1
|
Dąbrowska A, Mastalerz J, Wilczyński B, Osiecka B, Choromańska A. Determinants of Photodynamic Therapy Resistance in Cancer Cells. Int J Mol Sci 2024; 25:12069. [PMID: 39596137 PMCID: PMC11594179 DOI: 10.3390/ijms252212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising therapeutic approach owing to its non-invasive nature and minimal toxicity. PDT involves the administration of a photosensitizing agent (PS), which, upon light activation, induces a photodynamic reaction (PDR), leading to targeted cell destruction. However, developing resistance to PDT poses a significant challenge to its effectiveness. Various factors, including properties and administration of PSs, mediate this resistance. Despite the widespread use of substances like 5-aminolevulinic acid (5-ALA) and protoporphyrin, their efficacy is limited due to restricted tumor penetration and a lack of tumor targeting. To address these limitations, nano-delivery techniques and newer PSs like Aza-BODIPY and its derivatives, which offer enhanced tissue penetration, are being explored. In this paper, we provide an overview of resistance mechanisms in PDT and discuss novel methods, substances, and technologies to overcome resistance to improve clinical outcomes in tumor treatment.
Collapse
Affiliation(s)
- Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Jakub Mastalerz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Beata Osiecka
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, T. Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Guo Q, Ji X, Zhang L, Liu X, Wang Y, Liu Z, Jin J, Han Y, Liu H. Differences in the response of normal oral mucosa, oral leukoplakia, oral squamous cell carcinoma-derived mesenchymal stem cells, and epithelial cells to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112907. [PMID: 38677259 DOI: 10.1016/j.jphotobiol.2024.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE The objective of this study is to investigate the variances in transcriptome gene expression of normal oral mucosa-derived mesenchymal stem cell (OM-MSC), oral leukoplakia-derived MSC (OLK-MSC) and oral squamous cell carcinoma-derived MSC(OSCC-MSC). as Additionally, the study aims to compare the in vitro proliferation, migration, invasion ability, and response to photodynamic therapy (PDT) of these three MSC, HOK, DOK, leuk1, and Cal27 cell lines. METHODS HOK, DOK, leuk1, Cal27 cells were cultured in vitro. 3 MSC cells were obtained from OM, OLK, OSCC tissue (n = 3) and identified through flow cytometry. They were also cultured in vitro for osteogenic and lipogenic-induced differentiation. Based on the Illumina HiSeq high-throughput sequencing platform, OM-MSC, OLK-MSC, OSCC-MSC (n = 3) were subjected to transcriptome sequencing, functional annotation, and enrichment analysis of differentially expressed genes and related genes. CCK8 assay, wound healing assay, and transwell assay were performed to compare the proliferation, migration, and invasion of the seven types of cells. The 7 cells were incubated with 0, 0.125 mM, 0.25 mM, 0.5 mM, 1 mM, and 2 mM of the photosensitizer (5-aminolevulinic acid, 5-ALA) in vitro. Subsequently, they were irradiated with a 150 mM, 635 nm laser for 1 min, and the cell activity was detected using the CCK8 assay after 24 h. The mitochondrial changes in the 7 cells before and after the treatment of PDT were detected using the JC-10 probe, and the changes in ATP content were measured before and after the PDT treatment. RESULTS OM-MSC, OLK-MSC, and OSCC-MSC expressed positive MSC surface markers. After osteogenic and lipogenic-induced differentiation culture, stained calcium nodules and lipid droplets were visible, meeting the identification criteria of MSC. Pathway enrichment analysis revealed that the differentially expressed genes (DEGs) of OSCC-MSC compared to OLK-MSC were primarily associated with the PI3K-Akt signaling pathway and tumor-related pathways. OSCC-MSC exhibited stronger migratory and invasive abilities compared to Cal27. The IC50 values required for OM, OLK, and OSCC-derived MSC were lower than those required for epithelial cells treated with PDT, which were 1.396 mM, 0.9063 mM, and 2.924 mM, respectively. Cell membrane and mitochondrial disruption were observed in seven types of cells after 24 h of PDT treatment. However, HOK, DOK, leuk1, and Cal27 cells had an ATP content increased. CONCLUSIONS OLK, OSCC epithelial cells require higher concentrations of 5-ALA for PDT treatment than MSC of the same tissue origin. The concentration of 5-ALA required increases with increasing cell malignancy. Differences in the response of epithelial cells and MSC to PDT treatment may have varying impacts on OLK recurrence and malignancy.
Collapse
Affiliation(s)
- Qianyun Guo
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiaoli Ji
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China; Central Hospital of Shandong First Medical University, Shandong, China
| | - Lei Zhang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xingyun Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yutian Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Zijian Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China; Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Fujian, China
| | - Jianqiu Jin
- Beijing Hospital, National Center of Gerontology, Department of Stomatology, Chinese Academy of Medical Sciences, Institute of Geriatric Medicine, Beijing, China
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
3
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
4
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
5
|
The inhibitory activity of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on Candida albicans biofilms. Photodiagnosis Photodyn Ther 2021; 34:102271. [PMID: 33785444 DOI: 10.1016/j.pdpdt.2021.102271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Biofilm-associated Candida albicans (C. albicans) infections are hard to cure due to their high levels of resistance to antifungal agents. Photodynamic therapy (PDT) is a promising approach for controlling infections caused by C. albicans. This study was designed to explore the inhibitory activity of PDT using 5-aminolevulinic acid (ALA) as photosensitizer against C. albicans biofilms. METHODS C. albicans cell suspensions were incubated for 48 h to form mature biofilms. ALA solution was diluted to 15 mM and incubated with C. albicans biofilms for 5 h before irradiated by red light semiconductor laser under the light intensity of 300 J/cm2 and fluence rate of 100 mW/cm2 for 50 min. The inhibitory activity was evaluated from subcellular level, molecular level and transcriptional level using transmission electron microscopy (TEM) observation, flow cytometry analysis and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) assays, respectively. RESULTS From subcellular level, the degraded content of the cytoplasm, nuclear condensation and mitochondrial swelling were observed after ALA-PDT. From molecular level, ALA-PDT resulted in 19.4 % cell apoptosis. From transcriptional level, ALA-PDT significantly reduced the mRNA expressions of hyphae-specific genes (HWP1 and ALS3) and long-term biofilm maintenance genes (UME6 and HGC1), whereas ALA or red light alone had no significant effect. CONCLUSIONS The inhibitory activity indicated that ALA-PDT may have the potential to serve as an antifungal strategy in eliminatingC. albicans biofilms.
Collapse
|
6
|
Tanaka Y, Murayama Y, Matsumoto T, Kubo H, Harada K, Matsuo H, Kubota T, Okamoto K, Otsuji E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy in a mouse model of esophageal cancer. Oncol Lett 2020; 20:82. [PMID: 32863915 PMCID: PMC7436933 DOI: 10.3892/ol.2020.11943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is a minimally invasive therapeutic modality used in the management of various cancers, but to a lesser extent for esophageal cancer (EC). The current study investigated the antitumor effects of ALA-PDT. Human EC cells were treated with ALA, after which ALA-induced fluorescence was examined under a fluorescence microscope. The cytotoxic effects of ALA-PDT were assessed using three types of LEDs (blue, green and red) in vitro and in vivo. Subcutaneous tumor model mice was constructed with KYSE150 cells. ALA-PDT was performed once a week for 4 weeks and tumor weights were measured. A popliteal lymph node (PLN) metastasis murine model was generated using KYSE150 cells. KYSE150 cells were inoculated into the left footpad of nude mice. ALA-PDT was performed on the footpad once a week for 4 weeks. PLNs were then removed 3 weeks after the last treatment. The lymph nodes were evaluated by hematoxylin and eosin staining. Red fluorescence of protoporphyrin IX (PpIX) was observed in all EC cell lines. ALA-PDT using LEDs exerted significant antitumor effects in vitro and in vivo. The antitumor effects of ALA-PDT with blue LED were the strongest, followed by green and red LEDs. The number of metastasized PLNs was significantly smaller in the ALA-PDT group (0%) than in the control group (37.5%). The present results indicated that ALA-PDT is effective for EC.
Collapse
Affiliation(s)
- Yoshihiro Tanaka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Tatsuya Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Hidemasa Kubo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Kyoichi Harada
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Hisataka Matsuo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| |
Collapse
|
7
|
Afrasiabi S, Pourhajibagher M, Bahador A. The Photomodulation Activity of Metformin Against Oral Microbiome. J Lasers Med Sci 2019; 10:241-250. [PMID: 31749953 PMCID: PMC6817791 DOI: 10.15171/jlms.2019.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Periodontitis is one of the most common inflammatory diseases of the periodontium, which results in the inflammatory destruction of supporting structures around teeth and is closely associated with the development of systemic disease. Due to a wide variety of antibiotic resistance periodontopathic bacteria, photodynamic therapy (PDT) is a non-invasive adjunctive therapeutic modality that is capable of destroying the whole range of microbes. Metformin (Metf) is an antidiabetic drug, and recent studies suggest that cancer patients who receive Metf and are exposed to radiotherapy and chemotherapy show better outcomes. Our surveys in this review introduce Metf as a potent stimulus in increasing the efficacy of PDT in the induction of destruction in microbial cells.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang H, Feng Z, Yang C, Liu J, Medina JE, Aghvami SA, Dinulescu DM, Liu J, Fraden S, Xu B. Unraveling the Cellular Mechanism of Assembling Cholesterols for Selective Cancer Cell Death. Mol Cancer Res 2018; 17:907-917. [PMID: 30552234 DOI: 10.1158/1541-7786.mcr-18-0931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Acquired drug resistance remains a challenge in chemotherapy. Here we show enzymatic, in situ assembling of cholesterol derivatives to act as polypharmaceuticals for selectively inducing death of cancer cells via multiple pathways and without inducing acquired drug resistance. A conjugate of tyrosine and cholesterol (TC), formed by enzyme-catalyzed dephosphorylation of phosphorylate TC, self-assembles selectively on or in cancer cells. Acting as polypharmaceuticals, the assemblies of TC augment lipid rafts, aggregate extrinsic cell death receptors (e.g., DR5, CD95, or TRAILR), modulate the expression of oncoproteins (e.g., Src and Akt), disrupt the dynamics of cytoskeletons (e.g., actin filaments or microtubules), induce endoplasmic reticulum stress, and increase the production of reactive oxygen species, thus resulting in cell death and preventing acquired drug resistance. Moreover, the assemblies inhibit the growth of platinum-resistant ovarian cancer tumor in a murine model. This work illustrates the use of instructed assembly (iA) in cellular environment to form polypharmaceuticals in situ that not only interact with multiple proteins, but also modulate membrane dynamics for developing novel anticancer therapeutics. IMPLICATIONS: As a multifaceted strategy for controlling cancer cell death, iA minimized acquired resistance of cancer cells, which is a new strategy to amplify the genetic difference between cancer and normal cells and provides a promise for overcoming drug resistance in cancer therapy.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/4/907/F1.large.jpg.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Cuihong Yang
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jinjian Liu
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jamie E Medina
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, Massachusetts
| | - Daniela M Dinulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianfeng Liu
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, Massachusetts
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
9
|
Yang K, Niu T, Luo M, Tang L, Kang L. Enhanced cytotoxicity and apoptosis through inhibiting autophagy in metastatic potential colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagnosis Photodyn Ther 2018; 24:332-341. [DOI: 10.1016/j.pdpdt.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023]
|
10
|
Zhu LQ, Su GH, Dai J, Zhang WY, Yin CH, Zhang FY, Zhu ZH, Guo ZX, Fang JF, Zou CD, Chen XG, Zhang Y, Xu CY, Zhen YF, Wang XD. Whole genome sequencing of pairwise human subjects reveals DNA mutations specific to developmental dysplasia of the hip. Genomics 2018; 111:320-326. [PMID: 29486210 DOI: 10.1016/j.ygeno.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common congenital malformation characterized by mismatch in shape between the femoral head and acetabulum, and leads to hip dysplasia. To date, the pathogenesis of DDH is poorly understood and may involve multiple factors, including genetic predisposition. However, comprehensive genetic analysis has not been applied to investigate a genetic component of DDH. In the present study, 10 pairs of healthy fathers and DDH daughters were enrolled to identify genetic hallmarks of DDH using high throughput whole genome sequencing. The DDH-specific DNA mutations were found in each patient. Overall 1344 genes contained DDH-specific mutations. Functional enrichment analysis showed that these genes played important roles in the cytoskeleton, microtubule cytoskeleton, sarcoplasm and microtubule associated complex. These functions affected osteoblast and osteoclast development. Therefore, we proposed that the DDH-specific mutations might affect bone development, and caused DDH. Our pairwise high throughput sequencing results comprehensively delineated genetic hallmarks of DDH. Further research into the biological impact of these mutations may inform the development of DDH diagnostic tools and allow neonatal gene screening.
Collapse
Affiliation(s)
- Lun-Qing Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Guang-Hao Su
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jin Dai
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Wen-Yan Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chun-Hua Yin
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Fu-Yong Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhen-Hua Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhi-Xiong Guo
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jian-Feng Fang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cheng-da Zou
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing-Guang Chen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Ya Zhang
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cai-Ying Xu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yun-Fang Zhen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
11
|
Photodynamic therapy with TMPyP – Porphyrine induces mitotic catastrophe and microtubule disorganization in HeLa and G361 cells, a comprehensive view of the action of the photosensitizer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:522-537. [DOI: 10.1016/j.jphotobiol.2017.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 01/30/2023]
|
12
|
Effect of Porphyrin Sensitizer MgTPPS4 on Cytoskeletal System of HeLa Cell Line-Microscopic Study. Cell Biochem Biophys 2016; 74:419-25. [PMID: 27324041 DOI: 10.1007/s12013-016-0746-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Metalloporphyrins are an important group of sensitizers with a porphyrin skeleton. Their photophysical properties are significantly affected by the nature of the central ion. In this work, we focus on the mechanical properties of a cervix carcinoma cell line which underwent photodynamic treatment (PDT) with MgTPPS4 photosensitzer. Atomic force microscopy alongside confocal microscopy was used to quantify and qualify the structural characteristics before and after PDT. Cells before PDT showed a fine actin network and higher elasticity with the median of Young modulus 12.2 kPa. After PDT, the median of Young modulus was 13.4 kPa and a large redistribution in the actin network was observed.
Collapse
|
13
|
Zhang LJ, O'Shea D, Zhang CY, Yan YJ, Wang L, Chen ZL. Evaluation of a bacteriochlorin-based photosensitizer's anti-tumor effect in vitro and in vivo. J Cancer Res Clin Oncol 2015; 141:1921-30. [PMID: 25804838 DOI: 10.1007/s00432-015-1960-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE Bacteriochlorin derivatives are promising photosensitive agents for photodynamic therapy (PDT) of tumors. In the current study, the photodynamic activity of a novel bacteriochlorin derivative, cis-2, 3, 12, 13-tetracarboxymethyl-5, 10, 15, 20-tetraphenyl bacteriochlorin (TCTB), was evaluated both in vitro and in vivo. METHODS Physicochemical characteristics of the novel photosensitizer were measured. The efficiency of TCTB-PDT in vitro was analyzed by MTT assay, clonogenic assay and in situ trypan blue exclusion test. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The accumulation of TCTB in human malignant tumor cells was measured by fluorescence spectrometer, and the pathway of cell death was analyzed by flow cytometry. S180 tumor model was used to evaluate the anti-tumor effects of TCTB-PDT. And histopathological study was also used to confirm the anti-tumor effect. RESULTS TCTB shows a singlet oxygen quantum yield of 0.56 and displays a characteristic long wavelength absorption peak at 732 nm. The accumulation of TCTB increased in time-dependent manner, and it was found in cytoplasm and nuclear membranes. In vitro PDT using TCTB and Nd:YAG laser showed drug concentration-, laser dose-dependent cytotoxicity to human esophageal cancer Eca-109 cells. In mice bearing osteosarcoma S180 tumors, the combined use of 10 mg/kg TCTB and 120 J/cm(2) showed superior anti-tumor activity. Histology examination of tumor tissues revealed that PDT using TCTB and the Nd:YAG laser induced tumor cells shrunken and necrotic. CONCLUSION In in vitro and in vivo studies, we found that TCTB has excellent anti-tumor effect. It suggests that TCTB is a potential photosensitizer of PDT for cancer.
Collapse
Affiliation(s)
- Li-Jun Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Donal O'Shea
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Chun-Ye Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co. Ltd, Shanghai, 200433, People's Republic of China
| | - Li Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
14
|
Benito-Miguel M, Blanco MD, Gómez C. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ALA-photodynamic therapy on HeLa cell line. Photodiagnosis Photodyn Ther 2015; 12:466-75. [PMID: 25976508 DOI: 10.1016/j.pdpdt.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Natural polymers are used as components of nanoparticles (NPs) for drug delivery, as they provide targeted, sustained release and biodegradability. The purpose of this study was to increase the efficacy of the photodynamic therapy (PDT) by the combination of 5-aminolevulinic acid (ALA) with 5-fluorouracil-loaded-chitosan-nanoparticles (5-Fu-CNPs). METHODS Nanoparticles based on chitosan (CNPs) were synthesized by the ionic crosslinking method via the TPP addition. 5-Fluorouracil (5-Fu), a first-line anticancer drug, was loaded into these 5Fu-CNPs, and they were assayed as controlled delivery formulation. HeLa cells were incubated in the presence of 5Fu-CNPs for 24h, next ALA was added to the culture medium and 4h later, to complete the PDT, light irradiation took place. Analysis of cell viability, reactive oxygen species (ROS) production, observation of the apoptosis by fluorescence microscopy followed by analysis of caspase-3 activity were carried out. RESULTS Spherical 5Fu-CNPs with a mean diameter of 324±43nm, were successfully synthesized and characterized by TEM and DLS. 5-Fu incorporation was achieved successfully (12.3μg 5Fu/mg CNP) and the maximum 5-Fu release took place at 2h. The combined administration of 5Fu-CNPs and PDT mediated by ALA (ALA-PDT) led to an improved efficacy of the antineoplastic treatment by generation of great cytotoxicity inducted through an increased ROS production. HeLa cells were destroyed by apoptosis through activation of caspase pathway. CONCLUSIONS This study proves that combination therapy (photodynamic "ALA"+chemical "5-Fu"+immunoadjuvant "chitosan") may be an effective approach for the treatment of cancer.
Collapse
Affiliation(s)
- Marta Benito-Miguel
- Centro Universitario San Rafael-Nebrija, Madrid, Spain; Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, UCM, Madrid, Spain
| | - M Dolores Blanco
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, UCM, Madrid, Spain
| | - Clara Gómez
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física Rocasolano, CSIC, Madrid, Spain.
| |
Collapse
|
15
|
Wang X, Hu J, Wang P, Zhang S, Liu Y, Xiong W, Liu Q. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 2015; 5:772-86. [PMID: 25897341 PMCID: PMC4402500 DOI: 10.7150/thno.10853] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/06/2015] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is an emerging theranostic modality for various cancers and diseases. Photosensitizers are critical components for PDT. Sinoporphyrin sodium, referred to as DVDMS, is a newly identified photosensitizer that was isolated from Photofrin. Here, we evaluated the effects of DVDMS-mediated PDT (DVDMS-PDT) on tumor cell proliferation and metastasis in the highly metastatic 4T1 cell line and a mouse xenograft model. DVDMS-PDT elicited a potent phototoxic effect in vitro, which was abolished using the reactive oxygen species (ROS) scavenger N-acetylcysteine. In addition, DVDMS-PDT effectively inhibited the migration of 4T1 cells in scratch wound-healing and transwell assays. Using an in vivo mouse model, DVDMS-PDT greatly prolonged the survival time of tumor-bearing mice and inhibited tumor growth and lung metastasis, consistent with in vitro findings. PDT with DVDMS had a greater anti-tumor efficacy than clinically used Photofrin. Moreover, preliminary toxicological results indicate that DVDMS is relatively safe. These results suggest that DVDMS is a promising sensitizer that warrants further development for use in cancer treatment with PDT or other sensitizing agent-based therapies.
Collapse
Affiliation(s)
- Xiaobing Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Jianmin Hu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Shaoliang Zhang
- 2. Qinglong High-Tech Co., Ltd, Yichun, Jiangxi, People's Republic of China
| | - Yichen Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Wenli Xiong
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Quanhong Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
16
|
Li PT, Ke ES, Chiang PC, Tsai T. ALA- or Ce6-PDT induced phenotypic change and suppressed migration in surviving cancer cells. J Dent Sci 2015. [DOI: 10.1016/j.jds.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Wei XQ, Ma HQ, Liu AH, Zhang YZ. Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pac J Cancer Prev 2014; 14:3023-8. [PMID: 23803073 DOI: 10.7314/apjcp.2013.14.5.3023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Photodynamic therapy (PDT ) is a promising modality for the treatment of various tumors. In order to assist in optimizing treatment, we applied 5-ALA/PDT in combination with low-dose cisplatin to evaluate cytotoxicity in Hela cells. METHODS Antiproliferative effects of 5-ALA/PDT and cisplatin, alone and in combination, were assessed using MTT assay. To examine levels of apoptosis, Hela cells treated with 5-ALA/PDT, and combination treatment were assessed with Annexin-V/PI by flow cytometry. To investigate the molecular mechanisms underlying alterations in cell proliferation and apoptosis, Western blot analysis was conducted to determine the expression of p53, p21, Bax and Bcl-2 proteins. RESULTS MTT assays indicated that combination treatment obviously decreased the viability of Hela cells compared to individual drug treatment. In addition, it was confirmed that exposure of Hela cells to 5-ALA/PDT in combination with low-dose cisplatin resulted in more apoptosis in vitro. Synergistic anticancer activity was related to upregulation p53 expression and alteration in expression of p21, Bcl-2 and Bax. CONCLUSION Our findings suggest that administration of 5-ALA/PDT in combination with the low-dose cisplatin may be an effective and feasible therapy for cervical cancer.
Collapse
Affiliation(s)
- Xiao-Qiang Wei
- Department of Gynecology and Obstetrics, Qilu Hospital, Shandong Univeristy , Jinan, China
| | | | | | | |
Collapse
|
18
|
Yang DH, Lee JW, Lee J, Moon EY. Dynamic rearrangement of F-actin is required to maintain the antitumor effect of trichostatin A. PLoS One 2014; 9:e97352. [PMID: 24846135 PMCID: PMC4028200 DOI: 10.1371/journal.pone.0097352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/17/2014] [Indexed: 11/20/2022] Open
Abstract
Actin plays a role in various processes in eukaryotic cells, including cell growth and death. We investigated whether the antitumor effect of trichostatin A (TSA) is associated with the dynamic rearrangement of F-actin. TSA is an antitumor drug that induces hyper-acetylation of histones by inhibiting histone deacetylase. HeLa human cervical cancer cells were used to measure the antitumor effect of TSA. The percent cell survival was determined by an MTT assay. Hypodiploid cell formation was assessed by flow cytometry. Collapse of the mitochondrial membrane potential (MMP) was identified by a decrease in the percentage of cells with red MitoProbe J-aggregate (JC-1) fluorescence. Cell survival was reduced by treatment with TSA, as judged by an MTT assay and staining with propidium iodide, FITC-labeled annexin V, or 4′,6-diamidino-2-phenylindole (DAPI). TSA also induced an MMP collapse, as judged by the measurement of intracellular red JC-1 fluorescence. In addition, the F-actin depolymerizers cytochalasin D (CytoD) and latrunculin B (LatB) induced an MMP collapse and increased apoptotic cell death in HeLa cells. However, our data show that apoptotic cell death and the MMP collapse induced by TSA were decreased by the co-treatment of cells with CytoD and LatB. These findings demonstrate that the dynamic rearrangement of F-actin might be necessary for TSA-induced HeLa cell apoptosis involving a TSA-induced MMP collapse. They also suggest that actin cytoskeleton dynamics play an important role in maintaining the therapeutic effects of antitumor agents in tumor cells. They further suggest that maintaining the MMP could be a novel strategy for increasing drug sensitivity in TSA-treated tumors.
Collapse
Affiliation(s)
- Dong-Hee Yang
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Jiyoung Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Ito H, Tamura M, Matsui H, Majima HJ, Indo HP, Hyodo I. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells. J Clin Biochem Nutr 2014; 54:81-5. [PMID: 24688215 PMCID: PMC3947976 DOI: 10.3164/jcbn.13-98] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023] Open
Abstract
Photodynamic therapy and photodynamic diagnosis using 5-aminolevulinic acid (ALA) are clinically useful for cancer treatments. Cancer cells have been reported that 5-aminolevulinic acid is incorporated via peptide transporter 1, which is one of the membrane transport proteins, and has been reported to be significantly expressed in various gastrointestinal cancer cells such as Caco-2. However, the mechanism of this protein expression has not been elucidated. Concentration of reactive oxygen species (ROS) is higher in cancer cells in comparison with that of normal cells. We have previously reported that ROS derived from mitochondria is likely related to invasions and proliferations of cancer cells. Since 5-aminolevulinic acid is the most important precursor of heme which is necessary protein for cellular proliferations, mitochondrial ROS (mitROS) may be also related to peptide transporter 1 expressions. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1, and we clarified the ALA uptake mechanism and its relations between mitROS and peptide transporter 1 expression in RGK1. We also used our self-established stable clone of cell which over-expresses manganese superoxide dismutase, a mitROS scavenger. We studied differences of the photodynamic therapy effects in these cells after ALA administrations to clear the influence of mitROS.
Collapse
Affiliation(s)
- Hiromu Ito
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masato Tamura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirofumi Matsui
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideyuki J Majima
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroko P Indo
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichinosuke Hyodo
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
20
|
Photodynamic anti-cancer effects of fullerene [C60]–PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol Cell Biochem 2014; 390:175-84. [DOI: 10.1007/s11010-014-1968-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
|
21
|
Li HT, Song XY, Yang C, Li Q, Tang D, Tian WR, Liu Y. Effect of hematoporphyrin monomethyl ether-mediated PDT on the mitochondria of canine breast cancer cells. Photodiagnosis Photodyn Ther 2013; 10:414-21. [PMID: 24284094 DOI: 10.1016/j.pdpdt.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 11/29/2022]
Abstract
Hematoporphyrin monomethyl ether (HMME) is a promising porphyrin-related photosensitize for photodynamic therapy (PDT). There still remains unknown changes regarding the mitochondrial in canine breast cancer cells treated with HMME-PDT. The aim of this study is to investigate the effect of HMME-PDT on structure and dysfunction of mitochondrial in cancer cells. The experimental approach included an initial study on the uptake of HMME using microscopic observation of the HMME-treated cells, optimization of the PDT-induced cell death by the MTT assay. These cells were then treated with HMME and a He-Ne laser at the wavelength of 632.8 nm following our optimized condition. Examination of mitochondrial changes by observing the stained cells under light microscope, mitochjondrial membrane potential flow cytometry, measuring the Ca(2+), SOD/GSH activity, ATPase and MDA contents for the mitochondria functions. The kinetics of HMME uptake in CHMm cells was determined and its cytocolic instead of nuclear distribution was demonstrated. The dose of 16mM HMME-PDT combined with 2.8 J/cm(2) laser irradiation was had the maximal impact on cell viability. This treatment resulted in structural changes in mitochondria that were accompanied with the loss of mitochjondrial membrane potential. As a result, HMME-PDT increased mitochondrial ROS, inhibited the enzymatic activities of mitochondrial SOD and GSH-Px, abolished mitochondrial ability in the uptake and release of calcium, and decreased mitochondrial ATPase activity. The combination of these abnormalities led to accumulation of ROS in mitochondrial to high levels, which in turn contributed to HMME-PDT-induced damages of mitochondrial structure and mitochondrial dysfunction.
Collapse
Affiliation(s)
- H T Li
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Department of Veterinary Clinic, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Ruiz-González R, Acedo P, Sánchez-García D, Nonell S, Cañete M, Stockert JC, Villanueva A. Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer. Eur J Med Chem 2013; 63:401-14. [PMID: 23517729 DOI: 10.1016/j.ejmech.2013.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
In the present study we analyze the photobiological properties of 2,7,12-tris(α-pyridinio-p-tolyl)-17-(p-(methoxymethyl)phenyl) porphycene (Py3MeO-TBPo) in Hela cells, in order to assess its potential as a new photosensitizer for photodynamic therapy of cultured tumor cells. Using 0.5 μM Py3MeO-TBPo, flow cytometry studies demonstrated an increase of intracellular drug levels related to the incubation time, reaching a maximum at 18 h. LysoTracker(®) Green (LTG) and MitoTracker(®) Green (MTG) probes were used to identify the subcellular localization. Upon exposure to ultraviolet excitation, red porphycene fluorescence was detected as red granules in the cytoplasm that colocalized with LTG. No significant toxic effects were detected for Py3MeO-TBPo in the dark at concentrations below 1 μM. In contrast, Py3MeO-TBPo combined with red-light irradiation induced concentration- and fluence-dependent HeLa cells inactivation. Besides, all photodynamic protocols assayed induced a clear effect of cell detachment inhibition after trypsin treatment. Both apoptotic and necrotic cell death mechanisms can occur in HeLa cells depending on the experimental protocol. After 18 h incubation with 0.5 μM Py3MeO-TBPo and subsequent red light irradiation (3.6 J/cm(2)), a high number of cells die by apoptosis, as evaluated by morphological alterations, immunofluorescent relocalization of Bax from cytosol to mitochondria, and TUNEL assay. Likewise, immunofluorescence techniques showed that cytochrome c is released from mitochondria into cytosol in cells undergoing apoptosis, which occurs immediately after relocation of Bax in mitochondria. The highest amount of apoptosis appeared 24 h after treatment (70%) and this cell death occurred without cell detachment to the substrate. In contrast, with 0.75 μM Py3MeO-TBPo and 3.6 J/cm(2) irradiation, morphological changes showed a preferential necrotic cell death. Singlet oxygen was identified as the cytotoxic agent involved in cell photoinactivation. Moreover, cell cultures pre-exposed to the singlet oxygen scavenger sodium azide showed pronounced protection against the loss of viability induced by Py3MeO-TBPo and light. Different changes in distribution and organization of cytoskeletal elements (microtubules and actin microfilaments) as well as the protein vinculin, after apoptotic and necrotic photodynamic treatments have been analyzed. Neither of these two cell death mechanisms (apoptosis or necrosis) induced cell detachment. In summary, Py3MeO-TBPo appears to meet the requirements for further scrutiny as a very good photosensitizer for photodynamic therapy: it is water soluble, has a high absorption in the red spectral region (where light penetration in tissue is higher), and is able to induce effective high apoptotic rate (70%) related to the more widely studied photosensitizers.
Collapse
Affiliation(s)
- Rubén Ruiz-González
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Li X, Zhou ZP, Hu L, Zhang WJ, Li W. Apoptotic cell death induced by 5-aminolaevulinic acid-mediated photodynamic therapy of hypertrophic scar-derived fibroblasts. J DERMATOL TREAT 2013; 25:428-33. [DOI: 10.3109/09546634.2012.697987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Chiang PC, Chou RH, Chien HF, Tsai T, Chen CT. Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy. Lasers Surg Med 2013; 45:38-47. [DOI: 10.1002/lsm.22112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 02/02/2023]
|
25
|
Sanz-Rodríguez F, Casas A, González S, Espada J, Jaén P, Regadera J, Blázquez-Castro A, Zamarrón A, Bagazgoitia L, Iglesias de la Cruz C, Juarranz Á. Preclinical photodynamic therapy research in Spain 4: Cytoskeleton and adhesion complexes of cultured tumor cells as targets of photosensitizers. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609000565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor cell death induced by photodynamic therapy (PDT) with different photosensitizers (PSs) is due to the selective damage of several membranous organelles including mitochondria, lysosomes and Golgi apparatus. Other cell structures such as the cytoskeleton (CSK) (microtubules, actin microfilaments and cytokeratin intermediate filaments) and the cell adhesion components (cadherins and integrins) are also implicated in cell death induced by PSs. CSK and adhesion components are responsible for many cellular functions such as the maintenance of morphology, motility, division and adhesion, all of them of fundamental importance for growth and dissemination of tumors. Therefore, they are considered very important targets for anticancer therapies, including PDT. In addition, similarly to the rest of the anticancer therapies, PDT often leaves a significant number of surviving tumor cells. The reorganization of CSK as well as the adhesion proteins in the PDT resistant cells affect their invasive migratory capabilities. Taking into account all these features, both CSK and adhesion proteins are crucial targets of PDT.
Collapse
Affiliation(s)
- Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP) y Hospital de Clínicas José San Martín, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Salvador González
- Servicio de Dermatología, Hospital Ramón Cajal, Madrid, Spain
- Dermatology Unit, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jesús Espada
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Pedro Jaén
- Servicio de Dermatología, Hospital Ramón Cajal, Madrid, Spain
| | - Javier Regadera
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de Madrid, c/ Arzobispo Morcillo, 28029 Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Zamarrón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
26
|
Chiaviello A, Postiglione I, Palumbo G. Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 2011; 3:1014-41. [PMID: 24212652 PMCID: PMC3756402 DOI: 10.3390/cancers3011014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains one of the most common cancer-related causes of death. This type of cancer typically develops over a period of many years, and if detected at an early enough stage can be eliminated by a variety of treatments including photodynamic therapy (PDT). A critical discussion on the clinical applications of PDT in lung cancer is well outside the scope of the present report, which, in turn focuses on mechanistic and other aspects of the photodynamic action at a molecular and cellular level. The knowledge of these issues at pre-clinical levels is necessary to develop, check and adopt appropriate clinical protocols in the future. This report, besides providing general information, includes a brief overview of present experimental PDT and provides some non-exhaustive information on current strategies aimed at further improving the efficacy, especially in regard to lung cancer cells.
Collapse
Affiliation(s)
- Angela Chiaviello
- Department of Biologia e Patologia Cellulare e Molecolare "L. Califano" - Università Federico II, Via S. Pansini, 5 80131 Naples, Italy.
| | | | | |
Collapse
|
27
|
Liu T, Wu LY, Berkman CE. Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Lett 2010; 296:106-12. [PMID: 20452720 PMCID: PMC3201799 DOI: 10.1016/j.canlet.2010.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 01/31/2023]
Abstract
Prostate-specific membrane antigen (PSMA), an established enzyme-biomarker for prostate cancer, has attracted considerable attention as a target for imaging and therapeutic applications. We aimed to determine the effects of PSMA-targeted photodynamic therapy (PDT) on cytoskeletal networks in prostate cancer cells. PSMA-targeted PDT resulted in rapid disruption of microtubules (alpha-/beta-tubulin), microfilaments (actin), and intermediate filaments (cytokeratin 8/18) in the cytoplasm of LNCaP cells. The collapse of cytoplasmic microtubules and the later nuclear translocation of alpha-/beta-tubulin were the most dramatic alternation. It is likely that these early changes of cytoskeletal networks are partly involved in the initiation of cell death.
Collapse
Affiliation(s)
- Tiancheng Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Lisa Y. Wu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Clifford E. Berkman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
- Cancer Targeted Technology, Woodinville, Washington 98072, USA
| |
Collapse
|
28
|
Jung SH, Park D, Park JH, Kim YM, Ha KS. Molecular imaging of membrane proteins and microfilaments using atomic force microscopy. Exp Mol Med 2010; 42:597-605. [PMID: 20689364 PMCID: PMC2947017 DOI: 10.3858/emm.2010.42.9.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2010] [Indexed: 11/04/2022] Open
Abstract
Atomic force microscopy (AFM) is an emerging technique for a variety of uses involving the analysis of cells. AFM is widely applied to obtain information about both cellular structural and subcellular events. In particular, a variety of investigations into membrane proteins and microfilaments were performed with AFM. Here, we introduce applications of AFM to molecular imaging of membrane proteins, and various approaches for observation and identification of intracellular microfilaments at the molecular level. These approaches can contribute to many applications of AFM in cell imaging.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 200-701, Korea
| | | | | | | | | |
Collapse
|
29
|
Chen X, Zhao P, Chen F, Li L, Luo R. Effect and mechanism of 5-aminolevulinic acid-mediated photodynamic therapy in esophageal cancer. Lasers Med Sci 2010; 26:69-78. [PMID: 20676910 DOI: 10.1007/s10103-010-0810-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 06/14/2010] [Indexed: 12/14/2022]
Abstract
5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) provides a novel and promising treatment for esophageal cancer. However, its specific mechanism has not been fully elucidated and its efficacy is remarkably varied. This study investigated the effect of ALA-PDT on esophageal squamous carcinoma cell line Eca-109 in vitro and vivo to explore optimal parameters, and evaluated the significance of cell apoptosis, cell cycle, ALA-protoporphyrin IX (ALA-PpIX) subcellular localization, and expression of Bcl-2 and Bax mRNA in cells to understand the mechanism of ALA-PDT for esophageal cancer. How ALA concentration, incubation time, and laser irradiation dose influenced the cell proliferation was determined by MTT assay. ALA-PpIX subcellular localization was analyzed by confocal microscopy. The mRNA changes were detected by quantitative real-time polymerase chain reaction (QRT-PCR). Tumor models transplanted with Eca-109 cells in nude mice were established (n = 10) and killed (n = 4) at 24 h post-PDT for malondialdehyde (MDA) detection and histological study. The remaining mice were measured the tumor size for 3 weeks after treatment. Our data show that ALA-PDT significantly inhibits cell proliferation (p < 0.05), the PDT efficacy depends on the saturation of ALA concentration, incubation time, and laser irradiation dose, and the best effect in tumor destruction is at 7-14 days post-PDT. ALA-PpIX is localized in mitochondria and cytoplasm. ALA-PDT induces cell apoptosis and arrests cell cycle at G0/G1 phase. Bcl-2 is significantly down-regulated while Bax is up-regulated (p < 0.05). The results of this study provide references in choosing clinical optimal PDT parameters and help in better understanding the PDT mechanism for esophageal cancer.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Gupta S, Dwarakanath BS, Muralidhar K, Koru-Sengul T, Jain V. Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line. J Transl Med 2010; 8:43. [PMID: 20433757 PMCID: PMC2885318 DOI: 10.1186/1479-5876-8-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 microM, further increases in AlPcS2concentration (>1 microM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. METHODS Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. RESULTS The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 microM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. CONCLUSIONS Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects.
Collapse
Affiliation(s)
- Seema Gupta
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi-110054, India.
| | | | | | | | | |
Collapse
|
31
|
Ji HT, Chien LT, Lin YH, Chien HF, Chen CT. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase. Mol Cancer 2010; 9:91. [PMID: 20426806 PMCID: PMC2873441 DOI: 10.1186/1476-4598-9-91] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/28/2010] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) has been developed as an anticancer treatment, which is based on the tumor-specific accumulation of a photosensitizer that induces cell death after irradiation of light with a specific wavelength. Depending on the subcellular localization of the photosensitizer, PDT could trigger various signal transduction cascades and induce cell death such as apoptosis, autophagy, and necrosis. In this study, we report that both AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase (MAPK) signaling cascades are activated following 5-aminolevulinic acid (ALA)-mediated PDT in both PC12 and CL1-0 cells. Although the activities of caspase-9 and -3 are elevated, the caspase inhibitor zVAD-fmk did not protect cells against ALA-PDT-induced cell death. Instead, autophagic cell death was found in PC12 and CL1-0 cells treated with ALA-PDT. Most importantly, we report here for the first time that it is the activation of AMPK, but not MAPKs that plays a crucial role in mediating autophagic cell death induced by ALA-PDT. This novel observation indicates that the AMPK pathway play an important role in ALA-PDT-induced autophagy.
Collapse
Affiliation(s)
- Hong-Tai Ji
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | |
Collapse
|
32
|
A comparative study on the enhancement efficacy of specific and non-specific iron chelators for protoporphyrin IX production and photosensitization in HaCat cells. ACTA ACUST UNITED AC 2009; 29:765-70. [PMID: 20037824 DOI: 10.1007/s11596-009-0619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Indexed: 02/08/2023]
Abstract
The iron chelators can be utilized in target cells to improve 5-aminolaevulinic acid (ALA)-based photodynamic therapy (PDT). The purpose of this study is to compare the effect of two kinds of iron chelators, desferrioxamine (DFO) and ethylenediaminetetraacetic acid (EDTA) on the enhancement of ALA-PDT. HaCat cells were cultured in medium containing 2.0 mmol/L of ALA and 0.5 mmol/L of DFO or EDTA. After 3-h incubation in the dark, the concentration of cellular protoporphyrin IX (PpIX) was detected by high performance liquid chromatography (HPLC), and the fluorescence of PpIX was observed at 630 nm emission under confocal laser scanning microscope. For PDT, HaCat cells were irradiated using 632.8 nm laser, and the fractions of apoptotic and necrotic cells were flow cytometrically assayed. Related differences in morphology and ultrastructure of Ha-Cat cells were observed using optical microscope or transmission electron microscope. Compared to incubation with ALA alone, the addition of DFO or EDTA increased the concentration of cellular PpIX and the fluorescent density of PpIX, and also increased cell death ratio after PDT. PDT using ALA plus DFO produced the highest cellular PpIX level, greatest cell death ratio and most severe structural damage to the cells. It was concluded that both DFO and EDTA could enhance ALA-based PpIX production and PDT. Compared to the non-specific iron chelator of EDTA, the specific chelator, DFO, showed more potential for the enhancement.
Collapse
|
33
|
Jung SH, Park JY, Yoo JO, Shin I, Kim YM, Ha KS. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy. Ultramicroscopy 2009; 109:1428-34. [DOI: 10.1016/j.ultramic.2009.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/09/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
34
|
Yang J, Xia Y, Liu X, Jiang S, Xiong L. Desferrioxamine shows different potentials for enhancing 5-aminolaevulinic acid-based photodynamic therapy in several cutaneous cell lines. Lasers Med Sci 2009; 25:251-7. [DOI: 10.1007/s10103-009-0721-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 07/24/2009] [Indexed: 12/30/2022]
|
35
|
Tsai T, Yang YT, Wang TH, Chien HF, Chen CT. Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Lasers Surg Med 2009; 41:316-22. [PMID: 19347938 DOI: 10.1002/lsm.20754] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Antimicrobial photodynamic inactivation (PDI) is a promising treatment modality for local infections. To increase the efficacy of photosensitizer, hematoporphyrin (Hp) was used as a model drug and encapsulated in liposomes and micelles. The bactericidal efficacy of the carrier-entrapped Hp was assessed against gram-positive bacteria. STUDY DESIGN/MATERIALS AND METHODS Hp was encapsulated in liposomes by a modified reversed-phase evaporation and extrusion method. Micelle-Hp was prepared by the reversed-phase evaporation method. Spectroscopic analysis was used to characterize the properties of Hp in PBS, liposome or micelle. The PDI efficacy was examined by using gram-positive pathogens including methicillin-susceptible, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. RESULTS The absorption and fluorescence emission spectra indicated that Hp encapsulated in liposomes and micelles is less likely to exist in aggregated form compared to that generally seen in an aqueous medium. Liposome- or micelle-Hp can induce complete eradication of the bacteria above a critical Hp dose, which is significantly lower than the dose required when using the non-encapsulated Hp. Furthermore, the PDI effect of the Hp encapsulated in micelles was superior to the Hp encapsulated in liposomes at lower Hp doses. Similar PDI results were also found in S. epidermidis and S. pyogenes. CONCLUSIONS Our results indicate that photosensitizer entrapped in micelle exert similar or better PDI efficacy than that of liposome, which indicates this formulation may be useful for the treatment of local infections in the future.
Collapse
Affiliation(s)
- Tsuimin Tsai
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Ji ZY, Fan TL, Zhao LQ, Yang XJ, Qiu YB, Zhang JZ, Zhang YB, Sun Y, Qiu SL, Yang GR. Effects of subcellular localization pattern of PpIX on photodynamic efficiency in esophageal cancer cells. Shijie Huaren Xiaohua Zazhi 2009; 17:1602-1608. [DOI: 10.11569/wcjd.v17.i16.1602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of subcellular localization pattern of PpIX on photodynamic efficiency in esophageal cancer cell lines.
METHODS: KYSE-450, KYSE-70 and Het-1A cells were treated with ALA, exogenous PpIX and MitoTracker, respectively. The subcellular localization patterns of PpIX were observed using fluorescence microscopy. Mitochondrial transmembrane potential (ΔΨm) after ALA-PDT and PpIX-PDT was measured using JC-1 flow cytometry. The morphological study of mitochondria after ALA-PDT and PpIX-PDT was performed with electron microscopy. MTS was used to examine the cell survival rate.
RESULTS: The granular patterns and distribution of fluorescence in the extranuclear fraction of the cells were similar for both ALA-derived endogenous PpIX and the MitoTracker in all cell lines; however, exogenous PpIX was diffusely distributed in the whole cytoplasm of cells. After 12 h of ALA-based PDT, the percentages were increased to 22%, 52% and 33% in the KYSE-450, KYSE-70 and Het-1A cell lines, respectively; where only 15%, 14% and 18% of the depolarized cell fractions were seen following PDT with exogenous PpIX. As early as 1 h after photodynamic treatment, some of the mitochondria were already damaged by ALA-PDT with unclear cristae, vacuoles and swelling; while the mitochondrial ultrastructure was still well preserved 1 h later following PDT with exogenous PpIX. ALA-mediated PDT was significantly more efficient than PDT with exogenous PpIX in killing cells in all the 3 cell lines.
CONCLUSION: Different subcellular location of photosensitizer may affect the PDT efficacy. Mitochondria are more sensitive and may be important targets for PDT. This finding suggests that new photosensitizers with mitochondrially-localizing property may be designed for improvement of PDT effectiveness in the future.
Collapse
|
37
|
Tsai T, Ji HT, Chiang PC, Chou RH, Chang WSW, Chen CT. ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg Med 2009; 41:305-15. [DOI: 10.1002/lsm.20761] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Wolun-Cholewa M, Butowska W, Fischer N, Warcho W, Nowak-Markwitz E. 5-Aminolevulinic Acid–Mediated Photodynamic Therapy of Human Endometriotic Primary Epithelial Cells. Photomed Laser Surg 2009; 27:295-301. [DOI: 10.1089/pho.2008.2299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M. Wolun-Cholewa
- Department of Cell Biology, University of Medical Sciences, Poznan, Poland
| | - W. Butowska
- Department of Cell Biology, University of Medical Sciences, Poznan, Poland
| | - N. Fischer
- Promienista Clinic, University of Medical Sciences, Poznan, Poland
| | - W. Warcho
- Department of Biophysics, University of Medical Sciences, Poznan, Poland
| | - E. Nowak-Markwitz
- Clinic of Gynecological Oncology, and Department of Perinatology and Gynecology, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
39
|
Casas A, Di Venosa G, Vanzulli S, Perotti C, Mamome L, Rodriguez L, Simian M, Juarranz A, Pontiggia O, Hasan T, Batlle A. Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy. Cancer Lett 2008; 271:342-51. [PMID: 18662847 PMCID: PMC2602948 DOI: 10.1016/j.canlet.2008.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 04/30/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.
Collapse
Affiliation(s)
- Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, 1056 Ciudad de Buenos Aires, Córdoba 2351 1er subsuelo, CP 1120AAF, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Casas A, Sanz-Rodriguez F, Venosa GD, Rodriguez L, Mamone L, Blázquez A, Jaén P, Batlle A, Stockert JC, Juarranz A. Disorganisation of cytoskeleton in cells resistant to photodynamic treatment with decreased metastatic phenotype. Cancer Lett 2008; 270:56-65. [DOI: 10.1016/j.canlet.2008.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
41
|
Cekaite L, Peng Q, Reiner A, Shahzidi S, Tveito S, Furre IE, Hovig E. Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate. BMC Genomics 2007; 8:273. [PMID: 17692132 PMCID: PMC2045114 DOI: 10.1186/1471-2164-8-273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 08/13/2007] [Indexed: 11/21/2022] Open
Abstract
Background Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways. Results In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings. Conclusion Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
- State Key Lab for Advanced Photonic Materials and Devices, Fudan University, Shanghai, P.R. China
| | - Andrew Reiner
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Susan Shahzidi
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Siri Tveito
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Ingegerd E Furre
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| |
Collapse
|
42
|
Abstract
Light therapy is widely used in dermatology. An enhancement to his therapy is the use of a photosensitizing medication along with light therapy, known as photodynamic therapy (PDT). PDT is primarily used for the treatment of precancerous lesions, acne vulgaris, and nonmelonoma skin cancer, and has also been shown to improve the appearance of photodamaged skin. This article reviews the available literature for the treatment of photodamaged skin using PDT along with recent advancements in PDT for various dermatologic indications.
Collapse
|
43
|
Ohgari Y, Nakayasu Y, Kitajima S, Sawamoto M, Mori H, Shimokawa O, Matsui H, Taketani S. Mechanisms involved in δ-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: Relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol 2005; 71:42-9. [PMID: 16288996 DOI: 10.1016/j.bcp.2005.10.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/01/2005] [Accepted: 10/07/2005] [Indexed: 11/20/2022]
Abstract
Photodynamic therapy (PDT) using delta-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin IX is a useful approach to the early detection and treatment of cancers. To investigate the role of ferrochelatase in the accumulation of protoporphyrin, we first made mouse fibroblast Balb/3T3 cells highly expressing ferrochelatase and examined the ALA-induced photo-damage as well as the accumulation of porphyrin in the cells. When the ferrochelatase-transfected cells were treated with ALA and then exposed to visible light, they became resistant to the light without accumulating porphyrins, with a concomitant increase in the formation of heme. The accumulation of protoporphyrin was also abolished in human erythroleukemia K562 cells stably expressing mouse ferrochelatase. When mouse fibrosarcoma MethA cells, mouse fibroblast L929 cells and Balb/3T3 cells were treated with ALA, the greatest accumulation of protoporphyrin and the greatest level of cell death in response to the light were observed in MethA cells. The expression level of ferrochelatase was the lowest in MethA cells, while that of porphobilinogen deaminase was similar among all three cell lines. Moreover, an iron-chelator, desferrioxamine, which sequesters iron preventing the ferrochelatase reaction, enhanced the photo-damage as well as the accumulation of protoporphyrin in ALA-treated L929 cells. Thus, the light-induced cell death was tightly coupled with the accumulation of protoporphyrin caused by a decrease in ferrochelatase. Finally, we examined the uptake of ALA by MethA, L929 and Balb/3T3 cells. The extent of the uptake by MethA and L929 cells was greater, indicating a greater accumulation of protoporphyrin than in the Balb/3T3 cells. Taken together, not only the low level of ferrochelatase but also the augmented uptake of ALA contributes to the ALA-induced accumulation of protoporphyrin IX and subsequent photo-damage in cancer cells.
Collapse
Affiliation(s)
- Yoshiko Ohgari
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|