1
|
Pasten C, Lozano M, Osorio LA, Cisterna M, Jara V, Sepúlveda C, Ramírez-Balaguera D, Moreno-Hidalgo V, Arévalo-Gil D, Soto P, Hurtado V, Morales A, Méndez GP, Busso D, Leon P, Michea L, Corvalán D, Luarte A, Irarrazabal CE. The protective effect of 1400W against ischaemia and reperfusion injury is countered by transient medullary kidney endothelial dysregulation. J Physiol 2024. [PMID: 39057844 DOI: 10.1113/jp285944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury. The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia. We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W. We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality. The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use. KEY POINTS: Acute kidney injury is a global health problem associated with high morbidity and mortality. The pharmacological blockade of inducible nitric oxide synthase (iNOS) has been proposed as a potential strategy to prevent AKI induced by ischaemia and reperfusion (I/R). Our main finding is that 1400W, a selective and irreversible iNOS inhibitor with low toxicity that is proposed as a therapeutic strategy to prevent kidney I/R injury, produces aberrant gene expression in the medulla associated to tissue injury, cell cycle arrest, inflammation, mesenchymal transition and endothelial activation. The negative effect of 1400W observed in the renal medulla at 48 h from drug administration, is transient as it did not translate into a chronic kidney disease condition.
Collapse
Affiliation(s)
- Consuelo Pasten
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
- Facultad de Medicina, Universidad de los Andes, Chile
| | - Mauricio Lozano
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Luis A Osorio
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Matías Cisterna
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Valeria Jara
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Catalina Sepúlveda
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Daniela Ramírez-Balaguera
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Viviana Moreno-Hidalgo
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Dayana Arévalo-Gil
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Paola Soto
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Valeria Hurtado
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Antonia Morales
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | | | - Dolores Busso
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Biología de la Reproducción, Universidad de los Andes, Chile
| | - Pablo Leon
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Michea
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Corvalán
- Neuroscience Program, Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Chile
| | - Alejandro Luarte
- Neuroscience Program, Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Chile
| | - Carlos E Irarrazabal
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
- Facultad de Medicina, Universidad de los Andes, Chile
| |
Collapse
|
2
|
Kuo SC, Liu YW, Tsai CH, Sheen-Chen SM. Ischemic preconditioning in hepatic ischemic–reperfusion injury. FORMOSAN JOURNAL OF SURGERY 2016. [DOI: 10.1016/j.fjs.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Cai Q, Fan H, Xiong R, Jiang Y. A rat model of liver transplantation with a steatotic donor liver after cardiac death. Int J Clin Exp Med 2015; 8:15724-15730. [PMID: 26629068 PMCID: PMC4658957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/15/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to establish a rat liver transplantation model with a steatotic donor liver after cardiac death, reflecting clinical conditions. Rats were fed a high-fat diet for 8 weeks to establish the fatty liver model. This model simulates liver steatosis caused by various factors before clinical donation after cardiac death. A pneumothorax was created in the donor rat to induce hypoxia and cardiac arrest before incising the liver. This simulated the processes of hypoxia and cardiac arrest caused by withdrawal of treatment in actual clinical situations. The harvested cardiac death donor liver was then transplanted using the Kamada technique. Donor operative time was 45.7 ± 4.2 min; cardiac arrest time, 9 ± 0.8 min; recipient surgery time, 40.3 ± 4.9 min; and no-liver time, 15 ± 2.5 min. Of 40 liver-transplanted rats, 2 died within 24 h, with a surgical success rate of 95%. The transaminase levels on post-transplantation days 1, 3, 5, and 7 were 835.4 ± 71.33 U/L, 1334.5 ± 102.13 U/L, 536.4 ± 65.52 U/L, and 218.2 ± 36.77 U/L, respectively. This rat liver transplantation model with a steatotic donor liver after cardiac death could improve the simulation of the pathophysiological processes of clinical donation after cardiac death, and could be used as a reliable and stable animal model.
Collapse
Affiliation(s)
- Qiucheng Cai
- Department of Hepatobiliary Surgery, Fuzong Clinical College of Fujian Medical UniversityFuzhou, Fujian 350025, China
| | - Hongkai Fan
- Department of Hepatobiliary Surgery, Affiliated Eastern Hospital of Xiamen UniversityFuzhou 350025, China
| | - Rihui Xiong
- Department of Hepatobiliary Surgery, Fuzong Clinical College of Fujian Medical UniversityFuzhou, Fujian 350025, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Fuzong Clinical College of Fujian Medical UniversityFuzhou, Fujian 350025, China
- Department of Hepatobiliary Surgery, Fuzhou General HospitalFuzhou 350025, China
| |
Collapse
|
4
|
Liu Q, Rehman H, Krishnasamy Y, Schnellmann RG, Lemasters JJ, Zhong Z. Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice. J Hepatol 2015; 63:68-74. [PMID: 25703084 PMCID: PMC4475508 DOI: 10.1016/j.jhep.2015.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. METHODS Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. RESULTS After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. CONCLUSION The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients.
Collapse
Affiliation(s)
- Qinlong Liu
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hasibur Rehman
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Yasodha Krishnasamy
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
5
|
Mòdol T, Brice N, Ruiz de Galarreta M, García Garzón A, Iraburu MJ, Martínez-Irujo JJ, López-Zabalza MJ. Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells. J Cell Physiol 2015; 230:546-53. [PMID: 24976518 DOI: 10.1002/jcp.24714] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 12/23/2022]
Abstract
The turnover of extracellular matrix (ECM) components can generate signals that regulate several cellular functions such as proliferation, differentiation, and apoptosis. During liver injury, matrix metalloproteases (MMPs) production is enhanced and increased levels of peptides derived from extracellular matrix proteins can be generated. Synthetic peptides with sequences present in extracellular matrix proteins were previously found to induce both stimulating and apoptotic effects on several cell types including the inflammatory cells monocytes/macrophages. Therefore, in inflammatory liver diseases, locally accumulated peptides could be also important in regulating hepatic fibrosis by inducing apoptosis of hepatic stellate cells (HSC), the primary cellular source of extracellular matrix components. Here, we describe the apoptotic effect of fibronectin peptides on the cell line of human hepatic stellate cells LX-2 based on oligonucleosomal DNA fragmentation, caspase-3 and -9 activation, Bcl-2 depletion, and accumulation of Bax protein. We also found that these peptides trigger the activation of Src kinase, which in turn mediated the increase of JNK and p38 activities. By the use of specific inhibitors we demonstrated the involvement of Src, JNK, and p38 in apoptosis induced by fibronectin peptides on HSC. Moreover, fibronectin peptides increased iNOS expression in human HSC, and specific inhibition of iNOS significantly reduced the sustained activity of JNK and the programmed cell death caused by these peptides. Finally, the possible regulatory effect of fibronectin peptides in liver fibrosis was further supported by the ability of these peptides to induce metalloprotease-9 (MMP-9) expression in human monocytes.
Collapse
Affiliation(s)
- Teresa Mòdol
- Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Beneficial effects of hydrogen gas on porcine liver reperfusion injury with use of total vascular exclusion and active venous bypass. Transplant Proc 2015; 46:1104-6. [PMID: 24815139 DOI: 10.1016/j.transproceed.2013.11.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Liver ischemia/reperfusion (I/R) injury is a high risk factor in liver transplantation and it influences graft survival. One of the major events during I/R injury is the generation of cytotoxic oxygen radicals. Recently, hydrogen gas has been reported to have antioxidant properties and protective effects against organ dysfunction induced by I/R injury. The aim of this study is to investigate effects of hydrogen on porcine liver reperfusion injury. MATERIALS AND METHODS Six outbred pigs weighing 20 kg were used for the experiment. Under general anesthesia, the venous bypass between the left femoral vein and the splenic vein to the left jugular vein was made using a centrifugal pump. Then, we used a total vascular exclusion clamp (all in- and out-flow to the liver was clamped) for 60 minutes. Hydrogen (5 ppm) saturated with lactate Ringer's solution was prepared. This solution was infused through the portal vein just before reperfusion (hydrogen group). RESULTS Aspartate aminotransferase levels in the control versus hydrogen group in 30, 60, and 120 minutes after reperfusion were 1560.3, 1925.3, and 2342.5 versus 175.3, 200.7, and 661.00 IU/L, respectively. Lactate dehydrogenase (LDH) levels in the control versus hydrogen groups in 30, 60, and 120 minutes after reperfusion were 23,235.0, 3496.7, and 4793.5 versus 663.3, 802.0, and 983.7 IU/L, respectively. The hydrogen gas level in liver tissue increased to 954.6 ppm immediately after reperfusion; however, it disappeared within 30 minutes. CONCLUSION The solution containing hydrogen gas was safe and had remarkably protective effects on the porcine during liver I/R and may be applied in the clinical setting.
Collapse
|
7
|
Abstract
Long-term allograft survival is a major challenge facing solid organ transplantation. Recent studies have shown a negative correlation between infiltration of memory T cells and allograft survival. Furthermore, blockade of leukocyte activation increases acceptance of transplanted organs, including heart, liver, and kidney. Lung allografts are associated with high rates of rejection, and therapies that increase acceptance of other transplanted organs have not translated into the lung. In this issue of the JCI, Krupnick and colleagues demonstrate in a murine model that lung allograft acceptance requires infiltration of a specific T cell population into the graft. This study highlights the unique immunobiology of the lung and the complexity of lung transplant tolerance.
Collapse
|
8
|
Lang JD, Smith AB, Brandon A, Bradley KM, Liu Y, Li W, Crowe DR, Jhala NC, Cross RC, Frenette L, Martay K, Vater YL, Vitin AA, Dembo GA, DuBay DA, Bynon JS, Szychowski JM, Reyes JD, Halldorson JB, Rayhill SC, Dick AA, Bakthavatsalam R, Brandenberger J, Broeckel-Elrod JA, Sissons-Ross L, Jordan T, Chen LY, Siriussawakul A, Eckhoff DE, Patel RP. A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS One 2014; 9:e86053. [PMID: 24533048 PMCID: PMC3922702 DOI: 10.1371/journal.pone.0086053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
Decreases in endothelial nitric oxide synthase derived nitric oxide (NO) production during liver transplantation promotes injury. We hypothesized that preemptive inhaled NO (iNO) would improve allograft function (primary) and reduce complications post-transplantation (secondary). Patients at two university centers (Center A and B) were randomized to receive placebo (n = 20/center) or iNO (80 ppm, n = 20/center) during the operative phase of liver transplantation. Data were analyzed at set intervals for up to 9-months post-transplantation and compared between groups. Patient characteristics and outcomes were examined with the Mann-Whitney U test, Student t-test, logistic regression, repeated measures ANOVA, and Cox proportional hazards models. Combined and site stratified analyses were performed. MELD scores were significantly higher at Center B (22.5 vs. 19.5, p<0.0001), surgical times were greater at Center B (7.7 vs. 4.5 hrs, p<0.001) and warm ischemia times were greater at Center B (95.4 vs. 69.7 min, p<0.0001). No adverse metabolic or hematologic effects from iNO occurred. iNO enhanced allograft function indexed by liver function tests (Center B, p<0.05; and p<0.03 for ALT with center data combined) and reduced complications at 9-months (Center A and B, p = 0.0062, OR = 0.15, 95% CI (0.04, 0.59)). ICU (p = 0.47) and hospital length of stay (p = 0.49) were not decreased. iNO increased concentrations of nitrate (p<0.001), nitrite (p<0.001) and nitrosylhemoglobin (p<0.001), with nitrite being postulated as a protective mechanism. Mean costs of iNO were $1,020 per transplant. iNO was safe and improved allograft function at one center and trended toward improving allograft function at the other. ClinicalTrials.gov with registry number 00582010 and the following URL:http://clinicaltrials.gov/show/NCT00582010.
Collapse
Affiliation(s)
- John D. Lang
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Alvin B. Smith
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela Brandon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kelley M. Bradley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuliang Liu
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Wei Li
- Department of Hepatobiliary-pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - D. Ralph Crowe
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nirag C. Jhala
- Department of Pathology and Laboratory Medicine, Ruth and Raymond Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard C. Cross
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Luc Frenette
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kenneth Martay
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Youri L. Vater
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Alexander A. Vitin
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gregory A. Dembo
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Derek A. DuBay
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. Steven Bynon
- Department of Surgery, Division of Immunology and Organ Transplantation, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jeff M. Szychowski
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jorge D. Reyes
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jeffrey B. Halldorson
- Department of Surgery, University of California San Diego Health Care System, San Diego, California, United States of America
| | - Stephen C. Rayhill
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Andre A. Dick
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ramasamy Bakthavatsalam
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Brandenberger
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jo Ann Broeckel-Elrod
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Laura Sissons-Ross
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Terry Jordan
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lucinda Y. Chen
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Arunotai Siriussawakul
- Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Devin E. Eckhoff
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
9
|
Miyake T, Yokoyama Y, Kokuryo T, Mizutani T, Imamura A, Nagino M. Endothelial nitric oxide synthase plays a main role in producing nitric oxide in the superacute phase of hepatic ischemia prior to the upregulation of inducible nitric oxide synthase. J Surg Res 2013; 183:742-51. [DOI: 10.1016/j.jss.2013.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 12/23/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
|
10
|
He S, Rehman H, Shi Y, Krishnasamy Y, Lemasters JJ, Schnellmann RG, Zhong Z. Suramin decreases injury and improves regeneration of ethanol-induced steatotic partial liver grafts. J Pharmacol Exp Ther 2013; 344:417-25. [PMID: 23161217 PMCID: PMC3558824 DOI: 10.1124/jpet.112.199919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/15/2012] [Indexed: 12/23/2022] Open
Abstract
Steatotic grafts are excluded for use in partial liver transplantation (LT) because of the increased risk of primary nonfunction. This study investigated the effects of suramin, a polysulfonated naphthylurea, on the outcome of steatotic partial LT. Rat livers were harvested after acute ethanol treatment (6 g/kg, intragastric administration), reduced in size to ≈ 1/3, and transplanted. Serum alanine aminotransferase (ALT) and total bilirubin levels as well as hepatic necrosis and apoptosis were significantly higher after transplantation of fatty partial grafts (FPG) than lean partial grafts (LPG). Suramin (5 mg/kg, i.p.) decreased ALT by ≈ 60%, hyperbilirubinemia by 75%, necrosis by 83%, and apoptosis by 70% after FPG transplantation. Hepatic cellular 5-bromo-2'-deoxyuridine (BrdU) incorporation increased to 28% in LPG but was only 2% in FPG at 48 hours, and the mitotic index increased to 7% in LPG but was only 0.2% in FPG, indicating suppressed regeneration in FPG. Suramin increased BrdU incorporation and the mitotic index to 43% and 9%, respectively, in FPG. All FPG recipients died within 5 days. Suramin recovered survival of FPG to 62%. Tumor necrosis factor-α (TNF-α) mRNA was 2.2-fold higher in FPG than in LPG and was associated with activation of caspase-8 and caspase-3 in FPG. Suramin decreased TNF-α and caspase activation in FPG. Transforming growth factor-β (TGF-β), phospho-Smad2/3 and p21Cip1 were significantly higher in FPG than in LPG and suramin blocked TGF-β formation and its down-stream signaling pathway. Taken together, suramin improves the outcome of FPG transplantation, most likely by inhibition of TNF-α and TGF-β formation.
Collapse
Affiliation(s)
- Songqing He
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun Street, PO Box 250140, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu Q, Rehman H, Krishnasamy Y, Ramshesh VK, Theruvath TP, Chavin KD, Schnellmann RG, Lemasters JJ, Zhong Z. Role of inducible nitric oxide synthase in mitochondrial depolarization and graft injury after transplantation of fatty livers. Free Radic Biol Med 2012; 53:250-9. [PMID: 22609250 PMCID: PMC3392495 DOI: 10.1016/j.freeradbiomed.2012.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/12/2012] [Accepted: 05/07/2012] [Indexed: 12/23/2022]
Abstract
This study investigated the role of inducible nitric oxide synthase (iNOS) in failure of ethanol-induced fatty liver grafts. Rat livers were explanted 20 h after gavaging with ethanol (5 g/kg) and storing in UW solution for 24h before implantation. Hepatic oil red O staining-positive areas increased from ∼2 to ∼33% after ethanol treatment, indicating steatosis. iNOS expression increased ∼8-fold after transplantation of lean grafts (LG) and 25-fold in fatty grafts (FG). Alanine aminotransferase release, total bilirubin, hepatic necrosis, TUNEL-positive cells, and cleaved caspase-3 were higher in FG than LG. A specific iNOS inhibitor 1400W (5 μM in the cold-storage solution) blunted these alterations by >42% and increased survival of fatty grafts from 25 to 88%. Serum nitrite/nitrate and hepatic nitrotyrosine adducts increased to a greater extent after transplantation of FG than LG, indicating reactive nitrogen species (RNS) overproduction. Phospho-c-Jun and phospho-c-Jun N-terminal kinase-1/2 (JNK1/2) were higher in FG than in LG, indicating more JNK activation in fatty grafts. RNS formation and JNK activation were blunted by 1400W. Mitochondrial polarization and cell death were visualized by intravital multiphoton microscopy of rhodamine 123 and propidium iodide, respectively. After implantation, viable cells with depolarized mitochondria were 3-fold higher in FG than in LG and 1400W decreased mitochondrial depolarization in FG to the levels of LG. Taken together, iNOS is upregulated after transplantation of FG, leading to excessive RNS formation, JNK activation, mitochondrial dysfunction, and severe graft injury. The iNOS inhibitor 1400W could be an effective therapy for primary nonfunction of fatty liver grafts.
Collapse
Affiliation(s)
- Qinlong Liu
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of General Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hasibur Rehman
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yasodha Krishnasamy
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Venkat K. Ramshesh
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tom P. Theruvath
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenneth D. Chavin
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rick G. Schnellmann
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29403, USA
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|