1
|
Yang L, Chen Y, Ling S, Wang J, Wang G, Zhang B, Zhao H, Zhao Q, Mao J. Research progress on the application of optical coherence tomography in the field of oncology. Front Oncol 2022; 12:953934. [PMID: 35957903 PMCID: PMC9358962 DOI: 10.3389/fonc.2022.953934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique which has become the “gold standard” for diagnosis in the field of ophthalmology. However, in contrast to the eye, nontransparent tissues exhibit a high degree of optical scattering and absorption, resulting in a limited OCT imaging depth. And the progress made in the past decade in OCT technology have made it possible to image nontransparent tissues with high spatial resolution at large (up to 2mm) imaging depth. On the one hand, OCT can be used in a rapid, noninvasive way to detect diseased tissues, organs, blood vessels or glands. On the other hand, it can also identify the optical characteristics of suspicious parts in the early stage of the disease, which is of great significance for the early diagnosis of tumor diseases. Furthermore, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This review summarizes the recent advances in the OCT area, which application in oncological diagnosis and treatment in different types: (1) superficial tumors:OCT could detect microscopic information on the skin’s surface at high resolution and has been demonstrated to help diagnose common skin cancers; (2) gastrointestinal tumors: OCT can be integrated into small probes and catheters to image the structure of the stomach wall, enabling the diagnosis and differentiation of gastrointestinal tumors and inflammation; (3) deep tumors: with the rapid development of OCT imaging technology, it has shown great potential in the diagnosis of deep tumors such in brain tumors, breast cancer, bladder cancer, and lung cancer.
Collapse
Affiliation(s)
- Linhai Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Yulun Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Shuting Ling
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Jing Wang
- Department of Imaging, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Guangxing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Bei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Hengyu Zhao
- Department of Imaging, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
- Department of Radiology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| |
Collapse
|
2
|
Jahdi Abdollahi S, Parvin P, Mayahi S, Seyedi S, Mohsenian P, Ramezani F. Hybrid laser activated phycocyanin/capecitabine treatment of cancerous MCF7 cells. BIOMEDICAL OPTICS EXPRESS 2022; 13:3939-3953. [PMID: 35991918 PMCID: PMC9352291 DOI: 10.1364/boe.459737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Laser-induced fluorescence is recently used as an efficient technique in cancer diagnosis and non-invasive treatment. Here, the synergic therapeutical efficacies of the Capecitabine (CAP) chemodrug, photosensitive Phycocyanin (PC) and graphene oxide (GO) under laser irradiation were investigated. The therapeutical efficacies of diverse concentrations of CAP (0.001-10 mg/ml) and PC (0.5-10 mg/ml) alone and with laser irradiation on human breast adenocarcinoma (MCF-7) cells were examined. The interactional effects of 100 mW SHG Nd:YAG laser at 532nm and GaAs laser at 808 nm ranging power of 150 mW- 2.2W were considered. The contribution of graphene oxide (GO) in biocompatible concentrations of 2.5-20 ng/ml and thermal characteristics of laser exposure at 808 nm on GO + fluorophores have been studied. The effects of the bare and laser-excited CAP + PC on cell mortality have been obtained. Despite the laser irradiation could not hold up the cell proliferation in the absence of drug interaction considerably; however, the viability of the treated cells (by a combination of fluorophores) under laser exposure at 808 nm was significantly reduced. The laser at 532 nm excited the fluorescent PC in (CAP + PC) to trigger the photodynamic processes via oxygen generation. Through the in-vitro experiments of laser-induced fluorescence (LIF) spectroscopy of PC + CAP, the PC/CAP concentrations of the maximum fluorescence signal and spectral shifts have been characterized. The synergic effects of the laser exposures and (CAP + PC) treatment at different concentrations were confirmed. It has been shown here that the laser activation of (CAP + PC) can induce the mortality of the malignant cells by reducing the chemotherapeutic dose of CAP to avoid its non-desirable side effects and by approaching the minimally invasive treatment. Elevation of the laser intensity/exposure time could contribute to the therapeutic efficacy. Survival of the treated cells with a combination of GO and fluorophores could be reduced under laser exposure at 808 nm compared to the same combination therapy in the absence of GO. This survey could benefit the forthcoming clinical protocols based on laser spectroscopy for in-situ imaging/diagnosis/treatment of adenocarcinoma utilizing PC + CAP + GO.
Collapse
Affiliation(s)
- Sahar Jahdi Abdollahi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
| | - Parviz Parvin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
- Equal corresponding
| | - Sara Mayahi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Solaleh Seyedi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
| | - Parnian Mohsenian
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Equal corresponding
| |
Collapse
|
3
|
Lu B. Image Aided Recognition of Wireless Capsule Endoscope Based on the Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3880356. [PMID: 35432820 PMCID: PMC9010152 DOI: 10.1155/2022/3880356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Wireless capsule endoscopy is an important method for diagnosing small bowel diseases, but it will collect thousands of endoscopy images that need to be diagnosed. The analysis of these images requires a huge workload and may cause manual reading errors. This article attempts to use neural networks instead of artificial endoscopic image analysis to assist doctors in diagnosing and treating endoscopic images. First, in image preprocessing, the image is converted from RGB color mode to lab color mode, texture features are extracted for network training, and finally, the accuracy of the algorithm is verified. After inputting the retained endoscopic image verification set into the neural network algorithm, the conclusion is that the accuracy of the neural network model constructed in this study is 97.69%, which can effectively distinguish normal, benign lesions, and malignant tumors. Experimental studies have proved that the neural network algorithm can effectively assist the endoscopist's diagnosis and improve the diagnosis efficiency. This research hopes to provide a reference for the application of neural network algorithms in the field of endoscopic images.
Collapse
Affiliation(s)
- Bin Lu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing 312000, China
| |
Collapse
|
4
|
Horgan CC, Bergholt MS, Thin MZ, Nagelkerke A, Kennedy R, Kalber TL, Stuckey DJ, Stevens MM. Image-guided Raman spectroscopy probe-tracking for tumor margin delineation. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200321R. [PMID: 33715315 PMCID: PMC7960531 DOI: 10.1117/1.jbo.26.3.036002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/17/2021] [Indexed: 06/01/2023]
Abstract
SIGNIFICANCE Tumor detection and margin delineation are essential for successful tumor resection. However, postsurgical positive margin rates remain high for many cancers. Raman spectroscopy has shown promise as a highly accurate clinical spectroscopic diagnostic modality, but its margin delineation capabilities are severely limited by the need for pointwise application. AIM We aim to extend Raman spectroscopic diagnostics and develop a multimodal computer vision-based diagnostic system capable of both the detection and identification of suspicious lesions and the precise delineation of disease margins. APPROACH We first apply visual tracking of a Raman spectroscopic probe to achieve real-time tumor margin delineation. We then combine this system with protoporphyrin IX fluorescence imaging to achieve fluorescence-guided Raman spectroscopic margin delineation. RESULTS Our system enables real-time Raman spectroscopic tumor margin delineation for both ex vivo human tumor biopsies and an in vivo tumor xenograft mouse model. We then further demonstrate that the addition of protoporphyrin IX fluorescence imaging enables fluorescence-guided Raman spectroscopic margin delineation in a tissue phantom model. CONCLUSIONS Our image-guided Raman spectroscopic probe-tracking system enables tumor margin delineation and is compatible with both white light and fluorescence image guidance, demonstrating the potential for our system to be developed toward clinical tumor resection surgeries.
Collapse
Affiliation(s)
- Conor C. Horgan
- Imperial College London, Department of Materials, London, United Kingdom
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Institute of Biomedical Engineering, London, United Kingdom
| | - Mads S. Bergholt
- Imperial College London, Department of Materials, London, United Kingdom
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Institute of Biomedical Engineering, London, United Kingdom
| | - May Zaw Thin
- University College London, Centre for Advanced Biomedical Imaging, London, United Kingdom
| | - Anika Nagelkerke
- Imperial College London, Department of Materials, London, United Kingdom
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Institute of Biomedical Engineering, London, United Kingdom
| | - Robert Kennedy
- King’s College London, Guy’s and St Thomas’ NHS Foundation Trust, Oral/Head and Neck Pathology Laboratory, London, United Kingdom
| | - Tammy L. Kalber
- University College London, Centre for Advanced Biomedical Imaging, London, United Kingdom
| | - Daniel J. Stuckey
- University College London, Centre for Advanced Biomedical Imaging, London, United Kingdom
| | - Molly M. Stevens
- Imperial College London, Department of Materials, London, United Kingdom
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Institute of Biomedical Engineering, London, United Kingdom
| |
Collapse
|
5
|
Gnanatheepam E, Kanniyappan U, Dornadula K, Prakasarao A, Singaravelu G. Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics. Photodiagnosis Photodyn Ther 2020; 30:101757. [PMID: 32335189 DOI: 10.1016/j.pdpdt.2020.101757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 01/22/2023]
Abstract
Mortality of oral cancer is often due to late diagnosis. Effective non-invasive diagnostic techniques may increase the survival rate based on an earlier diagnosis.. We report on the application of the polarization gating technique for isolating weakly scattered and highly scattered components of fluorescence emission from the superficial and deeper layers of tissue due to intrinsic fluorophores NADH and FAD. The fluorescence polarization spectra were collected from 21 normal and 67 oral squamous cell carcinoma biopsy tissues. The tissues were excited at 350 nm and the fluorescence emission had two peaks corresponding to NADH, and FAD respectively. The spectra were analyzed using the polarization gating technique along with the spectral deconvolution method to derive the optical redox ratio from different layers of tissue. The fractional change in redox ratio between superficial and deeper layers of tissue exhibits excellent statistical significance (p<10-3) which may be due to a shift in the metabolic pathway from oxidative phosphorylation to glycolysis in the cancer cell. Further, variation in collagen intensity in deeper layers of tissue is observed which may be attributed to the breakdown of collagen fibers in the stroma. Linear discriminant analysis showed that oral cancer tissue is discriminated with a better accuracy using polarization gating technique than that of conventional fluorescence spectroscopy.
Collapse
Affiliation(s)
| | - Udayakumar Kanniyappan
- Department of Radiology, Radio-Oncology and Nuclear Medicine, CHU Sainte-Justine, Montreal, Canada
| | - Koteeswaran Dornadula
- Department of Oral Medicine and Radiology, Meenakshi Ammal Dental College and Hospital, Chennai, India
| | | | | |
Collapse
|
6
|
Glover B, Teare J, Patel N. The Status of Advanced Imaging Techniques for Optical Biopsy of Colonic Polyps. Clin Transl Gastroenterol 2020; 11:e00130. [PMID: 32352708 PMCID: PMC7145035 DOI: 10.14309/ctg.0000000000000130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
The progressive miniaturization of photonic components presents the opportunity to obtain unprecedented microscopic images of colonic polyps in real time during endoscopy. This information has the potential to act as "optical biopsy" to aid clinical decision-making, including the possibility of adopting new paradigms such as a "resect and discard" approach for low-risk lesions. The technologies discussed in this review include confocal laser endomicroscopy, optical coherence tomography, multiphoton microscopy, Raman spectroscopy, and hyperspectral imaging. These are in different stages of development and clinical readiness, but all show the potential to produce reliable in vivo discrimination of different tissue types. A structured literature search of the imaging techniques for colorectal polyps has been conducted. The significant developments in endoscopic imaging were identified for each modality, and the status of current development was discussed. Of the advanced imaging techniques discussed, confocal laser endomicroscopy is in clinical use and, under optimal conditions with an experienced operator, can provide accurate histological assessment of tissue. The remaining techniques show potential for incorporation into endoscopic equipment and practice, although further component development is needed, followed by robust prospective validation of accuracy. Optical coherence tomography illustrates tissue "texture" well and gives good assessment of mucosal thickness and layers. Multiphoton microscopy produces high-resolution images at a subcellular resolution. Raman spectroscopy and hyperspectral imaging are less developed endoscopically but provide a tissue "fingerprint" which can distinguish between tissue types. Molecular imaging may become a powerful adjunct to other techniques, with its ability to precisely label specific molecules within tissue and thereby enhance imaging.
Collapse
Affiliation(s)
- Ben Glover
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Julian Teare
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nisha Patel
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
7
|
Mundo AI, Greening GJ, Fahr MJ, Hale LN, Bullard EA, Rajaram N, Muldoon TJ. Diffuse reflectance spectroscopy to monitor murine colorectal tumor progression and therapeutic response. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32141266 PMCID: PMC7058691 DOI: 10.1117/1.jbo.25.3.035002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. AIM Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. APPROACH A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally-via endoscopic guidance-in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. CONCLUSION Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.
Collapse
Affiliation(s)
- Ariel I. Mundo
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Gage. J. Greening
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Michael J. Fahr
- University of Arkansas, Department of Computer Science, Fayetteville, Arkansas, United States
| | - Lawrence N. Hale
- University of Arkansas, Department of Chemistry and Biochemistry, Fayetteville, Arkansas, United States
| | - Elizabeth A. Bullard
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Timothy J. Muldoon
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
- Address all correspondence to Timothy J. Muldoon, E-mail:
| |
Collapse
|
8
|
Si P, Honkala A, de la Zerda A, Smith BR. Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends Cancer 2020; 6:205-222. [PMID: 32101724 DOI: 10.1016/j.trecan.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies. We review important progress in the fields of IVM and OCT for cancer imaging in living subjects, highlighting key technological developments and their emerging applications in fundamental cancer biology research and clinical oncology investigation.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; The Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Zhu M, Chang W, Jing L, Fan Y, Liang P, Zhang X, Wang G, Liao H. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery. Am J Cancer Res 2019; 9:2827-2842. [PMID: 31244926 PMCID: PMC6568186 DOI: 10.7150/thno.33823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022] Open
Abstract
In neurosurgery, the precise diagnosis and treatment of tumor diseases are challenging to realize. Current clinical diagnoses lack fast and accurate intraoperative information. Therefore, the development of new methods and techniques to assist neurosurgeons intraoperatively is necessary. Optical diagnosis is a promising method to provide accurate information about biological tissues in a short time. Therefore, in this study, we proposed a dual-modality optical diagnostic method through point-to-face registration fusion in the optical system. We incorporated quantitative autofluorescence spectroscopy and optical coherence tomography (OCT) and evaluated our methods in an animal model. Methods: A mouse model consisting of 16 nude mice was built by injecting the mouse brains with human glioma cells. Preoperative bioluminescence imaging was used to evaluate the growth states of tumors and locate the tumor sites. Quantitative autofluorescence spectroscopy, which provided local biochemical information with single-point detection, and OCT, which provided relatively global structural information with en face mapping scanning, were combined using the point-to-face registration fusion method to provide precise diagnostic information for identifying the brain tumors. Postoperative pathology was performed to evaluate the sensitivity and specificity of optical diagnosis. Results: Ex vivo quantitative autofluorescence spectroscopy and OCT imaging were first performed in eight mice to acquire the optimal measuring parameters for tumor staging and identification. We then performed in vivo quantitative autofluorescence spectroscopy and OCT imaging. The results showed that tumor staging could be realized through quantitative autofluorescence spectroscopy, and fusion images could be used to precisely identify tumors. The autofluorescence spectral map, OCT en face map, and fused diagnostic map had average sensitivities of 91.7%, 86.1%, and 95.9% and specificities of 93.2%, 96.0%, and 88.7%, respectively, for tumor identification. Conclusion: The dual-modality optical point-to-face registration fusion method and system we proposed could provide both biochemical information and structural information. The in vivo experimental results validated that the sensitivity (95.9%) of the fused map was higher than that of either single diagnostic modality (86.1% or 91.7%). Tumor staging was realized through quantitative autofluorescence spectroscopy. The proposed method will be applicable to future intelligent theranostic systems and improve many clinical neurosurgeries.
Collapse
|
10
|
Jing Y, Wang Y, Wang X, Song C, Ma J, Xie Y, Fei Y, Zhang Q, Mi L. Label-free imaging and spectroscopy for early detection of cervical cancer. JOURNAL OF BIOPHOTONICS 2018; 11:e201700245. [PMID: 29205885 DOI: 10.1002/jbio.201700245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 05/20/2023]
Abstract
The label-free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label-free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer.
Collapse
Affiliation(s)
- Yueyue Jing
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Yulan Wang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyi Wang
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Chuan Song
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Yonghui Xie
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Qinghua Zhang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lan Mi
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Roper J, Tammela T, Akkad A, Almeqdadi M, Santos SB, Jacks T, Yilmaz ÖH. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat Protoc 2018; 13:217-234. [PMID: 29300388 PMCID: PMC6145089 DOI: 10.1038/nprot.2017.136] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most genetically engineered mouse models (GEMMs) of colorectal cancer are limited by tumor formation in the small intestine, a high tumor burden that limits metastasis, and the need to generate and cross mutant mice. Cell line or organoid transplantation models generally produce tumors in ectopic locations-such as the subcutaneous space, kidney capsule, or cecal wall-that do not reflect the native stromal environment of the colon mucosa. Here, we describe detailed protocols to rapidly and efficiently induce site-directed tumors in the distal colon of mice that are based on colonoscopy-guided mucosal injection. These techniques can be adapted to deliver viral vectors carrying Cre recombinase, CRISPR-Cas9 components, CRISPR-engineered mouse tumor organoids, or human cancer organoids to mice to model the adenoma-carcinoma-metastasis sequence of tumor progression. The colonoscopy injection procedure takes ∼15 min, including preparation. In our experience, anyone with reasonable hand-eye coordination can become proficient with mouse colonoscopy and mucosal injection with a few hours of practice. These approaches are ideal for a wide range of applications, including assessment of gene function in tumorigenesis, examination of tumor-stroma interactions, studies of cancer metastasis, and translational research with patient-derived cancers.
Collapse
Affiliation(s)
- Jatin Roper
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts, USA
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam Akkad
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Mohammad Almeqdadi
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Sebastian B Santos
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Tyler Jacks
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Laser-induced autofluorescence-based objective evaluation of burn tissue repair in mice. Lasers Med Sci 2017; 33:699-707. [DOI: 10.1007/s10103-017-2371-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022]
|
13
|
Doradla P, Joseph C, Giles RH. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives. World J Gastrointest Endosc 2017; 9:346-358. [PMID: 28874955 PMCID: PMC5565500 DOI: 10.4253/wjge.v9.i8.346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/08/2017] [Accepted: 07/14/2017] [Indexed: 02/05/2023] Open
Abstract
Terahertz (THz) imaging is progressing as a robust platform for myriad applications in the field of security, health, and material science. The THz regime, which comprises wavelengths spanning from microns to millimeters, is non-ionizing and has very low photon energy: Making it inherently safe for biological imaging. Colorectal cancer is one of the most common causes of death in the world, while the conventional screening and standard of care yet relies exclusively on the physician's experience. Researchers have been working on the development of a flexible THz endoscope, as a potential tool to aid in colorectal cancer screening. This involves building a single-channel THz endoscope, and profiling the THz response from colorectal tissue, and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality. The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for in-vivo colorectal cancer screening. The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging. In particular, the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted.
Collapse
|
14
|
Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy. BBA CLINICAL 2017; 8:7-13. [PMID: 28567338 PMCID: PMC5447569 DOI: 10.1016/j.bbacli.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/22/2017] [Indexed: 12/12/2022]
Abstract
A method of rapidly differentiating lung tumor from healthy tissue is extraordinarily needed for both the diagnosis and the intraoperative margin assessment. We assessed the ability of fluorescence lifetime imaging microscopy (FLIM) for differentiating human lung cancer and normal tissues with the autofluorescence, and also elucidated the mechanism in tissue studies and cell studies. A 15-patient testing group was used to compare FLIM results with traditional histopathology diagnosis. Based on the endogenous fluorescence lifetimes of the testing group, a criterion line was proposed to distinguish normal and cancerous tissues. Then by blinded examined 41 sections from the validation group of other 16 patients, the sensitivity and specificity of FLIM were determined. The cellular metabolism was studied with specific perturbations of oxidative phosphorylation and glycolysis in cell studies. The fluorescence lifetime of cancerous lung tissues is consistently lower than normal tissues, and this is due to the both decrease of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) lifetimes. A criterion line of lifetime at 1920 ps can be given for differentiating human lung cancer and normal tissues.The sensitivity and specificity of FLIM for lung cancer diagnosis were determined as 92.9% and 92.3%. These findings suggest that NADH and FAD can be used to rapidly diagnose lung cancer. FLIM is a rapid, accurate and highly sensitive technique in the judgment during lung cancer surgery and it can be potential in earlier cancer detection.
Collapse
|
15
|
Autofluorescence Imaging and Spectroscopy of Human Lung Cancer. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app7010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Tang Q, Wang J, Frank A, Lin J, Li Z, Chen CW, Jin L, Wu T, Greenwald BD, Mashimo H, Chen Y. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:5218-5232. [PMID: 28018738 PMCID: PMC5175565 DOI: 10.1364/boe.7.005218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 05/02/2023]
Abstract
Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is difficult to detect the subsurface lesions. In this research, we investigated the feasibility of a novel multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. The C57BL/6J-ApcMin/J mice were imaged using OCT and FLOT, and the correlated histopathological diagnosis was obtained. Quantitative structural (scattering coefficient) and molecular (relative enzyme activity) parameters were obtained from OCT and FLOT images for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 88.23% (82.35%) for sensitivity (specificity) compared to either modality alone. This study suggested that combining OCT and FLOT is promising for subsurface cancer detection, diagnosis, and characterization.
Collapse
Affiliation(s)
- Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianting Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Aaron Frank
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan Lin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zhifang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Chao-wei Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lily Jin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
| | - Bruce D. Greenwald
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hiroshi Mashimo
- Department of Medicine, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
17
|
Shrestha S, Serafino MJ, Rico-Jimenez J, Park J, Chen X, Zhaorigetu S, Walton BL, Jo JA, Applegate BE. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence. BIOMEDICAL OPTICS EXPRESS 2016; 7:3184-3197. [PMID: 27699091 PMCID: PMC5030003 DOI: 10.1364/boe.7.003184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 05/24/2023]
Abstract
Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.
Collapse
Affiliation(s)
- Sebina Shrestha
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Michael J. Serafino
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Jesus Rico-Jimenez
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Xi Chen
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Siqin Zhaorigetu
- Cardiovascular Experimental Imaging and Therapeutics, Texas Heart Institute, 6519 Fannin St., Houston, TX, 77030, USA
| | - Brian L. Walton
- Cardiovascular Experimental Imaging and Therapeutics, Texas Heart Institute, 6519 Fannin St., Houston, TX, 77030, USA
| | - Javier A. Jo
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| |
Collapse
|
18
|
Ba C, Palmiere M, Ritt J, Mertz J. Dual-modality endomicroscopy with co-registered fluorescence and phase contrast. BIOMEDICAL OPTICS EXPRESS 2016; 7:3403-3411. [PMID: 27699107 PMCID: PMC5030019 DOI: 10.1364/boe.7.003403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 05/09/2023]
Abstract
We describe a dual-modality laser scanning endomicroscope that provides simultaneous fluorescence contrast based on confocal laser endomicroscopy (CLE) and phase-gradient contrast based on scanning oblique back-scattering microscopy (sOBM). The probe consists of a 2.6mm-diameter micro-objective attached to a 30,000-core flexible fiber bundle. The dual contrasts are inherently co-registered, providing complementary information on labeled and un-labeled sample structure. Proof of principle demonstrations are presented with ex-vivo mouse colon tissue.
Collapse
|
19
|
Ianiro G, Bibbò S, Pecere S, Gasbarrini A, Cammarota G. Current technologies for the endoscopic assessment of duodenal villous pattern in celiac disease. Comput Biol Med 2015; 65:308-14. [DOI: 10.1016/j.compbiomed.2015.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
|
20
|
LeGendre-McGhee S, Rice PS, Wall RA, Sprute KJ, Bommireddy R, Luttman AM, Nagle RB, Abril ER, Farrell K, Hsu CH, Roe DJ, Gerner EW, Ignatenko NA, Barton JK. Time-serial Assessment of Drug Combination Interventions in a Mouse Model of Colorectal Carcinogenesis Using Optical Coherence Tomography. CANCER GROWTH AND METASTASIS 2015; 8:63-80. [PMID: 26396545 PMCID: PMC4562605 DOI: 10.4137/cgm.s21216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 02/07/2023]
Abstract
Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.
Collapse
Affiliation(s)
| | - Photini S Rice
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - R Andrew Wall
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Kyle J Sprute
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | | | - Amber M Luttman
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Edward R Abril
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Katrina Farrell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Chiu-Hsieh Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Denise J Roe
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. ; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Eugene W Gerner
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. ; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jennifer K Barton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA. ; College of Optical Sciences, University of Arizona, Tucson, AZ, USA. ; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Carbary-Ganz JL, Welge WA, Barton JK, Utzinger U. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:096015. [PMID: 26397238 PMCID: PMC4963467 DOI: 10.1117/1.jbo.20.9.096015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/17/2015] [Indexed: 05/27/2023]
Abstract
Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.
Collapse
Affiliation(s)
- Jordan L. Carbary-Ganz
- University of Arizona, Biomedical Engineering, Thomas W. Keating Bioresearch Building, 1657 E Helen Street, Tucson, Arizona 84721, United States
| | - Weston A. Welge
- University of Arizona, Biomedical Engineering, Thomas W. Keating Bioresearch Building, 1657 E Helen Street, Tucson, Arizona 84721, United States
| | - Jennifer K. Barton
- University of Arizona, Biomedical Engineering, Thomas W. Keating Bioresearch Building, 1657 E Helen Street, Tucson, Arizona 84721, United States
| | - Urs Utzinger
- University of Arizona, Biomedical Engineering, Thomas W. Keating Bioresearch Building, 1657 E Helen Street, Tucson, Arizona 84721, United States
| |
Collapse
|
22
|
Jiang M, Liu T, Liu X, Jiao S. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm. BIOMEDICAL OPTICS EXPRESS 2014; 5:4242-8. [PMID: 25574436 PMCID: PMC4285602 DOI: 10.1364/boe.5.004242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/03/2023]
Abstract
We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.
Collapse
Affiliation(s)
- Minshan Jiang
- Engineering Research Center of Optical Instruments and Systems, Ministry of Education, Shanghai Key Lab of Modern Optical Systems, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,
China
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Tan Liu
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Xiaojing Liu
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| |
Collapse
|
23
|
Pahlevaninezhad H, Lee AMD, Shaipanich T, Raizada R, Cahill L, Hohert G, Yang VXD, Lam S, MacAulay C, Lane P. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2978-87. [PMID: 25401011 PMCID: PMC4230860 DOI: 10.1364/boe.5.002978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/06/2023]
Abstract
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.
Collapse
Affiliation(s)
- Hamid Pahlevaninezhad
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Anthony M. D. Lee
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Tawimas Shaipanich
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Rashika Raizada
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Lucas Cahill
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Geoffrey Hohert
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Victor X. D. Yang
- Biophotonics and Bioengineering Laboratory, Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Calum MacAulay
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Pierre Lane
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| |
Collapse
|
24
|
Mattison SP, Kim W, Park J, Applegate BE. Molecular Imaging in Optical Coherence Tomography. CURRENT MOLECULAR IMAGING 2014; 3:88-105. [PMID: 25821718 PMCID: PMC4373611 DOI: 10.2174/2211555203666141117233442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT's impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT.
Collapse
Affiliation(s)
| | | | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| |
Collapse
|
25
|
Ianiro G, Gasbarrini A, Cammarota G. Endoscopic tools for the diagnosis and evaluation of celiac disease. World J Gastroenterol 2013; 19:8562-8570. [PMID: 24379573 PMCID: PMC3870501 DOI: 10.3748/wjg.v19.i46.8562] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is an autoimmune disease of the small bowel induced by ingestion of wheat, rye and barley. Current guidelines indicate histological analysis on at least four duodenal biopsies as the only way to diagnose CD. These indications are based on the conception of the inability of standard endoscopy to make diagnosis of CD and/or to drive biopsy sampling. Over the last years, technology development of endoscopic devices has greatly ameliorated the accuracy of macroscopic evaluation of duodenal villous pattern, increasing the diagnostic power of endoscopy of CD. The aim of this paper is to review the new endoscopic tools and procedures proved to be useful in the diagnosis of CD, such as chromoendoscopy, Fujinon Intelligent Chromo Endoscopy, Narrow Band Imaging, Optical Coherence Tomography, Water-Immersion Technique, confocal laser endomicroscopy, high-resolution magnification endoscopy, capsule endoscopy and I-Scan technology.
Collapse
|
26
|
Liu W, Zhang X, Liu K, Zhang S, Duan Y. Laser-induced fluorescence: Progress and prospective for in vivo cancer diagnosis. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5826-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Fleg JL, Stone GW, Fayad ZA, Granada JF, Hatsukami TS, Kolodgie FD, Ohayon J, Pettigrew R, Sabatine MS, Tearney G, Waxman S, Domanski MJ, Srinivas PR, Narula J. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc Imaging 2012; 5:941-55. [PMID: 22974808 PMCID: PMC3646061 DOI: 10.1016/j.jcmg.2012.07.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The leading cause of major morbidity and mortality in most countries around the world is atherosclerotic cardiovascular disease, most commonly caused by thrombotic occlusion of a high-risk coronary plaque resulting in myocardial infarction or cardiac death, or embolization from a high-risk carotid plaque resulting in stroke. The lesions prone to result in such clinical events are termed vulnerable or high-risk plaques, and their identification may lead to the development of pharmacological and mechanical intervention strategies to prevent such events. Autopsy studies from patients dying of acute myocardial infarction or sudden death have shown that such events typically arise from specific types of atherosclerotic plaques, most commonly the thin-cap fibroatheroma. However, the search in human beings for vulnerable plaques before their becoming symptomatic has been elusive. Recently, the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study demonstrated that coronary plaques that are likely to cause future cardiac events, regardless of angiographic severity, are characterized by large plaque burden and small lumen area and/or are thin-cap fibroatheromas verified by radiofrequency intravascular ultrasound imaging. This study opened the door to identifying additional invasive and noninvasive imaging modalities that may improve detection of high-risk atherosclerotic lesions and patients. Beyond classic risk factors, novel biomarkers and genetic profiling may identify those patients in whom noninvasive imaging for vulnerable plaque screening, followed by invasive imaging for risk confirmation is warranted, and in whom future pharmacological and/or device-based focal or regional therapies may be applied to improve long-term prognosis.
Collapse
Affiliation(s)
- Jerome L. Fleg
- National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Gregg W. Stone
- Columbia University Medical Center and the Cardiovascular Research Foundation, New York, New York
| | | | - Juan F. Granada
- Columbia University Medical Center and the Cardiovascular Research Foundation, New York, New York
| | | | | | - Jacques Ohayon
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Roderic Pettigrew
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Marc S. Sabatine
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Guillermo Tearney
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Jagat Narula
- Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
28
|
Prabhu V, Rao SBS, Chandra S, Kumar P, Rao L, Guddattu V, Satyamoorthy K, Mahato KK. Spectroscopic and histological evaluation of wound healing progression following Low Level Laser Therapy (LLLT). JOURNAL OF BIOPHOTONICS 2012; 5:168-84. [PMID: 22174176 DOI: 10.1002/jbio.201100089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 05/09/2023]
Abstract
The present study focuses on the evaluation of the effect of He-Ne laser on tissue regeneration by monitoring collagen synthesis in wound granulation tissues in Swiss albino mice using analysis of laser induced fluorescence (LIF) and light microscopy techniques. The spectral analyses of the wound granulation tissues have indicated a dose dependent increase in collagen levels during the post-wounding days. The histological examinations on the other hand have also shown a significant increase in collagen deposition along with the reduced edema, leukocytes, increased granulation tissue, and fibroblast number in the optimal laser dose treated group compared to the non-illuminated controls.
Collapse
Affiliation(s)
- Vijendra Prabhu
- Biophysics Unit, Manipal Life Sciences Centre, Manipal University, Manipal 576104, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Luo XJ, Zhang B, Li JG, Luo XA, Yang LF. Autofluorescence spectroscopy for evaluating dysplasia in colorectal tissues. Z Med Phys 2011; 22:40-7. [PMID: 22112637 DOI: 10.1016/j.zemedi.2011.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 09/29/2011] [Accepted: 10/20/2011] [Indexed: 01/23/2023]
Abstract
The aim of this study was to assess the applicability of autofluorescence (AF) spectroscopy as a method for the diagonosis of normal, benign and malignant of dysplasia in colorectal tissues experimentally. By improvement of optical design in laser pulse generator, wavelength-adjustable output was acquired and the optimal wavelength was defined as 380 nm. With 380-nm pulsed laser excitation, AF spectra of normal, benign and malignant colorectal tissues were recorded in the spectra region from 460-570 nm in vitro. The spectral analysis for discrimination among the different types of tissues was carried out using principal component analysis (PCA)-based Neural networks algorithm. The performance of analysis was pretty good with sensitivity, specificity and accuracy found to be 100%,90% and 96.7%, respectively. The AF spectroscopy may serve as an excellent tool for the evaluation of dysplasia in colorectal clinical diagnosis.
Collapse
Affiliation(s)
- Xiang-jian Luo
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | | | | | | | | |
Collapse
|
30
|
Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. A clinical instrument for combined raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med 2011; 43:143-51. [PMID: 21384396 DOI: 10.1002/lsm.21041] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE The current standard for diagnosis of skin cancers is visual inspection followed by biopsy and histopathology. This process can be invasive, subjective, time consuming, and costly. Optical techniques, including Optical Coherence Tomography (OCT) and Raman Spectroscopy (RS), have been developed to perform non-invasive characterization of skin lesions based on either morphological or biochemical features of disease. The objective of this work is to report a clinical instrument capable of both morphological and biochemical characterization of skin cancers with RS-OCT. MATERIALS AND METHODS The portable instrument utilizes independent 785 nm RS and 1,310 nm OCT system backbones. The two modalities are integrated in a 4″ (H) × 5″(W) × 8″(L) clinical probe. The probe enables sequential acquisition of co-registered OCT and RS data sets. The axial response of the RS collection in the skin was estimated using scattering phantoms. In addition, RS-OCT data from patients with cancerous and non-cancerous lesions are reported. RESULTS The RS-OCT instrument is capable of screening areas as large as 15 mm (transverse) by 2.4 mm (in depth) at up to 8 frames/second with OCT, and identifying locations to perform RS. RS signal is collected from a 44 µm transverse spot through a depth of approximately 530 µm. RS-OCT data sets from a superficial scar and a nodular BCC are reported to demonstrate the clinical potential of the instrument. CONCLUSION The RS-OCT instrument reported here is capable of morphological and biochemical characterization of cancerous skin lesions in a clinical setting. OCT can visualize microstructural irregularities and perform an initial morphological analysis of the lesion. The images can be used to guide acquisition of biochemically specific Raman spectra. The two data sets can then be evaluated with respect to one another to take advantage of the mutually complimentary nature of RS and OCT.
Collapse
Affiliation(s)
- Chetan A Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 137235, USA.
| | | | | | | | | |
Collapse
|
31
|
Hariri LP, Liebmann ER, Marion SL, Hoyer PB, Davis JR, Brewer MA, Barton JK. Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis. Cancer Biol Ther 2011; 10:438-47. [PMID: 21108515 DOI: 10.4161/cbt.10.5.12531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Determining if an ovarian mass is benign or malignant is an ongoing clinical challenge. The development of reliable animal models provides means to evaluate new diagnostic tools to more accurately determine if an ovary has benign or malignant features. Although sex cord-stromal tumors (SCST) account for 0.1–0.5% of ovarian malignancies, they have similar appearances to more aggressive epithelial cancers and can serve as a prototype for developing better diagnostic methods for ovarian cancer. Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) spectroscopy are non-destructive optical imaging modalities. OCT provides architectural cross-sectional images at near histological resolutions and LIF provides biochemical information. We utilize combined OCT-LIF to image ovaries in post-menopausal ovarian carcinogenesis rat models, evaluating normal cyclic, acyclic and neoplastic ovaries. Eighty-three female Fisher rats were exposed to combinations of control sesame oil, 4-vinyl cyclohexene diepoxide (VCD) to induce ovarian failure,and/or 7,12-dimethylbenz[a]anthracene (DMBA) to induce carcinogenesis. Three or five months post-treatment, 162 ovaries were harvested and imaged with OCT-LIF: 40 cyclic, 105 acyclic and 17 SCST. OCT identified various follicle stages,corpora lutea (CL), CL remnants, epithelial invaginations/inclusions and allowed for characterization of both cystic and solid SCST. Signal attenuation comparisons between CL and solid SCST revealed statistically significant increases in attenuation among CL. LIF characterized spectral differences in cyclic, acyclic and neoplastic ovaries attributed to collagen, NADH/FAD and hemoglobin absorption. We present combined OCT-LIF imaging in a rat ovarian carcinogenesis model, providing preliminary criteria for normal cyclic, acyclic and SCST ovaries which support the potential of OCT-LIF for ovarian imaging.
Collapse
Affiliation(s)
- Lida P Hariri
- Department of Biomedical Engineering, The University of Arizona, College of Medicine, Tucson, AZ USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Roney CA, Xu B, Xie J, Yuan S, Wierwille J, Chen CW, Chen Y, Griffiths GL, Summers RM. Rh-I-UEA-1 polymerized liposomes target and image adenomatous polyps in the APC(Min/+) mouse using optical colonography. Mol Imaging 2011; 10:305-16. [PMID: 21521550 DOI: 10.2310/7290.2010.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
Mutated adenomatous polyposis coli (APC) genes predispose transformations to neoplasia, progressing to colorectal carcinoma. Early detection facilitates clinical management and therapy. Novel lectin-mediated polymerized targeted liposomes (Rh-I-UEA-1), with polyp specificity and incorporated imaging agents were fabricated to locate and image adenomatous polyps in APC(Min/+) mice. The biomarker α-L-fucose covalently joins the liposomal conjugated lectin Ulexeuropaeus agglutinin (UEA-1), via glycosidic linkage to the polyp mucin layer. Multispectral optical imaging (MSI) corroborated a global perspective of specific binding (rhodamine B 532 nm emission, 590-620 nm excitation) of targeted Rh-I-UEA-1 polymerized liposomes to polyps with 1.4-fold labeling efficiency. High-resolution coregistered optical coherence tomography (OCT) and fluorescence molecular imaging (FMI) reveal the spatial correlation of contrast distribution and tissue morphology. Freshly excised APC(Min) bowels were incubated with targeted liposomes (UEA-1 lectin), control liposomes (no lectin), or iohexol (Omnipaque) and imaged by the three techniques. Computed tomographic quantitative analyses did not confirm that targeted liposomes more strongly bound polyps than nontargeted liposomes or iohexol (Omnipaque) alone. OCT, with anatomic depth capabilities, along with the coregistered FMI, substantiated Rh-I-UEA-1 liposome binding along the mucinous polyp surface. UEA-1 lectin denotes α-l-fucose biomarker carbohydrate expression at the mucin glycoprotein layer; Rh-I-UEA-1 polymerized liposomes target and image adenomatous polyps in APC(Min) mice.
Collapse
Affiliation(s)
- Celeste A Roney
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences Department, Clinical Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1182, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wall RA, Bonnema GT, Barton JK. Novel focused OCT-LIF endoscope. BIOMEDICAL OPTICS EXPRESS 2011; 2:421-30. [PMID: 21412448 PMCID: PMC3047348 DOI: 10.1364/boe.2.000421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/04/2010] [Accepted: 01/28/2011] [Indexed: 05/22/2023]
Abstract
Combined optical coherence tomography (OCT) and laser-induced fluorescence (LIF) endoscopy has shown higher sensitivity and specificity for distinguishing normal tissue from adenoma when compared to either modality alone. Endoscope optical design is complicated by the large wavelength difference between the two systems. A new high-resolution endoscope 2 mm in diameter is presented that can create focused beams from the ultraviolet to near-infrared. A reflective design ball lens operates achromatically over a large wavelength range, and employs TIR at two faces and reflection at a third internal mirrored face. The 1:1 imaging system obtains theoretically diffraction-limited spots for both the OCT (1300 nm) and LIF (325 nm) channels.
Collapse
Affiliation(s)
- R. Andrew Wall
- College of Optical Sciences, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
| | - Garret T. Bonnema
- College of Optical Sciences, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
| | - Jennifer K. Barton
- College of Optical Sciences, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
- Department of Biomedical Engineering, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
| |
Collapse
|
34
|
Osiac E, Săftoiu A, Gheonea DI, Mandrila I, Angelescu R. Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract. World J Gastroenterol 2011; 17:15-20. [PMID: 21218079 PMCID: PMC3016675 DOI: 10.3748/wjg.v17.i1.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
Optical coherence tomography (OCT) is a noninvasive, high-resolution, high-potential imaging method that has recently been introduced into medical investigations. A growing number of studies have used this technique in the field of gastroenterology in order to assist classical analyses. Lately, 3D-imaging and Doppler capabilities have been developed in different configurations, which make this type of investigation more attractive. This paper reviews the principles and characteristics of OCT and Doppler-OCT in connection with analyses of the detection of normal and pathological structures, and with the possibility to investigate angiogenesis in the gastrointestinal tract.
Collapse
|
35
|
Jo JA, Applegate BE, Park J, Shrestha S, Pande P, Gimenez-Conti IB, Brandon JL. In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer. IEEE Trans Biomed Eng 2010; 57:2596-9. [PMID: 20656649 DOI: 10.1109/tbme.2010.2060485] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early detection of cancer is key to reducing morbidity and mortality. Morphological and chemical biomarkers presage the transition from normal to cancerous tissue. We have developed a noninvasive imaging system incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM) into a single optical system for the first time, in order to acquire both sets of biomarkers. OCT can provide morphological images of tissue with high resolution, while FLIM can provide biochemical tissue maps. Coregistered OCT volumes and FLIM images have been acquired simultaneously in an in vivo hamster cheek pouch model of oral cancer. The OCT images indicate morphological biomarkers for cancer including thickening of the epithelial layer and loss of the layered structure. The FLIM images indicate chemical biomarkers including increased nicotinamide adenine dinucleotide and reduced collagen emission. While both sets of biomarkers can differentiate normal and cancerous tissue, we believe their combination will enable the discrimination of benign lesions possessing some of the indicated biomarkers, e.g., scarring or inflammation.
Collapse
Affiliation(s)
- Javier A Jo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Park J, Jo JA, Shrestha S, Pande P, Wan Q, Applegate BE. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization. BIOMEDICAL OPTICS EXPRESS 2010; 1:186-200. [PMID: 21258457 PMCID: PMC3005181 DOI: 10.1364/boe.1.000186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 05/17/2023]
Abstract
Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue.
Collapse
Affiliation(s)
- Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 337 Zachary Building, College Station, TX 77843, USA
| | - Javier A. Jo
- Department of Biomedical Engineering, Texas A&M University, 337 Zachary Building, College Station, TX 77843, USA
| | - Sebina Shrestha
- Department of Biomedical Engineering, Texas A&M University, 337 Zachary Building, College Station, TX 77843, USA
| | - Paritosh Pande
- Department of Biomedical Engineering, Texas A&M University, 337 Zachary Building, College Station, TX 77843, USA
| | - Qiujie Wan
- Department of Biomedical Engineering, Texas A&M University, 337 Zachary Building, College Station, TX 77843, USA
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 337 Zachary Building, College Station, TX 77843, USA
| |
Collapse
|
37
|
Yuan S, Roney CA, Wierwille J, Chen CW, Xu B, Griffiths G, Jiang J, Ma H, Cable A, Summers RM, Chen Y. Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging. Phys Med Biol 2010; 55:191-206. [PMID: 20009192 DOI: 10.1088/0031-9155/55/1/011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There is a great deal of interest in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 x 2.4 mm(2) field-of-view. The transverse resolutions of OCT and FMI of the system are both approximately 10 microm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of the APC(min) mouse model is presented as an example of biological applications of this co-registered OCT/FMI system.
Collapse
Affiliation(s)
- Shuai Yuan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shrestha S, Park J, Pande P, Applegate BE, Jo JA. Multimodal optical imaging for simultaneous in-vivo morphological and biochemical characterization of oral epithelial cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1970-1973. [PMID: 21096785 DOI: 10.1109/iembs.2010.5627569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Early detection of cancer is key to reducing morbidity and mortality. Morphological and chemical biomarkers presage the transition from normal to cancerous tissue. We have developed a noninvasive imaging system incorporating optical coherence tomography and fluorescence lifetime imaging to acquire both sets of biomarkers. Here we report early favorable results from an animal study designed to measure the capacity of this approach for early diagnosis of oral cancer.
Collapse
Affiliation(s)
- Sebina Shrestha
- Department of Biomedical Engineering at Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|
39
|
Brenner M, Kreuter K, Ju J, Mahon S, Tseng L, Mukai D, Burney T, Guo S, Su J, Tran A, Batchinsky A, Cancio LC, Narula N, Chen Z. In vivo optical coherence tomography detection of differences in regional large airway smoke inhalation induced injury in a rabbit model. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:034001. [PMID: 18601546 PMCID: PMC2778034 DOI: 10.1117/1.2939400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Smoke inhalation injury causes acute airway injury that may result in airway compromise with significant morbidity and mortality. We investigate the ability of high resolution endobronchial optical coherence tomography (OCT) to obtain real-time images for quantitatively assessing regional differences between upper tracheal versus lower tracheal and bronchial airway injury responses to smoke inhalation in vivo using a prototype spectral domain (SLD)-OCT system we constructed, and flexible fiber optic probes. 33 New Zealand White rabbits are intubated and mechanically ventilated. The treatment groups are exposed to inhaled smoke. The OCT probe is introduced through the endotracheal tube and maintained in place for 5 to 6 h. Images of airway mucosa and submucosa are obtained at baseline and at specified intervals postexposure. Starting within less than 15 min after smoke inhalation, there is significant airway thickening in the smoke-exposed animals. This is maintained over 5 h of imaging studies. The lower tracheal airway changes, correlating closely with carboxyhemoglobin levels, are much greater than upper tracheal changes. Significant differences are seen in lower trachea and bronchi after acute smoke inhalation compared to upper trachea as measured in vivo by minimally invasive OCT. OCT is capable of quantitatively detecting regional changes in airway swelling following inhalation injury.
Collapse
Affiliation(s)
- Matthew Brenner
- University of California, Irvine, Beckman Laser Institute, Irvine, California 92612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence. OPTICAL COHERENCE TOMOGRAPHY 2008. [DOI: 10.1007/978-3-540-77550-8_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Abstract
Endoscopy in humans is a powerful method for physicians to examine the gut for inflammatory or neoplastic changes. In medical and immunological research, animal models of intestinal diseases are established key tools to investigate the mucosal immune system, colitis and cancer development in the gut. Moreover, such models represent valid systems for testing of novel drugs. In the past, mice had to be killed in order to analyze colitis activity and tumor development. The following protocol describes a method to perform high resolution endoscopic monitoring of live mice. Mice developing colitis or colonic tumors are anesthetized and examined with a miniendoscope. The endoscope is introduced via the anus and the colon is carefully insufflated with an air pump. Endoscopic pictures obtained are of high quality and allow the monitoring and grading of tumors and inflammation. In addition, colonic biopsies can be taken. This protocol can be completed within 1 h.
Collapse
Affiliation(s)
- C Becker
- Laboratory of Immunology, First Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | | | | |
Collapse
|
42
|
Tumlinson AR, Povazay B, Hariri LP, McNally J, Unterhuber A, Hermann B, Sattmann H, Drexler W, Barton JK. In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:064003. [PMID: 17212526 DOI: 10.1117/1.2399454] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Endoscopic ultrahigh-resolution optical coherence tomography (OCT) enables collection of minimally invasive cross-sectional images in vivo, which may be used to facilitate rapid development of reliable mouse models of colon disease as well as assess chemopreventive and therapeutic agents. The small physical scale of mouse colon makes light penetration less problematic than in other tissues and high resolution acutely necessary. In our 2-mm diameter endoscopic time domain OCT system, isotropic ultrahigh-resolution is supported by a center wavelength of 800 nm and full-width-at-half-maximum bandwidth of 150 nm (mode-locked titanium:sapphire laser) combined with 1:1 conjugate imaging of a small core fiber. A pair of KZFSN5/SFPL53 doublets provides excellent color correction to support wide bandwidth throughout the imaging depth. A slight deviation from normal beam exit angle suppresses collection of the strong back reflection at the exit window surface. Our system achieves axial resolution of 3.2 microm in air and 4.4-microm lateral spot diameter with 101-dB sensitivity. Microscopic features too small to see in mouse tissue with conventional resolution systems, including colonic crypts, are clearly resolved. Resolution near the cellular level is potentially capable of identifying abnormal crypt formation and dysplastic cellular organization.
Collapse
Affiliation(s)
- Alexandre R Tumlinson
- University of Arizona, Division of Biomedical Engineering, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Laser literature watch. Photomed Laser Surg 2006; 24:661-76. [PMID: 17069502 DOI: 10.1089/pho.2006.24.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|