1
|
Anderson AM, Manet I, Malanga M, Clemens DM, Sadrerafi K, Piñeiro Á, García-Fandiño R, O'Connor MS. Addressing the complexities in measuring cyclodextrin-sterol binding constants: A multidimensional study. Carbohydr Polym 2024; 323:121360. [PMID: 37940263 DOI: 10.1016/j.carbpol.2023.121360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 11/10/2023]
Abstract
A class of cyclodextrin (CD) dimers has emerged as a potential new treatment for atherosclerosis; they work by forming strong, soluble inclusion complexes with oxysterols, allowing the body to reduce and heal arterial plaques. However, characterizing the interactions between CD dimers and oxysterols presents formidable challenges due to low sterol solubility, the synthesis of modified CDs resulting in varying number and position of molecular substitutions, and the diversity of interaction mechanisms. To address these challenges and illuminate the nuances of CD-sterol interactions, we have used multiple orthogonal approaches for a comprehensive characterization. Results obtained from three independent techniques - metadynamics simulations, competitive isothermal titration calorimetry, and circular dichroism - to quantify CD-sterol binding are presented. The objective of this study is to obtain the binding constants and gain insights into the intricate nature of the system, while accounting for the advantages and limitations of each method. Notably, our findings demonstrate ∼1000× stronger affinity of the CD dimer for 7-ketocholesterol in comparison to cholesterol for the 1:1 complex in direct binding assays. These methodologies and findings not only enhance our understanding of CD dimer-sterol interactions, but could also be generally applicable to prediction and quantification of other challenging host-guest complex systems.
Collapse
Affiliation(s)
- Amelia M Anderson
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA; Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna 40129, Italy
| | - Milo Malanga
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary; Cyclolab Cyclodextrin Research and Development Ltd., Budapest, Illatos út 7 1097, Hungary
| | | | | | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | | |
Collapse
|
2
|
Puglisi A, Bognanni N, Vecchio G, Bayir E, van Oostrum P, Shepherd D, Platt F, Reimhult E. Grafting of Cyclodextrin to Theranostic Nanoparticles Improves Blood-Brain Barrier Model Crossing. Biomolecules 2023; 13:573. [PMID: 36979508 PMCID: PMC10046162 DOI: 10.3390/biom13030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Core-shell superparamagnetic iron oxide nanoparticles hold great promise as a theranostic platform in biological systems. Herein, we report the biological effect of multifunctional cyclodextrin-appended SPIONs (CySPION) in mutant Npc1-deficient CHO cells compared to their wild type counterparts. CySPIONs show negligible cytotoxicity while they are strongly endocytosed and localized in the lysosomal compartment. Through their bespoke pH-sensitive chemistry, these nanoparticles release appended monomeric cyclodextrins to mobilize over-accumulated cholesterol and eject it outside the cells. CySPIONs show a high rate of transport across blood-brain barrier models, indicating their promise as a therapeutic approach for cholesterol-impaired diseases affecting the brain.
Collapse
Affiliation(s)
- Antonino Puglisi
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Noemi Bognanni
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, 95125 Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, 95125 Catania, Italy
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir 35100, Turkey
| | - Peter van Oostrum
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
3
|
Bognanni N, Viale M, La Piana L, Strano S, Gangemi R, Lombardo C, Cambria MT, Vecchio G. Hyaluronan-Cyclodextrin Conjugates as Doxorubicin Delivery Systems. Pharmaceutics 2023; 15:374. [PMID: 36839696 PMCID: PMC9963997 DOI: 10.3390/pharmaceutics15020374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In the last years, nanoparticles based on cyclodextrins have been widely investigated for the delivery of anticancer drugs. In this work, we synthesized nanoparticles with a hyaluronic acid backbone functionalized with cyclodextrins under green conditions. We functionalized hyaluronic acid with two different molecular weights (about 11 kDa and 45 kDa) to compare their behavior as doxorubicin delivery systems. We found that the new hyaluronan-cyclodextrin conjugates increased the water solubility of doxorubicin. Moreover, we tested the antiproliferative activity of doxorubicin in the presence of the new cyclodextrin polymers in SK-N-SH and SK-N-SH-PMA (over-expressing CD44 receptor) cancer cells. We found that hyaluronan-cyclodextrin conjugates improved the uptake and antiproliferative activity of doxorubicin in the SK-N-SH-PMA compared to the SK-N-SH cell line at the ratio 8/1 doxorubicin/polymer. Notably, the system based on hyaluronan (45 kDa) was more effective as a drug carrier and significantly reduced the IC50 value of doxorubicin by about 56%. We also found that hyaluronic acid polymers determined an improved antiproliferative activity of doxorubicin (IC50 values are on average reduced by about 70% of free DOXO) in both cell lines at the ratio 16/1 doxorubicin/polymer.
Collapse
Affiliation(s)
- Noemi Bognanni
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luana La Piana
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Strano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Gangemi
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Cinzia Lombardo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
5
|
Effects of Hydroxypropyl-Beta-Cyclodextrin on Cultured Brain Endothelial Cells. Molecules 2022; 27:molecules27227738. [PMID: 36431844 PMCID: PMC9694004 DOI: 10.3390/molecules27227738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the rare cholesterol and lipid storage disorder Niemann-Pick disease type C opened new perspectives in the development of an efficient therapy. Even if the systemic administration of HPBCD was found to be effective, its low permeability across the blood-brain barrier (BBB) limited the positive neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial cells have not been investigated in detail. In this study, the cytotoxicity, permeability, and cellular internalization of HPBCD on primary rat and immortalized human (hCMEC/D3) brain capillary endothelial cells were investigated. HPBCD shows no cytotoxicity on endothelial cells up to 100 µM, measured by impedance kinetics. Using a fluorescent derivative of HPBCD (FITC-HPBCD) the permeability measurements reveal that on an in vitro triple co-culture BBB model, FITC-HPBCD has low permeability, 0.50 × 10-6 cm/s, while on hCMEC/D3 cell layers, the permeability is higher, 1.86 × 10-5 cm/s. FITC-HPBCD enters brain capillary endothelial cells, is detected in cytoplasmic vesicles and rarely localized in lysosomes. The cellular internalization of HPBCD at the BBB can help to develop new strategies for improved HPBCD effects after systemic administration.
Collapse
|
6
|
Zhu H, Tamura A, Zhang S, Terauchi M, Yoda T, Yui N. Mitigating RANKL-induced cholesterol overload in macrophages with β-cyclodextrin-threaded polyrotaxanes suppresses osteoclastogenesis. Biomater Sci 2022; 10:5230-5242. [PMID: 35904082 DOI: 10.1039/d2bm00833e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free cholesterol acts as an endogenous agonist for estrogen-related receptor α (ERRα), a nuclear receptor that regulates osteoclastogenesis. Because stimulation of macrophages with receptor activator of nuclear factor κB ligand (RANKL) induces an overload of free cholesterol and activates ERRα, we hypothesized that direct removal of cellular cholesterol would suppress osteoclastogenesis. In this study, the effect of 2-hydroxypropyl β-cyclodextrin (HP-β-CD), a highly water-soluble cyclic glucopyranose, and β-CD-threaded polyrotaxanes (PRXs), supramolecular polymers designed to release threaded β-CDs in acidic lysosomes, on RANKL-induced cholesterol overload and osteoclast differentiation of murine macrophage-like RAW264.7 cells were investigated. PRXs suppressed RANKL-induced cholesterol overload. Additionally, RANKL-induced osteoclast differentiation of RAW264.7 cells was inhibited by PRXs. In contrast, HP-β-CD did not reduce cholesterol levels or inhibit osteoclast differentiation in RAW264.7 cells. Gene expression analysis of osteoclast markers suggested that PRXs suppress only the early stage of osteoclast differentiation, as PRXs cannot be internalized into multinucleated osteoclasts. However, modification of PRXs with cell-penetrating peptides facilitated their cellular uptake into multinucleated osteoclasts and inhibited osteoclast maturation. Thus, PRXs are promising candidates for inhibiting osteoclast differentiation by suppressing cholesterol overload and may be useful for treating osteoporosis or other bone defects caused by the overactivity of osteoclasts.
Collapse
Affiliation(s)
- Hongfei Zhu
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
7
|
Agnes M, Pancani E, Malanga M, Fenyvesi E, Manet I. Implementation of Water-Soluble Cyclodextrin-Based Polymers in Biomedical Applications: How Far are we? Macromol Biosci 2022; 22:e2200090. [PMID: 35452159 DOI: 10.1002/mabi.202200090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Cyclodextrin-based polymers can be prepared starting from the naturally occurring monomers following green and low-cost procedures. They can be selectively derivatized pre- or post-polymerization allowing to fine-tune functionalities of ad hoc customized polymers. Preparation nowadays has reached the 100 g scale thanks also to the interest of industries in these extremely versatile compounds. During the last 15 years these macromolecules have been the object of intense investigations in view of possible biomedical applications as the ultimate goal and large amounts of scientific data are now available. Compared to their monomeric models, already used in the formulation of various therapeutic agents, they display superior behavior in terms of their solubility in water and solubilizing power towards drugs incompatible with biological fluids. Moreover, they allow the combination of more than one type of therapeutic agent in the polymeric system. In this review we provide a complete state-of-the-art on the knowledge and potentialities of water-soluble cyclodextrin-based polymers as therapeutic agents as well as carrier systems for different types of therapeutics to implement combination therapy. Finally, we give a perspective on their assets for innovation in disease treatment as well as their limits that still need to be addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Agnes
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| | - Elisabetta Pancani
- Advanced Accelerator Applications, A Novartis Company, via Ribes 5, Ivrea, 10010, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
8
|
Puglisi A, Bassini S, Reimhult E. Cyclodextrin-Appended Superparamagnetic Iron Oxide Nanoparticles as Cholesterol-Mopping Agents. Front Chem 2021; 9:795598. [PMID: 34869239 PMCID: PMC8636776 DOI: 10.3389/fchem.2021.795598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cholesterol plays a crucial role in major cardiovascular and neurodegenerative diseases, including Alzheimer's disease and rare genetic disorders showing altered cholesterol metabolism. Cyclodextrins (CDs) have shown promising therapeutic efficacy based on their capacity to sequester and mobilise cholesterol. However, the administration of monomeric CDs suffers from several drawbacks due to their lack of specificity and poor pharmacokinetics. We present core-shell superparamagnetic iron oxide nanoparticles (SPIONs) functionalised with CDs appended to poly (2-methyl-2-oxazoline) polymers grafted in a dense brush to the iron oxide core. The CD-decorated nanoparticles (CySPIONs) are designed so that the macrocycle is specifically cleaved off the nanoparticle's shell at a slightly acidic pH. In the intended use, free monomeric CDs will then mobilise cholesterol out of the lysosome to the cytosol and beyond through the formation of an inclusion complex. Hence, its suitability as a therapeutic platform to remove cholesterol in the lysosomal compartment. Synthesis and full characterization of the polymer as well as of the core-shell SPION are presented. Cholesterol-binding activity is shown through an enzymatic assay.
Collapse
Affiliation(s)
- Antonino Puglisi
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Simone Bassini
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Life Sciences Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Erik Reimhult
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
9
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
11
|
Lorenzo-Veiga B, Alvarez-Lorenzo C, Loftsson T, Sigurdsson HH. Age-related ocular conditions: Current treatments and role of cyclodextrin-based nanotherapies. Int J Pharm 2021; 603:120707. [PMID: 33991594 DOI: 10.1016/j.ijpharm.2021.120707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
Age-related eye disorders are chronic diseases that affect millions of people worldwide. They cause visual impairment and, in some cases, irreversible blindness. Drug targeting to the retina is still a challenge due to the difficulties with drug distribution, crossing eye barriers, and reaching intraocular tissues in an effective therapeutic concentration. Although intravitreal injections can directly deliver drugs to the posterior segment of the eye, it remains an invasive technique and leads to several side effects. Conventional formulations such as emulsions, suspensions, or ointments have been related to frequent instillation and inability to reach intraocular tissues. New drug delivery systems and medical devices have also been designed. Nevertheless, these treatments are not always effective and sometimes require the presence of a specialist for the administration of the dose. Therefore, treatments for age-related ocular diseases remain as one of the major unmet clinical needs to manage these widespread eye conditions. Nanotechnology may become the adequate tool for developing effective and non-invasive therapies suitable for self-administration. In this review, we discuss emerging therapeutic options based on nanoengineering of cyclodextrin nanocarriers for the treatment of age-related eye disorders, including their pathophysiology, pharmacological options, and feasibility of clinical translation.
Collapse
Affiliation(s)
- Blanca Lorenzo-Veiga
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D-Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Hakon Hrafn Sigurdsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
12
|
Anderson AM, Kirtadze T, Malanga M, Dinh D, Barnes C, Campo A, Clemens DM, Garcia-Fandiño R, Piñeiro Á, O'Connor MS. Cyclodextrin dimers: A versatile approach to optimizing encapsulation and their application to therapeutic extraction of toxic oxysterols. Int J Pharm 2021; 606:120522. [PMID: 33839224 DOI: 10.1016/j.ijpharm.2021.120522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
We have developed a novel class of specifically engineered, dimerized cyclodextrin (CD) nanostructures for the encapsulation of toxic biomolecules such as 7-ketocholesterol (7KC). 7KC accumulates over time and causes dysfunction in many cell types, linking it to several age-related diseases including atherosclerosis and age-related macular degeneration (AMD). Presently, treatments for these diseases are invasive, expensive, and show limited benefits. CDs are cyclic glucose oligomers utilized to capture small, hydrophobic molecules. Here, a combination of in silico, in vitro, and ex vivo methods is used to implement a synergistic rational drug design strategy for developing CDs to remove atherogenic 7KC from cells and tissues. Mechanisms by which CDs encapsulate sterols are discussed, and we conclude that covalently linked head-to-head dimers of βCDs have substantially improved affinity for 7KC compared to monomers. We find that inclusion complexes can be stabilized or destabilized in ways that allow the design of CD dimers with increased 7KC selectivity while maintaining an excellent safety profile. These CD dimers are being developed as therapeutics to treat atherosclerosis and other debilitating diseases of aging.
Collapse
Affiliation(s)
- Amelia M Anderson
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA; SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, USA
| | - Tamari Kirtadze
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA
| | - Milo Malanga
- Cyclolab Cyclodextrin Research and Development Ltd., Budapest, Illatos út 7 1097, Hungary
| | - Darren Dinh
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA
| | - Carolyn Barnes
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, USA
| | - Angielyn Campo
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, USA
| | - Daniel M Clemens
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA
| | - Rebeca Garcia-Fandiño
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, 15782 Santiago de Compostela (A Coruña), Spain; Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, 15782 Santiago de Compostela (A Coruña), Spain; Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Spain
| | - Matthew S O'Connor
- Underdog Pharmaceuticals Inc., 110 Pioneer Way, Suite J, Mountain View, CA 94041, USA; SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, USA.
| |
Collapse
|
13
|
Carradori D, Chen H, Werner B, Shah AS, Leonardi C, Usuelli M, Mezzenga R, Platt F, Leroux JC. Investigating the Mechanism of Cyclodextrins in the Treatment of Niemann-Pick Disease Type C Using Crosslinked 2-Hydroxypropyl-β-cyclodextrin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004735. [PMID: 33079457 DOI: 10.1002/smll.202004735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Niemann-Pick disease type C (NPC) is a severe disorder that is characterized by intracellular transport abnormalities leading to cytoplasmic accumulation of lipids such as cholesterol and sphingolipids. The compound 2-hydroxypropyl-β-cyclodextrin (HPβCD) has high cholesterol complexation capacity and is currently under clinical investigation for the NPC treatment. However, due to its short blood half-life, high doses are required to produce a therapeutic effect. In this work, stable polymerized HPβCD is generated to investigate their in vitro mechanisms of action and in vivo effects. Crosslinked CDs (8-312 kDa) display a ninefold greater cholesterol complexation capacity than monomeric HPβCD but are taken up to a lower extent, resulting in an overall comparable in vitro effect. In vivo, the 19.3 kDa HPβCD exhibits a longer half-life than the monomeric HPβCD but it does not increase the life span of Npc1 mice, possibly due to reduced brain penetration. This is circumvented by the application of magnetic resonance imaging-guided low intensity-pulsed focused ultrasound (MRIg-FUS), which increases the brain penetration of the CD. In conclusion, stable polymerized HPβCDs can elucidate CDs' mechanism of action while the use of MRIg-FUS warrants further investigation, as it may be key to harnessing CDs full therapeutic potential in the NPC treatment.
Collapse
Affiliation(s)
- Dario Carradori
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8049, Switzerland
| | - Hsintsung Chen
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, Zürich, 8032, Switzerland
| | - Aagam S Shah
- Institute of Neuroinformatics, ETH Zürich and University of Zürich, Zürich, 8057, Switzerland
| | - Chiara Leonardi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8049, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8049, Switzerland
| |
Collapse
|
14
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|
15
|
Zheng YQ, Jin MF, Suo GH, Wu YJ, Sun YX, Ni H. Proteomics for Studying the Effects of Ketogenic Diet Against Lithium Chloride/Pilocarpine Induced Epilepsy in Rats. Front Neurosci 2020; 14:562853. [PMID: 33132826 PMCID: PMC7550537 DOI: 10.3389/fnins.2020.562853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ketogenic diet (KD) demonstrates antiepileptogenic and neuroprotective efficacy, but the precise mechanisms are unclear. Here we explored the mechanism through systematic proteomics analysis of the lithium chloride-pilocarpine rat model. Sprague-Dawley rats (postnatal day 21, P21) were randomly divided into control (Ctr), seizure (SE), and KD treatment after seizure (SE + KD) groups. Tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectroscopy (LC-MS/MS) were utilized to assess changes in protein abundance in the hippocampus. A total of 5,564 proteins were identified, of which 110 showed a significant change in abundance between the SE and Ctr groups (18 upregulated and 92 downregulated), 278 between SE + KD and SE groups (218 upregulated and 60 downregulated), and 180 between Ctr and SE + KD groups (121 upregulated and 59 downregulated) (all p < 0.05). Seventy-nine proteins showing a significant change in abundance between SE and Ctr groups were reciprocally regulated in the SD + KD group compared to the SE group (i.e., the seizure-induced change was reversed by KD). Of these, five (dystrobrevin, centromere protein V, oxysterol-binding protein, tetraspanin-2, and progesterone receptor membrane component 2) were verified by parallel reaction monitoring. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that proteins of the synaptic vesicle cycle pathway were enriched both among proteins differing in abundance between SE and Ctr groups as well as between SE + KD and SE groups. This comprehensive proteomics analyze of KD-treated epilepsy by quantitative proteomics revealed novel molecular mechanisms of KD antiepileptogenic efficacy and potential treatment targets.
Collapse
Affiliation(s)
- Yu-Qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei-Fang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gui-Hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-Jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Recent advances in the treatment of Niemann pick disease type C: A mini-review. Int J Pharm 2020; 584:119440. [PMID: 32428546 DOI: 10.1016/j.ijpharm.2020.119440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Niemann Pick disease Type C (NPC) is a recessive rare disease caused by the mutation on NPC1 and/or NPC2 genes changing the processing of the Low-density proteins (LDL) resulting in an accumulation of lipids in the cells. Until today there is not a cure, the current treatment is based on palliative affairs to reduce the symptoms and prevent its appearance. Among all the treatments proposed the use of cyclodextrins (CDs), nanocarriers which can complex cholesterol, is one of the most useful alternatives. Indeed, for several years 2-hydroxypropyl-β-CD (HPβ-CD) is approved as orphan drug for FDA and EMA to the treatment. However, different CDs based materials are created each year to improve the cholesterol uptake. This review is focused on the novelty of CD based materials for NPC treatment.
Collapse
|
17
|
Bener S, Puglisi A, Yagci Y. pH‐Responsive Micelle‐Forming Amphiphilic Triblock Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Semira Bener
- Faculty of Science and LettersDepartment of ChemistryIstanbul Technical University Maslak Istanbul 34469 Turkey
| | - Antonino Puglisi
- Faculty of Science and LettersDepartment of ChemistryIstanbul Technical University Maslak Istanbul 34469 Turkey
| | - Yusuf Yagci
- Faculty of Science and LettersDepartment of ChemistryIstanbul Technical University Maslak Istanbul 34469 Turkey
- Centre of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
18
|
Puglisi A, Bayir E, Timur S, Yagci Y. pH-Responsive Polymersome Microparticles as Smart Cyclodextrin-Releasing Agents. Biomacromolecules 2019; 20:4001-4007. [DOI: 10.1021/acs.biomac.9b01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonino Puglisi
- Department of Chemistry, Maslak, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir, 35100, Turkey
| | - Suna Timur
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir, 35100, Turkey
- Faculty of Science, Biochemistry Department, Ege University Bornova, Izmir, 35100, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Maslak, Istanbul Technical University, Istanbul, 34469, Turkey
| |
Collapse
|
19
|
Wang H, Lin C, Yao J, Shi H, Zhang C, Wei Q, Lu Y, Chen Z, Xing G, Cao X. Deletion of OSBPL2 in auditory cells increases cholesterol biosynthesis and drives reactive oxygen species production by inhibiting AMPK activity. Cell Death Dis 2019; 10:627. [PMID: 31427568 PMCID: PMC6700064 DOI: 10.1038/s41419-019-1858-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Oxysterol-binding protein like 2 (OSBPL2) was identified as a novel causal gene for autosomal dominant nonsyndromic hearing loss. However, the pathogenesis of OSBPL2 deficits in ADNSHL was still unclear. The function of OSBPL2 as a lipid-sensing regulator in multiple cellular processes suggested that OSBPL2 might play an important role in the regulation of cholesterol-homeostasis, which was essential for inner ear. In this study the potential roles of OSBPL2 in cholesterol biosynthesis and ROS production were investigated in Osbpl2-KO OC1 cells and osbpl2b-KO zebrafish. RNA-seq-based analysis suggested that OSBPL2 was implicated in cholesterol biosynthesis and AMPK signaling pathway. Furthermore, Osbpl2/osbpl2b-KO resulted in a reduction of AMPK activity and up-regulation of Srebp2/srebp2, Hmgcr/hmgcr and Hmgcs1/hmgcs1, key genes in the sterol biosynthetic pathway and associated with AMPK signaling. In addition, OSBPL2 was also found to interact with ATIC, key activator of AMPK. The levels of total cholesterol and ROS in OC1 cells or zebrafish inner ear were both increased in Osbpl2/osbpl2b-KO mutants and the mitochondrial damage was detected in Osbpl2-KO OC1 cells. This study uncovered the regulatory roles of OSBPL2 in cellular cholesterol biosynthesis and ROS production. These founds might contribute to the deep understanding of the pathogenesis of OSBPL2 mutation in ADNSHL.
Collapse
Affiliation(s)
- Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hairong Shi
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China. .,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
21
|
Dardeer HM. Synthesis and characterization of original [2]rotaxanes including cyclodextrin. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|