1
|
Nickerson JL, Baghalabadi V, Rajendran SRCK, Jakubec PJ, Said H, McMillen TS, Dang Z, Doucette AA. Recent advances in top-down proteome sample processing ahead of MS analysis. MASS SPECTROMETRY REVIEWS 2023; 42:457-495. [PMID: 34047392 DOI: 10.1002/mas.21706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Collapse
Affiliation(s)
| | - Venus Baghalabadi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Subin R C K Rajendran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Nova Scotia, Canada
| | - Philip J Jakubec
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hammam Said
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Teresa S McMillen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziheng Dang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Lauwaert J, Van de Steene E, Vermeir P, De Clercq J, Thybaut JW. Critical Assessment of the Thermodynamics in Acidic Resin-Catalyzed Esterifications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Evelien Van de Steene
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analyses (LCA), Department of Green Chemistry and Technology, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Jeriffa De Clercq
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| |
Collapse
|
3
|
do Nascimento FH, Moraes AH, Trazzi CR, Velasques CM, Masini JC. Fast construction of polymer monolithic columns inside fluorinated ethylene propylene (FEP) tubes for separation of proteins by reversed-phase liquid chromatography. Talanta 2020; 217:121063. [DOI: 10.1016/j.talanta.2020.121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
|
4
|
Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:155-167. [DOI: 10.1016/j.jchromb.2019.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
5
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
6
|
Eeltink S, Wouters S, Dores-Sousa JL, Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J Chromatogr A 2017; 1498:8-21. [PMID: 28069168 DOI: 10.1016/j.chroma.2017.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 01/02/2017] [Indexed: 11/27/2022]
Abstract
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Sam Wouters
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - José Luís Dores-Sousa
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
7
|
Astefanei A, Dapic I, Camenzuli M. Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations. Chromatographia 2016; 80:665-687. [PMID: 28529348 PMCID: PMC5413533 DOI: 10.1007/s10337-016-3168-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Understanding the proteins within our bodies is a key step in understanding the cause, and perhaps the solution, to disease. This is one of the application areas of proteomics, which is defined as the study of all proteins expressed within an organism at a given point in time. The human proteome is incredibly complex. The complexity of biological samples requires a combination of technologies to achieve high resolution and high sensitivity analysis. Despite the significant advances in mass spectrometry, separation techniques are still essential in this field. Liquid chromatography is an indispensable tool by which low-abundant proteins in complex samples can be enriched and separated. However, advances in chromatography are not as readily adapted in proteomics compared to advances in mass spectrometry. Biologists in this field still favour reversed-phase chromatography with fully porous particles. The purpose of this review is to highlight alternative selectivities and stationary phase morphologies that show potential for application in top-down proteomics; the study of intact proteins.
Collapse
Affiliation(s)
- A. Astefanei
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - I. Dapic
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Camenzuli
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Masini JC. Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate- and polystyrene-based monolithic columns. J Sep Sci 2016; 39:1648-55. [DOI: 10.1002/jssc.201600049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jorge Cesar Masini
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
9
|
Pérez-Maciá MA, Curcó D, Bringué R, Iborra M, Rodríguez-Ropero F, van der Vegt NFA, Aleman C. 1-Butanol absorption in poly(styrene-divinylbenzene) ion exchange resins for catalysis. SOFT MATTER 2015; 11:9144-9149. [PMID: 26411792 DOI: 10.1039/c5sm02168e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The swelling behaviour of poly(styrene-co-divinylbenzene), P(S-DVB), ion exchange resins in 1-butanol (BuOH) has been studied by means of atomistic classical molecular dynamics simulations (MD). The topological characteristics reported for the resin in the dry state, which exhibited complex internal loops (macropores), were considered for the starting models used to examine the swelling induced by BuOH contents ranging from 10% to 50% w/w. Experimental measurements using a laser diffraction particle size analyzer indicate that swelling causes a volume variation with respect to the dry resin of 21%. According to MD simulations, such a volume increment corresponds to a BuOH absorption of 31-32% w/w, which is in excellent agreement with the indirect experimental estimation (i.e. 31% w/w). Simulations reveal that, independently of the content of BuOH, the density of the swelled resin is higher than that of the dry resin, evidencing that the alcohol provokes important structural changes in the polymeric matrix. Thus, BuOH molecules cause a collapse of the resin macropores when the content of alcohol is ≤20% w/w. In contrast, when the concentration of BuOH is close to the experimental value (∼30% w/w), P(S-DVB) chains remain separated by pores faciliting the access of the reactants to the reaction centers. On the other hand, evaluation of both bonding and non-bonding interactions indicates that the mixing energy is the most important contribution to the absorption of BuOH into the P(S-DVB) resin. Overall, the results displayed in this work represent a starting point for the theoretical study of the catalytic conversion of BuOH into di-n-butyl ether in P(S-DVB) ion exchange resins using sophisticated electronic methods.
Collapse
Affiliation(s)
- M A Pérez-Maciá
- Departament d'Enginyeria Química, Facultad de Química, Universitat de Barcelona, Martí i Franqués 1, Barcelona E-08028, Spain.
| | - D Curcó
- Departament d'Enginyeria Química, Facultad de Química, Universitat de Barcelona, Martí i Franqués 1, Barcelona E-08028, Spain.
| | - R Bringué
- Departament d'Enginyeria Química, Facultad de Química, Universitat de Barcelona, Martí i Franqués 1, Barcelona E-08028, Spain.
| | - M Iborra
- Departament d'Enginyeria Química, Facultad de Química, Universitat de Barcelona, Martí i Franqués 1, Barcelona E-08028, Spain.
| | - F Rodríguez-Ropero
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| | - N F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| | - Carlos Aleman
- Departament d'Enginyeria Química, E.T.S. d'Enginyers Industrials de Barcelona, Universitat Politécnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain. and Center for Research in Nano-Engineering, Universitat Politécnica de Catalunya, Campus Sud, Edifici C', C/Pascual I Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
10
|
Simone P, Pierri G, Foglia P, Gasparrini F, Mazzoccanti G, Capriotti AL, Ursini O, Ciogli A, Laganà A. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: A highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry. J Sep Sci 2015; 39:264-71. [PMID: 26530449 DOI: 10.1002/jssc.201500844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022]
Abstract
Polymethacrylate-based monolithic capillary columns, prepared by γ-radiation-induced polymerization, were used to optimize the experimental conditions (nature of the organic modifiers, the content of trifluoroacetic acid and the column temperature) in the separation of nine standard proteins with different hydrophobicities and a wide range of molecular weights. Because of the excellent permeability of the monolithic columns, an ion-pair reversed-phase capillary liquid chromatography with high-resolution mass spectrometry method has been developed by coupling the column directly to the mass spectrometer without a flow-split and using a standard electrospray interface. Additionally, the high working flow and concomitant high efficiency of these columns allowed us to employ a longer column (up to 50 cm) and achieve a peak capacity value superior to 1000. This work is motivated by the need to develop new materials for high-resolution chromatographic separation that combine chemical stability at elevated temperatures (up to 75°C) and a broad pH range, with a high peak capacity value. The advantage of the γ-ray-induced monolithic column lies in the batch-to-batch reproducibility and long-term high-temperature stability. Their proven high loading capacity, recovery, good selectivity and high permeability, moreover, compared well with that of a commercially available poly(styrene-divinylbenzene) monolithic column, which confirms that such monolithic supports might facilitate analysis in proteomics.
Collapse
Affiliation(s)
- Patrizia Simone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Giuseppe Pierri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Patrizia Foglia
- Dipartimento di Chimica, Sapienza Università di Roma, Roma, Italy
| | | | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | | | - Ornella Ursini
- Istituto di Metodologie Chimiche, Area della Ricerca di Roma del CNR, Monterotondo Stazione, Roma, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
11
|
Wouters B, Davydova E, Wouters S, Vivo-Truyols G, Schoenmakers PJ, Eeltink S. Towards ultra-high peak capacities and peak-production rates using spatial three-dimensional liquid chromatography. LAB ON A CHIP 2015; 15:4415-4422. [PMID: 26495444 DOI: 10.1039/c5lc01169h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to successfully tackle the truly complex separation problems arising from areas such as proteomics research, the development of ultra-efficient and fast separation technology is required. In spatial three-dimensional chromatography, components are separated in the space domain with each peak being characterized by its coordinates in a three-dimensional separation body. Spatial three-dimensional (3D-)LC has the potential to offer unprecedented resolving power when orthogonal retention mechanisms are applied, since the total peak capacity is the product of the three individual peak capacities. Due to parallel developments during the second- and third-dimension separations, the analysis time is greatly reduced compared to a coupled-column multi-dimensional LC approach. This communication discusses the different design aspects to create a microfluidic chip for spatial 3D-LC. The use of physical barriers to confine the flow between the individual developments, and flow control by the use of (2)D and (3)D flow distributors is discussed. Furthermore, the in situ synthesis of monolithic stationary phases is demonstrated. Finally, the potential performance of a spatial 3D-LC systems is compared with the performance obtained with state-of-the-art 1D-LC and (coupled-column) 2D-LC approaches via a Pareto-optimization approach. The proposed microfluidic device for 3D-LC featuring 16 (2)D channels and 256 (3)D channels can potentially yield a peak capacity of 8000 in a total analysis time of 10 minutes.
Collapse
Affiliation(s)
- Bert Wouters
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Ekaterina Davydova
- Universiteit van Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sam Wouters
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Gabriel Vivo-Truyols
- Universiteit van Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- Universiteit van Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
12
|
Temperature control in large-internal-diameter scaffolded monolithic columns operated at ultra-high pressures. J Chromatogr A 2015; 1401:60-8. [DOI: 10.1016/j.chroma.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/23/2015] [Accepted: 05/02/2015] [Indexed: 11/24/2022]
|
13
|
Pérez-Maciá MA, Curcó D, Bringué R, Iborra M, Alemán C. Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins. SOFT MATTER 2015; 11:2251-2267. [PMID: 25651925 DOI: 10.1039/c4sm02417f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The microscopic structures of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) resins have been modeled by generating atomistic microstructures using stochastic-like algorithms, which are subsequently relaxed using molecular dynamics. Two different generation algorithms have been tested. The relaxation of the microstructures generated by the first algorithm, which is based on a homogeneous construction of the resin, leads to a significant overestimation of the experimental density as well as to an unsatisfactory description of the porosity. In contrast, the generation approach that combines algorithms for the heterogeneous growing and branching of the chains enables the formation of crosslinks with different topologies. In particular, the intrinsic heterogeneity observed in these resins is efficiently reproduced when the topological loops, which are defined by two or more crosslinks closing a cycle, are present in their microscopic description. Thus, the apparent density, porosity and pore volume estimated using microstructures with these topological loops, called super-crosslinks, are in very good agreement with the experimental results. Although the backbone dihedral angle distribution of the generated and relaxed models is not influenced by the topology, the number and type of crosslinks affect the medium- and long-range atomic disposition of the backbone atoms and the distribution of sulfonic groups. An analysis of the distribution of the local density indicates that super-crosslinks are responsible for the heterogeneous homogenization observed during the MD relaxation. Finally the π-π stacking interactions have been analyzed. Results indicate that those in which the two rings adopt a T-shaped disposition are considerably more abundant as compared to those with the co-facially oriented rings, independently of the resin topology.
Collapse
Affiliation(s)
- María A Pérez-Maciá
- Departament d'Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1, Barcelona E-08028, Spain.
| | | | | | | | | |
Collapse
|
14
|
Wouters B, De Vos J, Desmet G, Terryn H, Schoenmakers PJ, Eeltink S. Design of a microfluidic device for comprehensive spatial two-dimensional liquid chromatography. J Sep Sci 2015; 38:1123-9. [DOI: 10.1002/jssc.201401192] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Bert Wouters
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| | - Gert Desmet
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| | - Herman Terryn
- Department of Materials and Chemistry; Vrije Universiteit Brussel; Brussels Belgium
| | - Peter J. Schoenmakers
- Van't Hoff Institute for Molecular Sciences; Universiteit van Amsterdam; Amsterdam The Netherlands
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
15
|
Geng X, Jia X, Liu P, Wang F, Yang X. Two variables dominating the retention of intact proteins under gradient elution with simultaneous ultrafast high-resolution separation by hydrophobic interaction chromatography. Analyst 2015; 140:6692-704. [DOI: 10.1039/c5an01400j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The retention of proteins under gradient elution in HIC is dominated by two variables of steady and migration regions.
Collapse
Affiliation(s)
- Xindu Geng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Xiaodan Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Peng Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Xiaoming Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| |
Collapse
|
16
|
Vonk RJ, Vaast A, Eeltink S, Schoenmakers PJ. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography. J Chromatogr A 2014; 1359:162-9. [DOI: 10.1016/j.chroma.2014.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
|
17
|
Wouters S, Wouters B, Vaast A, Terryn H, Van Assche G, Eeltink S. Monitoring the morphology development of polymer-monolithic stationary phases by thermal analysis. J Sep Sci 2013; 37:179-86. [DOI: 10.1002/jssc.201301104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sam Wouters
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| | - Bert Wouters
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| | - Axel Vaast
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| | - Herman Terryn
- Department of Materials and Chemistry; Vrije Universiteit Brussel; Brussels Belgium
| | - Guy Van Assche
- Department of Materials and Chemistry; Vrije Universiteit Brussel; Brussels Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
18
|
Dolman S, Eeltink S, Vaast A, Pelzing M. Investigation of carryover of peptides in nano-liquid chromatography/mass spectrometry using packed and monolithic capillary columns. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 912:56-63. [DOI: 10.1016/j.jchromb.2012.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
19
|
Rigobello-Masini M, Penteado JCP, Masini JC. Monolithic columns in plant proteomics and metabolomics. Anal Bioanal Chem 2012; 405:2107-22. [DOI: 10.1007/s00216-012-6574-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/02/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022]
|
20
|
Grotefend S, Kaminski L, Wroblewitz S, Deeb SE, Kühn N, Reichl S, Limberger M, Watt S, Wätzig H. Protein quantitation using various modes of high performance liquid chromatography. J Pharm Biomed Anal 2012; 71:127-38. [DOI: 10.1016/j.jpba.2012.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
|
21
|
Wang F, Min Y, Geng X. Fast separations of intact proteins by liquid chromatography. J Sep Sci 2012; 35:3033-45. [DOI: 10.1002/jssc.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Fei Wang
- Provincial Key Laboratory of Modern Separation Science of Shaanxi; Institute of Modern Separation Science; Northwest University; Xi'an P. R. China
| | - Yi Min
- Provincial Key Laboratory of Modern Separation Science of Shaanxi; Institute of Modern Separation Science; Northwest University; Xi'an P. R. China
| | - Xindu Geng
- Provincial Key Laboratory of Modern Separation Science of Shaanxi; Institute of Modern Separation Science; Northwest University; Xi'an P. R. China
| |
Collapse
|
22
|
Wu Q, Yuan H, Zhang L, Zhang Y. Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysis--a review. Anal Chim Acta 2012; 731:1-10. [PMID: 22652259 DOI: 10.1016/j.aca.2012.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 02/08/2023]
Abstract
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | |
Collapse
|
23
|
Fekete S, Veuthey JL, Guillarme D. New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: theory and applications. J Pharm Biomed Anal 2012; 69:9-27. [PMID: 22475515 DOI: 10.1016/j.jpba.2012.03.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/22/2022]
Abstract
In the pharmaceutical field, there is considerable interest in the use of peptides and proteins for therapeutic purposes. There are various ways to characterize such complex samples, but during the last few years, a significant number of technological developments have been brought to the field of RPLC and RPLC-MS. Thus, the present review focuses first on the basics of RPLC for peptides and proteins, including the inherent problems, some possible solutions and some directions for developing a new RPLC method that is dedicated to biomolecules. Then the latest advances in RPLC, such as wide-pore core-shell particles, fully porous sub-2 μm particles, organic monoliths, porous layer open tubular columns and elevated temperature, are described and critically discussed in terms of both kinetic efficiency and selectivity. Numerous applications with real samples are presented that confirm the relevance of these different strategies. Finally, one of the key advantages of RPLC for peptides and proteins over other historical approaches is its inherent compatibility with MS using both MALDI and ESI sources.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Bd d'Yvoy 20, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
24
|
Arrua RD, Causon TJ, Hilder EF. Recent developments and future possibilities for polymer monoliths in separation science. Analyst 2012; 137:5179-89. [DOI: 10.1039/c2an35804b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Roth MJ, Plymire DA, Chang AN, Kim J, Maresh EM, Larson SE, Patrie SM. Sensitive and Reproducible Intact Mass Analysis of Complex Protein Mixtures with Superficially Porous Capillary Reversed-Phase Liquid Chromatography Mass Spectrometry. Anal Chem 2011; 83:9586-92. [DOI: 10.1021/ac202339x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Michael J. Roth
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Daniel A. Plymire
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Audrey N. Chang
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Jaekuk Kim
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Erica M. Maresh
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Shane E. Larson
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Steven M. Patrie
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| |
Collapse
|
26
|
High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. J Chromatogr A 2011; 1218:5504-11. [DOI: 10.1016/j.chroma.2011.06.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/16/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
|
27
|
Construction and initial evaluation of an apparatus for spatial comprehensive two-dimensional liquid-phase separations. Anal Chim Acta 2011; 701:92-7. [PMID: 21763814 DOI: 10.1016/j.aca.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
Spatial comprehensive two-dimensional chromatography is discussed as a potentially alternative to the conventional column-based approach. In "spatial" separations each analyte ends up in a specific location, rather than being eluted at a specific time. Ultimately, higher peak-capacity-production rates (peak capacity per unit time) may be attained by spatial two- and three-dimensional separations. While low-pressure planar chromatography is well developed, the high-pressure equivalent is still in its infancy. We discuss the requirements for a device for high-pressure spatial two-dimensional chromatography and we describe a possible design. A prototype instrument has been constructed in-house. The preparation of a polymer monolithic separation body and a valve configuration that allows manual sample injection are described. Initial tests of this study included the investigation of the homogeneity of the monolith and the flow profile through the separation body. Furthermore, in order to evaluate the current chromatographic performance of the device, a mixture of dyes was separated in one dimension within 30 s.
Collapse
|
28
|
Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011; 55:810-22. [DOI: 10.1016/j.jpba.2011.01.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
|
29
|
Eeltink S, Dolman S, Vivo-Truyols G, Schoenmakers P, Swart R, Ursem M, Desmet G. Selection of Column Dimensions and Gradient Conditions to Maximize the Peak-Production Rate in Comprehensive Off-Line Two-Dimensional Liquid Chromatography Using Monolithic Columns. Anal Chem 2010; 82:7015-20. [DOI: 10.1021/ac101514d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Sebastiaan Dolman
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Gabriel Vivo-Truyols
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Peter Schoenmakers
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Remco Swart
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Mario Ursem
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Dionex Corporation, Abberdaan 114, 1046 AA Amsterdam, The Netherlands, and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
30
|
Lestremau F, Wu D, Szücs R. Evaluation of 1.0mm i.d. column performances on ultra high pressure liquid chromatography instrumentation. J Chromatogr A 2010; 1217:4925-33. [DOI: 10.1016/j.chroma.2010.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/18/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|
31
|
High temperature liquid chromatography of intact proteins using organic polymer monoliths and alternative solvent systems. J Chromatogr A 2010; 1217:3519-24. [DOI: 10.1016/j.chroma.2010.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/21/2010] [Accepted: 03/19/2010] [Indexed: 11/21/2022]
|
32
|
Nesterenko EP, Nesterenko PN, Connolly D, Lacroix F, Paull B. Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules. J Chromatogr A 2010; 1217:2138-46. [DOI: 10.1016/j.chroma.2010.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/14/2010] [Accepted: 02/02/2010] [Indexed: 11/29/2022]
|
33
|
Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. J Chromatogr A 2010; 1217:3085-90. [DOI: 10.1016/j.chroma.2010.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 11/20/2022]
|