1
|
Sanvito F, Yao J, Nocera G, Shao G, Wang Z, Cho NS, Teraishi A, Raymond C, Patel K, Pouratian N, Everson RG, Yang I, Salamon N, Kim W, Ellingson BM. Volumetric and diffusion MRI longitudinal patterns in brain metastases after laser interstitial thermal therapy. Eur Radiol 2025:10.1007/s00330-025-11587-0. [PMID: 40251440 DOI: 10.1007/s00330-025-11587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE To characterize MRI changes of brain metastases (BM) following laser interstitial thermal therapy (LITT), particularly in lesions exhibiting durable response or early progression. MATERIALS AND METHODS Longitudinal scans from patients with LITT-treated BM were retrospectively analyzed. Treatment response was categorized as durable response, long-term disease control (i.e., stable at 1 year), stable disease < 1 year, or progression < 1 year. Volumetric and diffusion MRI changes after LITT were analyzed for each subregion (contrast-enhancing, central non-enhancing, whole lesion). Volumetric changes were modeled with bi-exponential fits in responding lesions and progressors. RESULTS 295 MRI scans from 47 lesions across 42 patients (57.8 ± 14.3 years old, males:females 21:21) were analyzed. Overall, the post-LITT scan showed a lesion enlargement (p < 0.0001 for all subregions), more pronounced in the contrast-enhancing (CE) component (median = +77%, p < 0.0001), and a reduction in the apparent diffusion coefficient (ADC) (p < 0.001), especially in the central non-CE component (median = -224 × 10-6 mm2/s, p < 0.0001), with no significant differences between responders and progressors. Based on mathematical modeling, the responding lesions shrank to half of the post-LITT size after 79.83 days (median "pseudo-half-life"), and the progressing lesions shrank for a median of 27 days (median time-to-growth) before regrowing. The estimated optimal timepoints for follow-up scans were 23 days and 125 days, yielding accuracy/specificity/sensitivity 0.82/1.0/0.55 in identifying progressing lesions (p < 0.01). CONCLUSION BM typically exhibit an early volume increase with diffusion restriction after LITT. Responders then show bi-exponential shrinkage with gradual diffusion increase. Progression can usually be detected only after 3-4 months, because earlier radiographic patterns may overlap with responding lesions. KEY POINTS Question Laser interstitial thermal therapy (LITT) is an emerging local treatment for brain metastases, but the radiographic patterns following this treatment have not been thoroughly described. Findings Responding lesions showed a typical radiographic pattern with early volumetric enlargement and diffusion restriction (not exclusive of responders), followed by a bi-exponential shrinkage and diffusion elevation. Clinical relevance Being aware of the typical radiographic changes in brain metastases responding to LITT is informative for the interpretation of follow-up images. Early volumetric and diffusion changes (< 3-4 months) do not appear to be reliable markers to predict treatment success.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gianluca Nocera
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Università Vita-Salute San Raffaele, Milano, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milano, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Guowen Shao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Zexi Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashley Teraishi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kunal Patel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Richard G Everson
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiation Oncology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Isaac Yang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiation Oncology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Head and Neck Surgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Won Kim
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Rademacher AF, Fadel HA, Pawloski JA, Ma M, Nkongchu KN, Lee IY, Ali AY. Laser Interstitial Thermal Therapy for Intra-Axial Brain Tumors: Everything the Neuroradiologist Should Know. AJNR Am J Neuroradiol 2025; 46:666-674. [PMID: 39572197 PMCID: PMC11979850 DOI: 10.3174/ajnr.a8427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 04/04/2025]
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive cytoreductive treatment option for patients with intracranial tumors. Utilizing real-time MR thermometry, LITT delivers tailored, targeted, and permanent cytotoxic thermal injury to intra-axial pathology. As a minimally invasive and nonionizing treatment option proved to be an effective, less morbid, and more efficient alternative to surgery, the utility of LITT has rapidly expanded. Along with this growth comes the need for neurosurgeons and neuroradiologists to accurately assess the radiographic outcomes of LITT in a standardized, dependable, and longitudinal fashion. We present a comprehensive overview of the indications and mechanisms of action of LITT for intra-axial brain tumors as well as guidance on thorough pre-, intra-, and postoperative imaging assessments. Using detailed case examples describing the contemporary uses of LITT, we hope to provide a foundational understanding of LITT that will inform imaging assessment and guide accurate multi disciplinary tumor board discussion.
Collapse
Affiliation(s)
- Anneliese F Rademacher
- From the Department of Neurosurgery (A.F.R., H.A.F., J.A.P., I.Y.L.), Henry Ford Health, Detroit, Michigan
| | - Hassan A Fadel
- From the Department of Neurosurgery (A.F.R., H.A.F., J.A.P., I.Y.L.), Henry Ford Health, Detroit, Michigan
| | - Jacob A Pawloski
- From the Department of Neurosurgery (A.F.R., H.A.F., J.A.P., I.Y.L.), Henry Ford Health, Detroit, Michigan
| | - Mia Ma
- Department of Radiology (M.M., K.N.N., A.Y.A.), Henry Ford Health, Detroit, Michigan
| | - Ken N Nkongchu
- Department of Radiology (M.M., K.N.N., A.Y.A.), Henry Ford Health, Detroit, Michigan
| | - Ian Y Lee
- From the Department of Neurosurgery (A.F.R., H.A.F., J.A.P., I.Y.L.), Henry Ford Health, Detroit, Michigan
| | - Arafat Y Ali
- Department of Radiology (M.M., K.N.N., A.Y.A.), Henry Ford Health, Detroit, Michigan
| |
Collapse
|
3
|
McGrath K, Frain M, Hey G, Rahman M. Complications following laser interstitial thermal therapy: a review. Neurochirurgie 2025; 71:101604. [PMID: 39413572 DOI: 10.1016/j.neuchi.2024.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Laser interstitial thermal therapy (LITT) is being performed more frequently for various lesions within neurosurgery, including epileptic foci, vascular malformations, and tumors. Though this technique generally has an excellent safety profile, it is important to be aware of potential complications. Thermal ablation of tissue leads to disruption of the blood brain barrier as well as an inflammatory response both of which cause the majority of complications from LITT. The most common complications of LITT include cerebral edema, focal neurologic deficits, and intracranial hemorrhage. Few studies have identified factors predicting development of these complications, but many of these are transient and resolve without intervention. Modifications to LITT technique that allows better visualization of patient anatomy along the tract, such as fusing vascular imaging with intraoperative MRI, reduce the risk of complications.
Collapse
Affiliation(s)
- Kyle McGrath
- College of Medicine, University of Florida, Gainesville, FL, United States.
| | - Matthew Frain
- Department of Medical Physics, University of Florida, Gainesville, FL, United States; Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Grace Hey
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States; Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Nielsen SH, Rasmussen R. MR-guided laser interstitial thermal therapy in the treatment of brain tumors and epilepsy. Acta Neurochir (Wien) 2024; 166:344. [PMID: 39167226 DOI: 10.1007/s00701-024-06238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
MR-guided Laser Interstitial Thermal Therapy (MRgLITT) is a minimally invasive neurosurgical technique increasingly used for the treatment of drug-resistant epilepsy and brain tumors. Utilizing near-infrared light energy delivery guided by real-time MRI thermometry, MRgLITT enables precise ablation of targeted brain tissues, resulting in limited corridor-related morbidity and expedited postoperative recovery. Since receiving CE marking in 2018, the adoption of MRgLITT has expanded to more than 40 neurosurgical centers across Europe. In epilepsy treatment, MRgLITT can be applied to various types of focal lesional epilepsy, including mesial temporal lobe epilepsy, hypothalamic hamartoma, focal cortical dysplasias, periventricular heterotopias, cavernous malformations, dysembryoplastic neuroepithelial tumors (DNET), low-grade gliomas, tuberous sclerosis, and in disconnective surgeries. In neuro-oncology, MRgLITT is used for treating newly diagnosed and recurrent primary brain tumors, brain metastases, and radiation necrosis. This comprehensive review presents an overview of the current evidence and technical considerations for the use of MRgLITT in treating various pathologies associated with drug-resistant epilepsy and brain tumors.
Collapse
Affiliation(s)
- Silas Haahr Nielsen
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Rune Rasmussen
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
5
|
Lieberman S, Rivera DA, Morton R, Hingorani A, Southard TL, Johnson L, Reukauf J, Radwanski RE, Zhao M, Nishimura N, Bracko O, Schwartz TH, Schaffer CB. Circumscribing Laser Cuts Attenuate Seizure Propagation in a Mouse Model of Focal Epilepsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300747. [PMID: 38810146 PMCID: PMC11304327 DOI: 10.1002/advs.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2024] [Indexed: 05/31/2024]
Abstract
In partial onset epilepsy, seizures arise focally in the brain and often propagate. Patients frequently become refractory to medical management, leaving neurosurgery, which can cause neurologic deficits, as a primary treatment. In the cortex, focal seizures spread through horizontal connections in layers II/III, suggesting that severing these connections can block seizures while preserving function. Focal neocortical epilepsy is induced in mice, sub-surface cuts are created surrounding the seizure focus using tightly-focused femtosecond laser pulses, and electrophysiological recordings are acquired at multiple locations for 3-12 months. Cuts reduced seizure frequency in most animals by 87%, and only 5% of remaining seizures propagated to the distant electrodes, compared to 80% in control animals. These cuts produced a modest decrease in cortical blood flow that recovered and left a ≈20-µm wide scar with minimal collateral damage. When placed over the motor cortex, cuts do not cause notable deficits in a skilled reaching task, suggesting they hold promise as a novel neurosurgical approach for intractable focal cortical epilepsy.
Collapse
Affiliation(s)
- Seth Lieberman
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
- College of Veterinary MedicineCornell UniversityIthacaNY14853USA
| | - Daniel A. Rivera
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Ryan Morton
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Amrit Hingorani
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | | | - Lynn Johnson
- Statistical Consulting UnitCornell UniversityIthacaNY14853USA
| | - Jennifer Reukauf
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
- College of Veterinary MedicineCornell UniversityIthacaNY14853USA
| | - Ryan E. Radwanski
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Mingrui Zhao
- Department of Neurological SurgeryWeill Cornell Medicine of Cornell UniversityNew YorkNY10065USA
- Brain and Mind Research InstituteWeill Cornell Medicine of Cornell UniversityNew YorkNY10021USA
| | - Nozomi Nishimura
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Oliver Bracko
- Department of BiologyThe University of MiamiCoral GablesFL33134USA
| | - Theodore H. Schwartz
- Department of Neurological SurgeryWeill Cornell Medicine of Cornell UniversityNew YorkNY10065USA
- Brain and Mind Research InstituteWeill Cornell Medicine of Cornell UniversityNew YorkNY10021USA
| | - Chris B. Schaffer
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
6
|
Chang JG, Kim SJ, Kim CH. Neuroablative Intervention for Refractory Obsessive-Compulsive Disorder. Psychiatry Investig 2023; 20:997-1006. [PMID: 37997327 PMCID: PMC10678146 DOI: 10.30773/pi.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE This review aims to investigate the progression of neuroablation, along with documented clinical efficacy and safety, in the management of treatment-resistant obsessive-compulsive disorder (OCD). METHODS We searched and compiled clinical research results of neuroablation therapy reported to date. We extracted outcomes related to clinical efficacy, side effects, and surgical complications. Additionally, we summarized key claims and findings. RESULTS Neuroablative intervention is a potential treatment approach for refractory OCD. Recent advancements, such as real-time magnetic resonance monitoring and minimally invasive techniques employing ultrasound and laser, offer distinct advantages in terms of safety and comparative efficacy when compared to conventional methods. However, the absence of randomized controlled trials and long-term outcome data underscores the need for cautious consideration when selecting neuroablation. CONCLUSION Neuroablative intervention shows promise for refractory OCD, but vigilant consideration is essential in both patient selection and surgical method choices due to the potential for rare yet serious complications.
Collapse
Affiliation(s)
- Jhin Goo Chang
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan-Hyung Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Brandel MG, Kunwar N, Alattar AA, Kang KM, Forseth KJ, Rennert RC, Shih JJ, Ben-Haim S. A cost analysis of MR-guided laser interstitial thermal therapy for adult refractory epilepsy. Epilepsia 2023; 64:2286-2296. [PMID: 37350343 DOI: 10.1111/epi.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE MR-guided laser interstitial thermal therapy (LITT) is used increasingly for refractory epilepsy. The goal of this investigation is to directly compare cost and short-term adverse outcomes for adult refractory epilepsy treated with temporal lobectomy and LITT, as well as to identify risk factors for increased costs and adverse outcomes. METHODS The National Inpatient Sample (NIS) was queried for patients who received LITT between 2012 and 2019. Patients with adult refractory epilepsy were identified. Multivariable mixed-effects models were used to analyze predictors of cost, length of stay (LOS), and complications. RESULTS LITT was associated with reduced LOS and overall cost relative to temporal lobectomy, with a statistical trend toward lower incidence of postoperative complications. High-volume surgical epilepsy centers had lower LOS overall. Longer LOS was a significant driver of increased cost for LITT, and higher comorbidity was associated with non-routine discharge. SIGNIFICANCE LITT is an affordable alternative to temporal lobectomy for adult refractory epilepsy with an insignificant reduction in inpatient complications. Patients may benefit from expanded access to this treatment modality for both its reduced LOS and lower cost.
Collapse
Affiliation(s)
- Michael G Brandel
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Nikhita Kunwar
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Ali A Alattar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keiko M Kang
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | - Kiefer J Forseth
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Robert C Rennert
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jerry J Shih
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Sharona Ben-Haim
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| |
Collapse
|
8
|
Schupper AJ, Chanenchuk T, Racanelli A, Price G, Hadjipanayis CG. Laser hyperthermia: Past, present, and future. Neuro Oncol 2022; 24:S42-S51. [PMID: 36322099 PMCID: PMC9629480 DOI: 10.1093/neuonc/noac208] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging-guided laser interstitial thermal therapy (LITT) is an ablative procedure using heat from a laser to provide cytoreduction in tissue. It is a minimally invasive procedure that has been used in intracranial pathologies such as high-grade gliomas, metastatic lesions, epilepsy, and other lesions. While LITT may offer a more acceptable complication profile compared to open surgery, the role of laser therapy for intracranial lesions in current treatment paradigms continues to evolve. This review will focus on the background and application of LITT, the current evidence for its use, and future directions for the technology.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Tori Chanenchuk
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Anna Racanelli
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine, Mount Sinai Downtown Union Square, Mount Sinai Health System, New York, New York, USA
| |
Collapse
|
9
|
Abstract
Photothermal therapy (PTT) mediated by the second near-infrared light (NIR-II) is considered as the most promising PTT in deep tissues due to the superior penetrability of NIR-II through biological tissues. However, the effective therapeutic depth of NIR-II mediated PTT is limited to only several millimeters beneath the skin tissues. So far, deep PTT still cannot satisfy the depth requirement for most common cancers, including but not limited to lung, pancreatic, colorectal, and stomach cancers. Therefore, it is highly desirable to develop ultradeep PTT strategies to enhance the therapeutic depth with clinical availability. This Perspective highlights the latest research progress in regard to ultradeep PTT strategies, including larger laser spot PTT, skin tissue optical clearing technology enhanced PTT, and optical fiber assisted PTT, followed with pertinent evaluations and expectations. In addition, challenges and perspectives in this fast-growing area of ultradeep PTT are discussed.
Collapse
Affiliation(s)
- Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiao-Qi Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
10
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
11
|
Satzer D, Mahavadi A, Lacy M, Grant JE, Warnke P. Interstitial laser anterior capsulotomy for obsessive-compulsive disorder: lesion size and tractography correlate with outcome. J Neurol Neurosurg Psychiatry 2022; 93:317-323. [PMID: 34716192 DOI: 10.1136/jnnp-2021-327730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Anterior capsulotomy is a well-established treatment for refractory obsessive-compulsive disorder (OCD). MRI-guided laser interstitial thermal therapy (LITT) allows creation of large, sharply demarcated lesions with the safeguard of real-time imaging. OBJECTIVE To characterise the outcomes of laser anterior capsulotomy, including radiographical predictors of improvement. METHODS Patients with severe OCD refractory to pharmacotherapy and cognitive-behavioural therapy underwent bilateral anterior capsulotomy via LITT. The primary outcome was per cent reduction in Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score over time. Lesion size was measured on postablation MRI. Disconnection of the anterior limb of the internal capsule (ALIC) was assessed via individual and normative tractography. RESULTS Eighteen patients underwent laser anterior capsulotomy. Median follow-up was 6 months (range 3-51 months). Time occupied by obsessions improved immediately (median Y-BOCS item 1 score 4-1, p=0.002). Mean (±SD) decrease in Y-BOCS score at last follow-up was 46%±32% (16±11 points, p<0.0001). Sixty-one per cent of patients were responders. Seven patients (39%) exhibited transient postoperative apathy. One patient had an asymptomatic intracerebral haemorrhage. Reduction in Y-BOCS score was positively associated with ablation volume (p=0.006). Individual tractography demonstrated durable ALIC disconnection. Normative tractography revealed a dorsal-ventral gradient, with disconnection of orbitofrontal streamlines most strongly associated with a positive response (p<0.0001). CONCLUSIONS Laser anterior capsulotomy resulted in immediate, marked improvement in OCD symptom severity. Larger lesions permit greater disconnection of prefrontal-subcortical pathways involved in OCD. The importance of greater disconnection is presumably related to variation in ALIC structure and the complex role of the PFC in OCD.
Collapse
Affiliation(s)
- David Satzer
- Neurosurgery, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Anil Mahavadi
- Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maureen Lacy
- Psychaitry and Behavioral Neuroscience, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Jon E Grant
- Psychiatry, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Peter Warnke
- Neurosurgery, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
12
|
Muir M, Patel R, Traylor JI, de Almeida Bastos DC, Kamiya C, Li J, Rao G, Prabhu SS. Laser interstitial thermal therapy for newly diagnosed glioblastoma. Lasers Med Sci 2021; 37:1811-1820. [PMID: 34687390 DOI: 10.1007/s10103-021-03435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Gliomas are the most frequent primary brain tumor in adults. Patients with glioblastoma (GBM) tumors deemed inoperable with open surgical techniques and treated only with chemo/radiation have a median overall survival of less than 9 months. Laser interstitial thermal therapy (LITT) has emerged as a cytoreductive alternative to surgery for these patients. The present study describes the outcomes of twenty patients with newly diagnosed, IDH wild-type glioblastoma treated with LITT. We retrospectively reviewed patients with newly diagnosed, unresectable GBM who underwent LITT at our institution. Progression-free survival (PFS) was the primary endpoint measured in our study, defined as time from LITT to disease progression. Results Twenty patients were identified with newly diagnosed, inoperable GBM lesions who underwent LITT. The overall median PFS was 4 months (95% CI = 2 - N/A, upper limit not reached). The median progression-free survival (PFS) for patients with less than 1 cm 3 residual tumor (gross total ablation, GTA) was 7 months (95% CI = 6 - N/A, upper limit not reached), compared to 2 months (95% CI = 1 - upper limit not reached) for patients with a lower GTA (p = .0019). The median overall survival was 11 months (95% CI = 6 - upper limit not reached). Preoperative Karnofsky performance score (KPS) less than or equal to 80 and deep-seated tumor location were significantly associated with decreased PFS (HR, .18, p = .03; HR, .08, p = .03, respectively). At the end of 1 month, only 4 patients (20%) experienced persistent motor deficits. LITT is a safe and effective treatment for patients with unresectable, untreated GBM with rates of survival and local recurrence comparable to patients with surgically accessible lesions treated with conventional resection. Careful patient selection is needed to determine if GTA is attainable.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 442, Houston, TX, 77030-4009, USA.
| | - Rajan Patel
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 442, Houston, TX, 77030-4009, USA
| | - Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 442, Houston, TX, 77030-4009, USA
| | - Dhiego Chaves de Almeida Bastos
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 442, Houston, TX, 77030-4009, USA
| | - Carlos Kamiya
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 442, Houston, TX, 77030-4009, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 442, Houston, TX, 77030-4009, USA
| |
Collapse
|
13
|
Adin ME, Spencer DD, Damisah E, Herlopian A, Gerrard JL, Bronen RA. Imaging of Neuromodulation and Surgical Interventions for Epilepsy. AJNR Am J Neuroradiol 2021; 42:1742-1750. [PMID: 34353787 DOI: 10.3174/ajnr.a7222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 11/07/2022]
Abstract
About one-third of epilepsy cases are refractory to medical therapy. During the past decades, the availability of surgical epilepsy interventions has substantially increased as therapeutic options for this group of patients. A wide range of surgical interventions and electrophysiologic neuromodulation techniques are available, including lesional resection, lobar resection, thermoablation, disconnection, multiple subpial transections, vagus nerve stimulation, responsive neurostimulation, and deep brain stimulation. The indications and imaging features of potential complications of the newer surgical interventions may not be widely appreciated, particularly if practitioners are not associated with comprehensive epilepsy centers. In this article, we review a wide range of invasive epilepsy treatment modalities with a particular focus on their postoperative imaging findings and complications. A state-of-the-art treatment algorithm provides context for imaging findings by helping the reader understand how a particular invasive treatment decision is made.
Collapse
Affiliation(s)
- M E Adin
- From the Department of Radiology and Biomedical Imaging (M.E.A., R.A.B.)
| | | | | | - A Herlopian
- Neurology (A.H.), Yale School of Medicine, New Haven, Connecticut
| | | | - R A Bronen
- From the Department of Radiology and Biomedical Imaging (M.E.A., R.A.B.)
| |
Collapse
|
14
|
Brain-targeted drug delivery assisted by physical techniques and its potential applications in traditional Chinese medicine. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Di L, Wang CP, Shah AH, Eichberg DG, Semonche AM, Sanjurjo AD, Luther EM, Jermakowicz WJ, Komotar RJ, Ivan ME. A Cohort Study on Prognostic Factors for Laser Interstitial Thermal Therapy Success in Newly Diagnosed Glioblastoma. Neurosurgery 2021; 89:496-503. [PMID: 34156076 DOI: 10.1093/neuros/nyab193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a promising approach for cytoreduction of deep-seated gliomas. However, parameters contributing to treatment success remain unclear. OBJECTIVE To identify extent of ablation (EOA) and time to chemotherapy (TTC) as predictors of improved overall and progression-free survival (OS, PFS) and suggest laser parameters to achieve optimal EOA. METHODS Demographic, clinical, and survival data were collected retrospectively from 20 patients undergoing LITT for newly diagnosed glioblastoma (nGBM). EOA was calculated through magnetic resonance imaging-based volumetric analysis. Kaplan-Meier and multivariate Cox regression were used to examine the relationship between EOA with OS and PFS accounting for covariates (age, isocitrate dehydrogenase-1 (IDH1) mutation, O6-methylguanine-DNA methyltransferase hypermethylation). The effect of laser thermodynamic parameters (power, energy, time) on EOA was identified through linear regression. RESULTS Median OS and PFS for the entire cohort were 36.2 and 3.5 mo respectively. Patient's with >70% EOA had significantly improved PFS compared to ≤70% EOA (5.2 vs 2.3 mo, P = .01) and trended toward improved OS (36.2 vs 11 mo, P = .07) on univariate and multivariate analysis. Total laser power was a significant predictor for increased EOA when accounting for preoperative lesion volume (P = .001). Chemotherapy within 16 d of surgery significantly predicted improved PFS compared to delaying chemotherapy (9.4 vs 3.1 mo, P = .009). CONCLUSION Increased EOA was a predictor of improved PFS with evidence of a trend toward improved OS in LITT treatment of nGBM. A strategy favoring higher laser power during tumor ablation may achieve optimal EOA. Early transition to chemotherapy after LITT improves PFS.
Collapse
Affiliation(s)
- Long Di
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Christopher P Wang
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Daniel G Eichberg
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexa M Semonche
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexander D Sanjurjo
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Evan M Luther
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Walter J Jermakowicz
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA.,Sylvestor Comprehensive Cancer Center, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA.,Sylvestor Comprehensive Cancer Center, Miami, Florida, USA
| |
Collapse
|
16
|
Traylor JI, Patel R, Muir M, de Almeida Bastos DC, Ravikumar V, Kamiya-Matsuoka C, Rao G, Thomas JG, Kew Y, Prabhu SS. Laser Interstitial Thermal Therapy for Glioblastoma: A Single-Center Experience. World Neurosurg 2021; 149:e244-e252. [PMID: 33610872 DOI: 10.1016/j.wneu.2021.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Surgical resection has been shown to prolong survival in patients with glioblastoma multiforme (GBM), although this benefit has not been demonstrated for reoperation following tumor recurrence. Laser interstitial thermal therapy (LITT) is a minimally invasive ablation technique that has been shown to effectively reduce tumor burden in some patients with intracranial malignancy. The aim of this study was to describe the safety and efficacy of LITT for recurrent and newly diagnosed GBM at a large tertiary referral center. METHODS Patients with GBM receiving LITT were retrospectively analyzed. Overall survival from the time of LITT was the primary end point measured. RESULTS There were 69 patients identified for inclusion in this study. The median age of the cohort was 56 years (range, 15-77 years). Median tumor volume was 10.4 cm3 (range, 1.0-64.0 cm3). A Kaplan-Meier estimate of median overall survival for the series from the time of LITT was 12 months (95% confidence interval 8-16 months). Median progression-free survival for the cohort from LITT was 4 months (95% confidence interval 3-7 months). Adjuvant chemotherapy significantly prolonged progression-free survival and overall survival (P < 0.01 for both) in the cohort. Gross total ablation was not significantly associated with progression-free survival (P = 0.09). CONCLUSIONS LITT can safely reduce intracranial tumor burden in patients with GBM who have exhausted other adjuvant therapies or are poor candidates for conventional resection techniques.
Collapse
Affiliation(s)
- Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rajan Patel
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan G Thomas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yvonne Kew
- Department of Neurology, Baylor St. Luke's Medical Center, Houston, Texas, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
17
|
Mirza FA, Mitha R, Shamim MS. Current Role of Laser Interstitial Thermal Therapy in the Treatment of Intracranial Tumors. Asian J Neurosurg 2020; 15:800-808. [PMID: 33708647 PMCID: PMC7869293 DOI: 10.4103/ajns.ajns_185_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is gaining popularity in the treatment of both primary and secondary intracranial tumors. The goal of LITT is to deliver thermal energy in a predictable, controlled, and minimally invasive fashion. It can be particularly valuable in patients with recurrent tumors who, due to previous radiation or surgery, may have a potentially higher risk of wound breakdown or infection with repeat craniotomy. Deep-seated lesions that are often inaccessible through open approaches (thalamus, hypothalamus, mesial basal temporal lobe, brainstem) may also be suitable targets. The experience and data published thus far on this modality is limited but growing. This review highlights the use of LITT as a primary treatment method in a variety of intracranial tumors, as well as its application as an adjunct to established surgical techniques.
Collapse
Affiliation(s)
- Farhan A Mirza
- Department of Neurosurgery, The Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurosurgery, Kentucky Neuroscience Institute, University of Kentucky, Lexington, KY, USA
| | - Rida Mitha
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Shahzad Shamim
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
18
|
Mahammedi A, Bachir S, Escott EJ, Barnett GH, Mohammadi AM, Larvie M. Prediction of recurrent glioblastoma after laser interstitial thermal therapy: The role of diffusion imaging. Neurooncol Adv 2020; 1:vdz021. [PMID: 32642657 PMCID: PMC7212867 DOI: 10.1093/noajnl/vdz021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Evaluate the utility of diffusion-weighted imaging (DWI) for the assessment of local recurrence of glioblastoma (GBM) on imaging performed 24 h following MRI-guided laser interstitial thermal therapy (LITT). We hypothesize that microscopic peritumoral infiltration correlates with early subtle variations on DWI images and apparent diffusion coefficient (ADC) maps. Methods Of 64 patients with GBM treated with LITT, 39 had MRI scans within 24 h after undergoing LITT. Patterns on DWI images and ADC maps 24 h following LITT were correlated with areas of future GBM recurrence identified through coregistration of subsequent MRI examinations. In the areas of suspected recurrence within the periphery of post-LITT lesions, signal intensity values on ADC maps were recorded and compared with the remaining peritumoral ring. Results Thirty-nine patients with GBM met the inclusion criteria. For predicting recurrent GBM, areas of decreased DWI signal and increased signal on ADC maps within the expected peritumoral ring of restricted diffusion identified 24 h following LITT showed 86.1% sensitivity, 75.2% specificity, and high correlation (r = 0.53) with future areas of GBM recurrence (P < .01). Areas of future recurrence demonstrated a 37% increase in the ADC value (P < .001), compared with findings in the surrounding treated peritumoral region. A significantly greater area under the receiver operating characteristics curve was determined for ADC values (P < .01). Conclusions DWI obtained 24 h following LITT can help predict the location of GBM recurrence months before the development of abnormal enhancement. This may alter future treatment planning, perhaps suggesting areas that may be targeted for additional therapy.
Collapse
Affiliation(s)
| | - Suha Bachir
- Department of Pediatrics and Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Edward J Escott
- Department of Radiology, University of Kentucky, Lexington, Kentucky
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Alireza M Mohammadi
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
19
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Salehi A, Paturu MR, Patel B, Cain MD, Mahlokozera T, Yang AB, Lin TH, Leuthardt EC, Yano H, Song SK, Klein RS, Schmidt R, Kim AH. Therapeutic enhancement of blood-brain and blood-tumor barriers permeability by laser interstitial thermal therapy. Neurooncol Adv 2020; 2:vdaa071. [PMID: 32666049 PMCID: PMC7344247 DOI: 10.1093/noajnl/vdaa071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The blood–brain and blood–tumor barriers (BBB and BTB), which restrict the entry of most drugs into the brain and tumor, respectively, are a significant challenge in the treatment of glioblastoma. Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique increasingly used clinically for tumor cell ablation. Recent evidence suggests that LITT might locally disrupt BBB integrity, creating a potential therapeutic window of opportunity to deliver otherwise brain-impermeant agents. Methods We established a LITT mouse model to test if laser therapy can increase BBB/BTB permeability in vivo. Mice underwent orthotopic glioblastoma tumor implantation followed by LITT in combination with BBB tracers or the anticancer drug doxorubicin. BBB/BTB permeability was measured using fluorimetry, microscopy, and immunofluorescence. An in vitro endothelial cell model was also used to corroborate findings. Results LITT substantially disrupted the BBB and BTB locally, with increased permeability up to 30 days after the intervention. Remarkably, molecules as large as human immunoglobulin extravasated through blood vessels and permeated laser-treated brain tissue and tumors. Mechanistically, LITT decreased tight junction integrity and increased brain endothelial cell transcytosis. Treatment of mice bearing glioblastoma tumors with LITT and adjuvant doxorubicin, which is typically brain-impermeant, significantly increased animal survival. Conclusions Together, these results suggest that LITT can locally disrupt the BBB and BTB, enabling the targeted delivery of systemic therapies, including, potentially, antibody-based agents.
Collapse
Affiliation(s)
- Afshin Salehi
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mounica R Paturu
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alicia B Yang
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Robert Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Bastos DCDA, Weinberg J, Kumar VA, Fuentes DT, Stafford J, Li J, Rao G, Prabhu SS. Laser Interstitial Thermal Therapy in the treatment of brain metastases and radiation necrosis. Cancer Lett 2020; 489:9-18. [PMID: 32504657 DOI: 10.1016/j.canlet.2020.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Stereotactic Radiosurgery has become the main treatment for patients with limited number of brain metastases (BM). Recently, with the increasing use of this modality, there is a growth in recurrence cases. Recurrence after radiation therapy can be divided in changes favoring either tumor recurrence or radiation necrosis (RN). Laser Interstitial Thermal Therapy (LITT) is minimally invasive treatment modality that has been used to treat primary and metastatic brain tumors. When associated with real-time thermometry using Magnetic Resonance Imaging, the extent of ablation can be controlled to provide maximum coverage and avoid eloquent areas. The objective of this study was to investigate the use of LITT in the treatment of BM. An extensive review of the relevant literature was conducted and the outcome results are discussed. There is an emphasis on safety and local control rate of patients treated with this modality. The findings of our study suggest that LITT is a viable safe technique to treat recurrent BM, especially in patients with deep-seated lesions where surgical resection is not an option.
Collapse
Affiliation(s)
- Dhiego Chaves de Almeida Bastos
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| | - Jeffrey Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, Texa, 77030-4008, USA.
| | - David T Fuentes
- Department of Imaging Physics - UNIT 1472, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT14.5000, Houston, TX, 77030, USA.
| | - Jason Stafford
- Department of Imaging Physics - UNIT 1472, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT14.5000, Houston, TX, 77030, USA.
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Unit 1482, PO Box 301402, Houston, TX, 77030, USA.
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Salem U, Kumar VA, Madewell JE, Schomer DF, de Almeida Bastos DC, Zinn PO, Weinberg JS, Rao G, Prabhu SS, Colen RR. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging 2019; 19:65. [PMID: 31615562 PMCID: PMC6792239 DOI: 10.1186/s40644-019-0250-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023] Open
Abstract
MRI-guided laser interstitial thermal therapy (LITT) is the selective ablation of a lesion or a tissue using heat emitted from a laser device. LITT is considered a less invasive technique compared to open surgery that provides a nonsurgical solution for patients who cannot tolerate surgery. Although laser ablation has been used to treat brain lesions for decades, recent advances in MRI have improved lesion targeting and enabled real-time accurate monitoring of the thermal ablation process. These advances have led to a plethora of research involving the technique, safety, and potential applications of LITT.LITT is a minimally invasive treatment modality that shows promising results and is associated with decreased morbidity. It has various applications, such as treatment of glioma, brain metastases, radiation necrosis, and epilepsy. It can provide a safer alternative treatment option for patients in whom the lesion is not accessible by surgery, who are not surgical candidates, or in whom other standard treatment options have failed. Our aim is to review the current literature on LITT and provide a descriptive review of the technique, imaging findings, and clinical applications for neurosurgery.
Collapse
Affiliation(s)
- Usama Salem
- Department of Radiology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Vinodh A Kumar
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John E Madewell
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donald F Schomer
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Pascal O Zinn
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rivka R Colen
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA. .,Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
23
|
Ginat DT, Sammet S, Christoforidis G. MR Thermography-Guided Head and Neck Lesion Laser Ablation. AJNR Am J Neuroradiol 2018; 39:1593-1596. [PMID: 30049722 DOI: 10.3174/ajnr.a5726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/19/2018] [Indexed: 12/28/2022]
Abstract
Interstitial laser ablation has been successfully used as a minimally invasive treatment option for tumors in many parts of the body, including the head and neck. In this article, we describe the use of MR imaging guidance and mapping sequences for accurate localization of the target lesion, percutaneous interstitial laser ablation methods, and the use of MR thermography for temperature monitoring during laser ablation, with a focus on applications in the head and neck region.
Collapse
Affiliation(s)
- D T Ginat
- From the Department of Radiology, University of Chicago, Pritzker School of Medicine, Chicago, Illinois.
| | - S Sammet
- From the Department of Radiology, University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| | - G Christoforidis
- From the Department of Radiology, University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
Ruiz A, Diaz RJ, Buttrick S, Ivan M, Desai M, Komotar RJ, Medvid R. Preliminary Experience on Laser Interstitial Thermal Ablation Therapy in the Treatment of Extra-axial Masses: Indications, Imaging Characterization and Outcomes. Cureus 2018; 10:e2894. [PMID: 30175000 PMCID: PMC6116886 DOI: 10.7759/cureus.2894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laser thermal ablation is a novel minimally invasive neurosurgical technique that has proven to be beneficial in the treatment of a select group of neurosurgical conditions such as primary brain neoplasms, brain metastases, radiation necrosis, and epileptogenic lesions such as cortical dysplasia and mesial temporal sclerosis. The applicability of laser thermal ablation and its utility in the treatment of extra-axial (EA) brain neoplasms, mainly meningioma, is another novel use of this technique. Our article discusses the use and benefits of this technique in this particular clinical scenario. We describe our experience in a group of symptomatic patients from our institution with EA masses, mainly recurrent meningiomas, that failed previous more conventional treatment therapies such as surgery and radiotherapy. Our paper emphasizes patient selection, indications for the procedure, and post-treatment imaging characteristics of the ablated lesions.
Collapse
Affiliation(s)
| | - Roberto J Diaz
- Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, CAN
| | - Simon Buttrick
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, USA
| | - Michael Ivan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, USA
| | - Mehul Desai
- Radiology, University of Miami Miller School of Medicine, Miami, USA
| | - Ricardo J Komotar
- Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | | |
Collapse
|
25
|
Laser Interstitial Thermal Therapy for Posterior Fossa Lesions: An Initial Experience. World Neurosurg 2018; 117:e146-e153. [PMID: 29883824 DOI: 10.1016/j.wneu.2018.05.217] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND The application of laser interstitial thermal therapy (LITT) for intracranial lesions in the posterior fossa tumors remains challenging due to the smaller size of this compartment as well as the thickness and angle of the occipital bone. In this study, we reviewed our experience with this treatment modality for posterior fossa lesions. METHODS We retrospectively reviewed our series of 8 patients with posterior fossa tumors treated with LITT from an Institutional Review Board-approved brain tumor database (2012-2017) of more than 200 cases at our institution. RESULTS The 8 patients underwent LITT targeting 3 metastases, 2 pilocytic astrocytomas, 2 zones of radiation necrosis after radiosurgery, and 1 glioblastoma (GBM). The mean preoperative lesion volume was 4.35 cm3. A 6 months postsurgery, the mean lesion volume had decreased from 9.64 cm3 to 5.72 cm3. Two of the tumors (the GBM and a metastatic adenocarcinoma) progressed after 8.5 and 7.5 months, respectively, with mortality after 1.1 and 1.6 years, respectively. Surgical resection was performed in a patient with metastatic adenocarcinoma tumor at 7.7 months after LITT. All other lesions remained stable or were diminished at a median follow-up of 14.8 months (range, 0.4-37.5 months). Magnetic resonance imaging (MRI) on the first postoperative day, showed an increase in mean tumor-related edema volume from 9.45 cm3 to 14.10 cm3. After a postoperative follow-up of at least 1 month, this mean decreased to 8.70 cm3. One case each of transient partial unilateral sixth cranial nerve palsy, superficial wound infection, and a late obstructive hydrocephalus were noted postoperatively. No mortality was associated with the procedure. CONCLUSIONS LITT is a safe and feasible treatment modality even in challenging locations like the posterior fossa. However, surgical indications should be tailored for each individual patient based on the size and location of tumor.
Collapse
|
26
|
Maraka S, Asmaro K, Walbert T, Lee I. Cerebral edema induced by laser interstitial thermal therapy and radiotherapy in close succession in patients with brain tumor. Lasers Surg Med 2018; 50:917-923. [DOI: 10.1002/lsm.22946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Stefania Maraka
- Department of Neurology; Henry Ford Hospital; Detroit Michigan 48202
- MD Anderson Cancer Center, Department of Neuro-oncology; The University of Texas; Houston Texas 77030
| | - Karam Asmaro
- Hermelin Brain Tumor Center, Department of Neurosurgery; Henry Ford Hospital; Detroit Michigan 48202
| | - Tobias Walbert
- Department of Neurology; Henry Ford Hospital; Detroit Michigan 48202
- Hermelin Brain Tumor Center, Department of Neurosurgery; Henry Ford Hospital; Detroit Michigan 48202
| | - Ian Lee
- Hermelin Brain Tumor Center, Department of Neurosurgery; Henry Ford Hospital; Detroit Michigan 48202
| |
Collapse
|
27
|
Image-guided resection of glioblastoma in eloquent brain areas facilitated by laser surface thermal therapy: clinical outcomes and long-term results. Neurosurg Rev 2018; 41:1045-1052. [DOI: 10.1007/s10143-018-0948-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
28
|
Lee I, Kalkanis S, Hadjipanayis CG. Stereotactic Laser Interstitial Thermal Therapy for Recurrent High-Grade Gliomas. Neurosurgery 2017; 79 Suppl 1:S24-S34. [PMID: 27861323 DOI: 10.1227/neu.0000000000001443] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The value of maximal safe cytoreductive surgery in recurrent high-grade gliomas (HGGs) is gaining wider acceptance. However, patients may harbor recurrent tumors that may be difficult to access with open surgery. Laser interstitial thermal therapy (LITT) is emerging as a technique for treating a variety of brain pathologies, including primary and metastatic tumors, radiation necrosis, and epilepsy. OBJECTIVE To review the role of LITT in the treatment of recurrent HGGs, for which current treatments have limited efficacy, and to discuss the possible role of LITT in the disruption of the blood-brain barrier to increase delivery of chemotherapy locoregionally. METHODS A MEDLINE search was performed to identify 17 articles potentially appropriate for review. Of these 17, 6 reported currently commercially available systems and as well as magnetic resonance thermometry to monitor the ablation and, thus, were thought to be most appropriate for this review. These studies were then reviewed for complications associated with LITT. Ablation volume, tumor coverage, and treatment times were also reviewed. RESULTS Sixty-four lesions in 63 patients with recurrent HGGs were treated with LITT. Frontal (n = 34), temporal (n = 14), and parietal (n = 16) were the most common locations. Permanent neurological deficits were seen in 7 patients (12%), vascular injuries occurred in 2 patients (3%), and wound infection was observed in 1 patient (2%). Ablation coverage of the lesions ranged from 78% to 100%. CONCLUSION Although experience using LITT for recurrent HGGs is growing, current evidence is insufficient to offer a recommendation about its role in the treatment paradigm for recurrent HGGs. ABBREVIATIONS BBB, blood-brain barrierFDA, US Food and Drug AdministrationGBM, glioblastoma multiformeHGG, high-grade gliomaLITT, laser interstitial thermal therapy.
Collapse
Affiliation(s)
- Ian Lee
- *Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan; ‡Department of Neurosurgery, Mt. Sinai Beth Israel Hospital, New York City, New York
| | | | | |
Collapse
|
29
|
Ivan ME, Mohammadi AM, De Deugd N, Reyes J, Rodriguez G, Shah A, Barnett GH, Komotar RJ. Laser Ablation of Newly Diagnosed Malignant Gliomas: a Meta-Analysis. Neurosurgery 2017; 79 Suppl 1:S17-S23. [PMID: 27861322 DOI: 10.1227/neu.0000000000001446] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided laser-interstitial thermotherapy (MR-LITT) is a minimally invasive technique that shows promise in neuro-oncology because of its superiority in delivering precise minimally invasive thermal energy with minimal collateral damage. OBJECTIVE In this analysis, we investigate initial data on the use of MR-LITT in the treatment of newly diagnosed high-grade gliomas. METHODS With the use of the PubMed, OVID, and Google-scholar database systems, a comprehensive search of the English literature was performed. Eighty-five articles were identified plus 1 that is pending publication. Four articles were accounted for in this review, including 25 patients with newly diagnosed high-grade gliomas who underwent MR-LITT treatment. We evaluated safety, progression-free survival, and overall survival. RESULTS Twenty-five patients with a mean age of 53.8 years underwent LITT treatments. On average, 82.9% of the pretreatment lesion volume was ablated. The average tumor volume treated was 16.5 cm. The mean follow-up time was 7.6 months. Median overall survival was found to be 14.2 months (range 0.1-23 months). The median progression-free survival was 5.1 months (range 2.4-23 months); however, these data are limited by the relatively short follow-up of the patients reviewed and small sample size of only 25 patients. There was 1 (3.4%) major perioperative complication, which was a central nervous system infection. CONCLUSION MR-LITT is a promising technology for the treatment of small, yet difficult-to-treat newly diagnosed high-grade gliomas. This study demonstrates that MR-LITT is safe, and future randomized studies are needed to evaluate its role as a treatment adjunct for newly diagnosed high-grade gliomas. ABBREVIATIONS BBB, blood-brain barrierHGG, high-grade gliomaLITT, laser-interstitial thermal therapyWHO, World Health Organization.
Collapse
Affiliation(s)
- Michael E Ivan
- *Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, The University of Miami Miller School of Medicine, Miami, Florida; ‡The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurological Surgery, Neurological and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
30
|
JOURNAL CLUB: Longitudinal Qualitative Characterization of MRI Features After Laser Interstitial Thermal Therapy in Drug-Resistant Epilepsy. AJR Am J Roentgenol 2017; 208:48-56. [DOI: 10.2214/ajr.16.16144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Kang JY, Sperling MR. Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy for Treatment of Drug-Resistant Epilepsy. Neurotherapeutics 2017; 14:176-181. [PMID: 27905093 PMCID: PMC5233636 DOI: 10.1007/s13311-016-0498-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Surgery is the most effective treatment for drug-resistant epilepsy. Long-term studies demonstrate that about 60% to 80% of patients become seizure-free after anterior temporal lobectomy and a majority of patients (about 95%) report significant seizure reduction after surgery. In the last few years, there has been significant advances in minimally invasive surgical techniques to treat drug-resistant epilepsy. These minimally invasive procedures have significant advantages over open surgery in that they produce less immediate discomfort and disability, while allowing for greater preservation of functional tissue. Laser interstitial thermal therapy (LiTT) is an example of such a procedure. Recent advances in imaging, surgical navigation, and real-time thermal monitoring have made LiTT safer and easier to implement, offering an effective and powerful neurosurgical tool for drug-resistant epilepsy. This article will review the technical considerations, uses, and potential future directions for LiTT in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Joon Y Kang
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 2-147, Baltimore, MD, 21287, USA.
| | - Michael R Sperling
- Thomas Jefferson University Hospital, 900 Walnut Street Suite 200, Philadelphia, PA, 19107, USA
| |
Collapse
|
32
|
Sharma M, Balasubramanian S, Silva D, Barnett GH, Mohammadi AM. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: An overview. Expert Rev Neurother 2016; 16:223-32. [DOI: 10.1586/14737175.2016.1135736] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Milojkovic Kerklaan B, van Tellingen O, Huitema ADR, Beijnen JH, Boogerd W, Schellens JHM, Brandsma D. Strategies to target drugs to gliomas and CNS metastases of solid tumors. J Neurol 2015; 263:428-40. [DOI: 10.1007/s00415-015-7919-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023]
|
34
|
Rodriguez A, Tatter SB, Debinski W. Neurosurgical Techniques for Disruption of the Blood-Brain Barrier for Glioblastoma Treatment. Pharmaceutics 2015; 7:175-87. [PMID: 26247958 PMCID: PMC4588193 DOI: 10.3390/pharmaceutics7030175] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
The blood-brain barrier remains a main hurdle to drug delivery to the brain. The prognosis of glioblastoma remains grim despite current multimodal medical management. We review neurosurgical technologies that disrupt the blood-brain barrier (BBB). We will review superselective intra-arterial mannitol infusion, focused ultrasound, laser interstitial thermotherapy, and non-thermal irreversible electroporation (NTIRE). These technologies can lead to transient BBB and blood-brain tumor barrier disruption and allow for the potential of more effective local drug delivery. Animal studies and preliminary clinical trials show promise for achieving this goal.
Collapse
Affiliation(s)
- Analiz Rodriguez
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest University, Medical Center Boulevard, Winston Salem 27157, NC, USA.
| | - Stephen B Tatter
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest University, Medical Center Boulevard, Winston Salem 27157, NC, USA.
| | - Waldemar Debinski
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest University, Medical Center Boulevard, Winston Salem 27157, NC, USA.
| |
Collapse
|
35
|
Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB. Current Applications of MRI-Guided Laser Interstitial Thermal Therapy in the Treatment of Brain Neoplasms and Epilepsy: A Radiologic and Neurosurgical Overview. AJNR Am J Neuroradiol 2015; 36:1998-2006. [PMID: 26113069 DOI: 10.3174/ajnr.a4362] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Minimally invasive stereotactic tumor ablation is a viable option for the treatment of benign and malignant intracranial lesions. Although surgical excision constitutes first-line therapy for various brain pathologies, it can cause irreversible neurologic deficits. Additionally, many patients who may benefit from surgery do not qualify as surgical candidates due to multiple comorbidities. Recent advancements in laser interstitial thermal therapy, namely the ability to monitor ablation in real-time under MR imaging, have improved the safety and efficacy of the procedure. MRI-guided laser interstitial thermal therapy is currently used as a minimally invasive treatment for brain metastases, radiation necrosis, glioma, and epilepsy. This article will discuss the principles, suggested indications, complications, and imaging characteristics of MRI-guided laser interstitial thermal therapy as they pertain to the treatment of brain pathology.
Collapse
Affiliation(s)
- R Medvid
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| | - A Ruiz
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| | - R J Komotar
- Department of Neurological Surgery (J.R.J., R.J.K., M.E.I.), Jackson Memorial Hospital/University of Miami Hospital, Miami, Florida
| | - J R Jagid
- Department of Neurological Surgery (J.R.J., R.J.K., M.E.I.), Jackson Memorial Hospital/University of Miami Hospital, Miami, Florida
| | - M E Ivan
- Department of Neurological Surgery (J.R.J., R.J.K., M.E.I.), Jackson Memorial Hospital/University of Miami Hospital, Miami, Florida
| | - R M Quencer
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| | - M B Desai
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| |
Collapse
|
36
|
Mohammadi AM, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, Tatter SB, Barnett GH, Leuthardt EC. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med 2014; 3:971-9. [PMID: 24810945 PMCID: PMC4303165 DOI: 10.1002/cam4.266] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Surgical extent-of-resection has been shown to have an impact on high-grade glioma (HGG) outcomes; however, complete resection is rarely achievable in difficult-to-access (DTA) tumors. Controlled thermal damage to the tumor may have the same impact in DTA-HGGs. We report our multicenter results of laser interstitial thermal therapy (LITT) in DTA-HGGs. We retrospectively reviewed 34 consecutive DTA-HGG patients (24 glioblastoma, 10 anaplastic) who underwent LITT at Cleveland Clinic, Washington University, and Wake Forest University (May 2011-December 2012) using the NeuroBlate(®) System. The extent of thermal damage was determined using thermal damage threshold (TDT) lines: yellow TDT line (43 °C for 2 min) and blue TDT line (43°C for 10 min). Volumetric analysis was performed to determine the extent-of-coverage of tumor volume by TDT lines. Patient outcomes were evaluated statistically. LITT was delivered as upfront in 19 and delivered as salvage in 16 cases. After 7.2 months of follow-up, 71% of cases demonstrated progression and 34% died. The median overall survival (OS) for the cohort was not reached; however, the 1-year estimate of OS was 68 ± 9%. Median progression-free survival (PFS) was 5.1 months. Thirteen cases who met the following two criteria-(1) <0.05 cm(3) tumor volume not covered by the yellow TDT line and (2) <1.5 cm(3) additional tumor volume not covered by the blue TDT line-had better PFS than the other 21 cases (9.7 vs. 4.6 months; P = 0.02). LITT can be used effectively for treatment of DTA-HGGs. More complete coverage of tumor by TDT lines improves PFS which can be translated as the extent of resection concept for surgery.
Collapse
Affiliation(s)
- Alireza M Mohammadi
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, 9500 Euclid Avenue, S70, Cleveland Clinic, Cleveland, Ohio, 44195
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mohammadi AM, Schroeder JL. Laser interstitial thermal therapy in treatment of brain tumors – the NeuroBlate System. Expert Rev Med Devices 2014; 11:109-19. [DOI: 10.1586/17434440.2014.882225] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-Guided Laser Interstitial Thermal Therapy in Neuro-Oncology: A Review of Its Current Clinical Applications. Oncology 2014; 87:67-82. [DOI: 10.1159/000362817] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022]
|
39
|
Jethwa PR, Lee JH, Assina R, Keller IA, Danish SF. Treatment of a supratentorial primitive neuroectodermal tumor using magnetic resonance-guided laser-induced thermal therapy. J Neurosurg Pediatr 2011; 8:468-75. [PMID: 22044371 DOI: 10.3171/2011.8.peds11148] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supratentorial primitive neuroectodermal tumors (PNETs) are rare tumors that carry a poorer prognosis than those arising from the infratentorial compartment (such as medulloblastoma). The overall prognosis for these patients depends on several factors including the extent of resection, age at diagnosis, CSF dissemination, and site in the supratentorial space. The authors present the first case of a patient with a newly diagnosed supratentorial PNET in which cytoreduction was achieved with MR-guided laser-induced thermal therapy. A 10-year-old girl presented with left-sided facial weakness and a large right thalamic mass extending into the right midbrain. The diagnosis of supratentorial PNET was made after stereotactic biopsy. Therapeutic options for this lesion were limited because of the risks of postoperative neurological deficits with resection. The patient underwent MR-guided laser-induced thermal ablation of her tumor. Under real-time MR thermometry, thermal energy was delivered to the tumor at a core temperature of 90°C for a total of 960 seconds. The patient underwent follow-up MR imaging at regular intervals to evaluate the tumor response to the thermal ablation procedure. Initial postoperative scans showed an increase in the size of the lesion as well as the amount of the associated edema. Both the size of the lesion and the edema stabilized by 1 week and then decreased below preablation levels at the 3-month postsurgical follow-up. There was a slight increase in the size of the lesion and associated edema at the 6-month follow-up scan, presumably due to concomitant radiation she received as part of her postoperative care. The patient tolerated the procedure well and has had resolution of her symptoms since surgery. Further study is needed to assess the role of laser-induced thermal therapy for the treatment of intracranial tumors. As such, it is a promising tool in the neurosurgical armamentarium. Postoperative imaging has shown no evidence of definitive recurrence at the 6-month follow-up period, but longer-term follow-up is required to assess for late recurrence.
Collapse
Affiliation(s)
- Pinakin R Jethwa
- Department of Neurosurgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
40
|
Sabel M, Rommel F, Kondakci M, Gorol M, Willers R, Bilzer T. Locoregional opening of the rodent blood-brain barrier for paclitaxel using Nd:YAG laser-induced thermo therapy: a new concept of adjuvant glioma therapy? Lasers Surg Med 2004; 33:75-80. [PMID: 12913878 DOI: 10.1002/lsm.10181] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Nd:YAG laser-induced thermo therapy (LITT) of rat brains is associated with blood-brain barrier (BBB) permeability changes. We address the question of whether LITT-induced locoregional disruption of the BBB could possibly allow a locoregional passage of chemotherapeutic agents into brain tissue to treat malignant glioma. STUDY DESIGN/MATERIALS AND METHODS CD Fischer rats were subject to LITT of the left forebrain. Disruption of the BBB was analyzed using Evans blue and immunohistochemistry (IH). Animals were perfused with paclitaxel, and high-pressure liquid chromatography (HPLC) was employed to analyze the content of paclitaxel in brain and plasma samples. RESULTS LITT induces an opening of the BBB as demonstrated by locoregional extravasation of Evans blue, C3C, fibrinogen, and IgM. HPLC proved the passage of paclitaxel across the disrupted BBB. CONCLUSIONS LITT induces a locoregional passage of chemotherapeutic agents into the brain tissue. This is of potential interest for the treatment of brain tumors.
Collapse
Affiliation(s)
- Michael Sabel
- Neurochirurgische Klinik, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Schulze PC, Adams V, Busert C, Bettag M, Kahn T, Schober R. Effects of laser-induced thermotherapy (LITT) on proliferation and apoptosis of glioma cells in rat brain transplantation tumors. Lasers Surg Med 2002; 30:227-32. [PMID: 11891743 DOI: 10.1002/lsm.10019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Laser-induced thermotherapy (LITT) is an approach to the treatment of brain tumors especially in poorly accessible regions. Its clinical applicability with tumor cell destruction has been shown in several studies. However, no data are known about specific effects on tumors cells due to LITT in the time course of the lesion. STUDY DESIGN/MATERIALS AND METHODS LITT was performed in adult Lewis rats with implanted glioma cells in the brain using a standard exposure of 3 W for 30 seconds. Before and following LITT, neoplastic lesions were monitored by MRI. Proliferation of implanted cells and gliosis were assessed by several histological techniques and immunohistochemistry. Apoptosis was detected by TUNEL staining. RESULTS Our experiments show a destruction of neoplastic cells by LITT but surviving tumor cells at the margin of the lesion. Apoptosis was detected following LITT restricted to residual neoplastic cells. Marginal survival of tumor cells lead to a secondary outgrowth into the necrotic lesion adjacent to sprouting capillaries. CONCLUSIONS LITT is a suitable technique for the treatment of brain neoplasms. However, further investigations are necessary to prevent tumor recurrences after LITT.
Collapse
Affiliation(s)
- Paul Christian Schulze
- University of Leipzig, Heart Center, Department of Cardiology, Russenstrasse 19, 04289 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 2002; 47:2059-73. [PMID: 12118601 DOI: 10.1088/0031-9155/47/12/305] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Medical laser applications require knowledge about the optical properties of target tissue. In this study, the optical properties of selected native and coagulated human brain structures were determined in vitro in the spectral range between 360 and 1100 nm. The tissues investigated included white brain matter, grey brain matter, cerebellum and brainstem tissues (pons, thalamus). In addition, the optical properties of two human tumours (meningioma, astrocytoma WHO grade II) were determined. Diffuse reflectance, total transmittance and collimated transmittance of the samples were measured using an integrating-sphere technique. From these experimental data, the absorption coefficients, the scattering coefficients and the anisotropy factors of the samples were determined employing an inverse Monte Carlo technique. The tissues investigated differed from each other predominantly in their scattering properties. Thermal coagulation reduced the optical penetration depth substantially. The highest penetration depths for all tissues investigated were found in the wavelength range between 1000 and 1100 nm. A comparison with data from the literature revealed the importance of the employed tissue preparation technique and the impact of the theoretical model used to extract the optical coefficients from the measured quantities.
Collapse
Affiliation(s)
- A N Yaroslavsky
- Wellman Laboratories of Photomedicine, Department of Dermatology, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Atsumi H, Matsumae M, Kaneda M, Muro I, Mamata Y, Komiya T, Tsugu A, Tsugane R. Novel laser system and laser irradiation method reduced the risk of carbonization during laser interstitial thermotherapy: assessed by MR temperature measurement. Lasers Surg Med 2001; 29:108-17. [PMID: 11553897 DOI: 10.1002/lsm.1096] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE To establish laser interstitial thermotherapy (LITT) for intracranial tumors, the authors investigated a method to regulate localized temperature generated by interstitial laser irradiation using magnetic resonance (MR) temperature mapping. STUDY DESIGN/MATERIALS AND METHODS A diode laser system and six different types of optical-fiber system were developed for LITT. The characteristics of temperature profiles produced by each laser-fiber system were investigated with MR temperature measurement (the water proton chemical technique), and differences in the temperature profile induced by two laser-irradiation methods (continuous and intermittent) were observed. RESULTS All fiber systems with the exception of the diffuse-projection fiber system, created a spherical temperature profile. Carbonization sometimes occurred around the bare-end fiber tip upon high power laser irradiation. The diffuse-projection fiber system produced a cylindrical temperature distribution, and the temperature profile showed a more gradual temperature elevation than the bare-end fiber. No carbonization occurred at the tip of the diffuse-projection fiber system. In addition, the utilization of the intermittent irradiation method also increased temperature gradually. Fiber-system modification and intermittent irradiation reduced laser-beam intensity and the risk of carbonization. CONCLUSION The use of a diffuse-projection fiber system which intermittently transmits a reduced intensity laser beam is an effective tool to regulate temperature during LITT using MR temperature measurement.
Collapse
Affiliation(s)
- H Atsumi
- Department of Neurosurgery, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tang J, Zhang G, Zeng F, Ho PP, Alfano RR. Near-infrared photo-excited emission from tissues treated at different temperature levels. Lasers Surg Med 2001; 29:18-22. [PMID: 11500857 DOI: 10.1002/lsm.1080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE There is a lack of methods to evaluate the extent of thermal treatment of biological tissue. The intensity of the near-infrared (NIR) emission photo-excitation was investigated from tissue undergoing different levels of heat treatment. STUDY DESIGN/MATERIALS AND METHODS Chicken muscle was heated in an oven at different temperature levels ranging from 40 degrees C until burn-off. The spectral emission intensity from these heat-treated tissues was measured with a CCD camera and the intensity was calculated. RESULTS The emission intensity increased proportionally with respect to the extent of treatment temperature until burning. Linear relationships between treatment temperature and the emission intensity from tissue samples were found in three temperature ranges: from 40 to 160 degrees C, from 165 to 220 degrees C, and from 225 to 250 degrees C. CONCLUSIONS The change in tissue damage after heat treatment could be detected by measuring the NIR emission intensity from the thermally damaged tissues.
Collapse
Affiliation(s)
- J Tang
- Institute for Ultrafast Spectroscopy and Lasers and New York State Center for Advanced Technology for Ultrafast Photonic Materials and Applications, New York, New York 10031, USA
| | | | | | | | | |
Collapse
|
45
|
Heisterkamp J, van Hillegersberg R, Zondervan PE, IJzermans JN. Metabolic activity and DNA integrity in human hepatic metastases after interstitial laser coagulation (ILC). Lasers Surg Med 2001; 28:80-6. [PMID: 11430447 DOI: 10.1002/1096-9101(2001)28:1<80::aid-lsm1020>3.0.co;2-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVE For investigations into interstitial laser coagulation (ILC) of solid tumors, tissue whitening is used as a parameter for the extent of coagulation. This obvious demarcation is associated with global thermal denaturation, but it is not clear whether this finding is a good indicator of the exact outer boundary of the lethal tissue effect. STUDY DESIGN/MATERIALS AND METHODS ILC with portal inflow occlusion was performed in human hepatic metastases of colorectal carcinoma directly after surgical resection (n = 5) or before surgical resection (n = 5) with laser parameters adapted to tumor diameter. Mitochondrial NADH-diaphorase activity and DNA integrity were assessed by histoenzymatic staining. RESULTS In 7 of 10 tumors (mean diameter, 3.7 cm), an area of macroscopic coagulation (mean diameter, 4.2 cm) encircled the tumor in all three axes. Macroscopic coagulation corresponded to absent metabolism and disintegrated DNA. Furthermore, the macroscopic volumes of coagulation produced in tumor were comparable to the dimensions in normal porcine liver with the same laser parameters. CONCLUSION ILC with portal inflow occlusion results in areas with complete cell avitality in the zone of tissue whitening in human hepatic liver metastases.
Collapse
Affiliation(s)
- J Heisterkamp
- Department of Surgery, Erasmus University Rotterdam and University Hospital Rotterdam Dijkzigt, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Hara M, Sawa H, Yokota H, Saito I. Experimental studies of stereotactic laser balloon hyperthermic treatment. Lasers Surg Med 2000; 20:195-201. [PMID: 9047174 DOI: 10.1002/(sici)1096-9101(1997)20:2<195::aid-lsm11>3.0.co;2-f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The hyperthermic treatment of small malignant brain tumors in basal ganglia and other eloquent cortical areas was investigated with a stereotactic Nd:YAG laser balloon unit. STUDY DESIGN/MATERIALS AND METHODS An Ultra Line fiber (Heraeus Laser Sonics, CA) was inserted into a 6 F silicone balloon catheter, which caused the laser beam to be directed 80 degrees laterally. The balloon was inflated with physiologic saline to make the tumor tissue surrounding the laser fiber hypoxic. The hypoxia enhances the thermal effect on the tumor. The laser power was set at 5 watts (W) and a computer, programmed with specific parameters using feedback control was used to maintain the tissue 10 mm distant from the laser fiber at a temperature of 45 degrees C. Forty five minutes of hyperthermic treatment was applied to an implanted subcutaneous glioma in a rat. RESULTS/CONCLUSION The thermally induced damaged in the tumor appeared as a fan-shape lesion extending at a 100 degrees angle from the laser beam axis. The entire tumor could be treated by rotating the laser fiber in the balloon catheter.
Collapse
Affiliation(s)
- M Hara
- Department of Neurosurgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Orth K, Russ D, Duerr J, Hibst R, Steiner R, Beger HG. Thermo-controlled device for inducing deep coagulation in the liver with the Nd:YAG laser. Lasers Surg Med Suppl 2000; 20:149-56. [PMID: 9047168 DOI: 10.1002/(sici)1096-9101(1997)20:2<149::aid-lsm5>3.0.co;2-q] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE To increase the effectiveness of laser-induced interstitial thermotherapy (LITT), a new thermo-controlled application system for minimal invasive intervention was designed. Our system consists of a laser applicator of 2.5 mm in diameter, insertion equipment, and a Nd:YAG-laser source. STUDY DESIGN/MATERIALS AND METHODS A cylindrical light emitting fiber (1-6 cm in length) was placed in the center of the applicator. The surrounding tissue was irradiated through a Duran window at the distal end of the applicator. The power of the laser source was controlled dynamically by thermosensors in a water-cooling system of the laser applicator. The temperature at the surface of the Duran window was kept constant at approximately 60 degrees C, without charring the surrounding tissue. RESULTS/CONCLUSION We obtained homogeneous coagulation zones. In in vitro experiments with pig livers, we reached ellipsoid coagulation volumes of 3 and 5 cm in diameter within 10 minutes, corresponding to a volume of approximately 25 cm3.
Collapse
Affiliation(s)
- K Orth
- Department of General Surgery, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND The potential role of interstitial laser coagulation (ILC) for patients with irresectable hepatic tumours is currently being investigated. Since its introduction in 1983 it has evolved into an innovative minimally invasive technique. METHODS On the basis of a Medline literature search and the authors' experience, the principles, current state and prospects of ILC for hepatic tumours are reviewed. RESULTS Animal studies and early clinical studies have shown the safety and feasibility of ILC. The site of interest can be approached at laparoscopy or percutaneously and treatment is easily repeatable. Recent advances include the use of fibres with a cylindrical diffusing light-emitting tip, the length of which is adaptable to tumour diameter, water-cooled fibre systems, simultaneous multiple fibre application, and hepatic inflow occlusion during laser treatment. ILC allows complete destruction of tumours up to 5 cm in diameter. Currently a limitation is the lack of reliable real-time monitoring of laser-induced effects but progress in magnetic resonance imaging techniques should allow accurate temperature measurements to be obtained rapidly during treatment. However, the actual benefit of ILC in terms of patient survival remains to be investigated. CONCLUSION In terms of tools and experience, ILC has now been developed sufficiently to study its effect on survival of patients with irresectable hepatic tumours.
Collapse
Affiliation(s)
- J Heisterkamp
- Department of Surgery, Erasmus University and University Hospital Rotterdam Dijkzigt, The Netherlands
| | | | | |
Collapse
|
49
|
Schulze P, Thal D, Bettag M, Schober R. Brain tissue damage and regeneration monitored by ?-amyloid precursor protein in experimental laser-induced interstitial thermotherapy. Neuropathology 1998. [DOI: 10.1111/j.1440-1789.1998.tb00078.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Stollberger R, Ascher PW, Huber D, Renhart W, Radner H, Ebner F. Temperature monitoring of interstitial thermal tissue coagulation using MR phase images. J Magn Reson Imaging 1998; 8:188-96. [PMID: 9500279 DOI: 10.1002/jmri.1880080132] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The temperature-dependent water proton frequency shift was investigated for temperature monitoring of interstitial thermal coagulation. A procedure for on-line temperature calculation was developed, and errors due to temperature-dependent susceptibility were investigated by finite element analysis and reference measurements. The temperature coefficient of magnetic susceptibility and proton chemical shift were determined for brain tissue and other substances. With the proposed procedure, the location of isotherms could be well visualized during laser-induced interstitial coagulation in vitro and in vivo. Systematic errors caused by magnetic susceptibility changes with temperature depend strongly on the characteristics of the heat source and can exceed susceptibility effects caused by physiologic tissue changes. For the laser applicators discussed here, however, a first order compensation for this effect was found to be satisfactory, because it reduces the absolute error to the range of +/- 1 degrees C. The proposed method represents a very promising approach for monitoring of the interstitial thermal coagulation.
Collapse
Affiliation(s)
- R Stollberger
- Magnetic Resonance Institute, Karl-Franzens-University Graz, Austria.
| | | | | | | | | | | |
Collapse
|