effects were attributed to the reduced expression of the hPSC activation and differentiation marker, α-SMA. Furthermore, to demonstrate an application of SPIONs, we applied an external magnetic field to spheroids while incubated with FGF2-SPIONs. This resulted in an enhanced effect of gemcitabine in our 3D model. In conclusion, this study presents a novel approach to target FGF2 to tumor stroma using SPIONs and thereby enhancing the effect of gemcitabine as demonstrated in the complex 3D tumor spheroid model.
Collapse
Affiliation(s)
- Deby Fajar Mardhian
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Aggelos Vrynas
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
23
|
Hurtado M, Sankpal UT, Kaba A, Mahammad S, Chhabra J, Brown DT, Gurung RK, Holder AA, Vishwanatha JK, Basha R. Novel Survivin Inhibitor for Suppressing Pancreatic Cancer Cells Growth via Downregulating Sp1 and Sp3 Transcription Factors. Cell Physiol Biochem 2018; 51:1894-1907. [PMID: 30504717 DOI: 10.1159/000495715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Targeting survivin, an anti-apoptotic protein and mitotic regulator, is considered as an effective therapeutic option for pancreatic cancer (PaCa). Tolfenamic acid (TA) showed anti-cancer activity in pre-clinical studies. A recent discovery demonstrated a copper(II) complex of TA (Cu-TA) can result in higher activity. In this study, the ability of Cu-TA to inhibit survivin and its transcription factors, Specificity protein (Sp) 1 and 3 in PaCa cell lines and tumor growth in mouse xenograft model were evaluated. METHODS Cell growth inhibition was measured in MIA PaCa-2 and Panc1 cells for 2 days using CellTiter-Glo kit. Sp1, Sp3 and survivin expression (by Western blot and qPCR), apoptotic cells and cell cycle phase distribution (by flow cytometry) were evaluated. A pilot study was performed using athymic nude mice [treated with vehicle/Cu-TA (25 or 50 mg/kg) 3 times/week for 4 weeks. RESULTS The IC50 value for Cu-TA was about half than TA.Both agents repressed the protein expression of Sp1/Sp3/survivin, Cu-TA was more effective than TA. Especially effect on survivin inhibition was 5.2 (MIA PaCa-2) or 6.4 (Panc1) fold higher and mRNA expression of only survivin was decreased. Apoptotic cells increased with Cu-TA treatment in both cell lines, while Panc1 showed both effect on apoptosis and cell cycle (G2/M) arrest. Cu-TA decreased the tumor growth in mouse xenografts (25 mg/kg: 48%; 50 mg/kg: 68%). Additionally, there was no change observed in mice body weights, indicating no overt toxicity was occurring. CONCLUSION These results show that Cu-TA can serve as an effective survivin inhibitor for inhibiting PaCa cell growth.
Collapse
Affiliation(s)
- Myrna Hurtado
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, USA
| | - Umesh T Sankpal
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, Texas, USA
| | - Aboubacar Kaba
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, USA
| | - Shahela Mahammad
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, Texas, USA
| | - Jaya Chhabra
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Deondra T Brown
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Jamboor K Vishwanatha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, USA
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, .,Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, Texas,
| |
Collapse
|
24
|
Mardhian DF, Storm G, Bansal R, Prakash J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J Control Release 2018; 290:1-10. [PMID: 30287265 DOI: 10.1016/j.jconrel.2018.09.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022]
Abstract
Cancer-associated fibroblasts (CAFs), are the key effector cells in pancreatic ductal adenocarcinoma (PDAC), known to induce tumor growth and progression. Pancreatic stellate cells (PSCs) are the precursors of CAFs in PDAC that secrete abundant extracellular matrix, growth factors and cytokines. In this study, we targeted human relaxin-2 (RLX), an endogenous hormone, to PSCs to inhibit their differentiation into CAF-like myofibroblasts. RLX significantly inhibited TGF-β induced PSCs differentiation by inhibiting pSmad2 signaling pathway. In vitro in primary human PSCs (hPSCs), treatment with RLX dose-dependently inhibited the migration, contraction, and protein expression of alpha smooth muscle actin and collagen I These data demonstrate that RLX can regulate hPSCs activation in vitro. However, RLX has several drawbacks i.e. poor pharmacokinetics and systemic vasodilation, that limits its preclinical and clinical application. Thus, we designed and successfully synthesized a nanoparticle system by chemically conjugating RLX to superparamagnetic iron oxide nanoparticle (SPION) to improve its pharmacokinetics. Interestingly, we found RLX-SPION to be more efficacious compared to free RLX in vitro. Significantly, we observed RLX-SPION retarded the tumor growth by itself and also potentiated the effect of gemcitabine in a subcutaneous co-injection (Panc1 and hPSCs) tumor model. The treatment resulted in significant inhibition in tumor growth, which was attributed to reduced collagen I (ECM), desmin (hPSC marker) and CD31 (endothelial marker) expression. In contrast, free RLX showed no significant effects. Altogether, this study presents a novel therapeutic approach against tumor stroma using RLX-SPION to achieve an effective treatment against pancreatic tumor.
Collapse
Affiliation(s)
- Deby F Mardhian
- Section - Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Section - Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Ruchi Bansal
- Section - Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Section - Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
25
|
Eyff TF, Bosi HR, Toni MS, Zilio MB, Corso CO, Bersch VP, Osvaldt AB. THE ROLE OF IMMUNOINFLAMMATORY MARKERS IN THE PROGNOSIS AND RESECTABILITY OF PANCREATIC ADENOCARCINOMA. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2018; 31:e1366. [PMID: 29972394 PMCID: PMC6044203 DOI: 10.1590/0102-672020180001e1366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic adenocarcinoma has a high mortality rate. A prognostic tool is essential for a better risk stratification. The neutrophil/lymphocyte ratio and adaptations and the platelet/lymphocyte ratio seem promising for this purpose. AIM Evaluate the prognostic value of neutrophil/lymphocyte ratio, derived neutrophil/lymphocyte ratio and platelet/lymphocyte ratio, analyze the ideal cutoff values and investigate their utility in predicting resectability. METHODS Data were collected of patients with pancreatic adenocarcinoma in Hospital de Clínicas de Porto Alegre between 2003 and 2013. The studied ratios were determined by blood count collected at hospital admission and after two cycles of palliative chemotherapy. RESULTS Basal neutrophil/lymphocyte ratio, derived neutrophil/lymphocyte ratio and platelet/lymphocyte ratio did not have prognostic impact in survival (p=0.394, p=0.152, p=0.177 respectively). In subgroup analysis of patients submitted to palliative chemotherapy, neutrophil/lymphocyte ratio, derived neutrophil/lymphocyte ratio and platelet/lymphocyte ratio determined after two cycles of chemotherapy were prognostic for overall survival (p=0.003, p=0.009, p=0.001 respectively). The ideal cutoff values found were 4,11 for neutrophil/lymphocyte ratio (sensitivity 83%, specificity 75%), 2,8 for derived neutrophil/lymphocyte ratio (sensitivity 87%, specificity 62,5%) and 362 for platelet/lymphocyte ratio (sensitivity 91%, specificity 62,5%), Neutrophil/lymphocyte ratio, derived neutrophil/lymphocyte ratio and platelet/lymphocyte ratio were not able to predict resectability (p=0.88; p=0.99; p=0.64 respectively). CONCLUSIONS Neutrophil/lymphocyte ratio, derived neutrophil/lymphocyte ratio and platelet/lymphocyte ratio are useful as prognostic markers of overall survival in patients with pancreatic adenocarcinoma submitted to palliative chemotherapy. Its use as resectability predictor could not be demonstrated.
Collapse
Affiliation(s)
- Tatiana Falcão Eyff
- Programa de Pós-graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
- Grupo do Pâncreas, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Henrique Rasia Bosi
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
| | - Mariana Sandrin Toni
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
| | - Mariana Blanck Zilio
- Programa de Pós-graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
- Grupo do Pâncreas, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Carlos Otavio Corso
- Programa de Pós-graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
| | - Vivian Pierri Bersch
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
- Grupo do Pâncreas, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Alessandro Bersch Osvaldt
- Programa de Pós-graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul
- Serviço de Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre)
- Grupo do Pâncreas, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Song HY, Wang Y, Lan H, Zhang YX. Expression of Notch receptors and their ligands in pancreatic ductal adenocarcinoma. Exp Ther Med 2018; 16:53-60. [PMID: 29896227 PMCID: PMC5995048 DOI: 10.3892/etm.2018.6172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-associated mortality in developed countries. Pancreatic ductal adenocarcinoma (PDAC) accounts for ~90% of all pancreatic cancer cases. The Notch signaling pathway serves a crucial role in embryonic development, as well as during the tumorigenesis of different types of cancer. However, Notch signaling serves either oncogenic or tumor suppressor roles depending on the tissue type. There are four Notch receptors (Notch1-4) and five ligands [Jagged1, Jagged2, δ-like ligand protein (DLL)1, DLL3 and DLL4]; therefore, it has been suggested that the different Notch receptors serve distinct roles in the same type of tissue. To determine whether this is the case, the present study measured the expression of all Notch receptors and their ligands in PDAC tissue samples and cells. Immunohistochemistry was performed to measure the expression of Notch receptors and their ligands in paraffin-embedded PDAC tissue samples. Immunofluorescence was used to detect the expression of Notch receptors in the pancreatic cancer cell lines human pancreatic adenocarcinoma (HPAC) and PANC-1. In addition, levels of Notch receptors and ligands in HPAC and PANC-1 cells were analyzed by western blot analysis. The results revealed that levels of Notch1 and Notch3 were increased in PDAC tissues, whereas levels of Notch2 and Notch3 were not. The expression of Notch receptors in the pancreatic cancer cell lines HPAC and PANC-1 was consistent with their expression in PDAC tissues. Additionally, levels of the ligands DLL1, DLL3 and DLL4 were increased in HPAC and PANC-1 cells, as well as PDAC tissue samples. However, the expression of Jagged1 and 2 remained low. These results indicate that Notch1, Notch3, DLL1, DLL3 and DLL4 are upregulated in PDAC, a positive correlation was observed between the expression of Notch1 and Notch3, and between Notch1 and the ligands DLL1, DLL3 and DLL4. whereas Notch2, Notch4, Jagged1 and Jagged2 are not. The interaction of Notch1 and Notch3 with Notch ligands DLL1, DLL3 and DLL4 may be important in maintaining the tumor phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Hai-Yan Song
- School of Basic Medical Sciences, Xinxiang Medical University, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, P.R. China.,Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| | - Hong Lan
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| | - Yu-Xiang Zhang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
27
|
Raviv NV, Sakhuja S, Schlachter M, Akinyemiju T. Metabolic syndrome and in-hospital outcomes among pancreatic cancer patients. Diabetes Metab Syndr 2017; 11 Suppl 2:S643-S650. [PMID: 28506606 DOI: 10.1016/j.dsx.2017.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
AIMS Metabolic Syndrome (MetS) is an important etiologic and prognostic factor for pancreatic cancer, but few studies have assessed health outcomes among hospitalized pancreatic cancer patients. We examined the associations between MetS and in-hospital outcomes, i.e. pancreatic resection, post-surgery complications, in-hospital mortality and discharge disposition among hospitalized patients with pancreatic cancer. METHODS Using the Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) dataset from 2007 to 2011, we obtained data on 47,386 patients hospitalized with a primary diagnosis of pancreatic cancer. Descriptive statistics and multivariable regression models were used to compute estimates, odds ratios and 95% confidence intervals adjusting for age, race/ethnicity, and socioeconomic status. RESULTS Pancreatic cancer patients with MetS were more likely to undergo pancreatic resection (OR: 1.14, 95% CI: 1.04-1.25) compared to those without MetS. However they were less likely to experience post-surgical complications (OR: 0.90, 95% CI: 0.81-0.99), discharge to a skilled nursing facility (OR: 0.90, 95% CI: 0.83-0.93), and less likely to experience in-hospital mortality (OR: 0.52, 95% CI: 0.44-0.61) compared to those without MetS. CONCLUSION Hospitalized pancreatic cancer patients with a clinical diagnosis of MetS were more likely to receive pancreatic resection, and had reduced odds of post-surgical complications and in-hospital mortality. If confirmed in future studies, then better understanding of the biological mechanisms underlying this association will be needed, potentially leading to the development of clinical and/or molecular biomarkers to improve early diagnosis of pancreatic cancer and identify patients that may benefit from pancreatic resection.
Collapse
Affiliation(s)
- Neomi Vin Raviv
- School of Social Work, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA; Rocky Mountain Cancer Rehabilitation Institute, School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO, USA
| | - Swati Sakhuja
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan Schlachter
- School of Social Work, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tomi Akinyemiju
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Ielpo B, Caruso R, Duran H, Diaz E, Fabra I, Malavé L, Ferri V, Alvarez R, Cubillo A, Plaza C, Lazzaro S, Kalivaci D, Quijano Y, Vicente E. A comparative study of neoadjuvant treatment with gemcitabine plus nab-paclitaxel versus surgery first for pancreatic adenocarcinoma. Surg Oncol 2017; 26:402-410. [PMID: 29113659 DOI: 10.1016/j.suronc.2017.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/05/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Neoadjuvant treatment has been reported to prolong survival in patients with potentially resectable pancreatic adenocarcinoma (PA). However, there are currently limited clinical results available using nab-paclitaxel and gemcitabine in PA. This paper compares the oncological results of patients affected by potentially resectable PA who underwent surgery first (SF) versus surgery following neoadjuvant treatment (NAT). METHODS This is an observational, comparative study whereby data were abstracted from a prospective database of patients affected by PA from 2007 to 2016. RESULTS We included a total of 81 patients (36 SF and 45 NAT) which resulted in being preoperatively similar. Among the NAT patients, treatment was well tolerated and the resection rate was 68.8% (31/45 patients). There was a trend towards a higher R1 resection rate in the SF group compared with the NAT (13.8% vs 3.2%; p = 0.1). Median overall survival in the resected NAT group was higher (30.6 vs 22.1 months; p = 0.04). In the borderline resectable group, overall survival was found to be four times higher compared with SF (43.6 versus 13.5 months; p = 0.001). CONCLUSIONS These data suggest that neoadjuvant treatment with gemcitabine/nab-paclitaxel is a safe and effective option for potentially resectable PA compared with the SF approach.
Collapse
Affiliation(s)
- Benedetto Ielpo
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain.
| | - Riccardo Caruso
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Hipolito Duran
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Eduardo Diaz
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Isabel Fabra
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Luis Malavé
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Valentina Ferri
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Rafael Alvarez
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Antonio Cubillo
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Carlos Plaza
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Sara Lazzaro
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Denis Kalivaci
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Yolanda Quijano
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| | - Emilio Vicente
- General Surgery Department, Sanchinarro HM University Hospital, CEU San Pablo University of Madrid, Spain
| |
Collapse
|
29
|
Kang SK, Hoffman D, Ferket B, Kim MI, Braithwaite RS. Risk-stratified versus Non–Risk-stratified Diagnostic Testing for Management of Suspected Acute Biliary Obstruction: Comparative Effectiveness, Costs, and the Role of MR Cholangiopancreatography. Radiology 2017; 284:468-481. [DOI: 10.1148/radiol.2017161714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stella K. Kang
- From the Department of Radiology, NYU School of Medicine, 550 First Ave, New York, NY 10016 (S.K.K., D.H.); Department of Population Health, NYU Langone Medical Center, New York, NY (S.K.K., R.S.B.); Institute for Healthcare Delivery Science, Department of Population Health Science and Policy (B.F.), and Department of Medicine, Division of Gastroenterology (M.I.K.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, NYU Medical Center, New York, NY (R.S.B.)
| | - David Hoffman
- From the Department of Radiology, NYU School of Medicine, 550 First Ave, New York, NY 10016 (S.K.K., D.H.); Department of Population Health, NYU Langone Medical Center, New York, NY (S.K.K., R.S.B.); Institute for Healthcare Delivery Science, Department of Population Health Science and Policy (B.F.), and Department of Medicine, Division of Gastroenterology (M.I.K.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, NYU Medical Center, New York, NY (R.S.B.)
| | - Bart Ferket
- From the Department of Radiology, NYU School of Medicine, 550 First Ave, New York, NY 10016 (S.K.K., D.H.); Department of Population Health, NYU Langone Medical Center, New York, NY (S.K.K., R.S.B.); Institute for Healthcare Delivery Science, Department of Population Health Science and Policy (B.F.), and Department of Medicine, Division of Gastroenterology (M.I.K.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, NYU Medical Center, New York, NY (R.S.B.)
| | - Michelle I. Kim
- From the Department of Radiology, NYU School of Medicine, 550 First Ave, New York, NY 10016 (S.K.K., D.H.); Department of Population Health, NYU Langone Medical Center, New York, NY (S.K.K., R.S.B.); Institute for Healthcare Delivery Science, Department of Population Health Science and Policy (B.F.), and Department of Medicine, Division of Gastroenterology (M.I.K.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, NYU Medical Center, New York, NY (R.S.B.)
| | - R. Scott Braithwaite
- From the Department of Radiology, NYU School of Medicine, 550 First Ave, New York, NY 10016 (S.K.K., D.H.); Department of Population Health, NYU Langone Medical Center, New York, NY (S.K.K., R.S.B.); Institute for Healthcare Delivery Science, Department of Population Health Science and Policy (B.F.), and Department of Medicine, Division of Gastroenterology (M.I.K.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, NYU Medical Center, New York, NY (R.S.B.)
| |
Collapse
|
30
|
Xu W, Jiang B, Yin X. Clinical data combined with radiological imaging improves the accuracy of TNM staging of pancreatic body and tail adenocarcinoma. Patient Prefer Adherence 2017; 11:1711-1721. [PMID: 29042755 PMCID: PMC5634375 DOI: 10.2147/ppa.s139938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Pancreatic body and tail adenocarcinoma (PBTA) remains one of the deadliest cancers, and current radiological modalities still have limitations on the staging of PBTA. Improving PBTA staging will contribute to the management of this disease. PATIENTS AND METHODS Clinicopathological characteristics of 91 surgically treated PBTA patients were retrospectively retrieved. Clinical data associated with postoperative tumor staging (pTNM) were assessed using ordinal logistic regression model. Discriminant analysis was performed using function formula based on multivariate analysis results; further cross-validation was conducted by Bootstrap methods. RESULTS Multivariate analysis showed that carbohydrate antigen 19-9 ≥955.0 U/L, albumin, and alkaline phosphatase/total bilirubin ratio were independent factors contributing to improved accuracy of pTNM staging. Discriminant analysis exhibited better performance and showed that the probability of accurate prediction of pTNM stage was 90.6% and the probability of cross-validation was 85.9%. After excluding patients with preoperative diagnosis of stage IV disease, the probability of accurate prediction of pTNM stage was 86.1% and the probability of cross-validation was 75.0%. CONCLUSION The combination of imaging and clinical data has higher accuracy in staging PBTA than radiological data alone. A model proposed in this study will improve the management of PBTA.
Collapse
Affiliation(s)
- Wei Xu
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha, China
- Correspondence: Bo Jiang, Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, No 61 West Jiefang Road, Changsha 410005, China, Tel +86 130 1728 6395, Fax +86 731 8227 8012, Email
| | - Xinmin Yin
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha, China
| |
Collapse
|
31
|
Le Calvez-Kelm F, Foll M, Wozniak MB, Delhomme TM, Durand G, Chopard P, Pertesi M, Fabianova E, Adamcakova Z, Holcatova I, Foretova L, Janout V, Vallee MP, Rinaldi S, Brennan P, McKay JD, Byrnes GB, Scelo G. KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control. Oncotarget 2016; 7:78827-78840. [PMID: 27705932 PMCID: PMC5346680 DOI: 10.18632/oncotarget.12386] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series.
Collapse
Affiliation(s)
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Maroulio Pertesi
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Zora Adamcakova
- Regional Authority of Public Health, Banska Bystrica, Slovakia
| | - Ivana Holcatova
- Charles University of Prague, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Prague, Czech Republic
| | - Lenka Foretova
- Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
- Faculty of Medicine, University of Ostrava, Czech Republic
| | - Maxime P. Vallee
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - James D. McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Graham B. Byrnes
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
32
|
Tjomsland V, Sandnes D, Pomianowska E, Cizmovic ST, Aasrum M, Brusevold IJ, Christoffersen T, Gladhaug IP. The TGFβ-SMAD3 pathway inhibits IL-1α induced interactions between human pancreatic stellate cells and pancreatic carcinoma cells and restricts cancer cell migration. J Exp Clin Cancer Res 2016; 35:122. [PMID: 27473228 PMCID: PMC4966589 DOI: 10.1186/s13046-016-0400-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The most abundant cells in the extensive desmoplastic stroma of pancreatic adenocarcinomas are the pancreatic stellate cells, which interact with the carcinoma cells and strongly influence the progression of the cancer. Tumor stroma interactions induced by IL-1α/IL-1R1 signaling have been shown to be involved in pancreatic cancer cell migration. TGFβ and its receptors are overexpressed in pancreatic adenocarcinomas. We aimed at exploring TGFβ and IL-1α signaling and cross-talk in the stellate cell cancer cell interactions regulating pancreatic adenocarcinoma cell migration. METHODS Human pancreatic stellate cells were isolated from surgically resected pancreatic adenocarcinomas and cultured in the presence of TGFβ or pancreatic adenocarcinoma cell lines. The effects of TGFβ were blocked by inhibitors or amplified by silencing the endogenous inhibitor of SMAD signaling, SMAD7. Pancreatic stellate cell responses to IL-1α or to IL-1α-expressing pancreatic adenocarcinoma cells (BxPC-3) were characterized by their ability to stimulate migration of cancer cells in a 2D migration model. RESULTS In pancreatic stellate cells, IL-1R1 expression was found to be down-regulated by TGFβ and blocking of TGFβ signaling re-established the expression. Endogenous inhibition of TGFβ signaling by SMAD7 was found to correlate with the levels of IL-1R1, indicating a regulatory role of SMAD7 in IL-1R1 expression. Pancreatic stellate cells cultured in the presence of IL-1α or in co-cultures with BxPC-3 cells enhanced the migration of cancer cells. This effect was blocked after treatment of the pancreatic stellate cells with TGFβ. Silencing of stellate cell expression of SMAD7 was found to suppress the levels of IL-1R1 and reduce the stimulatory effects of IL-1α, thus inhibiting the capacity of pancreatic stellate cells to induce cancer cell migration. CONCLUSIONS TGFβ signaling suppressed IL-1α mediated pancreatic stellate cell induced carcinoma cell migration. Depletion of SMAD7 upregulated the effects of TGFβ and reduced the expression of IL-1R1, leading to inhibition of IL-1α induced stellate cell enhancement of carcinoma cell migration. SMAD7 might represent a target for inhibition of IL-1α induced tumor stroma interactions.
Collapse
Affiliation(s)
- Vegard Tjomsland
- Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dagny Sandnes
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ewa Pomianowska
- Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Johnsen Brusevold
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oral Biology, University of Oslo, Oslo, Norway
- Department of Pediatric Dentistry and Behavioral Science, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivar P Gladhaug
- Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
33
|
de Rooij T, Klompmaker S, Abu Hilal M, Kendrick ML, Busch OR, Besselink MG. Laparoscopic pancreatic surgery for benign and malignant disease. Nat Rev Gastroenterol Hepatol 2016; 13:227-38. [PMID: 26882881 DOI: 10.1038/nrgastro.2016.17] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Laparoscopic surgery for benign and malignant pancreatic lesions has slowly been gaining acceptance over the past decade and is being introduced in many centres. Some studies suggest that this approach is equivalent to or better than open surgery, but randomized data are needed to assess outcomes. In this Review, we aim to provide a comprehensive overview of the state of the art in laparoscopic pancreatic surgery by aggregating high-quality published evidence. Various aspects, including the benefits, limitations, oncological efficacy, learning curve and latest innovations, are discussed. The focus is on laparoscopic Whipple procedure and laparoscopic distal pancreatectomy for both benign and malignant disease, but robot-assisted surgery is also addressed. Surgical and oncological outcomes are discussed as well as quality of life parameters and the cost efficiency of laparoscopic pancreatic surgery. We have also included decision-aid algorithms based on the literature and our own expertise; these algorithms can assist in the decision to perform a laparoscopic or open procedure.
Collapse
Affiliation(s)
- Thijs de Rooij
- Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Sjors Klompmaker
- Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Mohammad Abu Hilal
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Michael L Kendrick
- Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905, USA
| | - Olivier R Busch
- Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Marc G Besselink
- Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
34
|
Gall TMH, Tsakok M, Wasan H, Jiao LR. Pancreatic cancer: current management and treatment strategies. Postgrad Med J 2015; 91:601-7. [PMID: 26243882 DOI: 10.1136/postgradmedj-2014-133222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/14/2015] [Indexed: 12/18/2022]
Abstract
The 5-year survival of patients with pancreatic cancer is poor and, despite oncological advances over the past two decades, has not significantly improved. However, there have been several surgical and oncological advances which have improved morbidity and mortality in surgery and more efficacious chemotherapy regimens, resulting in a better patient experience and an increase in survival by a number of months. Most patients have a tumour at the head of the pancreas and those with resectable disease undergo a pancreaticoduodenectomy, which can be performed laparoscopically. Those who have a pancreatic resection have an increased survival in comparison with those receiving oncological treatment only; however, only a quarter of patients have resectable disease at diagnosis. Some centres are now performing venous resections and/or arterial resections in order to increase the number of patients eligible for curative surgery. Innovative techniques using ablation technologies to downstage tumours for resection are also being investigated. After surgery, all patients should be offered adjuvant gemcitabine-based chemotherapy. Those with locally advanced tumours not suitable for surgery should be offered FOLFIRINOX chemotherapy, after which the tumour may be suitable for surgical resection. The use of radiotherapy in this group of patients is controversial but offered by a few centres. Patients with metastatic disease at diagnosis should also be offered FOLFIRINOX chemotherapy, which can improve survival by a few months. As our knowledge of the tumour biology of pancreatic cancer progresses, a number of new agents targeting specific genes and proteins are under investigation and there is hope that median survival will continue to improve over the next decade.
Collapse
Affiliation(s)
- Tamara M H Gall
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Maria Tsakok
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Harpreet Wasan
- Department of Oncology, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Long R Jiao
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
35
|
Abstract
Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Dacheng Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keping Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Nitsche U, Siveke J, Friess H, Kleeff J. [Delayed complications after pancreatic surgery: Pancreatic insufficiency, malabsorption syndrome, pancreoprivic diabetes mellitus and pseudocysts]. Chirurg 2015; 86:533-9. [PMID: 25997699 DOI: 10.1007/s00104-015-0006-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Benign and malignant pathologies of the pancreas can result in a relevant chronic disease burden. This is aggravated by morbidities resulting from surgical resections as well as from progression of the underlying condition. OBJECTIVE The aim was to summarize the current evidence regarding epidemiology, pathophysiology, diagnosis and treatment of endocrine and exocrine pancreatic insufficiency, as well as of pancreatic pseudocysts. MATERIAL AND METHODS A selective literature search was performed and a summary of the currently available data on the surgical sequelae after pancreatic resection is given. RESULTS Reduction of healthy pancreatic parenchyma down to 10-15 % leads to exocrine insufficiency with malabsorption and gastrointestinal complaints. Orally substituted pancreatic enzymes are the therapy of choice. Loss of pancreatic islets and/or islet function leads to endocrine insufficiency and pancreoprivic diabetes mellitus. Inflammatory, traumatic and iatrogenic injuries of the pancreas can lead to pancreatic pseudocysts, which require endoscopic, interventional or surgical drainage if symptomatic. Finally, pancreatic surgery harbors the long-term risk of gastrointestinal anastomotic ulcers, bile duct stenosis, portal vein thrombosis and chronic pain syndrome. CONCLUSION As the evidence is limited, an interdisciplinary and individually tailored approach for delayed pancreatic morbidity is recommended.
Collapse
Affiliation(s)
- U Nitsche
- Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | | | | | | |
Collapse
|
37
|
Mansky T, Völzke T, Nimptsch U. Improving outcomes using German Inpatient Quality Indicators in conjunction with peer review procedures. ZEITSCHRIFT FUR EVIDENZ FORTBILDUNG UND QUALITAET IM GESUNDHEITSWESEN 2015; 109:662-70. [DOI: 10.1016/j.zefq.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/06/2023]
|