1
|
Silva R, Rebelo RC, Paula CTB, Pereira P, Fonseca AC, Serra AC, Coelho JFJ. All-cellulose resin for 3D printing hydrogels via digital light processing (DLP). Int J Biol Macromol 2025; 306:141389. [PMID: 39988146 DOI: 10.1016/j.ijbiomac.2025.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
3D printing has emerged as a transformative technology in sustainable manufacturing, enabling rapid prototyping, minimizing material waste, and reducing the carbon footprint associated with traditional methods. However, their reliance on fossil-based materials limits their broad application. This study presents a novel approach for developing a single-component, fully cellulosic, natural-based resin for 3D printing hydrogels using digital light processing (DLP). Cellulose was dissolved in an aqueous alkali/urea system and modified to obtain photopolymerizable derivatives. Two cellulose sources were used: Avicel® and cellulose pulp obtained from an industrial process. The single-polymer resins produced dimensionally stable, free-standing 3D objects with good resolution and shape fidelity. Despite the low polymer concentration (2.5 and 5 wt%), the cellulose resins exhibited fast curing kinetics, producing hydrogels with good mechanical properties, capable of withstanding compressive stress up to 135 kPa. Additionally, the printed hydrogels absorbed and retained large amounts of water (up to 427 %), while maintaining their shape and integrity in acidic and alkaline media. The hydrogels were stable to hydrolytic degradation, maintained their shape for up to four weeks, and were cytocompatible with fibroblast cells, indicating their potential for biomedical applications.
Collapse
Affiliation(s)
- Rute Silva
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal.
| | - Rafael C Rebelo
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal.
| | - Carlos T B Paula
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal.
| | - Patrícia Pereira
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal.
| | - Ana C Fonseca
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal.
| | - Arménio C Serra
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal.
| | - Jorge F J Coelho
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal.
| |
Collapse
|
2
|
Patadiya J, Kandasubramanian B, Sreeram S, Patil PD, Mujawar R, Indalkar A, Kchaou M, Aldawood FK. Strategic Implementation of Multimaterial Additive Manufacturing: Bridging Research and Real-World Applications. ACS OMEGA 2025; 10:13749-13762. [PMID: 40256510 PMCID: PMC12004142 DOI: 10.1021/acsomega.4c11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
The single-material additive manufacturing revolution has accelerated innovation in the manufacturing field, enabling the combination of multiple materials in one operation using additives of metals, ceramics, and polymers. Although still in its infancy, researchers are adopting this strategy, indicating a shift from research and development to practical applications. By aggregating numerous materials with different properties concurrently, the multimaterial additive manufacturing approach entitles the simplest fabrication of multifunctional systems and devices. A review focuses on the opportunities and challenges presented by the trend toward recent advancements in the multinozzle system. Multinozzle 3D printing has great applications in bioprinting and tissue engineering, electronics integration, and civil/structural engineering. This review highlights the exciting opportunities and challenges that come with it. Additionally, this review showcases the recent advancements in the multinozzle system that have made it a promising solution in this field.
Collapse
Affiliation(s)
- Jigar Patadiya
- Institute
for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Balasubramanian Kandasubramanian
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Sreenivasan Sreeram
- CIPET-Institute
of Petrochemicals Technology (IPT), HIL Colony, Kochi, 683501, Kerala India
| | - Priyanka Deelip Patil
- Department
of Mechanical Engineering, Pimpri Chinchwad
College of Engineering and Research, Ravet, Pune, 412101, Maharashtra India
| | - Rihan Mujawar
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Amol Indalkar
- Department
of Mechanical Engineering, Defence Institute of Advanced Technology
(DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Mohamed Kchaou
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O 001, Bisha 67714, Saudi Arabia
| | - Faisal Khaled Aldawood
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O 001, Bisha 67714, Saudi Arabia
| |
Collapse
|
3
|
Manabe K, Saikawa M, Iwai T, Norikane Y. Durable superhydrophobic surfaces on 3D-Printed structures inspired by beehive architecture. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2481824. [PMID: 40226094 PMCID: PMC11986860 DOI: 10.1080/14686996.2025.2481824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/16/2025] [Indexed: 04/15/2025]
Abstract
This study presents an approach for fabricating durable superhydrophobic surfaces on 3D-printed structures inspired by the architectural design of beehives. Using fused deposition modeling (FDM) 3D printing technology, hexagonal macrostructures were fabricated using polylactic acid (PLA) filament. These structures were designed to protect an inner layer of hydrophobic nanoparticles, which were deposited by a squeegee coating method and immobilized by a photocurable resin. The relationship between hexagonal area size (ranging from 24 to 200 mm2) and the durability of superhydrophobic properties under frictional stress was systematically investigated. Wettability and surface morphology analyses performed before and after the friction tests showed that structures with hexagonal areas between 40 and 80 mm2 retained superhydrophobicity even after 100 friction cycles, while larger hexagonal configurations exhibited diminished performance. To elucidate the underlying mechanisms, a theoretical model based on the Cassie-Baxter equation was developed and compared with experimental values alongside surface observations. This research advances the development of durable and functional superhydrophobic surfaces in 3D-printed materials, with promising implications for industries requiring water-repellent and self-cleaning technologies.
Collapse
Affiliation(s)
- Kengo Manabe
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Makoto Saikawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuhiro Iwai
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Arnold FC, Dönmez DMB, Al-Johani H, Kahveci Ç, Schimmel M, Yilmaz B, Çakmak G. Dimensional stability and fit of additively manufactured removable dies in dental cast resins with different chemical compositions. J Prosthet Dent 2025:S0022-3913(25)00191-X. [PMID: 40102164 DOI: 10.1016/j.prosdent.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
STATEMENT OF PROBLEM Additive manufacturing has enabled the fabrication of removable dies in various resins with different compositions. However, the knowledge on the dimensional stability and fit of removable dies fabricated with different dental cast resins is lacking. PURPOSE The purpose of this in vitro study was to evaluate the effect of dental cast resin type and storage time on the dimensional stability and fit of AM removable dies throughout a 4-week period. MATERIAL AND METHODS A typodont model with a prepared right first mandibular molar was digitized with an intraoral scanner (IOS) (CEREC Primescan) to generate a standard tessellation language (STL) file. The STL file was imported into a dental design software program to design a removable die with 10-degree shaft taper angle and a hollow partial arch cast with and without the die. The removable die and hollow partial arch cast without the die STLs were used to additively manufacture 48 removable dies (n=16) and 3 hollow casts (n=1) by using a dental cast resin (DentaMODEL) (AM-DM), a bio-based dental cast resin (FotoDent biobased model) (AM-FD), and a nanographene-reinforced dental cast resin (G-Print) (AM-GP). The same IOS was used to digitize each die and when the die was seated into its respective hollow cast 1 day (T0), 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4) after fabrication. All STL files were imported into a metrology-grade 3-dimensional analysis software program (Geomagic Control X). The root mean square (RMS) was used to assess deviations in different die regions (crown, root, base of the root, and overall) over 4 weeks, along with fit evaluation by calculating RMS for the crown portion within the cast and measuring mean distance deviations at 5 points on the die. The generalized linear model analysis and Bonferroni-corrected post hoc tests were used to evaluate the data (α=.05). RESULTS The dimensional stability of the removable dies was affected by the interaction between resin type and die region and by the interaction between the resin type and time point, while the fit of the dies was impacted by the interaction between resin type and time point (P<.001). AM-GP dies mostly had higher crown RMS than AM-FD dies (P<.001), while AM-DM dies had the highest root and base of the root RMS (P≤.027). AM-FD dies had the lowest overall RMS (P≤.038). The base of the root led to the highest RMS for each resin (P<.001). AM-FD dies had lower RMS than AM-GP at T0 and AM-DM at T2, while AM-GP dies had lower RMS than AM-DM at T1 (P≤.010). The RMS values of AM-GP dies were lower at T1 than at T0 and T3 (P<.001). When the fit of the dies was considered, AM-FD dies had the lowest and AM-DM dies had the highest crown portion RMS and point-based deviations at each time point (P<.001). In addition, AM-DM dies' RMS values and deviations were the lowest at T0, while AM-FD dies had the highest point-based deviations at T4 (P≤.034). CONCLUSIONS Within tested regions and time points, AM-FD dies mostly had higher dimensional stability and better fit. Therefore, the crowns to be adjusted on AM-FD dies may require fewer interproximal and occlusal adjustments.
Collapse
Affiliation(s)
- Fiona Cornelia Arnold
- Dissertation student, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dr Mustafa Borga Dönmez
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey; and PhD student, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Hanan Al-Johani
- Assistant Professor, Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Çiğdem Kahveci
- Private practice, Ordu Oral and Dental Health Center, Ordu, Turkey
| | - Martin Schimmel
- Head of Department, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; and External Researcher, Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Burak Yilmaz
- Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio; and Adjunct Professor,Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Ankara, Turkey
| | - Gülce Çakmak
- Senior Research Associate, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Millik SC, Sadaba N, Hilburg SL, Sanchez-Rexach E, Zhang M, Yu S, Vass AF, Pozzo LD, Nelson A. 3D-Printed Protein-Based Bioplastics with Tunable Mechanical Properties Using Glycerol or Hyperbranched Poly(glycerol)s as Plasticizers. Biomacromolecules 2025; 26:1725-1736. [PMID: 39917884 DOI: 10.1021/acs.biomac.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Protein-based materials can be engineered to derive utility from the structures and functions of the incorporated proteins. Modern methods of protein engineering bring promise of unprecedented control over molecular and network design, which will enable new and improved functionalities in materials that incorporate proteins as functional building blocks. For these advantages to be fully realized, there is a need for robust methods for producing protein-based networks, as well as methods for tuning their mechanical properties. Light-based 3D-printing techniques afford high-resolution fabrication capability with unparalleled design freedom in an inexpensive and decentralized capacity. This work features 3D-printed serum albumin-based bioplastics with mechanical properties modulated through the incorporation of glycerol or hyperbranched poly(glycerol)s (HPGs) as plasticizers. These materials capitalize upon important features of serum albumin, including its low intrinsic viscosity, high aqueous solubility, and relatively low cost. The incorporation of glycerol or HPGs of different sizes resulted in softer and more ductile bioplastics than those obtained natively without additives. These bioplastics showed shape-memory behavior and could be used to fabricate functional objects. These materials are accessible, possess minimal chemical hazards, and can be used for fabricating rigid and strong as well as soft and ductile parts using inexpensive commercial 3D printers.
Collapse
Affiliation(s)
- S Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Eva Sanchez-Rexach
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Meijing Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Siwei Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexander F Vass
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Khalil AS, Zaher AR. Effect of printing orientation and resin thickness on flexural strength of direct 3D-printed aligners. BMC Oral Health 2025; 25:238. [PMID: 39953431 PMCID: PMC11829555 DOI: 10.1186/s12903-025-05556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Direct 3D-printed aligners served as a breakthrough era in clear aligner fabrication. Yet, there is a scarcity of studies evaluating their mechanical properties. The aim of this study was to compare direct 3D-printed aligners derived from different printing orientations (vertically, horizontally, 30, and 45 degrees) and thickness (0.5 and 0.7 mm) in terms of flexural strength. METHODS This laboratory-based comparative study utilized 96 aligner flat specimens. They were designed, supported, and directly printed using shape memory resin, then randomly allocated into 8 groups. Group 1 (A, B, C, and D): 0.5 mm thickness printed vertically, horizontally, 30, and 45 degrees, respectively. Group 2 (A, B, C, and D): 0.7 mm thickness printed vertically, horizontally, 30, and 45 degrees, respectively. Each aligner specimen was placed on a custom-made bending jig, with the whole setup enclosed in a temperature-controlled water bath. Three-point bending test was performed using a universal testing machine, and the resulting force was recorded. Statistical analysis was performed using Student t-test for resin thickness comparison and one-way ANOVA with Tukey post-hoc test for comparison between printing orientations. Statistical significance was set at p ≤ 0.05. RESULTS No statistically significant differences were found between vertically, horizontally, 30, and 45 degrees printed aligner specimens. Aligner specimens of 0.7 mm thickness demonstrated significantly higher flexural strength values compared to those of 0.5 mm thickness. CONCLUSIONS Printing orientation did not alter the flexural strength of the direct 3D-printed aligner flat specimens, regardless of whether they were printed vertically, horizontally, or at angles of 30 or 45 degrees relative to the printer build plate. Additionally, specimens with a thickness of 0.7 mm exhibited higher bending resistance compared to those with a thickness of 0.5 mm.
Collapse
Affiliation(s)
- Ahmed S Khalil
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Champollion St, P.O. Box: 21521, Alexandria, Egypt.
| | - Abbas R Zaher
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Champollion St, P.O. Box: 21521, Alexandria, Egypt
| |
Collapse
|
7
|
Beghetto V. Strategies for the Transformation of Waste Cooking Oils into High-Value Products: A Critical Review. Polymers (Basel) 2025; 17:368. [PMID: 39940569 PMCID: PMC11819812 DOI: 10.3390/polym17030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Waste cooking oils (WCOs) are generated globally from households, the hospitality industry, and other sectors. Presently, WCOs are mainly employed as feedstock for biodiesel and energy production, strongly depending on the availability of WCOs, which are often imported from other countries. The objective of this review is to give an overall comprehensive panorama of the impacts, regulations, and restrictions affecting WCOs, and their possible uses for producing high-value products, such as bio lubricants, bio surfactants, polymer additives, road and construction additives, and bio solvents. Interestingly, many reviews are reported in the literature that address the use of WCOs, but a comprehensive review of the topic is missing. Published studies, industry reports, and regulatory documents were examined to identify trends, challenges, production statistics, environmental impacts, current regulations, and uses for high-value polymer production. The data collected show that WCOs hold immense potential as renewable resources for sustainable industrial applications that are in line with global carbon neutrality goals and circular economy principles. However, achieving this shift requires addressing regulatory gaps, enhancing collection systems, and optimizing conversion technologies. This comprehensive review underlines the need for collaborative efforts among policymakers, industry stakeholders, and researchers to maximize the potential of WCOs and contribute to sustainable development.
Collapse
Affiliation(s)
- Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; ; Tel.: +39-041-2348928
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
- Consorzio Interuniversitario per le Reattività Chimiche e La Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
8
|
Sala D, Richert M. Perspectives of Additive Manufacturing in 5.0 Industry. MATERIALS (BASEL, SWITZERLAND) 2025; 18:429. [PMID: 39859900 PMCID: PMC11767052 DOI: 10.3390/ma18020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Additive manufacturing is a technology that creates objects by adding successive layers of material. The 3D method is an alternative to subtractive production, in which production involves removing material from the initial solid. 3D printing requires the initial design of the manufactured object using computer design, for example, one of the following programs: CAD, 3DCrafter, Wings 3D, Cinema 3, Blender, 3ds Max, Autodesk Inventor, and others. It is also possible to scan an existing object to be manufactured using 3D printing technology. An important element of Industry 5.0 is 3D printing technology, due to its favorable environmental orientation and production flexibility. Three-dimensional printing technology uses recycled materials such as powders. Therefore, it can be part of a circular economy, contributing to environmental protection. Additive manufacturing not only complements existing technologies by enabling rapid prototyping but also plays a fundamental role in sectors such as dentistry and medicine. This article consists of seven chapters relating to various aspects of 3D printing technology in the context of the assumptions and challenges of Industry 5.0. It examines the environmental impact and recycling potential of 3D printing technology, illustrates the economic integration of this technology within various industries, and discusses its future development prospects.
Collapse
Affiliation(s)
| | - Maria Richert
- Management Faculty, AGH University, Gramatyka 10 Str., 30-067 Kraków, Poland;
| |
Collapse
|
9
|
Hu Y, Luo Z, Bao Y. Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications. Biomacromolecules 2025; 26:85-117. [PMID: 39625843 PMCID: PMC11733939 DOI: 10.1021/acs.biomac.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/14/2025]
Abstract
Since its invention in the 1980s, photopolymerization-based 3D printing has attracted significant attention for its capability to fabricate complex microstructures with high precision, by leveraging light patterning to initiate polymerization and cross-linking in liquid resin materials. Such precision makes it particularly suitable for biomedical applications, in particular, advanced and customized drug delivery systems. This review summarizes the latest advancements in photopolymerization 3D printing technology and the development of biocompatible and/or biodegradable materials that have been used or shown potential in the field of drug delivery. The drug loading methods and release characteristics of the 3D printing drug delivery systems are summarized. Importantly, recent trends in the drug delivery applications based on photopolymerization 3D printing, including oral formulations, microneedles, implantable devices, microrobots and recently emerging systems, are analyzed. In the end, the challenges and opportunities in photopolymerization 3D printing for customized drug delivery are discussed.
Collapse
Affiliation(s)
- Yu Hu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yinyin Bao
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Spessa A, Castiglione F, Vitale A, Bongiovanni R, Dalle Vacche S. Fats and Oils as a Sustainable Source of Photopolymerizable Monomers. Polymers (Basel) 2024; 16:3570. [PMID: 39771422 PMCID: PMC11679809 DOI: 10.3390/polym16243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Bio-derived monomers and biobased building blocks obtained from natural sources, e.g., fats and oils, are attracting increasing attention mainly due to sustainability concerns. Due to their features, renewable feedstocks are an excellent alternative to petroleum-based raw materials to shift towards greener chemistry, especially when coupled with energy-efficient processes like photopolymerization. In this review, we illustrate the recent research outcomes in the field of photocurable biobased monomers, showing the advantages of using biobased chemicals for the synthesis of photocurable monomers and the potential of naturally derived building blocks in photocuring reactions.
Collapse
Affiliation(s)
- Alberto Spessa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.S.); (A.V.); (R.B.)
| | - Franca Castiglione
- Departiment of Chemistry Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy;
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.S.); (A.V.); (R.B.)
- INSTM—Politecnico di Torino Research Unit, 50121 Firenze, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.S.); (A.V.); (R.B.)
- INSTM—Politecnico di Torino Research Unit, 50121 Firenze, Italy
| | - Sara Dalle Vacche
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.S.); (A.V.); (R.B.)
- INSTM—Politecnico di Torino Research Unit, 50121 Firenze, Italy
| |
Collapse
|
11
|
Nguyen LT, Du Prez FE. Direct restoration of photocurable cross-linkers for repeated light-based 3D printing of covalent adaptable networks. MATERIALS HORIZONS 2024; 11:6408-6415. [PMID: 39376135 PMCID: PMC11459227 DOI: 10.1039/d4mh00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Light-based processing of thermosets has gained increasing attention because of its broad application field including its use in digital light processing (DLP) 3D printing. This technique offers efficient design and fabrication of complex structures but typically results in non-recyclable thermoset-based products. To address this issue, we describe here a photocurable, dynamic β-amino ester (BAE) based cross-linker that is not only suitable for DLP printing but can also be chemically degraded via transesterification upon the addition of 2-hydroxyethyl methacrylate (HEMA) as a decross-linker. This conceptually new protocol allows for efficient depolymerization with the direct restoration of curable monomers in a single step without the addition of external catalysts or solvents. By implementing this protocol, we have established a chemical recycling loop for multiple cycles of photo-cross-linking and restoration of cross-linkers, facilitating repeatable DLP 3D printing without generating any waste. The recycled materials exhibit full recovery of thermal properties and Young's modulus while maintaining 75% of their tensile strength for at least three cycles. Simultaneously, the presence of BAE moieties enables the (re)processability of these materials through compression molding.
Collapse
Affiliation(s)
- Loc Tan Nguyen
- A Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Filip E Du Prez
- A Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Pezzana L, Fadlallah S, Giri G, Archimbaud C, Roppolo I, Allais F, Sangermano M. DLP 3D Printing of Levoglucosenone-Based Monomers: Exploiting Thiol-ene Chemistry for Bio-Based Polymeric Resins. CHEMSUSCHEM 2024; 17:e202301828. [PMID: 38837600 PMCID: PMC11587693 DOI: 10.1002/cssc.202301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Additive manufacturing (AM) is a well-established technique that allows for the development of complex geometries and structures with multiple applications. While considered a more environmentally-friendly method than traditional manufacturing, a significant challenge lies in the availability and ease of synthesis of bio-based alternative resins. In our endeavor to valorize biomass, this work proposes the synthesis of new α,ω-dienes derived from cellulose-derived levoglucosenone (LGO). These dienes are not only straightforward to synthesize but also offer a tunable synthesis approach. Specifically, LGO is first converted into diol precursor, which is subsequently esterified using various carboxylic acids (in this case, 3-butenoic, and 4-pentenoic acids) through a straightforward chemical pathway. The resulting monomers were then employed in UV-activated thiol-ene chemistry for digital light process (DLP). A comprehensive study of the UV-curing process was carried out by Design of Experiment (DoE) to evaluate the influence of light intensity and photoinitiator to find the optimal curing conditions. Subsequently, a thorough thermo-mechanical characterization highlighted the influence of the chemical structure on material properties. 3D printing was performed, enabling the fabrication of complex and self-stain structures with remarkable accuracy and precision. Lastly, a chemical degradation study revealed the potential for end-of-use recycling of the bio-based thermosets.
Collapse
Affiliation(s)
- Lorenzo Pezzana
- Dipartimento Scienza e Tecnologia dei Materiali (DISAT)Politecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI)AgroParisTech3 rue des Rouges Terres51110PomacleFrance
| | - German Giri
- URD Agro-Biotechnologies Industrielles (ABI)AgroParisTech3 rue des Rouges Terres51110PomacleFrance
| | - Corentin Archimbaud
- URD Agro-Biotechnologies Industrielles (ABI)AgroParisTech3 rue des Rouges Terres51110PomacleFrance
| | - Ignazio Roppolo
- Dipartimento Scienza e Tecnologia dei Materiali (DISAT)Politecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI)AgroParisTech3 rue des Rouges Terres51110PomacleFrance
| | - Marco Sangermano
- Dipartimento Scienza e Tecnologia dei Materiali (DISAT)Politecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| |
Collapse
|
13
|
Han S, Bobrin VA, Michelas M, Hawker CJ, Boyer C. Sustainable and Recyclable Acrylate Resins for Liquid-Crystal Display 3D Printing Based on Lipoic Acid. ACS Macro Lett 2024; 13:1495-1502. [PMID: 39446026 DOI: 10.1021/acsmacrolett.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The development of renewable vinyl-based photopolymer resins offers a promising solution to reducing the environmental impact associated with 3D printed materials. This study introduces a bifunctional lipoate cross-linker containing a dynamic disulfide bond, which is combined with acrylic monomers (n-butyl acrylate) and conventional photoinitiators to develop photopolymer resins that are compatible with commercial stereolithography 3D printing. The incorporation of disulfide bonds within the polymer network's backbone imparts the 3D printed objects with self-healing capabilities and complete degradability. Remarkably, the degraded resin can be fully recycled and reused for high-resolution reprinting of complex structures while preserving mechanical properties that are comparable to the original material. This proof-of-concept study not only presents a sustainable strategy for advancing acrylate-based 3D printing materials, but also introduces a novel approach for fabricating fully recyclable 3D-printed structures. This method paves the way for reducing the environmental impact while enhancing material reusability, offering significant potential for the development of eco-friendly additive manufacturing.
Collapse
Affiliation(s)
- Shiwei Han
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maxime Michelas
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Craig J Hawker
- Department of Chemistry & Biochemistry and Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052. Australia
| |
Collapse
|
14
|
Nam J, Kim M. Advances in materials and technologies for digital light processing 3D printing. NANO CONVERGENCE 2024; 11:45. [PMID: 39497012 PMCID: PMC11534933 DOI: 10.1186/s40580-024-00452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Digital light processing (DLP) is a projection-based vat photopolymerization 3D printing technique that attracts increasing attention due to its high resolution and accuracy. The projection-based layer-by-layer deposition in DLP uses precise light control to cure photopolymer resin quickly, providing a smooth surface finish due to the uniform layer curing process. Additionally, the extensive material selection in DLP 3D printing, notably including existing photopolymerizable materials, presents a significant advantage compared with other 3D printing techniques with limited material choices. Studies in DLP can be categorized into two main domains: material-level and system-level innovation. Regarding material-level innovations, the development of photocurable resins with tailored rheological, photocuring, mechanical, and functional properties is crucial for expanding the application prospects of DLP technology. In this review, we comprehensively review the state-of-the-art advancements in DLP 3D printing, focusing on material innovations centered on functional materials, particularly various smart materials for 4D printing, in addition to piezoelectric ceramics and their composites with their applications in DLP. Additionally, we discuss the development of recyclable DLP resins to promote sustainable manufacturing practices. The state-of-the-art system-level innovations are also delineated, including recent progress in multi-materials DLP, grayscale DLP, AI-assisted DLP, and other related developments. We also highlight the current challenges and propose potential directions for future development. Exciting areas such as the creation of photocurable materials with stimuli-responsive functionality, ceramic DLP, recyclable DLP, and AI-enhanced DLP are still in their nascent stages. By exploring concepts like AI-assisted DLP recycling technology, the integration of these aspects can unlock significant opportunities for applications driven by DLP technology. Through this review, we aim to stimulate further interest and encourage active collaborations in advancing DLP resin materials and systems, fostering innovations in this dynamic field.
Collapse
Affiliation(s)
- Jisoo Nam
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Miso Kim
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
15
|
Fantoni A, Koch T, Liska R, Baudis S. A Systematic Study on Biobased Epoxy-Alcohol Networks: Highlighting the Advantage of Step-Growth Polyaddition over Chain-Growth Cationic Photopolymerization. Macromol Rapid Commun 2024; 45:e2400323. [PMID: 39207801 DOI: 10.1002/marc.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Vanillyl alcohol has emerged as a widely used building block for the development of biobased monomers. More specifically, the cationic (photo-)polymerization of the respective diglycidyl ether (DGEVA) is known to produce materials of outstanding thermomechanical performance. Generally, chain transfer agents (CTAs) are of interest in cationic resins not only because they lead to more homogeneous polymer networks but also because they strikingly improve the polymerization speed. Herein, the aim is to compare the cationic chain-growth photopolymerization with the thermally initiated anionic step-growth polymerization, with and without the addition of CTAs. Indeed, CTAs lead to faster polymerization reactions as well as the formation of more homogeneous networks, especially in the case of the thermal anionic step-growth polymerization. Resulting from curing above the TG of the respective anionic step-growth polymer, materials with outstanding tensile toughness (>5 MJ cm-3) are obtained that result in the manufacture of potential shape-memory polymers.
Collapse
Affiliation(s)
- Antonella Fantoni
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, Getreidemarkt 9, Vienna, 1060, Austria
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, 1060, Austria
| | - Thomas Koch
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, 1060, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, 1060, Austria
| | - Stefan Baudis
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, Getreidemarkt 9, Vienna, 1060, Austria
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, 1060, Austria
| |
Collapse
|
16
|
Celikci N, Ziba CA, Dolaz M, Tümer M. Comparison of composite resins containing UV light-sensitive chitosan derivatives in stereolithography (SLA)-3D printers. Int J Biol Macromol 2024; 281:136057. [PMID: 39448286 DOI: 10.1016/j.ijbiomac.2024.136057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
This study produced composite resins by combining acrylate, chitosan (CH), carboxymethyl chitosan (CMCH), hydroxypropyl chitosan (HPCH), and hydroxyethyl chitosan (HECH) to create materials suitable for use in 3D stereolithography (SLA) printers. Tripropylene glycol diacrylate (TPGDA), urethane acrylate (UA), and photoinitiator (Diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide (TPO)) were mixed. CH and its derivatives were added separately to the resin to obtain composite resins. The mechanical test results are clear; the optimum TPGDA: UA ratio was 1:1, the cure time was 60 s, and the TPO ratio was 1 %. The optimum viscosity of the resin is 340-350 cP. Hydrophobic/hydrophilic properties of cured composite resins were examined. The addition of CH and its derivatives to the resin caused a decrease in compressive strength. Adding up to 2.5 % CH, CMCH, and HECH to the resin significantly increased the tensile strength of the resin, giving it flexibility. The gel content of cured composite resins was between 97.72 % and 96.11 %. The cured composite resins demonstrated high chemical and solvent resistance to HCl, NaOH, and HF but exhibited limited resistance to toluene and chloroform. The accelerated UV aging test results show that adding CH derivatives to the resin makes the composite resin more prone to photooxidative aging.
Collapse
Affiliation(s)
- Nuran Celikci
- Department of Material Science and Engineering, Institute of Science and Technology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Cengiz Ayhan Ziba
- Department of Chemical Technologies, Afsin Vocational School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Dolaz
- Department of Environmental Engineering, Faculty of Engineering, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic; Department of Environmental Engineering, Faculty of Engineering and Architecture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Tümer
- Chemistry Department, Faculty of Science, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
17
|
Uddin MJ, Economidou SN, Guiraud L, Kazi M, Alanazi FK, Douroumis D. Monoclonal Antibody Delivery Using 3D Printed Biobased Hollow μNe3dle Arrays for the Treatment of Osteoporosis. Mol Pharm 2024; 21:4465-4475. [PMID: 39110837 PMCID: PMC11372832 DOI: 10.1021/acs.molpharmaceut.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Transdermal microneedles have demonstrated promising potential as an alternative to typical drug administration routes for the treatment of various diseases. As microneedles offer lower administration burden with enhanced patient adherence and reduced ecological footprint, there is a need for further exploitation of microneedle devices. One of the main objectives of this work was to initially develop an innovative biobased photocurable resin with high biobased carbon content comprising isobornyl acrylate (IBA) and pentaerythritol tetraacrylate blends (50:50 wt/wt). The optimization of the printing and curing process resulted in μNe3dle arrays with durable mechanical properties and piercing capacity. Another objective of the work was to employ the 3D printed hollow μNe3dles for the treatment of osteoporosis in vivo. The 3D printed μNe3dle arrays were used to administer denosumab (Dmab), a monoclonal antibody, to osteoporotic mice, and the serum concentrations of critical bone minerals were monitored for six months to assess recovery. It was found that the Dmab administered by the 3D printed μNe3dles showed fast in vitro rates and induced an enhanced therapeutic effect in restoring bone-related minerals compared to subcutaneous injections. The findings of this study introduce a novel green approach with a low ecological footprint for 3D printing of biobased μNe3dles, which can be tailored to improve clinical outcomes and patient compliance for chronic diseases.
Collapse
Affiliation(s)
- Md Jasim Uddin
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sophia Nikoletta Economidou
- Medway School of Pharmacy, University of Kent, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Léa Guiraud
- École Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 3 rue Alfred Werner, MULHOUSE Cedex 68 093, France
| | - Mohsin Kazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | - Dennis Douroumis
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
18
|
Vazquez-Martel C, Florido Martins L, Genthner E, Almeida C, Martel Quintana A, Bastmeyer M, Gómez Pinchetti JL, Blasco E. Printing Green: Microalgae-Based Materials for 3D Printing with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402786. [PMID: 38876261 DOI: 10.1002/adma.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. This work presents the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution. Two taxonomically different strains -Odontella aurita (O. aurita, BEA0921B) and Tetraselmis striata (T. striata, BEA1102B)- are identified as suitable microalgae for this purpose. The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) are functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. These findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications.
Collapse
Affiliation(s)
- Clara Vazquez-Martel
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Lilliana Florido Martins
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Elisa Genthner
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Carlos Almeida
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Antera Martel Quintana
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), KIT, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juan Luis Gómez Pinchetti
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Eva Blasco
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
19
|
Diken Türksayar AA, Demirel M, Petersmann S, Spintzyk S, Donmez MB. Positional accuracy of a single implant analog in additively manufactured casts in biobased model resin. J Dent 2024; 146:105037. [PMID: 38703808 DOI: 10.1016/j.jdent.2024.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES To evaluate the positional accuracy of implant analogs in biobased model resin by comparing them to that of implant analogs in model resin casts and conventional analogs in dental stone casts. METHODS Polyvinylsiloxane impressions of a partially edentulous mandibular model with a single implant were made and poured in type IV dental stone. The same model was also digitized with an intraoral scanner and additively manufactured implant casts were fabricated in biobased model resin (FotoDent biobased model) and model resin (FotoDent model 2 beige-opaque) (n = 8). All casts and the model were digitized with a laboratory scanner, and the scan files were imported into a 3-dimensional analysis software (Geomagic Control X). The linear deviations of 2 standardized points on the scan body used during digitization were automatically calculated on x-, y-, and z-axes. Average deviations were used to define precision, and 1-way analysis of variance and Tukey HSD tests were used for statistical analyses (α = 0.05). RESULTS Biobased model resin led to higher deviations than dental stone (all axes, P ≤ 0.031) and model resin (y-axis, P = 0.015). Biobased model resin resulted in the lowest precision of implant analog position (P ≤ 0.049). The difference in the positional accuracy of implant analogs of model resin and stone casts was nonsignificant (P ≥ 0.196). CONCLUSIONS Implant analogs in biobased model resin casts mostly had lower positional accuracy, whereas those in model resin and stone casts had similar positional accuracy. Regardless of the material, analogs deviated more towards mesial, while buccal deviations in additively manufactured casts and lingual deviations in stone casts were more prominent.
Collapse
Affiliation(s)
- Almira Ada Diken Türksayar
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Münir Demirel
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Sandra Petersmann
- Senior Researcher, ADMiRE Research Center, Carinthia University of Applied Sciences, Villach, Austria
| | - Sebastian Spintzyk
- Associate Professor, ADMiRE Research Center, Carinthia University of Applied Sciences, Villach, Austria
| | - Mustafa Borga Donmez
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Istinye University, Istanbul, Turkey; ITI Scholar, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Dalle Vacche S, Molina-Gutiérrez S, Ferraro G, Ladmiral V, Caillol S, Lacroix-Desmazes P, Leterrier Y, Bongiovanni R. Biobased Composites from Eugenol- and Coumarin-Derived Methacrylic Latex and Hemp Nanocellulose: Cross-Linking via [2 + 2] Photocycloaddition and Barrier Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:8741-8751. [PMID: 39534019 PMCID: PMC11552611 DOI: 10.1021/acssuschemeng.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 11/16/2024]
Abstract
A novel-biobased latex was synthesized by redox-initiated emulsion copolymerization of ethoxy dihydroeugenyl methacrylate with 5 wt % of a photosensitive methacrylate containing a coumarin group. A stable copolymer latex having 16 wt % solids content and a particle size of 53 nm was obtained. The copolymer had a T g of 29 °C and was soluble in acetone. Coatings were obtained, and the effect of UVA irradiation was tested: the light-induced cross-linking of the copolymer by [2 + 2] cycloaddition of the coumarin pendant moieties was demonstrated by UV-visible spectroscopy. As a consequence of UVA-induced cross-linking, the copolymer became insoluble in acetone. The copolymer latex was combined with hemp-derived nanocellulose to obtain composite self-standing films by simple mixing in an aqueous medium followed by casting, evaporation of water, and hot pressing. The composite films were also successfully cross-linked by [2 + 2] cycloaddition, with an enhancement of barrier properties. The water vapor transmission rate of the cross-linked composite films with up to 45 wt % nanocellulose was 5 times lower than that of the hemp nanocellulose film, while further addition of nanocellulose increased permeability.
Collapse
Affiliation(s)
- Sara Dalle Vacche
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
- INSTM-Politecnico
di Torino Research Unit, 50121 Firenze, Italy
| | - Samantha Molina-Gutiérrez
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Giuseppe Ferraro
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
| | - Vincent Ladmiral
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sylvain Caillol
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Yves Leterrier
- Laboratory
for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Roberta Bongiovanni
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
- INSTM-Politecnico
di Torino Research Unit, 50121 Firenze, Italy
| |
Collapse
|
21
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Colucci G, Sacchi F, Bondioli F, Messori M. Fully Bio-Based Polymer Composites: Preparation, Characterization, and LCD 3D Printing. Polymers (Basel) 2024; 16:1272. [PMID: 38732741 PMCID: PMC11085923 DOI: 10.3390/polym16091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) and tetrahydrofurfuryl acrylate (THFA). Then, two fillers derived from different industrial wastes, corn (GTF) and wine (WPL-CF) by-products, were added to the AESO-based formulations to develop polymer composites with improved properties. The printability by LCD of the photocurable formulations was widely studied. Bio-based objects with different geometries were realized, showing printing accuracy, layer adhesion, and accurate details. The thermo-mechanical and mechanical properties of the 3D-printed composites were tested by TGA, DMA, and tensile tests. The results revealed that the agro-wastes' addition led to a remarkable increase in the elastic modulus, tensile strength, and glass transition temperature in the glassy state for the systems containing IBOMA and for flexible structures in the rubbery region for systems containing THFA. AESO-based polymers demonstrated tunable properties, varying from rigid to flexible, in the presence of different diluents and biofillers. This finding paves the way for the use of this kind of composite in applications, such as biomedical for the realization of prostheses.
Collapse
Affiliation(s)
- Giovanna Colucci
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (F.B.); (M.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Francesca Sacchi
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (F.B.); (M.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Federica Bondioli
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (F.B.); (M.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Massimo Messori
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (F.B.); (M.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
23
|
Demirel M, Diken Türksayar AA, Petersmann S, Spintzyk S, Donmez MB. Dimensional Stability of Additively Manufactured Dentate Maxillary Diagnostic Casts in Biobased Model Resin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2128. [PMID: 38730934 PMCID: PMC11084616 DOI: 10.3390/ma17092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to evaluate the dimensional stability of maxillary diagnostic casts fabricated from a biobased model resin, which consists of 50% renewable raw materials for sustainable production, a model resin, and stone, over one month. A master maxillary stone cast was digitized with a laboratory scanner to generate a reference file. This master cast was also scanned with an intraoral scanner to additively manufacture casts with a biobased model resin (BAM) and a model resin (AM). Polyvinylsiloxane impressions of the master cast were also made and poured in type III stone (CV) (n = 8). The same laboratory scanner was used to digitize each model one day (T0), 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4) after fabrication. Deviations from the reference file were calculated with an analysis software and analyzed with generalized linear model analysis (α = 0.05). The interaction between the material and the time point affected measured deviations (p < 0.001). Regardless of the time point, CV had the lowest and AM had the highest deviations (p < 0.001). BAM mostly had lower deviations at T0 and mostly had higher deviations at T4 (p ≤ 0.011). AM had the highest deviations at T4 and then at T3, whereas it had the lowest deviations at T0 (p ≤ 0.002). The measured deviations of CV increased after each time point (p < 0.001). BAM casts had deviations within the previously reported clinically acceptable thresholds over one month and had acceptable dimensional stability. Therefore, tested biobased resin may be a viable alternative for the sustainable manufacturing of maxillary diagnostic casts that are to be used clinically.
Collapse
Affiliation(s)
- Münir Demirel
- Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul 34015, Turkey; (M.D.); (A.A.D.T.)
| | - Almira Ada Diken Türksayar
- Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul 34015, Turkey; (M.D.); (A.A.D.T.)
| | - Sandra Petersmann
- ADMiRE Research Center, Carinthia University of Applied Sciences, 9524 Villach, Austria; (S.P.); (S.S.)
| | - Sebastian Spintzyk
- ADMiRE Research Center, Carinthia University of Applied Sciences, 9524 Villach, Austria; (S.P.); (S.S.)
| | - Mustafa Borga Donmez
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Department of Prosthodontics, Faculty of Dentistry, Istinye University, Istanbul 34010, Turkey
| |
Collapse
|
24
|
Machado TO, Stubbs CJ, Chiaradia V, Alraddadi MA, Brandolese A, Worch JC, Dove AP. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024; 629:1069-1074. [PMID: 38750360 PMCID: PMC11136657 DOI: 10.1038/s41586-024-07399-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
The additive manufacturing of photopolymer resins by means of vat photopolymerization enables the rapid fabrication of bespoke 3D-printed parts. Advances in methodology have continually improved resolution and manufacturing speed, yet both the process design and resin technology have remained largely consistent since its inception in the 1980s1. Liquid resin formulations, which are composed of reactive monomers and/or oligomers containing (meth)acrylates and epoxides, rapidly photopolymerize to create crosslinked polymer networks on exposure to a light stimulus in the presence of a photoinitiator2. These resin components are mostly obtained from petroleum feedstocks, although recent progress has been made through the derivatization of renewable biomass3-6 and the introduction of hydrolytically degradable bonds7-9. However, the resulting materials are still akin to conventional crosslinked rubbers and thermosets, thus limiting the recyclability of printed parts. At present, no existing photopolymer resin can be depolymerized and directly re-used in a circular, closed-loop pathway. Here we describe a photopolymer resin platform derived entirely from renewable lipoates that can be 3D-printed into high-resolution parts, efficiently deconstructed and subsequently reprinted in a circular manner. Previous inefficiencies with methods using internal dynamic covalent bonds10-17 to recycle and reprint 3D-printed photopolymers are resolved by exchanging conventional (meth)acrylates for dynamic cyclic disulfide species in lipoates. The lipoate resin platform is highly modular, whereby the composition and network architecture can be tuned to access printed materials with varied thermal and mechanical properties that are comparable to several commercial acrylic resins.
Collapse
Affiliation(s)
- Thiago O Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Connor J Stubbs
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maher A Alraddadi
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arianna Brandolese
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
- Department of Chemistry, Macromolecules Innovation Institute, Blacksburg, VA, USA.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
25
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
26
|
Cazin I, Ocepek M, Kecelj J, Stražar AS, Schlögl S. Synthesis of Bio-Based Polyester Resins for Vat Photopolymerization 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1890. [PMID: 38673246 PMCID: PMC11051430 DOI: 10.3390/ma17081890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Driven by environmental considerations, the scientific community has directed great effort towards the synthesis of new materials derived from renewable resources. However, for photocurable resins, most commercially available building blocks still rely on petroleum-based precursors. Herein, we present a simple synthesis route for bio-based acrylate-modified polyester resins, whose viscosity is sufficiently low for processing them with vat photopolymerization 3D printing. The established synthesis route enables the gradual substitution of fossil-based raw materials with bio-based alternatives. The acid number, color and viscosity of the bio-based acrylic resins are characterized and photocurable formulations are prepared by adding a radical photoinitiator. The photopolymerization kinetics, and thermomechanical and mechanical properties of the photopolymers are investigated as a function of the resin structure and benchmarked against a commercially available petroleum-based counterpart. Finally, the processability of the new bio-based resins via digital light processing 3D printing is demonstrated and test specimens are successfully 3D printed with a resolution in the millimeter range.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700 Leoben, Austria;
| | - Martin Ocepek
- Helios Resins, Količevo 65, 1230 Domžale, Slovenia; (M.O.); (J.K.); (A.S.S.)
| | - Janez Kecelj
- Helios Resins, Količevo 65, 1230 Domžale, Slovenia; (M.O.); (J.K.); (A.S.S.)
| | | | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700 Leoben, Austria;
| |
Collapse
|
27
|
Maraveas C, Kyrtopoulos IV, Arvanitis KG. Evaluation of the Viability of 3D Printing in Recycling Polymers. Polymers (Basel) 2024; 16:1104. [PMID: 38675022 PMCID: PMC11054724 DOI: 10.3390/polym16081104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The increased use of plastics in industrial and agricultural applications has led to high levels of pollution worldwide and is a significant challenge. To address this plastic pollution, conventional methods such as landfills and incineration are used, leading to further challenges such as the generation of greenhouse gas emissions. Therefore, increasing interest has been directed to identifying alternative methods to dispose of plastic waste from agriculture. The novelty of the current research arose from the lack of critical reviews on how 3-Dimensional (3D) printing was adopted for recycling plastics, its application in the production of agricultural plastics, and its specific benefits, disadvantages, and limitations in recycling plastics. The review paper offers novel insights regarding the application of 3D printing methods including Fused Particle Fabrication (FPF), Hot Melt Extrusion (HME), and Fused Deposition Modelling (FDM) to make filaments from plastics. However, the methods were adopted in local recycling setups where only small quantities of the raw materials were considered. Data was collected using a systematic review involving 39 studies. Findings showed that the application of the 3D printing methods led to the generation of agricultural plastics such as Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate (PET), and High-Density Polyethylene (HDPE), which were found to have properties comparable to those of virgin plastic, suggesting the viability of 3D printing in managing plastic pollution. However, limitations were also associated with the 3D printing methods; 3D-printed plastics deteriorated rapidly under Ultraviolet (UV) light and are non-biodegradable, posing further risks of plastic pollution. However, UV stabilization helps reduce plastic deterioration, thus increasing longevity and reducing disposal. Future directions emphasize identifying methods to reduce the deterioration of 3D-printed agricultural plastics and increasing their longevity in addition to UV stability.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (I.V.K.); (K.G.A.)
| | | | | |
Collapse
|
28
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
29
|
Bodor M, Lasagabáster-Latorre A, Arias-Ferreiro G, Dopico-García MS, Abad MJ. Improving the 3D Printability and Mechanical Performance of Biorenewable Soybean Oil-Based Photocurable Resins. Polymers (Basel) 2024; 16:977. [PMID: 38611235 PMCID: PMC11013316 DOI: 10.3390/polym16070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The general requirement of replacing petroleum-derived plastics with renewable resources is particularly challenging for new technologies such as the additive manufacturing of photocurable resins. In this work, the influence of mono- and bifunctional reactive diluents on the printability and performance of resins based on acrylated epoxidized soybean oil (AESO) was explored. Polyethylene glycol di(meth)acrylates of different molecular weights were selected as diluents based on the viscosity and mechanical properties of their binary mixtures with AESO. Ternary mixtures containing 60% AESO, polyethylene glycol diacrylate (PEGDA) and polyethyleneglycol dimethacrylate (PEG200DMA) further improved the mechanical properties, water resistance and printability of the resin. Specifically, the terpolymer AESO/PEG575/PEG200DMA 60/20/20 (wt.%) improved the modulus (16% increase), tensile strength (63% increase) and %deformation at the break (21% increase), with respect to pure AESO. The enhancement of the printability provided by the reactive diluents was proven by Jacobs working curves and the improved accuracy of printed patterns. The proposed formulation, with a biorenewable carbon content of 67%, can be used as the matrix of innovative resins with unrestricted applicability in the electronics and biomedical fields. However, much effort must be done to increase the array of bio-based raw materials.
Collapse
Affiliation(s)
- Marius Bodor
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| | - Aurora Lasagabáster-Latorre
- Dpto Química Orgánica I, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain;
| | - Goretti Arias-Ferreiro
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| | - María Sonia Dopico-García
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| | - María-José Abad
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| |
Collapse
|
30
|
Godinho MR, Mestrinho LA. In-house three-dimensional printing for surgical planning: learning curve from a case series of temporomandibular joint and related disorders. Front Vet Sci 2024; 11:1347107. [PMID: 38379923 PMCID: PMC10876850 DOI: 10.3389/fvets.2024.1347107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Three-dimensional (3D) printed models can improve the understanding of the structural anatomic changes in cases of temporomandibular joint ankylosis and pseudoankylosis leading to closed jaw locking. Their use in pre-surgical planning and intraoperative guidance has been reported, contributing to the predictability and success of these surgery procedures, which can be quite complex, especially in small animal patients. The use and production of 3D tools and models remain challenging and are so far limited to institutions with high (economical and human) resources. This study aims to propose simplified workflows using open-source software to facilitate an in-house 3D printing process. To illustrate this, three cases of temporomandibular joint ankylosis and one of pseudoankylosis were reviewed, where in-house 3D printed models were used for client communication and surgical management. The 3D models were segmented from computed tomography and printed via stereolithography. They were used to support discussion with clients (n = 4), to allow surgeons to pre-surgical plan and practice (n = 4) and for intraoperative guidance during surgery (n = 2). Surgical cutting guides were produced in one case to improve precision and define more accurately osteotomy lines. It is essential to consider the initial time and financial investment required for establishing an in-house 3D printing production, particularly when there is a need to produce biocompatible tools, such as surgical cutting guides. However, efficient and streamlined workflows encourage the integration of this technology, by accelerating the printing process and reducing the steep learning curves, while open-source software enhances accessibility to these resources.
Collapse
Affiliation(s)
- Miguel R. Godinho
- Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Lisa A. Mestrinho
- Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
31
|
Sapkota P, Brockbank P, Aguey-Zinsou KF. 3D Printing to Enable Self-Breathing Fuel Cells. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:68-77. [PMID: 38389672 PMCID: PMC10880644 DOI: 10.1089/3dp.2021.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Fuel cells rely on an effective distribution of the reactant gases and removal of the byproduct, that is, water. In this context, bipolar plates are the critical component for the effective management of these fluids, as these dictate to some extent the overall performance of polymer electrolyte membrane fuel cells (PEMFCs). Better bipolar plates can lead to a significant reduction in size, cost, and weight of fuel cells. Herein, we report on the use of photoresin 3D printing to fabricate alternative bipolar plates for operating self-breathing fuel cell stacks. The resulting stack made of 12 self-breathing PEMFCs achieved a power density of 0.3 W/cm2 under ambient conditions (25°C and 20% relative humidity), which is superior to the performance of previously reported self-breathing cells. The problems associated with hydrogen leaks and water flooding could be resolved by taking advantage of 3D printing to precisely fabricate monoblock shapes. The approach of 3D printing reported in this study demonstrates a new path in fuel cell manufacturing for small and portable applications where an important reduction in size and cost is important.
Collapse
Affiliation(s)
- Prabal Sapkota
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | - Paul Brockbank
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
32
|
Maturi M, Spanu C, Maccaferri E, Locatelli E, Benelli T, Mazzocchetti L, Sambri L, Giorgini L, Franchini MC. (Meth)acrylate-Free Three-Dimensional Printing of Bio-Derived Photocurable Resins with Terpene- and Itaconic Acid-Derived Poly(ester-thioether)s. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:17285-17298. [PMID: 38099084 PMCID: PMC10716902 DOI: 10.1021/acssuschemeng.3c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Vat photopolymerization, a very efficient and precise object manufacturing technique, still strongly relies on the use of acrylate- and methacrylate-based formulations because of their low cost and high reactivity. However, the environmental impact of using fossil fuel-based, volatile, and toxic (meth)acrylic acid derivatives is driving the scientific community toward the development of alternatives that can match the mechanical performance and three-dimensional (3D) printing processability of traditional photocurable mixtures but are made from environmentally friendly building blocks. Herein, itaconic acid is polymerized with polyols derived from naturally occurring terpenes to produce photocurable poly(ester-thioether)s. The formulation of such polymers using itaconic acid-based reactive diluents allows the preparation of a series of (meth)acrylate-free photocurable resins, which can be 3D printed into solid objects. Extensive analysis has been conducted on the properties of photocured polymers including their thermal, thermomechanical, and mechanical characteristics. The findings suggest that these materials exhibit properties comparable to those of traditional alternatives that are created using harmful and toxic blends. Notably, the photocured polymers are composed of biobased constituents ranging from 75 to 90 wt %, which is among the highest values ever recorded for vat photopolymerization applications.
Collapse
Affiliation(s)
- Mirko Maturi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Chiara Spanu
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Emanuele Maccaferri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Erica Locatelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Tiziana Benelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Laura Mazzocchetti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Letizia Sambri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Mauro Comes Franchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
33
|
Cywar RM, Ling C, Clarke RW, Kim DH, Kneucker CM, Salvachúa D, Addison B, Hesse SA, Takacs CJ, Xu S, Demirtas MU, Woodworth SP, Rorrer NA, Johnson CW, Tassone CJ, Allen RD, Chen EYX, Beckham GT. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. SCIENCE ADVANCES 2023; 9:eadi1735. [PMID: 37992173 PMCID: PMC10664982 DOI: 10.1126/sciadv.adi1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.
Collapse
Affiliation(s)
- Robin M. Cywar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Ryan W. Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Colin M. Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sarah A. Hesse
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher J. Takacs
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shu Xu
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Northwestern Argonne Institute of Science and Engineering, 2205 Tech Drive, Suite 1160, Evanston, IL 60208, USA
| | | | - Sean P. Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Christopher J. Tassone
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert D. Allen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| |
Collapse
|
34
|
Lopez de Pariza X, Varela O, Catt SO, Long TE, Blasco E, Sardon H. Recyclable photoresins for light-mediated additive manufacturing towards Loop 3D printing. Nat Commun 2023; 14:5504. [PMID: 37679370 PMCID: PMC10484940 DOI: 10.1038/s41467-023-41267-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Additive manufacturing (AM) of polymeric materials enables the manufacturing of complex structures for a wide range of applications. Among AM methods vat photopolymerization (VP) is desired owing to improved efficiency, excellent surface finish, and printing resolution at the micron-scale. Nevertheless, the major portion of resins available for VP are based on systems with limited or negligible recyclability. Here, we describe an approach that enables the printing of a resin that is amenable to re-printing with retained properties and appearance. To that end, we take advantage of the potential of polythiourethane chemistry, which not only permits the click reaction between polythiols and polyisocyanates in the presence of organic bases, allowing a fast-printing process but also chemical recycling, reshaping, and reparation of the printed structures, paving the way toward the development of truly sustainable recyclable photoprintable resins. We demonstrate that this closed-loop 3D printing process is feasible both at the macroscale and microscale via DLP or DLW, respectively.
Collapse
Affiliation(s)
- Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Oihane Varela
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Samantha O Catt
- Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), 69120, Heidelberg, Germany
- Heidelberg University, Organic Chemistry Institute (OCI), 69120, Heidelberg, Germany
| | - Timothy E Long
- Arizona State University, School of Molecular Science and Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Tempe, AZ, 85281, USA
| | - Eva Blasco
- Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), 69120, Heidelberg, Germany
- Heidelberg University, Organic Chemistry Institute (OCI), 69120, Heidelberg, Germany
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain.
| |
Collapse
|
35
|
Martinelli A, Nitti A, Po R, Pasini D. 3D Printing of Layered Structures of Metal-Ionic Polymers: Recent Progress, Challenges and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5327. [PMID: 37570031 PMCID: PMC10419400 DOI: 10.3390/ma16155327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Layered Structures of Metal Ionic Polymers, or Ionic Polymer-Metal Composites (IPMCs) are formed by a membrane of an ionic electroactive materials flanked by two metal electrodes on both surfaces; they are devices able to change their shape upon application of an electrical external stimulus. This class of materials is used in various fields such as biomedicine, soft robotics, and sensor technology because of their favorable properties (light weight, biocompatibility, fast response to stimulus and good flexibility). With additive manufacturing, actuators can be customized and tailored to specific applications, allowing for the optimization of performance, size, and weight, thus reducing costs and time of fabrication and enhancing functionality and efficiency in various applications. In this review, we present an overview of the newest trend in using different 3D printing techniques to produce electrically responsive IPMC devices.
Collapse
Affiliation(s)
- Angelo Martinelli
- Department of Chemistry, INSTM Research Unit, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| | - Andrea Nitti
- Department of Chemistry, INSTM Research Unit, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Po
- Energies, Renewable Energies and Materials Science Research Center, Donegani Institute, Eni Spa, Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Dario Pasini
- Department of Chemistry, INSTM Research Unit, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
36
|
Mendes-Felipe C, Isusi I, Gómez-Jiménez-Aberasturi O, Prieto-Fernandez S, Ruiz-Rubio L, Sangermano M, Vilas-Vilela JL. One-Step Method for Direct Acrylation of Vegetable Oils: A Biobased Material for 3D Printing. Polymers (Basel) 2023; 15:3136. [PMID: 37514528 PMCID: PMC10384493 DOI: 10.3390/polym15143136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The substitution of fossil resources by alternatives derived from biomass is a reality that is taking on a growing relevance in the chemical and energy industries. In this sense, fats, oils, and their derived products have become indispensable inputs due to their broad functional attributes, stable price and sustainable character. Acrylated vegetable oils are considered to be very versatile materials for very broad applications (such as in adhesives, coatings or inks) since, in the presence of photoinitiators, they can be polymerized by means of UV-initiated free radical polymerizations. The usual process for the synthesis of acrylate vegetable oils consists in reacting epoxidized oils derivatives with acrylic acid. Here, the influence of different catalysts on the activity and selectivity of the process of acrylation of epoxidized soybean oil is studied. In addition, a novel one-step method for direct acrylation of vegetable oils is also explored. This new approach advantageously uses the original vegetable resource and eliminates intermediate reactions, thus being more environmentally efficient. This study offers a simple and low-cost option for synthesizing a biomass-derived monomer and studies the potential for the 3D printing of complex structures via digital light processing (DLP) 3D printing of the thus-obtained novel sustainable formulations.
Collapse
Affiliation(s)
- Cristian Mendes-Felipe
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Igor Isusi
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Olga Gómez-Jiménez-Aberasturi
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 11, 01510 Minano, Spain
| | - Soraya Prieto-Fernandez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 11, 01510 Minano, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Marco Sangermano
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - José Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
37
|
Noworyta M, Topa-Skwarczyńska M, Jamróz P, Oksiuta D, Tyszka-Czochara M, Trembecka-Wójciga K, Ortyl J. Influence of the Type of Nanofillers on the Properties of Composites Used in Dentistry and 3D Printing. Int J Mol Sci 2023; 24:10549. [PMID: 37445729 DOI: 10.3390/ijms241310549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Photopolymerization is a growing field with an extensive range of applications and is environmentally friendly owing to its energy-efficient nature. Such light-assisted curing methods were initially used to cure the coatings. However, it has become common to use photopolymerization to produce 3D objects, such as bridges or dental crowns, as well as to cure dental fillings. In this study, polymer nanocomposites containing inorganic nanofillers (such as zinc nano-oxide and zinc nano-oxide doped with two wt.% aluminum, titanium nano-oxide, kaolin nanoclay, zirconium nano-oxide, aluminum nano-oxide, and silicon nano-oxide) were fabricated and studied using Real Time FT-IR to investigate the effects of these nanoadditives on the final conversion rates of the obtained nanocomposites. The effects of the fillers on the viscosity of the produced nanocomposites were also investigated, and 3D prints of the selected nanocomposites were presented.
Collapse
Affiliation(s)
- Małgorzata Noworyta
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Monika Topa-Skwarczyńska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Paweł Jamróz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Dawid Oksiuta
- Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
| | | | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
38
|
Chazot CAC, Creighton MA, Hart AJ. Interfacial Photopolymerization: A Method for Light-Based Printing of Thermoplastics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37311094 DOI: 10.1021/acsami.3c04803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultraviolet (UV) printing of photopolymers is a widely adopted manufacturing method because of its high resolution and throughput. However, available printable photopolymers are typically thermosets, resulting in challenges in postprocessing and recycling of printed structures. Here, we present a new process called interfacial photopolymerization (IPP) which enables photopolymerization printing of linear chain polymers. In IPP, a polymer film is formed at the interface between two immiscible liquids, one containing a chain-growth monomer and the other containing a photoinitiator. We demonstrate the integration of IPP in a proof-of-concept projection system for printing of polyacrylonitrile (PAN) films and rudimentary multi-layer shapes . IPP shows in-plane and out-of-plane resolutions comparable to conventional photoprinting methods. Cohesive PAN films with number-average molecular weights greater than 15 kg mol-1 are obtained, and to our knowledge this is the first report of photopolymerization printing of PAN. A macrokinetics model of IPP is developed to elucidate the transport and reaction rates involved and evaluate how reaction parameters affect film thickness and print speed. Last, demonstration of IPP in a multilayer scheme suggests its suitabiliy for three-dimensional printing of linear-chain polymers.
Collapse
Affiliation(s)
- Cécile A C Chazot
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan A Creighton
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Stouten J, Schnelting GHM, Hul J, Sijstermans N, Janssen K, Darikwa T, Ye C, Loos K, Voet VSD, Bernaerts KV. Biobased Photopolymer Resin for 3D Printing Containing Dynamic Imine Bonds for Fast Reprocessability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220092 DOI: 10.1021/acsami.3c01669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acrylic photopolymer resins are widely used in stereolithographic 3D printing. However, the growing demand for such thermosetting resins is weighing on global issues such as waste management and fossil fuel consumption. Therefore, there is an increasing demand for reactive components that are biobased and enable recyclability of the resulting thermoset products. In this work, the synthesis of a photo-cross-linkable molecule containing dynamic imine bonds based on biobased vanillin and dimer fatty diamine is described. Using the biobased building blocks, formulations containing reactive diluent and a photoinitiator were prepared. The mixtures could be rapidly cross-linked under UV light, yielding vitrimers. Using digital light processing, 3D-printed parts were prepared, which were rigid, thermally stable, and reprocessed within 5 min at elevated temperature and pressure. The addition of a building block containing a higher concentration of imine bonds accelerated the stress relaxation and improved the mechanical rigidity of the vitrimers. This work will contribute to the development of biobased and recyclable 3D-printed resins to facilitate the transition to a circular economy.
Collapse
Affiliation(s)
- Jules Stouten
- Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Geraldine H M Schnelting
- Professorship Circular Plastics, NHL Stenden University of Applied Sciences, van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Jerzy Hul
- Liqcreate, Texasdreef 7, 3665 CL Utrecht, The Netherlands
| | - Nick Sijstermans
- Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Kylian Janssen
- Professorship Circular Plastics, NHL Stenden University of Applied Sciences, van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Tinashe Darikwa
- Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Chongnan Ye
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vincent S D Voet
- Professorship Circular Plastics, NHL Stenden University of Applied Sciences, van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Katrien V Bernaerts
- Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
40
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
41
|
Rosa RP, Rosace G, Arrigo R, Malucelli G. Preparation and characterization of a fully biobased resin system for 3d-printing, suitable for replacing fossil-based acrylates. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
42
|
Ajvazi E, Bauer F, Kracalik M, Hild S, Brüggemann O, Teasdale I. Poly[bis(serine ethyl ester)phosphazene] regulates the degradation rates of vinyl ester photopolymers. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractVinyl esters and carbonates have recently been demonstrated to have considerably lower cytotoxicity than their more commonly used (meth)acrylate counterparts, inspiring their use in the 3D printing of biomaterials. However, the degradation rates of such synthetic photopolymers are slow, especially in the mild conditions present in many biological environments. Some applications, for example, tissue regeneration scaffolds and drug release, require considerably faster biodegradation. Furthermore, it is essential to be able to easily tune the degradation rate to fit the requirements for a range of applications. Herein we present the design and synthesis of hydrolytically degradable polyphosphazenes substituted with a vinyl carbonate functionalized amino acid. Thiolene copolymerization with vinyl esters gave cured polymers which are demonstrated to considerably accelerate the degradation rates of cured vinylester/thiolene polymer scaffolds.
Graphical abstract
Collapse
|
43
|
Verebélyi K, Szabó Á, Réti Z, Szarka G, Villányi Á, Iván B. Highly Efficient Cationic Polymerization of β-Pinene, a Bio-Based, Renewable Olefin, with TiCl4 Catalyst from Cryogenic to Energy-Saving Room Temperature Conditions. Int J Mol Sci 2023; 24:ijms24065170. [PMID: 36982242 PMCID: PMC10048798 DOI: 10.3390/ijms24065170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Polymers based on renewable monomers are projected to have a significant role in the sustainable economy, even in the near future. Undoubtedly, the cationically polymerizable β-pinene, available in considerable quantities, is one of the most promising bio-based monomers for such purposes. In the course of our systematic investigations related to the catalytic activity of TiCl4 on the cationic polymerization of this natural olefin, it was found that the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4/N,N,N′,N′-tetramethylethylenediamine (TMEDA) initiating system induced efficient polymerization in dichloromethane (DCM)/hexane (Hx) mixture at both −78 °C and room temperature. At −78 °C, 100% monomer conversion was observed within 40 min, resulting in poly(β-pinene) with relatively high Mn (5500 g/mol). The molecular weight distributions (MWD) were uniformly shifted towards higher molecular weights (MW) in these polymerizations as long as monomer was present in the reaction mixture. However, chain–chain coupling took place after reaching 100% conversion, i.e., under monomer-starved conditions, resulting in considerable molecular weight increase and MWD broadening at −78 °C. At room temperature, the polymerization rate was lower, but chain coupling did not occur. The addition of a second feed of monomer in the polymerization system led to increasing conversion and polymers with higher MWs at both temperatures. 1H NMR spectra of the formed polymers indicated high in-chain double-bond contents. To overcome the polarity decrease by raising the temperature, polymerizations were also carried out in pure DCM at room temperature and at −20 °C. In both cases, rapid polymerization occurred with nearly quantitative yields, leading to poly(β-pinene)s with Mns in the range of 2000 g/mol. Strikingly, polymerization by TiCl4 alone, i.e., without any additive, also occurred with near complete conversion at room temperature within a few minutes, attributed to initiation by adventitious protic impurities. These results convincingly prove that highly efficient carbocationic polymerization of the renewable β-pinene can be accomplished with TiCl4 as catalyst under both cryogenic conditions, applied widely for carbocationic polymerizations, and the environmentally benign, energy-saving room temperature, i.e., without any additive and cooling or heating. These findings enable TiCl4-catalyzed eco-friendly manufacturing of poly(β-pinene)s, which can be utilized in various applications, and in addition, subsequent derivatizations could result in a range of high-added-value products.
Collapse
|
44
|
Recent Advances on Photobleachable Visible Light Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Ma Q, Zhang X, Liu Y, Graff B, Lalevee J. Dual photo/thermal initiation with charge transfer complexes based on bromide‐based electron acceptors. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiang Ma
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University Fuzhou China
| | - Xiaoxiang Zhang
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Yiwu Liu
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Ecole Nationale Supérieure de Chimie de Mulhouse Mulhouse France
- East China University of Science and Technology Shanghai China
| | - Bernadette Graff
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Jacques Lalevee
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| |
Collapse
|
46
|
Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022; 12:foods12010168. [PMID: 36613384 PMCID: PMC9818434 DOI: 10.3390/foods12010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Food packaging is the best way to protect food while it moves along the entire supply chain to the consumer. However, conventional food packaging poses some problems related to food wastage and excessive plastic production. Considering this, the aim of this work was to examine recent findings related to bio-based alternative food packaging films by means of conventional methodologies and additive manufacturing technologies, such as 3D printing (3D-P), with potential to replace conventional petroleum-based food packaging. Based on the findings, progress in the development of bio-based packaging films, biopolymer-based feedstocks for 3D-P, and innovative food packaging materials produced by this technology was identified. However, the lack of studies suggests that 3D-P has not been well-explored in this field. Nonetheless, it is probable that in the future this technology will be more widely employed in the food packaging field, which could lead to a reduction in plastic production as well as safer food consumption.
Collapse
|
47
|
Shaukat U, Sölle B, Rossegger E, Rana S, Schlögl S. Vat Photopolymerization 3D-Printing of Dynamic Thiol-Acrylate Photopolymers Using Bio-Derived Building Blocks. Polymers (Basel) 2022; 14:5377. [PMID: 36559744 PMCID: PMC9784638 DOI: 10.3390/polym14245377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
As an energy-efficient additive manufacturing process, vat photopolymerization 3D-printing has become a convenient technology to fabricate functional devices with high resolution and freedom in design. However, due to their permanently crosslinked network structure, photopolymers are not easily reprocessed or repaired. To improve the environmental footprint of 3D-printed objects, herein, we combine the dynamic nature of hydroxyl ester links, undergoing a catalyzed transesterification at elevated temperature, with an acrylate monomer derived from renewable resources. As a sustainable building block, we synthesized an acrylated linseed oil and mixed it with selected thiol crosslinkers. By careful selection of the transesterification catalyst, we obtained dynamic thiol-acrylate resins with a high cure rate and decent storage stability, which enabled the digital light processing (DLP) 3D-printing of objects with a structure size of 550 µm. Owing to their dynamic covalent bonds, the thiol-acrylate networks were able to relax 63% of their initial stress within 22 min at 180 °C and showed enhanced toughness after thermal annealing. We exploited the thermo-activated reflow of the dynamic networks to heal and re-shape the 3D-printed objects. The dynamic thiol-acrylate photopolymers also demonstrated promising healing, shape memory, and re-shaping properties, thus offering great potential for various industrial fields such as soft robotics and electronics.
Collapse
Affiliation(s)
- Usman Shaukat
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Bernhard Sölle
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Sravendra Rana
- School of Engineering, Energy Acres, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
48
|
Dumur F. Recent advances on benzylidene cyclopentanones as visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Hertan E, McCray J, Bankhead B, Kim KB. Force profile assessment of direct-printed aligners versus thermoformed aligners and the effects of non-engaged surface patterns. Prog Orthod 2022; 23:49. [DOI: 10.1186/s40510-022-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract
Background
The purpose of the study was to measure the forces delivered by direct-printed aligners (DPA) in the vertical dimension and compare the force profile with traditional thermoformed aligners (TFA) and to investigate the impact of non-engaged surface patterns to the properties of DPA and TFA.
Methods
A force-measuring appliance was fabricated capable of displacing the aligner in 0.10 mm increments and measuring the resultant force. Polyethylene terephthalate glycol (ATMOS 0.030″ American Orthodontics) and TC-85DAC resin (Graphy Inc) were used to create TFA and DPA, respectively. Aligners were temperature-controlled prior to and during testing to simulate the oral environment. The resultant forces from displacements ranging from 0.10 to 0.30 mm were measured.
Results
At intraoral temperatures, DPA demonstrated significantly less force than TFA. TFA demonstrated a substantial statistically significant increase in force with each 0.10 mm increase in vertical displacement. DPA demonstrated a much more consistent force profile across the range of displacements. The effects of surface patterns in both DPA and TFA were generally a decrease in force. Statistical significance of surface patterns was detected for TFA at displacements of 0.30 mm and greater and significant for DPA only at a displacement of 0.10 mm. Surface patterns in both DPA and the TFA did not show any statistical difference when assessing force proprieties.
Conclusions
Forces delivered by aligners in the vertical dimension by DPA are more consistent and of lower magnitude than those of TFA aligners. Surface patterns were not capable of altering the force properties of both DPA and TFA.
Collapse
|
50
|
Zanon M, Montalvillo-Jiménez L, Bosch P, Cue-López R, Martínez-Campos E, Sangermano M, Chiappone A. Photocurable Thiol-yne Alginate Hydrogels for Regenerative Medicine Purposes. Polymers (Basel) 2022; 14:4709. [PMID: 36365703 PMCID: PMC9654832 DOI: 10.3390/polym14214709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 04/03/2024] Open
Abstract
Every year millions of people worldwide undergo surgical interventions, with the occurrence of mild or severe post-treatment consequences meaning that rehabilitation plays a key role in modern medicine. Considering the cases of burns and plastic surgery, the pressing need for new materials that can be used for wound patches or body fillers and are able to sustain tissue regeneration and promote cell adhesion and proliferation is clear. The challenges facing next-generation implant materials also include the need for improved structural properties for cellular organization and morphogenic guidance together with optimal mechanical, rheological, and topographical behavior. Herein, we propose for the first time a sodium alginate hydrogel obtained by a thiol-yne reaction, easily synthesized using carbodiimide chemistry in a two-step reaction. The hydrogels were formed in all cases within a few minutes of light irradiation, showing good self-standing properties under solicitation. The mechanical, rheological, topographical, and swelling properties of the gels were also tested and reported. Lastly, no cytotoxicity was detected among the hydrogels. Soluble extracts in culture media allowed cell proliferation, and no differences between samples were detected in terms of metabolic activity and DNA content. These results suggest the potential use of these cytocompatible hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Michael Zanon
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Montalvillo-Jiménez
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Bosch
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Raquel Cue-López
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al Instituto de Ciencia y Tecnología de Polímeros, Instituto de Química Médica (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al Instituto de Ciencia y Tecnología de Polímeros, Instituto de Química Médica (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy
| |
Collapse
|