1
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
3
|
Liu X, Lv H, Shen H. Vitamin D enhances the sensitivity of breast cancer cells to the combination therapy of photodynamic therapy and paclitaxel. Tissue Cell 2022; 77:101815. [DOI: 10.1016/j.tice.2022.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
4
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
5
|
He X, Hu N, Yang S, Yang Z, Hu L, Wang X, Wen N. Nimotuzumab shows an additive effect to inhibit cell growth of ALA-PDT treated oral cancer cells. Photodiagnosis Photodyn Ther 2022; 38:102817. [PMID: 35331955 DOI: 10.1016/j.pdpdt.2022.102817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is characterized by severe functional impairment and a poor prognosis. The epidermal growth factor receptor (EGFR) is highly expressed in OSCC and is a promising target for cancer therapy. In addition, aminolevulinic acid-induced photodynamic therapy (ALA-PDT) has produced robust clinical effects and showed some advantages over radiotherapy in oral cancer. Here, an EGFR inhibitor, nimotuzumab, was administered to 2 OSCC cell lines, CAL-27 and SCC-25, treated with ALA-PDT. Cell growth, apoptosis, and reactive oxygen species (ROS) generation were used to measure the antitumor activity of the combination therapy. The in vivo effect of nimotuzumab plus ALA-PDT was done using a mouse OSCC xenograft model (SCC-25). EGFR expression was further compared by Western blotting in different groups. We observed that nimotuzumab combined with ALA-PDT could enhance inhibition of OSCC cell growth in vitro and in vivo. We also observed an enhanced effect after combination on cell apoptosis in CAL-27 and SCC-25 cells. Furthermore, combined therapy significantly reduced the protein expression levels of EGFR in vitro. However, we observed that nimotuzumab plus ALA-PDT did not increase ROS generation substantially in OSCC cells compared to the ALA-PDT group alone. These observations indicate that nimotuzumab combined with ALA-PDT has valuable applications for OSCC treatment.
Collapse
Affiliation(s)
- Xin He
- Medical school of Chinese PLA, Beijing 1000853, China; Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Hu
- Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuo Yang
- Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Yang
- Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Lulu Hu
- Arrail Dental Group, Beijing 100081, China
| | - Xing Wang
- Foshan (Southern China) Institute for New Materials, Foshan 528220, China.
| | - Ning Wen
- Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Chiang PC, Li PT, Lee MJ, Chen CT. DNA Hypermethylation Involves in the Down-Regulation of Chloride Intracellular Channel 4 (CLIC4) Induced by Photodynamic Therapy. Biomedicines 2021; 9:biomedicines9080927. [PMID: 34440131 PMCID: PMC8394338 DOI: 10.3390/biomedicines9080927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The altered expression of chloride intracellular channel 4 (CLIC4) was reported to correlate with tumor progression. Previously, we have shown that the reduced cellular invasion induced by photodynamic therapy (PDT) is associated with suppression of CLIC4 expression in PDT-treated cells. Herein, we attempted to decipher the regulatory mechanisms involved in PDT-mediated CLIC4 suppression in A375 and MDA-MB-231 cells in vitro. We found that PDT can increase the expression and enzymatic activity of DNA methyltransferase 1 (DNMT1). Bisulfite sequencing PCR further revealed that PDT can induce hypermethylation in the CLIC4 promoter region. Silencing DNMT1 rescues the PDT-induced CLIC4 suppression and inhibits hypermethylation in its promoter. Furthermore, we found tumor suppressor p53 involves in the increased DNMT1 expression of PDT-treated cells. Finally, by comparing CLIC4 expression in lung malignant cells and normal lung fibroblasts, the extent of methylation in CLIC4 promoter was found to be inversely proportional to its expression. Taken together, our results indicate that CLIC4 suppression induced by PDT is modulated by DNMT1-mediated hypermethylation and depends on the status of p53, which provides a possible mechanistic basis for regulating CLIC4 expression in tumorigenesis.
Collapse
Affiliation(s)
- Pei-Chi Chiang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (P.-C.C.); (P.-T.L.)
| | - Pei-Tzu Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (P.-C.C.); (P.-T.L.)
| | - Ming-Jen Lee
- Department of Neurology and Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan;
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (P.-C.C.); (P.-T.L.)
- Correspondence:
| |
Collapse
|
7
|
Schupper AJ, Rao M, Mohammadi N, Baron R, Lee JYK, Acerbi F, Hadjipanayis CG. Fluorescence-Guided Surgery: A Review on Timing and Use in Brain Tumor Surgery. Front Neurol 2021; 12:682151. [PMID: 34220688 PMCID: PMC8245059 DOI: 10.3389/fneur.2021.682151] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Fluorescence-guided surgery (FGS) allows surgeons to have improved visualization of tumor tissue in the operating room, enabling maximal safe resection of malignant brain tumors. Over the past two decades, multiple fluorescent agents have been studied for FGS, including 5-aminolevulinic acid (5-ALA), fluorescein sodium, and indocyanine green (ICG). Both non-targeted and targeted fluorescent agents are currently being used in clinical practice, as well as under investigation, for glioma visualization and resection. While the efficacy of intraoperative fluorescence in studied fluorophores has been well established in the literature, the effect of timing on fluorophore administration in glioma surgery has not been as well depicted. In the past year, recent studies of 5-ALA use have shown that intraoperative fluorescence may persist beyond the previously studied window used in prior multicenter trials. Additionally, the use of fluorophores for different brain tumor types is discussed in detail, including a discussion of choosing the right fluorophore based on tumor etiology. In the following review, the authors will describe the temporal nature of the various fluorophores used in glioma surgery, what remains uncertain in FGS, and provide a guide for using fluorescence as a surgical adjunct in brain tumor surgery.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Manasa Rao
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicki Mohammadi
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rebecca Baron
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
8
|
Dias LM, Sharifi F, de Keijzer MJ, Mesquita B, Desclos E, Kochan JA, de Klerk DJ, Ernst D, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Cavaco JEB, Tedesco AC, Huang X, Pan W, Ding B, Krawczyk PM, Heger M. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112146. [PMID: 33601256 DOI: 10.1016/j.jphotobiol.2021.112146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-μM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 μM and ZnPCS4 at 2.5 μM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 μM, 0.04 μM, and 0.81 μM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 μM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Mark J de Keijzer
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniel J de Klerk
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Daniël Ernst
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Lianne R de Haan
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Albert C van Wijk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - José E B Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Xuan Huang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
9
|
Kitada M, Ohsaki Y, Yasuda S, Abe M, Yoshida N, Okazaki S, Ishibashi K. Photodynamic Diagnosis for Pleural Disseminated Lesions of Lung Cancer Using a Combination of 5-Aminolevulinic Acid and Autofluorescence Observation System. Ann Thorac Cardiovasc Surg 2020. [PMID: 32522900 DOI: 10.5761/atcs.oa.20-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE We developed a diagnostic method for pleural disseminated lesions of lung cancer using a combination of 5-aminolevulinic acid (5ALA) and autofluorescence observation system. We utilized a phenomenon in which externally ingested 5ALA is metabolized to protoporphyrin IX, a precursor of heme, which remains inside malignant cells and emits red fluorescence of approximately 630 nm. The diagnosis was made employing an observation system based on autofluorescence emitted from normal tissues that we have investigated. METHODS Between January 2017 and April 2019, we examined 82 lung cancer patients with suspected pleural invasion. We orally administered 5ALA (20 mg/m2) to the patients 4 hours before surgery, and malignant pleural lesions were thoracoscopically visualized using the autofluorescence observation system. RESULTS (1) Pleural disseminated lesions were observed in six patients. Of these lesions, two were not detected by usual white light inspection, and the use of this method enabled the diagnosis of disseminated lesions. (2) Regarding the diagnosis of lung cancer pleural invasion to estimate the risk of pleural dissemination, if limited to adenocarcinoma, the sensitivity was 93.9%; specificity, 74.3%; positive predictive value, 60.8%; and negative predictive value, 96.2%. CONCLUSION This method may facilitate the detection of minute disseminated lesions that are difficult to detect by usual inspection. In addition, the degree of pleural invasion may be diagnosed to evaluate the need for limited resection such as segmentectomy.
Collapse
Affiliation(s)
- Masahiro Kitada
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| | - Yoshinobu Ohsaki
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| | - Shunsuke Yasuda
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| | - Masahiro Abe
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| | - Nana Yoshida
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| | - Satoshi Okazaki
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| | - Kei Ishibashi
- Department of Respiratory Center, Asahikawa Medical University, Asahikwa, Hokkaido, Japan
| |
Collapse
|
10
|
Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX, Lu X, Zheng H, Lu YG. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front Oncol 2020; 10:597. [PMID: 32528867 PMCID: PMC7247862 DOI: 10.3389/fonc.2020.00597] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive malignant skin tumor and arises from melanocytes. The resistance of melanoma cells to various treatments results in rapid tumor growth and high mortality. As a local therapeutic modality, photodynamic therapy has been successfully applied for clinical treatment of skin diseases. Photodynamic therapy is a relatively new treatment method for various types of malignant tumors in humans and, compared to conventional treatment methods, has fewer side effects, and is more accurate and non-invasive. Although several in vivo and in vitro studies have shown encouraging results regarding the potential benefits of photodynamic therapy as an adjuvant treatment for melanoma, its clinical application remains limited owing to its relative inefficiency. This review article discusses the use of photodynamic therapy in melanoma treatment as well as the latest progress made in deciphering the mechanism of tolerance. Lastly, potential targets are identified that may improve photodynamic therapy against melanoma cells.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liu-Chang Tan
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Li-Wen Dong
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wan-Qi Zhang
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Xiao Shen
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan-Gang Lu
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
de Andrade LR, Tedesco AC, Primo FL, Farias GR, da Silva JR, Longo JP, de Almeida MC, de Souza PE, de Azevedo RB, Pinheiro WO, Lacava ZG. Tumor cell death in orthotopic breast cancer model by NanoALA: a novel perspective on photodynamic therapy in oncology. Nanomedicine (Lond) 2020; 15:1019-1036. [PMID: 32264766 DOI: 10.2217/nnm-2019-0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test, biocompatibility and treatment efficacy, and long-term effect of NanoALA-PDT on tumor progression were performed. Results: The nanoformulation favored the prodrug uptake by tumor cells in a shorter time (1.5 h). As a result, the adverse effects were negligible and the response rates for primary mammary tumor control were significantly improved. Tumor progression was slower after NanoALA-PDT treatment, providing longer survival. Conclusion: NanoALA is a good proactive drug candidate for PDT against cancer potentially applied as adjuvant/neoadjuvant intervention strategy for breast cancer.
Collapse
Affiliation(s)
- Laise R de Andrade
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology & Tissue Engineering - Photobiology & Photomedicine Research Group, Faculty of Philosophy, Sciences & Letters of Ribeirão Preto, University of São Paulo, 14010-100, Ribeirão Preto, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, SP, Brazil
| | - Gabriel R Farias
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Jaqueline R da Silva
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - João Pf Longo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Marcos C de Almeida
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Paulo En de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, 70919-970, Brasília, DF, Brazil
| | - Ricardo B de Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Willie O Pinheiro
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil.,Post-Graduation Program in Sciences & Technologies in Health, Faculty of Ceilândia, University of Brasília, 72220-275, Brasília, DF, Brazil
| | - Zulmira Gm Lacava
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
12
|
Nakayama T, Kobayashi T, Shimpei O, Fukuhara H, Namikawa T, Inoue K, Hanazaki K, Takahashi K, Nakajima M, Tanaka T, Ogura SI. Photoirradiation after aminolevulinic acid treatment suppresses cancer cell proliferation through the HO-1/p21 pathway. Photodiagnosis Photodyn Ther 2019; 28:10-17. [PMID: 31404677 DOI: 10.1016/j.pdpdt.2019.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) and diagnosis (PDD) using 5-aminolevulinic acid (ALA) to control the production of an intracellular photosensitizer, protoporphyrin IX (PpIX), are in common clinical use. Although various studies have been published regarding cell death analysis after photoirradiation by ALA-PDT, the changes in gene expressions induced by it are yet unclear. Here, we focused on studying gene expression and cell proliferation changes in cancer cells that survive photoirradiation. METHODS HEK293 human embryonic kidney cells, MKN45 human gastric cells, and PC-3 human prostate cancer cells were selected for this research. Cell viability was measured using trypan blue and MTT assays. ALA-PDT experiments were performed using a calibrated LED irradiation module. Furthermore, mRNA and protein gene expression analysis were performed using our previously reported methods. RESULTS mRNAs of PAI-1, HO-1, and p21 were upregulated after photoirradiation of HEK293, which was suppressed by N-acetyl-L-cysteine, a reactive oxygen species (ROS) scavenger. Primer array results in PC-3 cells and p21 and Ki-67 expression results in both PC-3 and MKN45 cells suggested that photoirradiation suppressed cell proliferation. Cell numbers post-photoirradiation revealed that the proliferation of surviving cells was suppressed in PC-3 and MKN45 cells. CONCLUSION ALA-PDD or ALA-PDT can result in rapid ROS-induced cell death and may decrease long-term recurrence rates through several pathways including the HO-1/p21 pathway.
Collapse
Affiliation(s)
- Taku Nakayama
- Department of Bioengineering, School of Life Science and Technology, Tokyo Institute of Technology, Japan; Center for Photodynamic Medicine, Kochi Medical School, Japan
| | - Tatsuya Kobayashi
- Department of Bioengineering, School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Otsuka Shimpei
- Department of Bioengineering, School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi Medical School, Japan; Department of Urology, Kochi Medical School, Japan
| | - Tsutomu Namikawa
- Center for Photodynamic Medicine, Kochi Medical School, Japan; Department of Surgery I, Kochi Medical School, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi Medical School, Japan; Department of Urology, Kochi Medical School, Japan
| | - Kazuhiro Hanazaki
- Center for Photodynamic Medicine, Kochi Medical School, Japan; Department of Surgery I, Kochi Medical School, Japan
| | | | | | | | - Shun-Ichiro Ogura
- Department of Bioengineering, School of Life Science and Technology, Tokyo Institute of Technology, Japan; Center for Photodynamic Medicine, Kochi Medical School, Japan.
| |
Collapse
|
13
|
Huang L, Lin H, Chen Q, Yu L, Bai D. MPPa-PDT suppresses breast tumor migration/invasion by inhibiting Akt-NF-κB-dependent MMP-9 expression via ROS. BMC Cancer 2019; 19:1159. [PMID: 31783821 PMCID: PMC6884812 DOI: 10.1186/s12885-019-6374-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is one of the most commonly diagnosed cancers in women, with high morbidity and mortality. Tumor metastasis is implicated in most breast cancer deaths; thus, inhibiting metastasis may provide a therapeutic direction for breast cancer. In the present study, pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) was used to inhibit metastasis in MCF-7 breast cancer cells. Methods Uptake of MPPa was detected by fluorescence microscopy. Cell viability was evaluated by the Cell Counting Kit-8 (CCK-8). ROS generation was detected by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). The migration of cells was assessed by wound healing assay, and invasion ability was assessed by Matrigel invasion assay. Levels of MMP2 and MMP9 were measured by PCR. Akt, phospho-Akt (Ser473), phospho-NF-κB p65 (Ser536) and NF-κB p65 were measured by western blotting. The F-actin cytoskeleton was observed by immunofluorescence. Lung tissue was visualized by hematoxylin and eosin staining. Results Following MPPa-PDT, migration and invasion were decreased in the MCF-7 cells. MPPa-PDT downregulated the expression of MMP2 and MMP9, which are responsible for the initiation of metastasis. MPPa-PDT reduced the phosphorylation of Akt and NF-κB. MPPa-PDT also reduced the expression of F-actin in cytoskeleton in MCF-7 cells. These effects were blocked by the reactive oxygen species scavenger NAC or the Akt activator SC79, while the PI3K inhibitor LY294002 or the Akt inhibitor triciribine enhanced these effects. Moreover, MPPa-PDT inhibited tumor metastasis and destroyed F-actin in vivo. Conclusion Taken together, these results demonstrate that MPPa-PDT inhibits the metastasis of MCF-7 cells both in vitro and in vivo and may be involved in the Akt/NF-κB-dependent MMP-9 signaling pathway. Thus, MPPa-PDT may be a promising treatment to inhibit metastasis.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haidan Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
14
|
Lucena SR, Zamarrón A, Carrasco E, Marigil MA, Mascaraque M, Fernández-Guarino M, Gilaberte Y, González S, Juarranz A. Characterisation of resistance mechanisms developed by basal cell carcinoma cells in response to repeated cycles of Photodynamic Therapy. Sci Rep 2019; 9:4835. [PMID: 30886381 PMCID: PMC6423284 DOI: 10.1038/s41598-019-41313-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Photodynamic Therapy (PDT) with methyl-aminolevulinate acid (MAL-PDT) is being used for the treatment of Basal cell carcinoma (BCC), but recurrences have been reported. In this work, we have evaluated resistance mechanisms to MAL-PDT developed by three BCC cell lines (ASZ, BSZ and CSZ), derived from mice on a ptch+/- background and with or without p53 expression, subjected to 10 cycles of PDT (10thG). The resistant populations showed mesenchymal-like structure and diminished proliferative capacity and size compared to the parental (P) cells. The resistance was dependent on the production of the endogenous photosensitiser protoporphyrin IX in the CSZ cell line and on its cellular localisation in ASZ and BSZ cells. Moreover, resistant cells expressing the p53 gene presented lower proliferation rate and increased expression levels of N-cadherin and Gsk3β (a component of the Wnt/β-catenin pathway) than P cells. In contrast, 10thG cells lacking the p53 gene showed lower levels of expression of Gsk3β in the cytoplasm and of E-cadherin and β-catenin in the membrane. In addition, resistant cells presented higher tumorigenic ability in immunosuppressed mice. Altogether, these results shed light on resistance mechanisms of BCC to PDT and may help to improve the use of this therapeutic approach.
Collapse
Affiliation(s)
- Silvia Rocio Lucena
- Biology Department, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | - Alicia Zamarrón
- Biology Department, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | - Elisa Carrasco
- Molecular Biology Department, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | | | - Marta Mascaraque
- Biology Department, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | | | | | - Salvador González
- Medicine and Medical Specialties Department, Alcalá de Henares University, Madrid, Spain
| | - Angeles Juarranz
- Biology Department, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain.
| |
Collapse
|
15
|
Schwake M, Nemes A, Dondrop J, Schroeteler J, Schipmann S, Senner V, Stummer W, Ewelt C. In-Vitro Use of 5-ALA for Photodynamic Therapy in Pediatric Brain Tumors. Neurosurgery 2018; 83:1328-1337. [PMID: 29538709 DOI: 10.1093/neuros/nyy054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Light irradiation (635 nm) of cells containing protoporphyrin IX (PPIX) after 5- aminolevulinic acid (5-ALA) pretreatment causes cell death via different pathways including apoptosis and necrosis, as previously demonstrated for malignant glioma cells. OBJECTIVE To elucidate whether various malignant pediatric brain tumors, which have been shown to accumulate PPIX, would also be susceptible to photodynamic therapy (PDT). METHODS Medulloblastoma (DAOY, UW228), pNET (PFSK-1), and rhabdoid tumor (BT16) cell lines were incubated with 5-ALA in variable concentrations for 4 h. Consequently, cells were irradiated by 635 nm diode laser light. After 12 h, cell viability was measured by WST-1 testing and these results were compared to control cells incubated with 5-ALA without irradiation or irradiation only without prior incubation with 5-ALA. RESULTS We demonstrated significant cell death in malignant pediatric tumor cells after incubation with 5-ALA and laser irradiation in comparison to control groups. In all cell lines, we noticed significant cell death above a 5-ALA concentration of 50 μg/ml (P < .05). Neither 5-ALA incubation alone nor irradiation alone caused cell death. DAOY and PFSK cell lines were more susceptible than UW228 and BT16 cells. CONCLUSION We conclude that PDT causes cell death with higher PPIX concentrations after exposure to 5-ALA in vitro in accordance to similar studies with glioma cells. This indicates that PDT might be feasible for eliminating brain tumor cells in malignant pediatric brain tumors. Additionally, we noticed a dependency between fluorescence intensity and death rates.
Collapse
Affiliation(s)
- Michael Schwake
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Andrei Nemes
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Jana Dondrop
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | | | | | - Volker Senner
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
16
|
Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience 2018; 5:75-87. [PMID: 29854876 PMCID: PMC5978437 DOI: 10.18632/oncoscience.410] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for head and neck squamous cell carcinoma (HNSCC) patients which induces local inflammation and alters tumor cell morphology. We show that exosomes in plasma of HNSCC patients undergoing PDT reprogram tumor cells towards an epithelial phenotype. Nine HNSCC patients were treated with PDT and plasma was collected prior to and at three timepoints after therapy. Exosome levels of E-Cadherin, N-Cadherin and TGF-β1 were tested by flow cytometry. Exosomes were co-incubated with cancer cells, and changes in expression of EMT markers were evaluated as were proliferation, migration, chemotaxis and invasiveness of tumor cells. Exosomes harvested pre- and 24h after PDT were enriched in N-Cadherin and TGF-β1. They induced the mesenchymal phenotype and up-regulated Vimentin and transcripts for Snail, Twist, α-SMA, Slug and ZEB1 in epithelial tumor cells. These exosomes also enhanced tumor proliferation, migration and invasion. In contrast, exosomes obtained on day 7 or 4-6 weeks after PDT carried E-cadherin, restored epithelial morphology and EpCAM expression in tumor cells, down-regulated expression of mesenchymal genes and inhibited proliferation, migration and invasion. The PDT-mediated conversion from the mesenchymal to epithelial tumor phenotype was mediated by exosomes, which also served as non-invasive biomarkers of this transition.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Saigopalakrishna S Yerneni
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | | | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Cai J, Zheng Q, Huang H, Li B. 5-aminolevulinic acid mediated photodynamic therapy inhibits survival activity and promotes apoptosis of A375 and A431 cells. Photodiagnosis Photodyn Ther 2018; 21:257-262. [PMID: 29309850 DOI: 10.1016/j.pdpdt.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the effects of 5-aminolaevulinic acid mediated photodynamic therapy (ALA-PDT) on the survival activity and apoptosis of human melanoma cell line A375 and non-melanoma skin carcinoma cell line A431 cells. The mechanism for cellular apoptosis was explored. METHODS The cell survival activity was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and the proportion of apoptotic cells was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression levels of Bcl-2, Bax, caspase-3, caspase-8 and caspase-9 protein were assessed by western blot. The subcellular localization of cytochrome c was comparatively investigated by immunohistochemistry between pre-ALA-PDT and post- ALA-PDT. RESULTS ALA-PDT significantly inhibited the survival activity of A375 cells and A431 cells in a dose- and time-dependent manner. The optimum inhibition efficiencies for A375 cells and A431 cells were obtained at 0.6 mM ALA at 4 h and 8 h after ALA-PDT, respectively. The phenomena of apoptosis were observed in ALA-PDT treated cells by TUNEL assay. The apoptotic rates of A375 cells and A431 cells were 90.0% and 61.5% at 6 h after ALA-PDT, respectively. Apoptosis induced by ALA-PDT involved in down-regulation of Bcl-2 protein, up-regulation of Bax protein and cleaved-PARP protein. It was observed that the expression of cleaved- caspase-3, caspase-8 and caspase-9 proteins in A375 cells and A431 cells gradually increased in 2 h and 4 h but decreased at 4-6 h and 6-8 h after ALA-PDT, respectively. In apoptosis cells immunohistochemical localization show that cytochrome C diffused from the mitochondria into the cytosol. CONCLUSION ALA-PDT could significantly inhibit the survival activity of A375 and A431 cells. The apoptosis induced by ALA-PDT in A375 and A431 cells was related to the caspase-dependent death-receptor pathway and Cytochrome c-dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Jingjing Cai
- Central Laboratory, The Union Hospital of Fujian Medical University, Fuzhou 350001, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, China
| | - Qiuping Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Huifang Huang
- Central Laboratory, The Union Hospital of Fujian Medical University, Fuzhou 350001, China.
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
18
|
Kitada M, Ohsaki Y, Yasuda S, Abe M, Takahashi N, Okazaki S, Ishibashi K, Hayashi S. Photodynamic diagnosis of visceral pleural invasion of lung cancer with a combination of 5-aminolevulinic acid and autofluorescence observation systems. Photodiagnosis Photodyn Ther 2017; 20:10-15. [PMID: 28842241 DOI: 10.1016/j.pdpdt.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Visceral pleural invasion (PL) is a prognostic factor in lung cancer. In the lung, lymph flows along the pleura, in addition to the flow toward the pulmonary hilum just as the pulmonary arteries and veins run toward it. Even with the same tumor diameter, a PL1 or higher level of pleural invasion is indicative of a more advanced disease stage. Final diagnosis based on the PL level is made by pathological examination of excised specimens. However, if an intraoperative diagnosis can be established, proper selection of the surgical procedure can be made, and unnecessary surgeries for disseminated lesions can be avoided. We investigated optical diagnostic techniques for identifying the presence or absence of visceral pleural invasion in lung cancer by capitalizing on the phenomenon of 5-amino-levulinic acid (5-ALA) being metabolized to a photosensitizing substance or protoporphyrin IX within malignant tumors, generating red luminescence in response to excitation light. METHOD This study included 38 patients with primary lung cancer who underwent surgery. They received 5-ALA (20mg/kg) orally 4h before surgery and then we assessed the presence or absence of pleural invasion using an autofluorescence observation system. At visceral pleural invasion sites, we were able to confirm tumor sites visualized in red with a clear border in contrast to the green autofluorescence generated in normal tissues. RESULT Red luminescence could be confirmed in 100% of PL1-PL3 patients (14/14) and 41.6% of PL0 patients (10/24) with primary lung cancer. PL0 patients in whom visualization was possible were preoperatively diagnosed as having PL1 and many of them showed vascular channel invasion. The sensitivity, specificity, positive predictive value, and negative predictive value of this diagnostic technique were 100%, 58.0%, 63.1%, and 100%, respectively. Red fluorescence emission was observed significantly more often in pleural invasion cases. CONCLUSION Accurate intraoperative diagnosis for visceral pleural invasion in lung cancer may contribute to determining the indications for limited operations such as segmental resection. In addition, accurate local diagnosis has the possibility of being applicable to photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | - Masahiro Abe
- Respiratory Center, Asahikawa medical University, Japan.
| | - Nana Takahashi
- Respiratory Center, Asahikawa medical University, Japan.
| | | | - Kei Ishibashi
- Respiratory Center, Asahikawa medical University, Japan.
| | | |
Collapse
|
19
|
Zhang X, Cai L, He J, Li X, Li L, Chen X, Lan P. Influence and mechanism of 5-aminolevulinic acid-photodynamic therapy on the metastasis of esophageal carcinoma. Photodiagnosis Photodyn Ther 2017; 20:78-85. [PMID: 28811223 DOI: 10.1016/j.pdpdt.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/19/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUD Photodynamic therapy (PDT) for the treatment of esophageal cancer was more and more popularly used since it was approved for the treatment of advanced esophageal cancer in 1996. It has been reported to influence the tumor growth and metastasis via a variety of signaling pathways, but its mechanism remains to be further studied. This research studied the effects of ALA-PDT on esophageal carcinoma in vitro and in vivo, discovering its molecular regulating mechanism and the way to enhence the PDT effect. METHODS Eca-109 cells were incubated with a medium containing EGFR tyrphostin AG1478 or PI3K inhibitor LY294002, then with ALA, and the cells were irradiated with the laser 6h later. The cell viability was measured with MTT assay, and the migration ability was detected by transwell experiments 24h post-ALA-PDT. The gene and protein expression on EGFR/PI3K/AKT signaling pathway was analyzed by realtime PCR and Western blotting respectively. Then, RFP-Eca-109 burdened nude mice model was constructed, and were treated with ALA-PDT when the tumor volume reached 150-350mm3. The gene and protein expression were analyzed 24h and 50days post-ALA-PDT. RESULTS Our study showed that ALA-PDT respectively combined with AG1478, LY294002 could synergistically reduce the growth and migration ability of the Eca-109 cells in vitro and significantly down-regulate the protein expression of EGFR/PI3K and PI3K/AKT, meanwhile, significantly down-regulate the gene expression of EGFR when combining with AG1478. Forthermore, ALA-PDT could significantly decrease the tumor growth and metastasis and down-regulate the gene expression of EGFR and the protein expression of EGFR and PI3K in the tumor of mice. CONCLUSION This study revealed a molecular mechanism of ALA-PDT and developed a new modality application of therapy, by combining ALA-PDT with small molecular inhibitors, for better effect in the clinical practice of esophageal carcinoma.
Collapse
Affiliation(s)
- Xiaona Zhang
- The sixth affiliated hospital of SUN YAT-SEN University, Guangzhou, China
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingcai He
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Li
- The sixth affiliated hospital of SUN YAT-SEN University, Guangzhou, China
| | - Libo Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaohua Chen
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, China.
| | - Ping Lan
- The sixth affiliated hospital of SUN YAT-SEN University, Guangzhou, China.
| |
Collapse
|
20
|
Horne TK, Cronjé MJ. Novel carbohydrate-substituted metallo-porphyrazine comparison for cancer tissue-type specificity during PDT. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:412-422. [PMID: 28662468 DOI: 10.1016/j.jphotobiol.2017.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022]
Abstract
A longstanding obstacle to cancer eradication centers on the heterogeneous nature of the tissue that manifests it. Variations between cancer cell resistance profiles often result in a survival percentage following classic therapeutics. As an alternative, photodynamic therapys' (PDT) unique non-specific cell damage mechanism and high degree of application control enables it to potentially deliver an efficient treatment regime to a broad range of heterogeneous tissue types thereby overcoming individual resistance profiles. This study follows on from previous design, characterization and solubility analyses of three novel carbohydrate-ligated zinc-porphyrazine (Zn(II)Pz) derivatives. Here we report on their PDT application potential in the treatment of five common cancer tissue types in vitro. Following analyses of metabolic homeostasis, toxicity and cell death induction, overall Zn(II)Pz-PDT proved comparably efficient between all cancer tissue populations. Differential localization patterns of Zn(II)Pz derivatives between cell types did not appear to influence the overall PDT effect. All cell types exhibited significant disruptions to mitochondrial activity and associated ATP production levels. Toxicity and chromatin structure profiles revealed indiscernible patterns of damage between Zn(II)Pz derivatives and cell type. The subtle differences observed between individual Zn(II)Pz derivatives is most likely due to a combination of carbohydrate moiety characteristics on energy transfer processes and associated dosage optimization requirements per tissue type. Collectively, this indicates that resistance profiles are negated to a significant extent by Zn(II)Pz-PDT making these derivatives attractive candidates for PDT applications across multiple tissue types and subtypes.
Collapse
Affiliation(s)
- Tamarisk K Horne
- Dept of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Marianne J Cronjé
- Dept of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa.
| |
Collapse
|
21
|
Kulbacka J, Pucek A, Kotulska M, Dubińska-Magiera M, Rossowska J, Rols MP, Wilk KA. Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer. Bioelectrochemistry 2016; 110:19-31. [DOI: 10.1016/j.bioelechem.2016.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 01/27/2023]
|
22
|
Grossman CE, Carter SL, Czupryna J, Wang L, Putt ME, Busch TM. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. Int J Mol Sci 2016; 17:ijms17010101. [PMID: 26784170 PMCID: PMC4730343 DOI: 10.3390/ijms17010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.
Collapse
Affiliation(s)
- Craig E Grossman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shirron L Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Julie Czupryna
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Le Wang
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mary E Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Li PT, Tsai YJ, Lee MJ, Chen CT. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment. Int J Mol Sci 2015; 16:23994-4010. [PMID: 26473836 PMCID: PMC4632734 DOI: 10.3390/ijms161023994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ⁰ cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation.
Collapse
Affiliation(s)
- Pei-Tzu Li
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Jane Tsai
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei 100, Taiwan.
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
24
|
Vera RE, Lamberti MJ, Rivarola VA, Rumie Vittar NB. Developing strategies to predict photodynamic therapy outcome: the role of melanoma microenvironment. Tumour Biol 2015; 36:9127-36. [PMID: 26419592 DOI: 10.1007/s13277-015-4059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Melanoma is among the most aggressive and treatment-resistant human skin cancer. Photodynamic therapy (PDT), a minimally invasive therapeutic modality, is a promising approach to treating melanoma. It combines a non-toxic photoactivatable drug called photosensitizer with harmless visible light to generate reactive oxygen species which mediate the antitumor effects. The aim of this review was to compile the available data about PDT on melanoma. Our comparative analysis revealed a disconnection between several hypotheses generated by in vitro therapeutic studies and in vivo and clinical assays. This fact led us to highlight new preclinical experimental platforms that mimic the complexity of tumor biology. The tumor and its stromal microenvironment have a dynamic and reciprocal interaction that plays a critical role in tumor resistance, and these interactions can be exploited for novel therapeutic targets. In this sense, we review two strategies used by photodynamic researchers: (a) developing 3D culture systems which mimic tumor architecture and (b) heterotypic cultures that resemble tumor microenvironment to favor therapeutic regimen design. After this comprehensive review of the literature, we suggest that new complementary preclinical models are required to better optimize the clinical outcome of PDT on skin melanoma.
Collapse
Affiliation(s)
- Renzo Emanuel Vera
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina
| | - María Julia Lamberti
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina
| | - Viviana Alicia Rivarola
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina
| | - Natalia Belén Rumie Vittar
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
25
|
Tsai YJ, Tsai T, Peng PC, Li PT, Chen CT. Histone acetyltransferase p300 is induced by p38MAPK after photodynamic therapy: the therapeutic response is increased by the p300HAT inhibitor anacardic acid. Free Radic Biol Med 2015; 86:118-32. [PMID: 26001729 DOI: 10.1016/j.freeradbiomed.2015.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Oxidative stress mediated by photodynamic therapy (PDT) mediates the tumoricidal effect, but has also been shown to induce the expression of prosurvival molecules, such as cyclooxygenase-2 (COX-2), which is involved in tumor recurrences after PDT. However, the molecular mechanism is still not fully understood. In this study, we found that activated p38MAPK could significantly up-regulate the activity and expression of histone acetyltransferase p300 (p300HAT) in A375 and C26 cells treated with ALA-and chlorin e6 (Ce6)-mediated photodynamic treatment. A colony-formation assay showed that PDT-induced cytotoxicity was dramatically elevated in the presence of the p300HAT inhibitor anacardic acid (AA). Further studies showed that increased p300HAT acetylates histone H3 and NF-κB p65 subunit to up-regulate the COX-2 expression, which was reduced by AA or p300HAT shRNA. Using chromatin immunoprecipitation analysis, we found that the augmented acetylation of histone H3 and NF-κB increases their binding to the COX-2 promoter region. These in vitro findings were further verified in mice bearing murine C26 and human A375 tumors treated with liposomal Ce6 mediated PDT. Meanwhile, the combination of PDT and AA resulted in greater tumor regression in BALB/c mice bearing C26 tumors, compared with PDT only or combined with COX-2 inhibitor. Finally, we demonstrated that suppression of the PDT-induced p300HAT activity also resulted in the decreased expression of survivin, restoring caspase-3 activity and sensitizing PDT-treated cells from autophagy to apoptosis due to the Becline-1 cleavage. This study demonstrates for the first time the molecular mechanisms involved in histone modification induced by PDT-mediated oxidative stress, suggesting that HAT inhibitors may provide a novel therapeutic approach for improving PDT response.
Collapse
Affiliation(s)
- Yi-Jane Tsai
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tsuimin Tsai
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Chun Peng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Tzu Li
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
26
|
Ewelt C, Nemes A, Senner V, Wölfer J, Brokinkel B, Stummer W, Holling M. Fluorescence in neurosurgery: Its diagnostic and therapeutic use. Review of the literature. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:302-309. [PMID: 26000742 DOI: 10.1016/j.jphotobiol.2015.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
Fluorescent agents, e.g. 5-aminolevulinic acid (5-ALA), fluorescein and indocyanine green (ICG) are in common use in neurosurgery for tumor resection and neurovascular surgery. Protoporphyrine IX (PPIX) as major metabolite of 5-ALA is a strong fluorescent substance accumulated within malignant glioma tissue and a very sensitive and specific tool for visualizing high grade glioma tissue during surgery. Furthermore, 5-ALA or rather PPIX also offers an intratumoral therapeutic option stimulated by laser light in specific wavelength. Fluorescein was demonstrated to show similar fluorescent reactions in neurosurgery, but is controversial in its use, especially in high grade tumor surgery. Intraoperative angiography during resection of arterio-venous malformations, extracranial-intracranial-bypass or aneurysm surgery is supported by ICG fluorescence. Generally ICG will provide beneficial information for both, exposure of the pathology and illustration of healthy structures. This manuscript shows an overview of the literature focussing fluorescence in neurosurgery.
Collapse
Affiliation(s)
- Christian Ewelt
- Department of Neurosurgery, University Hospital, Münster, Germany.
| | - Andrei Nemes
- Institute of Neuropathology, University Hospital, Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital, Münster, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital, Münster, Germany
| | | | - Walter Stummer
- Department of Neurosurgery, University Hospital, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital, Münster, Germany
| |
Collapse
|
27
|
Benito-Miguel M, Blanco MD, Gómez C. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ALA-photodynamic therapy on HeLa cell line. Photodiagnosis Photodyn Ther 2015; 12:466-75. [PMID: 25976508 DOI: 10.1016/j.pdpdt.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Natural polymers are used as components of nanoparticles (NPs) for drug delivery, as they provide targeted, sustained release and biodegradability. The purpose of this study was to increase the efficacy of the photodynamic therapy (PDT) by the combination of 5-aminolevulinic acid (ALA) with 5-fluorouracil-loaded-chitosan-nanoparticles (5-Fu-CNPs). METHODS Nanoparticles based on chitosan (CNPs) were synthesized by the ionic crosslinking method via the TPP addition. 5-Fluorouracil (5-Fu), a first-line anticancer drug, was loaded into these 5Fu-CNPs, and they were assayed as controlled delivery formulation. HeLa cells were incubated in the presence of 5Fu-CNPs for 24h, next ALA was added to the culture medium and 4h later, to complete the PDT, light irradiation took place. Analysis of cell viability, reactive oxygen species (ROS) production, observation of the apoptosis by fluorescence microscopy followed by analysis of caspase-3 activity were carried out. RESULTS Spherical 5Fu-CNPs with a mean diameter of 324±43nm, were successfully synthesized and characterized by TEM and DLS. 5-Fu incorporation was achieved successfully (12.3μg 5Fu/mg CNP) and the maximum 5-Fu release took place at 2h. The combined administration of 5Fu-CNPs and PDT mediated by ALA (ALA-PDT) led to an improved efficacy of the antineoplastic treatment by generation of great cytotoxicity inducted through an increased ROS production. HeLa cells were destroyed by apoptosis through activation of caspase pathway. CONCLUSIONS This study proves that combination therapy (photodynamic "ALA"+chemical "5-Fu"+immunoadjuvant "chitosan") may be an effective approach for the treatment of cancer.
Collapse
Affiliation(s)
- Marta Benito-Miguel
- Centro Universitario San Rafael-Nebrija, Madrid, Spain; Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, UCM, Madrid, Spain
| | - M Dolores Blanco
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, UCM, Madrid, Spain
| | - Clara Gómez
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física Rocasolano, CSIC, Madrid, Spain.
| |
Collapse
|
28
|
Di Venosa G, Perotti C, Batlle A, Casas A. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem Photobiol Sci 2015; 14:1451-64. [PMID: 25832889 DOI: 10.1039/c4pp00445k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.
Collapse
Affiliation(s)
- Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP). CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, CP1120AAF, Argentina.
| | | | | | | |
Collapse
|
29
|
Kitada M, Ohsaki Y, Matsuda Y, Hayashi S, Ishibashi K. Photodynamic diagnosis of pleural malignant lesions with a combination of 5-aminolevulinic acid and intrinsic fluorescence observation systems. BMC Cancer 2015; 15:174. [PMID: 25886532 PMCID: PMC4374504 DOI: 10.1186/s12885-015-1194-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have developed a new diagnostic method using the photosensitizer 5-aminolevulinic acid (5ALA) for diagnosing intrathoracic malignant lesions. When ingested exogenously, 5ALA is metabolized to a heme precursor, protoporphyrin IX, which stays in malignant cells and emits red to pink luminescence of about 630 nm. METHODS We enrolled 40 patients who underwent respiratory surgery and consented to participate in this study. Twenty-eight patients had primary lung cancer, 8 metastatic lung tumors, 2 malignant pleural tumors, and 2 benign tumors. Localization of malignant lesions was attempted by observing such lesions with an autofluorescence imaging system and by comparing the color tone of the autofluorescence between malignant lesions and normal tissues after oral administration of 5ALA. Malignant lesions on the pleural surface emitted pink autofluorescence in contrast to the green autofluorescence of the surrounding normal tissues. RESULTS When 28 patients with primary lung cancer were examined according to the degree of pleural infiltration (pl), red fluorescence was confirmed in 10 of 10 patients (100%) with p11-p13 and 5 of 18 patients (27.7%) with p10. The latter 5 patients had been diagnosed with PL1 preoperatively or intraoperatively. CONCLUSION This system achieved accurate localization of malignant lesions, suggesting that it may also be applicable to photodynamic therapy.
Collapse
Affiliation(s)
- Masahiro Kitada
- Department of Respiratory Center, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yoshinobu Ohsaki
- Department of Respiratory Center, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yoshinari Matsuda
- Department of Respiratory Center, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Satoshi Hayashi
- Department of Respiratory Center, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Kei Ishibashi
- Department of Respiratory Center, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| |
Collapse
|
30
|
Li PT, Ke ES, Chiang PC, Tsai T. ALA- or Ce6-PDT induced phenotypic change and suppressed migration in surviving cancer cells. J Dent Sci 2015. [DOI: 10.1016/j.jds.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Della Pietra E, Simonella F, Bonavida B, Xodo LE, Rapozzi V. Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide 2015; 45:43-53. [PMID: 25700664 DOI: 10.1016/j.niox.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO) by up-regulating nitric oxide synthases (NOS). Since non-optimal PDT often causes tumor recurrence, understanding the molecular pathways involved in the photoprocess is a challenging task for scientists. The present study has examined the response of the PC3 human metastatic prostate cancer cell line following repeated low-dose pheophorbide a treatments, mimicking non-optimal PDT treatment. The analysis was focused on the NF-kB/YY1/RKIP circuitry as it is (i) dysregulated in cancer cells, (ii) modulated by NO and (iii) correlated with the epithelial to mesenchymal transition (EMT). We hypothesized that a repeated treatment of non-optimal PDT induces low levels of NO that lead to cell growth and EMT via the regulation of the above circuitry. The expressions of gene products involved in the circuitry and in EMT were analyzed by western blot. The findings demonstrate the cytoprotective role of NO following non-optimal PDT treatments that was corroborated by the use of L-NAME, an inhibitor of NOS.
Collapse
Affiliation(s)
- Emilia Della Pietra
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Francesca Simonella
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Luigi Emilio Xodo
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Valentina Rapozzi
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
32
|
Yang Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H. Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. LAB ON A CHIP 2015; 15:735-744. [PMID: 25428803 DOI: 10.1039/c4lc01065e] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recognition of the limitations of monolayer cell cultures and resource-intensive animal studies, a microfluidic culture system was developed for creation of physiologically relevant three-dimensional (3D) tissues. In this study, an in vitro 3D breast cancer tissue model was established in a microfluidic system with human breast cancer cells (MCF-7) and primary adipose-derived stromal cells (ASCs). It was evaluated for utility in determining the efficiency of photodynamic therapy (PDT) with therapeutic agents (i.e. photosensitizer and gold nanoparticles) under various irradiation conditions. We demonstrated, for the first time, the potential use of a microfluidic-based in vitro 3D breast cancer model for effective evaluation of PDT, with the capability of controlling 3D microenvironments for breast cancer tissue formation, real-time monitoring of tissue progression, implementing a circulation-like dynamic medium flow and drug supplements, and investigating the relation between light penetration and tissue depth in PDT.
Collapse
Affiliation(s)
- Yamin Yang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zamarrón A, Lucena SR, Salazar N, Sanz-Rodríguez F, Jaén P, Gilaberte Y, González S, Juarranz Á. Isolation and characterization of PDT-resistant cancer cells. Photochem Photobiol Sci 2015; 14:1378-89. [DOI: 10.1039/c4pp00448e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Even though the efficacy of photodynamic therapy (PDT) for treating premalignant and malignant lesions has been demonstrated, resistant tumor cells to this therapy occasionally appear.
Collapse
Affiliation(s)
- Alicia Zamarrón
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | - Silvia R. Lucena
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | - Nerea Salazar
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | | | - Pedro Jaén
- Department of Dermatology
- Hospital Ramón y Cajal
- Madrid
- Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)
| | - Yolanda Gilaberte
- Department of Dermatology
- Hospital San Jorge
- Huesca
- Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)
| | - Salvador González
- Department of Dermatology
- Hospital Ramón y Cajal
- Madrid
- Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)
| | - Ángeles Juarranz
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| |
Collapse
|
34
|
Wei XQ, Ma HQ, Liu AH, Zhang YZ. Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pac J Cancer Prev 2014; 14:3023-8. [PMID: 23803073 DOI: 10.7314/apjcp.2013.14.5.3023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Photodynamic therapy (PDT ) is a promising modality for the treatment of various tumors. In order to assist in optimizing treatment, we applied 5-ALA/PDT in combination with low-dose cisplatin to evaluate cytotoxicity in Hela cells. METHODS Antiproliferative effects of 5-ALA/PDT and cisplatin, alone and in combination, were assessed using MTT assay. To examine levels of apoptosis, Hela cells treated with 5-ALA/PDT, and combination treatment were assessed with Annexin-V/PI by flow cytometry. To investigate the molecular mechanisms underlying alterations in cell proliferation and apoptosis, Western blot analysis was conducted to determine the expression of p53, p21, Bax and Bcl-2 proteins. RESULTS MTT assays indicated that combination treatment obviously decreased the viability of Hela cells compared to individual drug treatment. In addition, it was confirmed that exposure of Hela cells to 5-ALA/PDT in combination with low-dose cisplatin resulted in more apoptosis in vitro. Synergistic anticancer activity was related to upregulation p53 expression and alteration in expression of p21, Bcl-2 and Bax. CONCLUSION Our findings suggest that administration of 5-ALA/PDT in combination with the low-dose cisplatin may be an effective and feasible therapy for cervical cancer.
Collapse
Affiliation(s)
- Xiao-Qiang Wei
- Department of Gynecology and Obstetrics, Qilu Hospital, Shandong Univeristy , Jinan, China
| | | | | | | |
Collapse
|
35
|
Chen YK, Senadi GC, Lee CH, Tsai YM, Chen YR, Hu WP, Chou YW, Kuo KK, Wang JJ. Apoptosis induced by 2-aryl benzothiazoles-mediated photodynamic therapy in melanomas via mitochondrial dysfunction. Chem Res Toxicol 2014; 27:1187-98. [PMID: 24892656 DOI: 10.1021/tx500080w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mild and efficient synthetic development of 2-arylbenzothiazoles 5 mediated by ceric ammonium nitrate (CAN) via intramolecular cyclization of N-phenyl-thiobenzamides 4 was achieved. Further compounds 5 were reduced to corresponding amines 6, and their photodynamic therapy (PDT) effect was evaluated on malignant human melanoma A375 cells. Amine 6l plus ultraviolet A (UVA) induced caspase-3 activity, poly(ADP-ribose)polymerase cleavage, M30 positive CytoDeath staining, and subsequent apoptotic cell death. Our data disclosed that treatment of A375 cells with 6l plus UVA resulted in a decrease in mitochondrial membrane potential (ΔΨmt), oxidative phosphorylation system (OXPHOS) subunits, and adenosine triphosphate (ATP) but an increase in mitochondrial DNA 4977-bp deletion via reactive oxygen species (ROS) generation. Transmission electron microscopy (TEM) observations also showed major ultrastructural alterations of mitochondria. Additionally, 6l plus UVA was also shown to reduce murine melanoma size in a mouse model. The present study supports the hypothesis that 6l-PDT may serve as a potential ancillary modality for the treatment of melanoma.
Collapse
Affiliation(s)
- Yin-Kai Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pacheco-Soares C, Maftou-Costa M, DA Cunha Menezes Costa CG, DE Siqueira Silva AC, Moraes KCM. Evaluation of photodynamic therapy in adhesion protein expression. Oncol Lett 2014; 8:714-718. [PMID: 25013490 PMCID: PMC4081276 DOI: 10.3892/ol.2014.2149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/18/2014] [Indexed: 11/06/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that has clinical applications in both non-neoplastic and neoplastic diseases. PDT involves a light-sensitive compound (photosensitizer), light and molecular oxygen. This procedure may lead to several different cellular responses, including cell death. Alterations in the attachment of cancer cells to the substratum and to each other are important consequences of photodynamic treatment. PDT may lead to changes in the expression of cellular adhesion structure and cytoskeleton integrity, which are key factors in decreasing tumor metastatic potential. HEp-2 cells were photosensitized with aluminum phthalocyanine tetrasulfonate and zinc phthalocyanine, and the proteins β1-integrin and focal adhesion kinase (FAK) were assayed using fluorescence microscopy. The verification of expression changes in the genes for FAK and β1 integrin were performed by reverse transcription-polymerase chain reaction (RT-PCR). The results revealed that HEp-2 cells do not express β-integrin or FAK 12 h following PDT. It was concluded that the PDT reduces the adhesive ability of HEp-2 cells, inhibiting their metastatic potential. The present study aimed to analyze the changes in the expression and organization of cellular adhesion elements and the subsequent metastatic potential of HEp-2 cells following PDT treatment.
Collapse
Affiliation(s)
- Cristina Pacheco-Soares
- Laboratory of Dynamics of Cellular Compartments, University of Vale do Paraiba, Institute for Research and Development, São José dos Campos-SP 12244-000, Brazil
| | - Maira Maftou-Costa
- Department of Pharmacology, Federal University of São Paulo, São Paulo-SP 04021-001, Brazil
| | - Carolina Genúncio DA Cunha Menezes Costa
- Laboratory of Dynamics of Cellular Compartments, University of Vale do Paraiba, Institute for Research and Development, São José dos Campos-SP 12244-000, Brazil
| | - Andreza Cristina DE Siqueira Silva
- Laboratory of Dynamics of Cellular Compartments, University of Vale do Paraiba, Institute for Research and Development, São José dos Campos-SP 12244-000, Brazil
| | - Karen C M Moraes
- University of São Paulo, Institute of Biosciences of Rio Claro, Rio Claro-SP 13506-900, Brazil
| |
Collapse
|
37
|
Wang CP, Lou PJ, Lo FY, Shieh MJ. Meta-tetrahydroxyphenyl chlorine mediated photodynamic therapy inhibits the migration and invasion of a nasopharyngeal carcinoma KJ-1 cell line. J Formos Med Assoc 2014; 113:173-8. [DOI: 10.1016/j.jfma.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/18/2012] [Accepted: 05/11/2012] [Indexed: 10/27/2022] Open
|
38
|
Li Z, Pan X, Wang T, Wang PN, Chen JY, Mi L. Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation. NANOSCALE RESEARCH LETTERS 2013; 8:96. [PMID: 23433090 PMCID: PMC3599500 DOI: 10.1186/1556-276x-8-96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/29/2013] [Indexed: 05/08/2023]
Abstract
The killing effect of nitrogen-doped titanium dioxide (N-TiO2) nanoparticles on human cervical carcinoma (HeLa) cells by visible light photodynamic therapy (PDT) was higher than that of TiO2 nanoparticles. To study the mechanism of the killing effect, the reactive oxygen species produced by the visible-light-activated N-TiO2 and pure-TiO2 were evaluated and compared. The changes of the cellular parameters, such as the mitochondrial membrane potential (MMP), intracellular Ca2+, and nitrogen monoxide (NO) concentrations after PDT were measured and compared for N-TiO2- and TiO2-treated HeLa cells. The N-TiO2 resulted in more loss of MMP and higher increase of Ca2+ and NO in HeLa cells than pure TiO2. The cell morphology changes with time were also examined by a confocal microscope. The cells incubated with N-TiO2 exhibited serious distortion and membrane breakage at 60 min after the PDT.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, 220 Handan Road, 200433, Shanghai, China
| | - Xiaobo Pan
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, 220 Handan Road, 200433, Shanghai, China
| | - Tianlong Wang
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, 220 Handan Road, 200433, Shanghai, China
| | - Pei-Nan Wang
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, 220 Handan Road, 200433, Shanghai, China
| | - Ji-Yao Chen
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 220 Handan Road, 200433, Shanghai, China
| | - Lan Mi
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, 220 Handan Road, 200433, Shanghai, China
| |
Collapse
|
39
|
Chiang PC, Chou RH, Chien HF, Tsai T, Chen CT. Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy. Lasers Surg Med 2013; 45:38-47. [DOI: 10.1002/lsm.22112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 02/02/2023]
|
40
|
SPARSA AGNÈS, BELLATON SOLENN, NAVES THOMAS, JAUBERTEAU MARIEODILE, BONNETBLANC JEANMARIE, SOL VINCENT, VERDIER MIREILLE, RATINAUD MARIEHÉLÈNE. Photodynamic treatment induces cell death by apoptosis or autophagy depending on the melanin content in two B16 melanoma cell lines. Oncol Rep 2012; 29:1196-200. [DOI: 10.3892/or.2012.2190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/17/2012] [Indexed: 11/06/2022] Open
|
41
|
Bhuvaneswari R, Yuen GY, Chee SK, Olivo M. Antiangiogenesis agents avastin and erbitux enhance the efficacy of photodynamic therapy in a murine bladder tumor model. Lasers Surg Med 2012; 43:651-62. [PMID: 22057493 DOI: 10.1002/lsm.21109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) has been established as an alternative therapy for the treatment of various types of malignant disorders, including oesophageal, lung, and bladder cancer. However, one of the limitations of PDT is treatment-induced hypoxia that triggers angiogenesis. The objective of this study was to evaluate the effects of combination therapy with PDT and an antiangiogenic protocol using monoclonal antibodies against both vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). MATERIALS AND METHODS In vitro angiogenesis assays and in vivo matrigel assay were performed to understand the inhibitory effects of the antiangiogenic agents. Tumor bearing mice were assigned to six different categories: Control, PDT only, Avastin + Erbitux, PDT + Avastin, PDT + Erbitux, and PDT + Avastin and Erbitux. Treated and control tumors were monitored for recurrence for up to 90 days. RESULTS In vitro results provided valuable insight into the dynamics of endothelial cells in response to angiogenic stimulants and inhibitors to assess the angiogenesis processes. Addition of VEGF increased the migration of bladder cancer cells and addition of Avastin and Erbitux decreased cell migration significantly. Both inhibitors were also able to suppress invasion and tube formation in human umbilical vein endothelial cells (HUVEC). The in vivo tumor response for PDT with single inhibitor (Avastin or Erbitux) and double inhibitor (Avastin + Erbitux) was comparable; however, targeting both VEGF and EGFR pathways along with PDT resulted in more rapid response. Downregulation of VEGF and EGFR were observed in tumors treated with PDT in combination with Avastin and Erbitux respectively. CONCLUSION Our results show that blocking the VEGF or EGFR pathway along with PDT can effectively suppress tumor growth and the combination of both VEGF and EGFR inhibitors along with PDT could be used to treat more aggressive tumors to achieve rapid response.
Collapse
|
42
|
Abstract
BACKGROUND Photodynamic therapy (PDT) has been used occasionally as an alternative treatment for uveal melanomas. The present study describes the clinical and histopathologic features of five choroidal melanomas after PDT. METHODS Three patients with pigmented choroidal melanomas were treated with PDT and intravitreal bevacizumab 1 week before undergoing biopsy and brachytherapy to minimize the risks of bleeding during the biopsy. Another two patients received PDT as a primary treatment for peripapillary amelanotic melanomas, one of them also in combination with bevacizumab. RESULTS The tumors treated with PDT and bevacizumab showed a marked reduction in tumor vascularity assessed by indocyanine angiography, and the biopsies were conducted without recognizable bleeding, showing viable tumor cells. The tumors receiving PDT as a primary treatment were followed by progressive tumor growth that led to enucleation years after. The histopathology revealed overlying fibrosis with invasion of sclera and optic nerve. CONCLUSION Photodynamic therapy and bevacizumab can induce closure of the superficial vasculature of a pigmented choroidal melanoma, but in none of our cases, there was evidence of tumor destruction from this treatment. Preoperative PDT may be useful to reduce the potential of bleeding at the time of tumor biopsy. Our cases do not support the use of a single session of PDT as a primary treatment for pigmented small choroidal melanomas.
Collapse
|
43
|
Yang PW, Hung MC, Hsieh CY, Tung EC, Wang YH, Tsai JC, Lee JM. The effects of Photofrin-mediated photodynamic therapy on the modulation of EGFR in esophageal squamous cell carcinoma cells. Lasers Med Sci 2012; 28:605-14. [DOI: 10.1007/s10103-012-1119-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
|
44
|
Di Venosa G, Rodriguez L, Mamone L, Gándara L, Rossetti M, Batlle A, Casas A. Changes in actin and E-cadherin expression induced by 5-aminolevulinic acid photodynamic therapy in normal and Ras-transfected human mammary cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 106:47-52. [DOI: 10.1016/j.jphotobiol.2011.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
|
45
|
Yang CT, Fu BS, Wang HY, Sytwu HK, Hueng DY. Glioma spheroids. J Neurosurg 2011; 116:691-2; author reply 692-3. [PMID: 22136641 DOI: 10.3171/2011.5.jns11756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Milla LN, Cogno IS, Rodríguez ME, Sanz-Rodríguez F, Zamarrón A, Gilaberte Y, Carrasco E, Rivarola VA, Juarranz Á. Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J Cell Biochem 2011; 112:2266-78. [DOI: 10.1002/jcb.23145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Etminan N, Peters C, Ficnar J, Anlasik S, Bünemann E, Slotty PJ, Hänggi D, Steiger HJ, Sorg RV, Stummer W. Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid–based photodynamic treatment. J Neurosurg 2011; 115:281-8. [DOI: 10.3171/2011.3.jns10434] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Five-aminolevulinic acid–mediated photodynamic therapy (ALA/PDT) can improve the clinical outcome in patients suffering from glioblastoma. Besides direct phototoxicity, additional mechanisms may contribute. Therefore, the authors studied the influence of ALA/PDT on glioblastoma's migratory and invasive behavior in a human glioma cell spheroid model.
Methods
Glioma spheroids were grown from human U373 and A172 cell lines. After ALA/PDT of spheroids, the authors assessed the migration of tumor cells and their capacity to invade a collagen matrix, as well as changes in their viability, morphology, and expression of matrix metalloproteinases (MMPs).
Results
The authors found that ALA/PDT caused long-lasting, nearly complete suppression of glioma cell migration and matrix invasion compared with nontherapeutic controls, including either irradiation or incubation with ALA only. Although ALA/PDT induced tumor cell apoptosis, suppression of migration/invasion was not simply due to phototoxicity because 50% of tumor cells remained vital throughout the observation period. Moreover, the morphology of ALA/PDT-treated cells changed significantly toward a polygonal, epithelial-like appearance, which was associated with alterations in the actin cytoskeleton. Furthermore, downregulation of MMP-7 and -8 was observed after treatment whereas other MMPs remained unchanged.
Conclusions
In addition to directly eliminating glioma cells through apoptosis, ALA/PDT alters their invasiveness, possibly due to the effects on the cytoskeletal organization and MMP expression.
Collapse
Affiliation(s)
| | - Corinna Peters
- 1Department of Neurosurgery,
- 2Institute for Transplantation Diagnostics and Cell Therapeutics, and
| | | | | | - Erich Bünemann
- 3Department of Dermatology, Heinrich-Heine-University, Düsseldorf; and
| | | | | | | | - Rüdiger V. Sorg
- 2Institute for Transplantation Diagnostics and Cell Therapeutics, and
| | - Walter Stummer
- 1Department of Neurosurgery,
- 4Department of Neurosurgery, University of Münster, Germany
| |
Collapse
|
48
|
Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura SI, Tanaka T. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol 2011; 11:358-65. [PMID: 21144919 DOI: 10.1016/j.intimp.2010.11.029] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022]
Abstract
Early detection and intervention are needed for optimal outcomes in cancer therapy. Improvements in diagnostic technology, including endoscopy, photodynamic diagnosis (PDD), and photodynamic therapy (PDT), have allowed substantial progress in the treatment of cancer. 5-Aminolevulinic acid (ALA) is a natural, delta amino acid biosynthesized by animal and plant mitochondria. ALA is a precursor of porphyrin, heme, and bile pigments, and it is metabolized into protoporphyrin IX (PpIX) in the course of heme synthesis. PpIX preferentially accumulates in tumor cells resulting in a red fluorescence following irradiation with violet light and the formation of singlet oxygen. This reaction, utilized to diagnose and treat cancer, is termed ALA-induced PDD and PDT. In this review, the biological significance of heme metabolites, the mechanism of PpIX accumulation in tumor cells, and the therapeutic potential of ALA-induced PDT alone and combined with hyperthermia and immunotherapy are discussed.
Collapse
Affiliation(s)
- Masahiro Ishizuka
- SBI ALApromo Co, LTD Roppongi 1-6-1, Minato-ku, Tokyo 106-6019, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiaviello A, Postiglione I, Palumbo G. Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 2011; 3:1014-41. [PMID: 24212652 PMCID: PMC3756402 DOI: 10.3390/cancers3011014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains one of the most common cancer-related causes of death. This type of cancer typically develops over a period of many years, and if detected at an early enough stage can be eliminated by a variety of treatments including photodynamic therapy (PDT). A critical discussion on the clinical applications of PDT in lung cancer is well outside the scope of the present report, which, in turn focuses on mechanistic and other aspects of the photodynamic action at a molecular and cellular level. The knowledge of these issues at pre-clinical levels is necessary to develop, check and adopt appropriate clinical protocols in the future. This report, besides providing general information, includes a brief overview of present experimental PDT and provides some non-exhaustive information on current strategies aimed at further improving the efficacy, especially in regard to lung cancer cells.
Collapse
Affiliation(s)
- Angela Chiaviello
- Department of Biologia e Patologia Cellulare e Molecolare "L. Califano" - Università Federico II, Via S. Pansini, 5 80131 Naples, Italy.
| | | | | |
Collapse
|
50
|
Solár P, Ferenc P, Koval' J, Mikeš J, Solárová Z, Hrčková G, Fulton BL, Fedoročko P. Photoactivated Hypericin Induces Downregulation of HER2 Gene Expression. Radiat Res 2011; 175:51-6. [DOI: 10.1667/rr2276.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|