1
|
Zhao XJ, Liu SH, Sun JK. Porous Poly(ionic Liquid) Membrane with Metal Nanoparticle Gradient: A Smart Actuator for Visualizing Chemical Reactions. Macromol Rapid Commun 2024; 45:e2300676. [PMID: 38232334 DOI: 10.1002/marc.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Poly(ionic liquid) (PIL)-based porous membranes are extensively investigated as soft polymer actuators. While PILs have shown significant advancements in membrane fabrication and stabilization of metal nanoparticles (MNPs), research on integrating MNPs into porous membranes to achieve actuation behavior under multiple stimuli is limited. Herein, this work presents a new paradigm for designing a porous PIL-polyacrylic acid (PAA) membrane with a distinct MNP gradient via a top-bottom diffusion approach involving a metal salt precursor solution and NaBH4 as a reducing agent. The strong binding sites provided by PILs, combined with the gradient distribution of -COO- groups across the membrane cross-section, play a significant role in controlling the MNPs' gradient distribution. Interestingly, the MNPs within the membrane display excellent catalytic activity in exothermic reactions such as H2O2 decomposition, dissipating uneven heat that quickly permeates the membrane network. This induces asymmetrical swelling of polymer chains, resulting in rapid membrane bending. Furthermore, such MNP-loaded membrane could serve as a portable test paper for visually monitoring H2O2. This advancement paves the way for the development of intricate smart actuation materials and expands their practical applications in various real-life scenarios.
Collapse
Affiliation(s)
- Xue-Jing Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
2
|
Zhang P, Wang H, Wang J, Ji Z, Qu L. Boosting the Viable Water Harvesting in Solar Vapor Generation: From Interfacial Engineering to Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303976. [PMID: 37667471 DOI: 10.1002/adma.202303976] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Indexed: 09/06/2023]
Abstract
Continuously increasing demand for the life-critical water resource induces severe global water shortages. It is imperative to advance effective, economic, and environmentally sustainable strategies to augment clean water supply. The present work reviews recent reports on the interfacial engineering to devices design of solar vapor generation (SVG) system for boosting the viability of drinkable water harvesting. Particular emphasis is placed on the basic principles associated with the interfacial engineering of solar evaporators capable of efficient solar-to-thermal conversion and resulting freshwater vapor via eliminating pollutants from quality-impaired water sources. The critical configurations manufacturing of the devices for fast condensation is then highlighted to harvest potable liquid water. Fundamental and practical challenges, along with prospects for the targeted materials architecture and devices modifications of SVG system are also outlined, aiming to provide future directions and inspiring critical research efforts in this emerging and exciting field.
Collapse
Affiliation(s)
- Panpan Zhang
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Haiyang Wang
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jing Wang
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyong Ji
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Liangti Qu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Zhao R, Xu X, Wang Z, Zheng Y, Zhou Y, Yu Z. Structural microheterogeneity and hydrogen bonding properties in the mixtures of two ionic liquids with a common imidazolium cation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Hu H, Wang B, Chen B, Deng X, Gao G. Swellable poly(ionic liquid)s: Synthesis, structure-property relationships and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Yao Y, Patel C, Vekariya RL, Yusa SI, Sangani CB, Duan Y, Pillai S, Patel H, Kumar NS, Khimani M. Synthesis and aggregation behaviour of thermo-responsive-b-poly(ionic liquid) diblock copolymers in aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Puguan JMC, Rathod PV, Kim H. Engineered Ionene/PNIPAM Hybrid Dual-Response Material Generating Tunable and Unique Optical Modes for Adaptive Solar Transmittance Modulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36330-36340. [PMID: 34308626 DOI: 10.1021/acsami.1c09561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A hybrid smart window exhibiting dual chromic response properties based on an ionene/polymer material is successfully engineered. Thermochromic poly(N-isopropylacrylamide) is integrated with an electrochromic viologen-tethered ionene, also acting as an electrolyte, to produce a smart window that can adaptively control solar visible light transmittance in response to multiple stimuli. This new blend allows the formation of unique reversible optical states, namely, "clear", "amber", "cloudy", and "grainy" states, which are passively triggered by environmental temperature and actively induced by external potential or simultaneously by both. This hybrid material shows tunability in terms of its electrochemical and optical properties, switching kinetics, and coloration efficiency and can also achieve a nearly absolute zero-transmissive state. With the material's excellent solubility and film-forming ability, the smart device can be fabricated with much flexibility and ease. Finally, this device has an all-in-one layer configuration, creating a more compact and simplified design. With all these properties combined, the development of a next-generation multifunctional smart window device, which can efficiently control incoming solar light for energy-saving in buildings and also provide visual comfort, is possible.
Collapse
Affiliation(s)
- John Marc C Puguan
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea
| | - Pramod V Rathod
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Claus J, Brietzke A, Lehnert C, Oschatz S, Grabow N, Kragl U. Swelling characteristics and biocompatibility of ionic liquid based hydrogels for biomedical applications. PLoS One 2020; 15:e0231421. [PMID: 32310981 PMCID: PMC7170238 DOI: 10.1371/journal.pone.0231421] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Polymers are commonly used in medical device manufacturing, e.g. for drug delivery systems, bone substitutes and stent coatings. Especially hydrogels exhibit very promising properties in this field. Hence, the development of new hydrogel systems for customized application is of great interest, especially regarding the swelling behavior and mechanical properties as well as the biocompatibility. The aim of this work was the preparation and investigation of various polyelectrolyte and poly-ionic liquid based hydrogels accessible by radical polymerization. The obtained polymers were covalently crosslinked with N,N'-methylenebisacrylamide (MBAA) or different lengths of poly(ethyleneglycol)diacrylate (PEGDA). The effect of different crosslinker-to-monomer ratios has been examined. In addition to the compression curves and the maximum degree of swelling, the biocompatibility with L929 mouse fibroblasts of these materials was determined in direct cell seeding experiments and the outcome for the different hydrogels was compared.
Collapse
Affiliation(s)
- Johanna Claus
- Department of Chemistry, Industrial and Applied Chemistry, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Andreas Brietzke
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Celina Lehnert
- Department of Chemistry, Industrial and Applied Chemistry, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Niels Grabow
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Udo Kragl
- Department of Chemistry, Industrial and Applied Chemistry, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Karjalainen E, Suvarli N, Tenhu H. Thermoresponsive behavior of poly[trialkyl-(4-vinylbenzyl)ammonium] based polyelectrolytes in aqueous salt solutions. Polym Chem 2020. [DOI: 10.1039/d0py00917b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic method to induce thermoresponsive behavior for polycations with salts from the reversed Hofmeister series is introduced.
Collapse
Affiliation(s)
- Erno Karjalainen
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Narmin Suvarli
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Heikki Tenhu
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| |
Collapse
|
9
|
Luo G, Guo Y, Liu C, Han G, Ma X, Zhang W. What will happen when thermoresponsive poly( N-isopropylacrylamide) is tethered on poly(ionic liquid)s? RSC Adv 2019; 9:12936-12943. [PMID: 35520761 PMCID: PMC9063810 DOI: 10.1039/c9ra01849b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
The thermoresponsive ionic liquid diblock copolymer of poly[1-(4-vinylbenzyl)-3-methylimidazolium tetrafluoroborate]-block-poly(N-isopropylacrylamide) (P[VBMI][BF4]-b-PNIPAM) containing a hydrophilic poly(ionic liquid) block of P[VBMI][BF4] is prepared by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. This P[VBMI][BF4]-b-PNIPAM exhibits an abnormal thermoresponsive phase transition at a temperature above the phase transition temperature (PTT) of the PNIPAM block. For P[VBMI][BF4]-b-PNIPAM including a short P[VBMI][BF4] block, its aqueous solution becomes turbid at a temperature above the PTT of the thermoresponsive PNIPAM block, whereas for P[VBMI][BF4]-b-PNIPAM containing a relatively long P[VBMI][BF4] block even in the case of a relatively long PNIPAM block, the aqueous solution remains transparent at a temperature far above the PTT of the PNIPAM block, although a soluble-to-insoluble phase transition of the PINIPAM block is confirmed by dynamic light scattering (DLS) analysis and variable temperature 1H NMR analysis. The reason that P[VBMI][BF4]-b-PNIPAM exhibits an abnormal thermoresponse is discussed and ascribed to the highly hydrophilic and charged poly(ionic liquid) block of P[VBMI][BF4] leading to the formation of small-sized micelles at a temperature above the PTT.
Collapse
Affiliation(s)
- Guangmei Luo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd Beijing 100123 China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology Tianjin 300401 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Ohno H, Yoshizawa-Fujita M, Kohno Y. Functional Design of Ionic Liquids: Unprecedented Liquids that Contribute to Energy Technology, Bioscience, and Materials Sciences. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180401] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroyuki Ohno
- Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| | - Masahiro Yoshizawa-Fujita
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yuki Kohno
- National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| |
Collapse
|
11
|
Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat Commun 2019; 10:1512. [PMID: 30944322 PMCID: PMC6447597 DOI: 10.1038/s41467-019-09535-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/15/2019] [Indexed: 12/03/2022] Open
Abstract
Natural vascular plants leaves rely on differences in osmotic pressure, transpiration and guttation to produce tons of clean water, powered by sunlight. Inspired by this, we report a sunlight-driven purifier for high-efficiency water purification and production. This sunlight-driven purifier is characterized by a negative temperature response poly(N-isopropylacrylamide) hydrogel (PN) anchored onto a superhydrophilic melamine foam skeleton, and a layer of PNIPAm modified graphene (PG) filter membrane coated outside. Molecular dynamics simulation and experimental results show that the superhydrophilicity of the relatively rigid melamine skeleton significantly accelerates the swelling/deswelling rate of the PNPG-F purifier. Under one sun, this rational engineered structure offers a collection of 4.2 kg m−2 h−1 and an ionic rejection of > 99% for a single PNPG-F from brine feed via the cooperation of transpiration and guttation. We envision that such a high-efficiency sunlight driven system could have great potential applications in diverse water treatments. Natural leaves can purify water under sunlight through a combination of osmotic pressure, transpiration, and guttation effects. Here the authors design a composite material mimicking these combined effects, achieving sunlight-driven pure water production from brine with high collection rate.
Collapse
|
12
|
Yu X, Wu X, Si Y, Wang X, Yu J, Ding B. Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromol Rapid Commun 2019; 40:e1800931. [PMID: 30725509 DOI: 10.1002/marc.201800931] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Waterproof and breathable (W&B) membranes combine fascinating properties of resistance to liquid water penetration and transmitting of water vapor, playing a key role in addressing problems related to health, resources, and energy. Electrospinning is an efficient and advanced way to construct nanofibrous materials with easily tailored wettability and adjustable pore structure, therefore providing an ideal strategy for constructing W&B membranes. In this review, recent progress on electrospun W&B membranes is summarized, involving materials design and fabrication, basic properties of electrospun W&B membranes associated with waterproofness and breathability, as well as their applications. In addition, challenges and future trends of electrospun W&B membranes are discussed.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohui Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
13
|
Ge C, Ling Y, Yan S, Luan S, Zhang H, Tang H. Preparation and mechanical properties of strong and tough poly (vinyl alcohol)-polypeptide double-network hydrogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Okafuji A, Kohno Y, Nakamura N, Ohno H. Design of thermoresponsive poly(ionic liquid) gels containing proline units to catalyse aldol reaction in water. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zhang X, Xu S, Zhou J, Zhao W, Sun S, Zhao C. Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32237-32247. [PMID: 28857540 DOI: 10.1021/acsami.7b08740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel anion-responsive "intelligent" membranes with functional gates are fabricated by filling polyethersulfone microporous membranes with poly(ionic liquid)s (PILs) gels. The wetting properties of the PILs could be controlled by changing their counteranions (CAs), and thus, the filled PILs gel gates in the membrane pores could spontaneously switch from the "closed" state to the "open" one by recognizing the hydrophilic CAs in the environment and vice versa. As a result, the fluxes of the "intelligent" membranes could be tuned from a very low level (0 mL/m2·mmHg for Cl-, Br-, and BF4-) to a relatively high one (430 mL/m2·mmHg for TFSI). The anion-responsive gating behavior of the PILs filled membranes is fast, reversible, and reproducible. In addition, the "intelligent" membranes are sensitive to contact time and ion concentrations of the hydrophobic CA species. The proposed anion-responsive "intelligent" membranes are highly attractive for ion-recognizable chemical/biomedical separations and purifications.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Sheng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
16
|
|
17
|
Qiao Y, Ma W, Theyssen N, Chen C, Hou Z. Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications. Chem Rev 2017; 117:6881-6928. [DOI: 10.1021/acs.chemrev.6b00652] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxiang Qiao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Wenbao Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Nils Theyssen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Chen Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
18
|
Li M, Xu Y, Liu T, Li Y, Ling Y, Tang H. Preparation and Thermoresponsive Properties of UCST-Type Polypeptide Bearing p
-Tolyl Pendants and 3-Methyl-1,2,3-triazolium Linkages in Methanol or Ethanol/Water Solvent Mixtures. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minjie Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yanzhi Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Tingting Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yin Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
19
|
Preparation and thermoresponsive properties of UCST-type glycopolypeptide bearing mannose pendants and 3-methyl-1,2,3-triazolium linkages in ethanol or ethanol/water solvent mixtures. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
|
21
|
Ma L, Wang G, Sun S, Wu P. The influence of a thermoresponsive polymer on the microdynamic phase transition mechanisms of distinctly structured thermoresponsive ionic liquids. Phys Chem Chem Phys 2017; 19:22263-22271. [DOI: 10.1039/c7cp03602g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of a ternary solution involving a thermoresponsive polymer, a thermoresponsive ionic liquid (IL), and a solvent will not only help with interpreting their distinct phase transition behavior, but also promote the development of novel thermoresponsive systems.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
| | - Ge Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
| | - Shengtong Sun
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
22
|
Qin L, Wang B, Zhang Y, Chen L, Gao G. Anion exchange: a novel way of preparing hierarchical porous structure in poly(ionic liquid)s. Chem Commun (Camb) 2017; 53:3785-3788. [DOI: 10.1039/c6cc10158e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The exchange of bulky salicylate and its dimers/clusters in PILs by other smaller anions increased specific surface area and fabricated a hierarchical porous structure.
Collapse
Affiliation(s)
- Li Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Binshen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Yongya Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Li Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| |
Collapse
|
23
|
Chen F, Ren Y, Guo J, Yan F. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows. Chem Commun (Camb) 2017; 53:1595-1598. [DOI: 10.1039/c6cc08924k] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart window system shows both tunable transparency and electrochromic properties.
Collapse
Affiliation(s)
- Fei Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yongyuan Ren
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
24
|
Ge C, Liu S, Liang C, Ling Y, Tang H. Synthesis and UCST-type phase behavior of α-helical polypeptides with Y-shaped and imidazolium pendants. Polym Chem 2016. [DOI: 10.1039/c6py01287f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UCST-type thermoresponsive polypeptides with Y-shaped and ionic liquid pendants were synthesized by a multi-step post-polymerization method.
Collapse
Affiliation(s)
- Chenglong Ge
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Sheng Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Ce Liang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| |
Collapse
|
25
|
Kohno Y, Gin DL, Noble RD, Ohno H. A thermoresponsive poly(ionic liquid) membrane enables concentration of proteins from aqueous media. Chem Commun (Camb) 2016; 52:7497-500. [DOI: 10.1039/c6cc02703b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of poly(ionic liquid) membrane, which shows switchable hydrated states via lower critical solution temperature-type phase behaviour, enables concentration of some water-soluble proteins from aqueous media.
Collapse
Affiliation(s)
- Yuki Kohno
- Dept. of Biotechnology
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
- Functional Ionic Liquid Laboratories
| | - Douglas L. Gin
- Dept. of Chemical & Biological Engineering
- University of Colorado
- Boulder
- USA
- Dept. of Chemistry & Biochemistry
| | - Richard D. Noble
- Dept. of Chemical & Biological Engineering
- University of Colorado
- Boulder
- USA
| | - Hiroyuki Ohno
- Dept. of Biotechnology
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
- Functional Ionic Liquid Laboratories
| |
Collapse
|