1
|
Ashkarran AA, Gharibi H, Modaresi SM, Saei AA, Mahmoudi M. Standardizing Protein Corona Characterization in Nanomedicine: A Multicenter Study to Enhance Reproducibility and Data Homogeneity. NANO LETTERS 2024; 24:9874-9881. [PMID: 39096192 PMCID: PMC11328176 DOI: 10.1021/acs.nanolett.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Cheng X, Yang Y, Song Y, Xu LP, Wang S. Utilizing Heterostructured Porous Particles to Improve Traditional Paper Chromatography for Spontaneous Protein Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4250-4255. [PMID: 35353528 DOI: 10.1021/acs.langmuir.1c03394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatography is a classical technique for protein separation. However, the chromatography column is filled with tightly packed separation materials and requires an additional pressurizing pump to propel the flow of fluidic samples, largely restraining their applications. Here, we combine heterostructured porous particles with paper strips, realizing spontaneous separation of similarly sized proteins. The interconnected nanofibrous structure and good hydrophility of paper strips enable the spontaneous flow of the liquid sample, and the heterostructured porous particles provide versatile tools for protein separation via electrostatic interaction. The fabricated paper strips are inexpensive, user-friendly, and disposable and exhibit good separation performance. This work may offer a new avenue for fabricating on-site bioseparation tools and purifying various biomacromolecules.
Collapse
Affiliation(s)
- Xu Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Samy A, Yamano-Adachi N, Koga Y, Omasa T. Secretion of a low-molecular-weight species of endogenous GRP94 devoid of the KDEL motif during endoplasmic reticulum stress in Chinese hamster ovary cells. Traffic 2021; 22:425-438. [PMID: 34536241 PMCID: PMC9293085 DOI: 10.1111/tra.12818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023]
Abstract
GRP94 (glucose‐regulated protein 94) is a well‐studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C‐terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER‐associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.
Collapse
Affiliation(s)
- Andrew Samy
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
4
|
García-Álvarez R, Vallet-Regí M. Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:888. [PMID: 33807228 PMCID: PMC8067325 DOI: 10.3390/nano11040888] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Upon contact with a biological milieu, nanomaterials tend to interact with biomolecules present in the media, especially proteins, leading to the formation of the so-called "protein corona". As a result of these nanomaterial-protein interactions, the bio-identity of the nanomaterial is altered, which is translated into modifications of its behavior, fate, and pharmacological profile. For biomedical applications, it is fundamental to understand the biological behavior of nanomaterials prior to any clinical translation. For these reasons, during the last decade, numerous publications have been focused on the investigation of the protein corona of many different types of nanomaterials. Interestingly, it has been demonstrated that the structure of the protein corona can be divided into hard and soft corona, depending on the affinity of the proteins for the nanoparticle surface. In the present document, we explore the differences between these two protein coronas, review the analysis techniques used for their assessment, and reflect on their relevance for medical purposes.
Collapse
Affiliation(s)
- Rafaela García-Álvarez
- Departamento Química en Ciencias Farmaceúticas, Unidad de Química Inorgánica y Bioinorgánica, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento Química en Ciencias Farmaceúticas, Unidad de Química Inorgánica y Bioinorgánica, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
5
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
6
|
Li W, Khan M, Li H, Lin L, Mao S, Lin JM. Homogenous deposition of matrix–analyte cocrystals on gold-nanobowl arrays for improving MALDI-MS signal reproducibility. Chem Commun (Camb) 2019; 55:2166-2169. [DOI: 10.1039/c8cc09945f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An Au-nanobowl array was synthesized to utilize its excellent properties to achieve efficient quantitative analysis via MALDI-MS analysis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Mashooq Khan
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Haifang Li
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Sifeng Mao
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
7
|
Xie H, Hou Y, Cheng J, Openkova MS, Xia B, Wang W, Li A, Yang K, Li J, Xu H, Yang C, Ma L, Li Z, Fan X, Li K, Lou G. Metabolic profiling and novel plasma biomarkers for predicting survival in epithelial ovarian cancer. Oncotarget 2018; 8:32134-32146. [PMID: 28389631 PMCID: PMC5458273 DOI: 10.18632/oncotarget.16739] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies around the world, and patients with ovarian cancer always have an extremely poor chance of survival. Therefore, it is meaningful to develop a highly efficient model that can predict the overall survival for EOC. In order to investigate whether metabolites could be used to predict the survival of EOC, we performed a metabolic analysis of 98 plasma samples with follow-up information, based on the ultra-performance liquid chromatography mass spectrometry (UPLC/MS) systems in both positive (ESI+) and negative (ESI-) modes. Four metabolites: Kynurenine, Acetylcarnitine, PC (42:11), and LPE(22:0/0:0) were selected as potential predictive biomarkers. The AUC value of metabolite-based risk score, together with pathological stages in predicting three-year survival rate was 0.80. The discrimination performance of these four biomarkers between short-term mortality and long-term survival was excellent, with an AUC value of 0.82. In conclusion, our plasma metabolomics study presented the dysregulated metabolism related to the survival of EOC, and plasma metabolites could be utilized to predict the overall survival and discriminate the short-term mortality and long-term survival for EOC patients. These results could provide supplementary information for further study about EOC survival mechanism and guiding the appropriate clinical treatment.
Collapse
Affiliation(s)
- Hongyu Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Yan Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Jinlong Cheng
- Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin 150086, China
| | | | - Bairong Xia
- Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin 150086, China
| | - Wenjie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Kai Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Junnan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Huan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Chunyan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Libing Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Zhenzi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Xin Fan
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
8
|
Lu M, Faull KF, Whitelegge JP, He J, Shen D, Saxton RE, Chang HR. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery. Biomark Insights 2017. [DOI: 10.1177/117727190700200005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.
Collapse
Affiliation(s)
- Ming Lu
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Kym F. Faull
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jianbo He
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Dejun Shen
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Romaine E. Saxton
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Helena R. Chang
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
9
|
Yan M, Liang Q, Wan W, Han Q, Tan S, Ding M. Amino acid-modified graphene oxide magnetic nanocomposite for the magnetic separation of proteins. RSC Adv 2017. [DOI: 10.1039/c7ra05114j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A novel amino acid-modified graphene oxide magnetic nanocomposite was synthesized and successfully applied to the magnetic separation of proteins.
Collapse
Affiliation(s)
- Min Yan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Qionglin Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Wei Wan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Qiang Han
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Siyuan Tan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Mingyu Ding
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|
10
|
Lohnes K, Quebbemann NR, Liu K, Kobzeff F, Loo JA, Ogorzalek Loo RR. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics. Methods 2016; 104:163-9. [PMID: 26826592 PMCID: PMC4930893 DOI: 10.1016/j.ymeth.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 01/07/2023] Open
Abstract
The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics.
Collapse
Affiliation(s)
- Karen Lohnes
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neil R Quebbemann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kate Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fred Kobzeff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; DOE/UCLA Institute of Genomics and Proteomics and UCLA Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; DOE/UCLA Institute of Genomics and Proteomics and UCLA Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Valeja SG, Xiu L, Gregorich ZR, Guner H, Jin S, Ge Y. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics. Anal Chem 2015; 87:5363-5371. [PMID: 25867201 PMCID: PMC4575680 DOI: 10.1021/acs.analchem.5b00657] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
Collapse
Affiliation(s)
- Santosh G. Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Huseyin Guner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Stastna M, Van Eyk JE. Analysis of protein isoforms: can we do it better? Proteomics 2012; 12:2937-48. [PMID: 22888084 DOI: 10.1002/pmic.201200161] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Protein isoforms/splice variants can play important roles in various biological processes and can potentially be used as biomarkers or therapeutic targets/mediators. Thus, there is a need for efficient and, importantly, accurate methods to distinguish and quantify specific protein isoforms. Since protein isoforms can share a high percentage of amino acid sequence homology and dramatically differ in their cellular concentration, the task for accuracy and efficiency in methodology and instrumentation is challenging. The analysis of intact proteins has been perceived to provide a more accurate and complete result for isoform identification/quantification in comparison to analysis of the corresponding peptides that arise from protein enzymatic digestion. Recently, novel approaches have been explored and developed that can possess the accuracy and reliability important for protein isoform differentiation and isoform-specific peptide targeting. In this review, we discuss the recent development in methodology and instrumentation for enhanced detection of protein isoforms as well as the examples of their biological importance.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | |
Collapse
|
13
|
Ho YP, Reddy PM. Advances in mass spectrometry for the identification of pathogens. MASS SPECTROMETRY REVIEWS 2011; 30:1203-24. [PMID: 21557290 PMCID: PMC7168406 DOI: 10.1002/mas.20320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 05/25/2023]
Abstract
Mass spectrometry (MS) has become an important technique to identify microbial biomarkers. The rapid and accurate MS identification of microorganisms without any extensive pretreatment of samples is now possible. This review summarizes MS methods that are currently utilized in microbial analyses. Affinity methods are effective to clean, enrich, and investigate microorganisms from complex matrices. Functionalized magnetic nanoparticles might concentrate traces of target microorganisms from sample solutions. Therefore, nanoparticle-based techniques have a favorable detection limit. MS coupled with various chromatographic techniques, such as liquid chromatography and capillary electrophoresis, reduces the complexity of microbial biomarkers and yields reliable results. The direct analysis of whole pathogenic microbial cells with matrix-assisted laser desorption/ionization MS without sample separation reveals specific biomarkers for taxonomy, and has the advantages of simplicity, rapidity, and high-throughput measurements. The MS detection of polymerase chain reaction (PCR)-amplified microbial nucleic acids provides an alternative to biomarker analysis. This review will conclude with some current applications of MS in the identification of pathogens.
Collapse
Affiliation(s)
- Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | | |
Collapse
|
14
|
Beaudette P, Rossi NAA, Huesgen PF, Yu X, Shenoi RA, Doucet A, Overall CM, Kizhakkedathu JN. Development of Soluble Ester-Linked Aldehyde Polymers for Proteomics. Anal Chem 2011; 83:6500-10. [DOI: 10.1021/ac200419p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Alain Doucet
- Institute of Systems Biology, The University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | | | |
Collapse
|
15
|
Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, Kelleher NL. Analysis of intact protein isoforms by mass spectrometry. J Biol Chem 2011; 286:25451-8. [PMID: 21632550 DOI: 10.1074/jbc.r111.239442] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The diverse proteome of an organism arises from such events as single nucleotide substitutions at the DNA level, different RNA processing, and dynamic enzymatic post-translational modifications. This minireview focuses on the measurement of intact proteins to describe the diversity found in proteomes. The field of biological mass spectrometry has steadily advanced, enabling improvements in the characterization of single proteins to proteins derived from cells or tissues. In this minireview, we discuss the basic technology for "top-down" intact protein analysis. Furthermore, examples of studies involved with the qualitative and quantitative analysis of full-length polypeptides are provided.
Collapse
Affiliation(s)
- Jeremiah D Tipton
- Departmen of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
16
|
Xavier T, Ganesan TS, Menon KN. A simple and efficient method for processing of cell lysates for two-dimensional gel electrophoresis. Electrophoresis 2010; 31:2429-35. [PMID: 20564265 DOI: 10.1002/elps.200900644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sample preparation is one of the major issues in 2-DE for the separation of proteins. Although a 100% representation of cellular proteins onto a 2-DE is virtually impossible, maximum representation of cellular proteins compared with the original cell lysate is important in the subsequent analysis. We demonstrate that lysis of cells in urea/thiourea solution with subsequent sonication to disrupt the nucleic acids and concentration of the lysate using centri-con led to enrichment of proteins. The procedure resulted in minimal nucleic acid contamination with better resolution of spots. 2-DE spot patterns of proteins prepared using urea-thiourea solubilization/centri-con method to other protein enrichment methods such as phenol/chloroform/isoamyl alcohol extraction, methanol/ammonium acetate precipitation, acetone precipitation and ethanol precipitation were compared. Urea-thiourea solubilization combined with centri-con method of protein enrichment represented higher number/unique spots particularly in the 50-250 kDa M(r) compared with others. Lysis of cells in urea/thiourea from the beginning of lysate preparation preserves the proteins from protease activity due to denaturation of proteases. Thus, we demonstrate that the centri-con methodology is simple and effective for the preparation of high-quality sample that can be used for a qualitative representation of cellular proteins on a 2-DE for proteomic analysis.
Collapse
Affiliation(s)
- Tessy Xavier
- Division of Molecular Medicine, Amrita Research Institute, Amrita Institute for Medical Sciences, Ponekkara, Kochi, India
| | | | | | | |
Collapse
|
17
|
Rafalko A, Iliopoulos O, Fusaro VA, Hancock W, Hincapie M. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells. Anal Chem 2010; 82:8998-9005. [PMID: 20936840 PMCID: PMC3046293 DOI: 10.1021/ac101981t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and interassay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers.
Collapse
Affiliation(s)
- Agnes Rafalko
- The Barnett Institute of Chemical and Biological Analysis of Northeastern University, Boston, MA
| | | | - Vincent A. Fusaro
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - William Hancock
- The Barnett Institute of Chemical and Biological Analysis of Northeastern University, Boston, MA
| | - Marina Hincapie
- The Barnett Institute of Chemical and Biological Analysis of Northeastern University, Boston, MA
| |
Collapse
|
18
|
Paliwal S, Ogura M, Mitragotri S. One-step acquisition of functional biomolecules from tissues. Proc Natl Acad Sci U S A 2010; 107:14627-32. [PMID: 20679248 PMCID: PMC2930427 DOI: 10.1073/pnas.1004302107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct determination of functional biomolecular chemistry of clinically relevant tissues in vivo is a challenging task. Current approaches, based on tissue retrieval by biopsy and subsequent solubilization, are limited in terms of accurate representation of tissue constituents, reproducibility, and retention of functionality of solubilized tissue biomolecules. Using a pool of known surfactants, we designed and screened a large combinatorial library of surfactant formulations, which led to the discovery of rare synergistic formulations that greatly enhance tissue solubilization as well as preserve bioactivity of solubilized molecules, in particular proteins. By combining these formulations with a short ultrasound application, we developed a tissue sampling method--STAMP (Surfactant-based Tissue Acquisition for Molecular Profiling)--for rapid one-step determination of functional tissue chemistry in vivo. We specifically demonstrate STAMP-assisted profiling of a multitude of proteins, lipids, and genomic DNA in skin and mucosal tissues. Applications of this sampling methodology to rapid molecular diagnostics of cutaneous allergies and infectious diseases are also presented.
Collapse
Affiliation(s)
- Sumit Paliwal
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Makoto Ogura
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
19
|
Carey C, Purohit S, She JX. Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using omic technologies. ACTA ACUST UNITED AC 2010; 4:397-410. [PMID: 20885991 DOI: 10.1517/17530059.2010.508492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD: Biomarkers are essential for the identification of high risk children as well as monitoring of prevention outcomes for type 1 diabetes (T1D). AREAS COVERED IN THIS REVIEW: This review discusses progress, opportunities and challenges in biomarker discovery and validation using high throughput genomic, transcriptomic and proteomic technologies. The authors also suggest potential solutions to deal with the current challenges. WHAT THE READER WILL GAIN: Readers will gain an overview of the current status on T1D biomarkers, an integrated review of three omic technologies, their applications and limitations for biomarker discovery and validation, and a critical discussion of the major issues encountered in biomarker development. TAKE HOME MESSAGE: Better biomarkers are still urgently needed for T1D prediction and prevention. The high throughput omic technologies offer great opportunities but also face significant challenges that have to be solved before their potential for biomarker development is fully realized.
Collapse
Affiliation(s)
- Colleen Carey
- Medical College of Georgia, Center for Biotechnology and Genomic Medicine, 1120 15th St., Augusta, 30912, USA
| | | | | |
Collapse
|
20
|
Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples. J Chromatogr A 2010; 1217:6159-68. [PMID: 20810122 DOI: 10.1016/j.chroma.2010.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 11/21/2022]
Abstract
The availability of robust and highly efficient separation methods represents a major requirement for proteome analysis. This study investigated the characteristics of two different gel-free proteomic approaches to the fractionation of proteolytic peptides and intact proteins, respectively, in a first separation dimension. Separation and mass spectrometric detection by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) were performed at the peptide level in both methods. Bottom-up analysis (BU) was carried out employing well established peptide fractionation in the first separation dimension by strong cation-exchange chromatography (SCX), followed by ion-pair reversed-phase chromatography (IP-RPC) in the second dimension. In the semi-top-down approach (STD), which involved intact protein fractionation in the first dimension, the separation mode in both dimensions was IP-RPC utilizing monolithic columns. Application of the two approaches to the proteome analysis of proteins extracted from a tumor tissue revealed that the BU method identified more proteins (1245 in BU versus 920 in STD) while STD analysis offered higher sequence coverage (14.8% in BU versus 17.5% in STD on average). The identification of more basic and larger proteins was slightly favored in the BU approach, most probably due to higher losses of these proteins during intact protein handling and separation in the STD method. A significant degree of complementarity was revealed by an approximately 33% overlap between one BU and STD replicate, while 33% each of the protein identifications were unique to both methods. In the STD method, peptides obtained upon digestion of the proteins contained in fractions of the first separation dimension covered a broad elution window in the second-dimension separation, which demonstrates a high degree of "pseudo-orthogonality" of protein and peptide separation by IP-RPC in both separation dimensions.
Collapse
|
21
|
Hall MP, Gegg C, Walker K, Spahr C, Ortiz R, Patel V, Yu S, Zhang L, Lu H, DeSilva B, Lee JW. Ligand-binding mass spectrometry to study biotransformation of fusion protein drugs and guide immunoassay development: strategic approach and application to peptibodies targeting the thrombopoietin receptor. AAPS JOURNAL 2010; 12:576-85. [PMID: 20625864 DOI: 10.1208/s12248-010-9218-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
Abstract
The knowledge of in vivo biotransformation (e.g., proteolysis) of protein therapeutic candidates reveals structural liabilities that impact stability. This information aids the development and confirmation of ligand-binding assays with the required specificity for bioactive moieties (including intact molecule and metabolites) for appropriate PK profiling. Furthermore, the information can be used for re-engineering of constructs to remove in vivo liabilities in order to design the most stable candidates. We have developed a strategic approach of ligand-binding mass spectrometry (LBMS) to study biotransformation of fusion proteins of peptides fused to human Fc ("peptibodies") using anti-human Fc immunoaffinity capture followed by tiered mass spectrometric interrogation. LBMS offers the combined power of selectivity of ligand capture with the specificity and detailed molecular-level information of mass spectrometry. In this paper, we demonstrate the preclinical application of LBMS to three peptibodies, AMG531 (romiplostim), AMG195(linear), and AMG195(loop), that target the thrombopoietin receptor. The data show that ligand capture offers excellent sample cleanup and concentration of intact peptibodies and metabolites for subsequent query by matrix-assisted laser desorption ionization time-of-flight mass spectrometry for identification of in vivo proteolytic points. Additional higher-resolution analysis by nanoscale liquid chromatography interfaced with electrospray ionization mass spectrometry is required for identification of heterogeneous metabolites. Five proteolytic points are accurately identified for AMG531 and two for AMG195(linear), while AMG195(loop) is the most stable construct in rats. We recommend the use of LBMS to assess biotransformation and in vivo stability during early preclinical phase development for all novel fusion proteins.
Collapse
Affiliation(s)
- Michael P Hall
- Department of PKDM, Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tran JC, Doucette AA. Multiplexed size separation of intact proteins in solution phase for mass spectrometry. Anal Chem 2010; 81:6201-9. [PMID: 19572727 DOI: 10.1021/ac900729r] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reliable size-based protein separation is an invaluable biological technique. Unfortunately, size separation in solution is underutilized, owing perhaps to the poor resolution of conventional techniques. Here, we report an enhanced multiplexed GELFrEE (gel-eluted liquid fraction entrapment electrophoresis) device which incorporates eight independent separation channels, operating with high repeatability. This enables simultaneous size separation of independent proteome samples, each into 16 well resolved liquid fractions, covering 10-150 kDa in 1.5 h. A novel strategy to increase sample loads while maintaining electrophoretic resolution is presented by distributing the sample among the eight channels with subsequent pooling of collected fractions. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the S. cerevisiae proteome following GELFrEE separation and sodium dodecyl sulfate (SDS) removal demonstrates the resolution and high correlation achieved between molecular weight and fraction number for the identified proteins. This device is highly orthogonal to solution isoelectric focusing, enabling our disclosure of a fully multiplexed high-throughput two-dimensional liquid electrophoretic (2D LE) platform that separates analogously to 2D polyacrylamide gel electrophoresis (PAGE). With 2D LE, a total of 128 well-resolved liquid fractions are obtained from 1 mg of S. cerevisiae proteins covering ranges 3.8 < pI < 7.8 and 10 kDa < MW < 150 kDa in an unprecedented 3.25 h total separation time.
Collapse
Affiliation(s)
- John C Tran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
| | | |
Collapse
|
23
|
Abstract
In this review, we discuss several important issues concerning the discovery of protein biomarkers for complex human diseases, with a focus on type 1 diabetes. Serum or plasma is the first choice of specimen due to its richness in biological information and relatively easy availability. It is a challenging task to comprehensively characterize the serum/plasma proteome because of the large dynamic range of protein concentration. Therefore, sample pretreatment is required in order to explore the low- to medium-abundance proteins contained in serum/plasma. In this regard, enrichment of low-abundance proteins using random hexapeptide library beads has distinct advantages over the traditional immune-depletion methods, including higher efficiency, higher binding capacity, and lower cost. In-depth mining of serum/plasma proteome using different separation techniques have also been evaluated and are discussed in this review. Overall, the shotgun proteomics-multidimensional separation of digested peptides followed by mass spectrometry analysis--is highly efficient and therefore has become a preferred method for protein biomarker discovery.
Collapse
Affiliation(s)
- Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
24
|
Hanash S. Proteomics Technologies. SYSTEMS BIOMEDICINE 2010:45-55. [DOI: 10.1016/b978-0-12-372550-9.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Whelan SA, Lu M, He J, Yan W, Saxton RE, Faull KF, Whitelegge JP, Chang HR. Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J Proteome Res 2009; 8:4151-60. [PMID: 19522481 DOI: 10.1021/pr900322g] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cancer cell membrane proteins are released into the plasma/serum by exterior protein cleavage, membrane sloughing, cellular secretion or cell lysis, and represent promising candidates for interrogation. Because many known disease biomarkers are both glycoproteins and membrane bound, we chose the hydrazide method to specifically target, enrich, and identify glycosylated proteins from breast cancer cell membrane fractions using the LTQ Orbitrap mass spectrometer. Our initial goal was to select membrane proteins from breast cancer cell lines and then to use the hydrazide method to identify the N-linked proteome as a prelude to evaluation of plasma/serum proteins from cancer patients. A combination of steps facilitated identification of the glycopeptides and also defined the glycosylation sites. In MCF-7, MDA-MB-453 and MDA-MB-468 cell membrane fractions, use of the hydrazide method facilitated an initial enrichment and site mapping of 27 N-linked glycosylation sites in 25 different proteins. However, only three N-linked glycosylated proteins, galectin-3 binding protein, lysosome associated membrane glycoprotein 1, and oxygen regulated protein, were identified in all three breast cancer cell lines. In addition, MCF-7 cells shared an additional 3 proteins with MDA-MB-453. Interestingly, the hydrazide method isolated a number of other N-linked glycoproteins also known to be involved in breast cancer, including epidermal growth factor receptor (EGFR), CD44, and the breast cancer 1, and early onset isoform 1 (BRCA1) biomarker. Analyzing the N-glycoproteins from membranes of breast cancer cell lines highlights the usefulness of the procedure for generating a practical set of potential biomarkers.
Collapse
Affiliation(s)
- Stephen A Whelan
- Revlon/UCLA Breast Center, Department of Surgery, Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Duan X, Young R, Straubinger RM, Page B, Cao J, Wang H, Yu H, Canty JM, Qu J. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J Proteome Res 2009; 8:2838-50. [PMID: 19290621 DOI: 10.1021/pr900001t] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For label-free expression profiling of tissue proteomes, efficient protein extraction, thorough and quantitative sample cleanup and digestion procedures, as well as sufficient and reproducible chromatographic separation, are highly desirable but remain challenging. However, optimal methodology has remained elusive, especially for proteomes that are rich in membrane proteins, such as the mitochondria. Here, we describe a straightforward and reproducible sample preparation procedure, coupled with a highly selective and sensitive nano-LC/Orbitrap analysis, which enables reliable and comprehensive expression profiling of tissue mitochondria. The mitochondrial proteome of swine heart was selected as a test system. Efficient protein extraction was accomplished using a strong buffer containing both ionic and nonionic detergents. Overnight precipitation was used for cleanup of the extract, and the sample was subjected to an optimized 2-step, on-pellet digestion approach. In the first step, the protein pellet was dissolved via a 4 h tryptic digestion under vigorous agitation, which nano-LC/LTQ/ETD showed to produce large and incompletely cleaved tryptic peptides. The mixture was then reduced, alkylated, and digested into its full complement of tryptic peptides with additional trypsin. This solvent precipitation/on-pellet digestion procedure achieved significantly higher and more reproducible peptide recovery of the mitochondrial preparation than observed using a prevalent alternative procedure for label-free expression profiling, SDS-PAGE/in-gel digestion (87% vs 54%). Furthermore, uneven peptide losses were lower than observed with SDS-PAGE/in-gel digestion. The resulting peptides were sufficiently resolved by a 5 h gradient using a nano-LC configuration that features a low-void-volume, high chromatographic reproducibility, and an LTQ/Orbitrap analyzer for protein identification and quantification. The developed method was employed for label-free comparison of the mitochondrial proteomes of myocardium from healthy animals versus those with hibernating myocardium. Each experimental group consisted of a relatively large number of animals (n = 10), and samples were analyzed in random order to minimize quantitative false-positives. With this approach, 904 proteins were identified and quantified with high confidence, and those mitochondrial proteins that were altered significantly between groups were compared with the results of a parallel 2D-DIGE analysis. The sample preparation and analytical strategy developed here represents an advancement that can be adapted to analyze other tissue proteomes.
Collapse
Affiliation(s)
- Xiaotao Duan
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hanrieder J, Zuberovic A, Bergquist J. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: A gel-free multidimensional electrophoresis approach for proteomic profiling—Exemplified on human follicular fluid. J Chromatogr A 2009; 1216:3621-8. [DOI: 10.1016/j.chroma.2008.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/04/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
|
28
|
Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 2009; 8:1304-14. [PMID: 19199708 PMCID: PMC2693447 DOI: 10.1021/pr800658c] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human ductal saliva contributes over a thousand unique proteins to whole oral fluids. The mechanism by which most of these proteins are secreted by salivary glands remains to be determined. The present study used a mass spectrometry-based, shotgun proteomics approach to explore the possibility that a subset of the proteins found in saliva are derived from exosomes, membrane-bound vesicles of endosomal origin within multivesicular endosomes. Using MudPIT (multidimensional protein identification technology) mass spectrometry, we catalogued 491 proteins in the exosome fraction of human parotid saliva. Many of these proteins were previously observed in ductal saliva from parotid glands (265 proteins). Furthermore, 72 of the proteins in parotid exosomes overlap with those previously identified as urinary exosome proteins, proteins which are also frequently associated with exosomes from other tissues and cell types. Gene Ontology (GO) and KEGG pathway analyses found that cytosolic proteins comprise the largest category of proteins in parotid exosomes (43%), involved in such processes as phosphatidylinositol signaling system, calcium signaling pathway, inositol metabolism, protein export, and signal transduction, among others; whereas the integral plasma membrane proteins and associated/peripheral plasma membrane proteins (26%) were associated with extracellular matrix-receptor interaction, epithelial cell signaling, T-cell and B-cell receptor signaling, cytokine receptor interaction, and antigen processing and presentation, among other biological functions. In addition, these putative saliva exosomal proteins were linked to specific diseases (e.g., neurodegenerative disorders, prion disease, cancers, type I and II diabetes). Consequently, parotid glands secrete exosomes that reflect the metabolic and functional status of the gland and may also carry informative protein markers useful in the diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- Mireya Gonzalez-Begne
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
| | - Bingwen Lu
- Department of Chemical Physiology, The Scripps Research Institute; 10550 North Torrey Pines Road, SR-11, La Jolla, CA 92037
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute; 10550 North Torrey Pines Road, SR-11, La Jolla, CA 92037
| | - Fred K. Hagen
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
| | - Arthur R. Hand
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - James E. Melvin
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
| | - John R. Yates
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
- Department of Chemical Physiology, The Scripps Research Institute; 10550 North Torrey Pines Road, SR-11, La Jolla, CA 92037
| |
Collapse
|
29
|
Abstract
The ultimate goal of cancer molecular diagnostics is the development of simple tests to predict cancer risk, detect cancer early, classify tumors, and monitor response to therapy. Proteomics is well suited for these tasks. However, there are substantial challenges that need to be met to identify the most informative markers using proteomics. Approaches for in-depth quantitative proteomic analysis based on isotopic labeling and protein fractionation are presented in this chapter.
Collapse
Affiliation(s)
- Vitor Faca
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
30
|
Abstract
About 30 years ago two-dimensional gel electrophoresis (2DE) was developed independently by Klose and O'Farrell representing the combination of two orthogonal separation techniques. In the first dimension the proteins are separated by isoelectric focusing (IEF) according to their isoelectric point. In the second dimension proteins are separated according to their electrophoretic mobility by conventional SDS-PAGE. For IEF two different techniques, immobilized pH gradient (IPG) and carrier-ampholyte-based IEF (CA-based IEF), respectively, are currently applied. With a resolution of up to 10,000 protein spots in one gel, 2DE offers a huge potential to give a comprehensive overview of the proteins present in the examined system. In combination with image analysis and mass spectrometry 2DE is still the method of choice to analyse complex protein samples.In this chapter we provide detailed protocols for both 2DE systems and give an overview about the latest developments including the two-dimensional difference gel electrophoresis (DIGE) system.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Letarte S, Brusniak MY, Campbell D, Eddes J, Kemp CJ, Lau H, Mueller L, Schmidt A, Shannon P, Kelly-Spratt KS, Vitek O, Zhang H, Aebersold R, Watts JD. Differential Plasma Glycoproteome of p19 Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform. Clin Proteomics 2008; 4:105. [PMID: 20157627 PMCID: PMC2821048 DOI: 10.1007/s12014-008-9018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022] Open
Abstract
A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented here, using a mouse model for skin cancer as an example. Blood plasma was collected from 10 control mice, and 10 mice having a mutation in the p19(ARF) gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the modified tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists. We next assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localisation, trasport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application. These results thus show that an LC-MS-based workflow can be a useful tool for the generation of candidate proteins of interest as part of a disease biomarker discovery effort.
Collapse
Affiliation(s)
- Simon Letarte
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - Mi-Youn Brusniak
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - David Campbell
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - James Eddes
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - Christopher J. Kemp
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109
| | - Hollis Lau
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - Lukas Mueller
- Institute for Molecular Systems Biology, ETH-Zurich, CH-8093 Zurich, Switzerland and Faculty of Science, University of Zurich, Switzerland
| | - Alexander Schmidt
- Institute for Molecular Systems Biology, ETH-Zurich, CH-8093 Zurich, Switzerland and Faculty of Science, University of Zurich, Switzerland
| | - Paul Shannon
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - Karen S. Kelly-Spratt
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109
| | - Olga Vitek
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| | - Ruedi Aebersold
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
- Institute for Molecular Systems Biology, ETH-Zurich, CH-8093 Zurich, Switzerland and Faculty of Science, University of Zurich, Switzerland
| | - Julian D. Watts
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103
| |
Collapse
|
32
|
Luethy R, Kessner DE, Katz JE, Maclean B, Grothe R, Kani K, Faça V, Pitteri S, Hanash S, Agus DB, Mallick P. Precursor-ion mass re-estimation improves peptide identification on hybrid instruments. J Proteome Res 2008; 7:4031-9. [PMID: 18707148 DOI: 10.1021/pr800307m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mass spectrometry-based proteomics experiments have become an important tool for studying biological systems. Identifying the proteins in complex mixtures by assigning peptide fragmentation spectra to peptide sequences is an important step in the proteomics process. The 1-2 ppm mass-accuracy of hybrid instruments, like the LTQ-FT, has been cited as a key factor in their ability to identify a larger number of peptides with greater confidence than competing instruments. However, in replicate experiments of an 18-protein mixture, we note parent masses deviate 171 ppm, on average, for ion-trap data directed identifications and 8 ppm, on average, for preview Fourier transform (FT) data directed identifications. These deviations are neither caused by poor calibration nor by excessive ion-loading and are most likely due to errors in parent mass estimation. To improve these deviations, we introduce msPrefix, a program to re-estimate a peptide's parent mass from an associated high-accuracy full-scan survey spectrum. In 18-protein mixture experiments, msPrefix parent mass estimates deviate only 1 ppm, on average, from the identified peptides. In a cell lysate experiment searched with a tolerance of 50 ppm, 2295 peptides were confidently identified using native data and 4560 using msPrefixed data. Likewise, in a plasma experiment searched with a tolerance of 50 ppm, 326 peptides were identified using native data and 1216 using msPrefixed data. msPrefix is also able to determine which MS/MS spectra were possibly derived from multiple precursor ions. In complex mixture experiments, we demonstrate that more than 50% of triggered MS/MS may have had multiple precursor ions and note that spectra with multiple candidate ions are less likely to result in an identification using TANDEM. These results demonstrate integration of msPrefix into traditional shotgun proteomics workflows significantly improves identification results.
Collapse
Affiliation(s)
- Roland Luethy
- Spielberg Family Center for Applied Proteomics, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Qian WJ, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X, Mottaz HM, Varnum SM, Camp DG, Huang L, Fang X, Zhang WW, Smith RD. Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol Cell Proteomics 2008; 7:1963-73. [PMID: 18632595 DOI: 10.1074/mcp.m800008-mcp200] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enormous dynamic range of human bodily fluid proteomes poses a significant challenge for current MS-based proteomics technologies as it makes it especially difficult to detect low abundance proteins in human biofluids such as blood plasma, which is an essential aspect for successful biomarker discovery efforts. Here we present a novel tandem IgY12-SuperMix immunoaffinity separation system for enhanced detection of low abundance proteins in human plasma. The tandem IgY12-SuperMix system separates approximately 60 abundant proteins from the low abundance proteins in plasma, allowing for significant enrichment of low abundance plasma proteins in the SuperMix flow-through fraction. High reproducibility of the tandem separations was observed in terms of both sample processing recovery and LC-MS/MS identification results based on spectral count data. The ability to quantitatively measure differential protein abundances following application of the tandem separations was demonstrated by spiking six non-human standard proteins at three different levels into plasma. A side-by-side comparison between the SuperMix flow-through and IgY12 flow-through samples analyzed by both one- and two-dimensional LC-MS/MS revealed a 60-80% increase in proteome coverage as a result of the SuperMix separations, suggesting significantly enhanced detection of low abundance proteins. A total of 695 plasma proteins were confidently identified in a single analysis (with a minimum of two peptides per protein) by coupling the tandem separation strategy with two-dimensional LC-MS/MS, including 42 proteins with reported normal concentrations of approximately 100 pg/ml to 100 ng/ml. The concentrations of two selected proteins, macrophage colony-stimulating factor 1 and matrix metalloproteinase-8, were independently validated by ELISA as 202 pg/ml and 12.4 ng/ml, respectively. Evaluation of binding efficiency revealed that 45 medium abundance proteins were efficiently captured by the SuperMix column with >90% retention. Taken together, these results illustrate the potential broad utilities of this tandem IgY12-SuperMix strategy for proteomics applications involving human biofluids where effectively addressing the dynamic range challenge of the specimen is imperative.
Collapse
Affiliation(s)
- Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Végvári Á, Magnusson M, Wallman L, Ekström S, Bolmsjö G, Nilsson J, Miliotis T, Östling J, Kjellström S, Ottervald J, Franzén B, Hultberg H, Marko‐Varga G, Laurell T. Implementation of a protein profiling platform developed as an academic‐pharmaceutical industry collaborative effort. Electrophoresis 2008; 29:2696-705. [DOI: 10.1002/elps.200700816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Assiddiq BF, Snijders APL, Chong PK, Wright PC, Dickman MJ. Identification and Characterization of Sulfolobus solfataricus P2 Proteome Using Multidimensional Liquid Phase Protein Separations. J Proteome Res 2008; 7:2253-61. [DOI: 10.1021/pr7006472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bobby F. Assiddiq
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Ambrosius P. L. Snijders
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Poh Kuan Chong
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Phillip C. Wright
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Mark. J. Dickman
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
36
|
Tran JC, Doucette AA. Gel-Eluted Liquid Fraction Entrapment Electrophoresis: An Electrophoretic Method for Broad Molecular Weight Range Proteome Separation. Anal Chem 2008; 80:1568-73. [DOI: 10.1021/ac702197w] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John C. Tran
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4J3
| | - Alan A. Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4J3
| |
Collapse
|
37
|
Robertson DHL, Wong SCC, Beynon RJ, Hurst JL, Gaskell SJ. Observation of heterogeneous gene products by FT-ICR MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:103-110. [PMID: 18293489 DOI: 10.1016/j.jasms.2007.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability of FT-ICR MS to resolve isotopic variants of intact proteins for each of the charge states formed by electrospray ionization offers a sensitive, rapid method for detecting "low mass" heterogeneity, where this is defined as the presence of structural variants differing in mass by 2 Da or less. Such heterogeneity may reflect biological or chemical modifications of structure or may result from the coexpression of related proteins from a multi-gene family. In the analytical approach described here, comparisons are made between observed isotopic distributions and those expected for predicted protein sequences. Close agreement is demonstrated for a homogeneous model protein, and the utility of the method has been evaluated in the study of mouse major urinary proteins (MUPs), a group of closely related sequences. Divergence of the experimental isotopic distribution from distributions predicted for known MUP sequences can be explained, in quantitative terms, by the coexpression of closely related sequences. This approach provides a facile method for the assessment of protein homogeneity and for the detection of structural variants, without recourse to proteolytic digestion and analysis of the resulting products.
Collapse
Affiliation(s)
- Duncan H L Robertson
- Protein Function Group, Faculty of Veterinary Science, University of Liverpool, UK.
| | | | | | | | | |
Collapse
|
38
|
Gao M, Yu W, Zhang Y, Yan G, Deng C, Yang P, Zhang X. Integrated strong cation exchange/capillary reversed-phase liquid chromatography/on-target digestion coupled with mass spectrometry for identification of intact human liver tissue proteins. Analyst 2008; 133:1261-7. [DOI: 10.1039/b803388a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Faca V, Krasnoselsky A, Hanash S. Innovative proteomic approaches for cancer biomarker discovery. Biotechniques 2007; 43:279, 281-3, 285. [PMID: 17907570 DOI: 10.2144/000112541] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Substantial technological advances in proteomics and related computational science have been made in the past few years. These advances overcome in part the complexity and heterogeneity of the human proteome, permitting quantitative analysis and identification of protein changes associated with tumor development. Here, we discuss some of these advances that are uncovering new cancer biomarkers that have potential to detect cancer at early and curable stages and address remaining challenges.
Collapse
Affiliation(s)
- Vitor Faca
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
40
|
Faca V, Hanash S. In-depth quantitative proteomics for pancreatic cancer biomarker discovery. ACTA ACUST UNITED AC 2007; 1:81-9. [DOI: 10.1517/17530059.1.1.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Zhou F, Hanson TE, Johnston MV. Intact Protein Profiling of Chlorobium tepidum by Capillary Isoelectric Focusing, Reversed-Phase Liquid Chromatography, and Mass Spectrometry. Anal Chem 2007; 79:7145-53. [PMID: 17711353 DOI: 10.1021/ac071147c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capillary isoelectric focusing (CIEF) coupled with reversed-phase liquid chromatography (RPLC) and electrospray ionization (ESI) mass spectrometry (MS) is shown to provide a liquid-based alternative to 2D-PAGE for intact protein profiling. This combination exhibits high resolution, sensitivity and throughput for protein profiling based on pI vs MW. The CIEF-RPLC-MS system described here facilitates the use of IEF markers for internal calibration of pI. It also provides a high dynamic range as evidenced by the detection of 100 pg (3 fmol) of a test protein spiked into 1 microg of a complex protein mixture. About 1200 individual proteins/polypeptides were detected from lysates of the green sulfur bacterium Chlorobium tepidum in a single <8 h run. The pI vs MW profile obtained from CIEF-RPLC-MS compares favorably with theoretical data derived from the C. tepidum genome and experimental data obtained from 2D-PAGE.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | | | | |
Collapse
|
42
|
Faca V, Pitteri SJ, Newcomb L, Glukhova V, Phanstiel D, Krasnoselsky A, Zhang Q, Struthers J, Wang H, Eng J, Fitzgibbon M, McIntosh M, Hanash S. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J Proteome Res 2007; 6:3558-65. [PMID: 17696519 DOI: 10.1021/pr070233q] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions.
Collapse
Affiliation(s)
- Vitor Faca
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lohaus C, Nolte A, Blüggel M, Scheer C, Klose J, Gobom J, Schüler A, Wiebringhaus T, Meyer HE, Marcus K. Multidimensional chromatography: a powerful tool for the analysis of membrane proteins in mouse brain. J Proteome Res 2007; 6:105-13. [PMID: 17203954 DOI: 10.1021/pr060247g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the function of membrane proteins is of fundamental importance due to their crucial roles in many cellular processes and their direct association with human disorders. However, their analysis poses a special challenge, largely due to their highly amphipathic nature. Until recently, analyses of proteomic samples mainly were performed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), due to the unprecedented separation power of the technique. However, in conventional 2D-PAGE membrane proteins are generally underrepresented due to their tendency to precipitate during isoelectric focusing and their inefficient transfer from the first to the second dimension. As a consequence, several other separation techniques, primarily based on liquid chromatography (LC), have been employed for analysis of this group of proteins. In the present study, different LC-based methods were compared for the analysis of crude protein extracts. One- and two-dimensional high-performance liquid chromatographic (1D- and 2D-HPLC) separations of brain protein tryptic digests with a predicted concentration range of up to 5 orders of magnitude were found to be insufficient, thus making a preceding fractionation step necessary. An additional protein separation step was introduced and a 3D-PAGE-HPLC analysis was performed. The results of these experiments are compared with results of 2D-PAGE/matrix-assisted laser desorption ionization mass spectrometric (MALDI MS) analyses of the same samples. Features, challenges, advantages, and disadvantages of the respective systems are discussed. The brain (mouse and human) was chosen as the analyzed tissue as it is of high interest in medical and pharmaceutical research into neurological diseases such as multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. The study is part of our ongoing research aimed at identifying new biomarkers for neurodegenerative diseases.
Collapse
|
44
|
Agnetti G, Kane LA, Guarnieri C, Caldarera CM, Van Eyk JE. Proteomic technologies in the study of kinases: novel tools for the investigation of PKC in the heart. Pharmacol Res 2007; 55:511-22. [PMID: 17548206 PMCID: PMC2693016 DOI: 10.1016/j.phrs.2007.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/28/2007] [Accepted: 04/16/2007] [Indexed: 01/18/2023]
Abstract
Recent developments in the field of protein separation allows for the analysis of qualitative and quantitative global protein changes in a particular state of a biological system. Due to the enormous number of proteins potentially present in a cell, sub-fractionation and the enrichment of specific organelles are emerging as a necessary step to allow a more comprehensive representation of the protein content. The proteomic studies demonstrate that a key to understand the mechanisms underlying physiological or pathological phenotypes lies, at least in part, in post-translational modifications (PTMs), including phosphorylation of proteins. Rapid improvements in proteomic characterization of amino acid modifications are further expanding our comprehension of the importance of these mechanisms. The present review will provide an overview of technologies available for the study of a proteome, including tools to assess changes in protein quantity (abundance) as well as in quality (PTM forms). Examples of the recent application of these technologies and strategies in the field of kinase signalling will be provided with particular attention on the role of PKC in the heart. Studies of PKC-mediated phosphorylation of cytoskeletal, myofilament and mitochondrial proteins in the heart have provided great insight into the phenotypes of heart failure, hypertrophy and cardioprotection. Proteomics studies of the mitochondria have provided novel evidences for kinase signalling cascades localized to the mitochondria, some of which are known to involve various isoforms of PKC. Proteomics technologies allow for the identification of the different PTM forms of specific proteins and this information is likely to provide insight into the determinants of morphological as well as metabolic mal-adaptations, both in the heart and other tissues.
Collapse
|
45
|
Jin Y, Manabe T. Alkaline extraction of human plasma proteins from nondenaturing micro-2-D gels for protein/polypeptide mass measurement and peptide mass fingerprinting using MALDI-TOF MS. Electrophoresis 2007; 28:449-59. [PMID: 17191281 DOI: 10.1002/elps.200600409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previously, we have reported a high-efficiency method of protein extraction from CBB-stained polyacrylamide gels for molecular mass measurement with MALDI-TOF MS [1]. In the present work, the alkaline extraction method was applied to CBB-stained 2-DE gels on which human plasma proteins were separated in the absence of denaturant. In order to examine the performance of the method, ten spots with apparent molecular masses (MMapp) in the range of 65 to 1000 kDa were selected and the proteins were extracted from the gel pieces. The extracts were subjected to whole-mass measurement by MALDI-TOF MS, with and without DTT treatment. In addition, the extracts were subjected to in-solution trypsin digestion followed by MALDI-TOF MS and PMF analysis. Successful extraction of proteins from the ten spots, up to MMapp 1000 kDa, has been ascertained by the significant PMF assignment (MASCOT) with high sequence coverage of the respective proteins or polypeptides. When direct mass measurement of the extracted proteins was attempted, three spots in MMapp range 65-100 kDa provided mass peaks. Five spots in MMapp range 150-400 kDa did not give mass peaks of the intact proteins, but showed those of the constituent polypeptides after the DTT treatment. Extraction of proteins prior to trypsin digestion enabled the procedure of PMF analysis to be much simpler than the conventional in-gel digestion method, providing comparable protein scores and sequence coverage. The technique presented here suggests a new strategy for the characterization of proteins separated by nondenaturing 2-DE.
Collapse
Affiliation(s)
- Ya Jin
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
46
|
Ye M, Jiang X, Feng S, Tian R, Zou H. Advances in chromatographic techniques and methods in shotgun proteome analysis. Trends Analyt Chem 2007. [DOI: 10.1016/j.trac.2006.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Akashi S. Investigation of molecular interaction within biological macromolecular complexes by mass spectrometry. Med Res Rev 2006; 26:339-68. [PMID: 16463282 DOI: 10.1002/med.20051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The advent of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) has accelerated structural studies of biological macromolecular complexes. At present, mass spectrometry can provide accurate mass values not only of individual biological macromolecules but also of their assemblies. Furthermore, it can also give information on the interface sites of the biological macromolecular complexes. The present article focuses on the role of mass spectrometry in the investigation of biological molecular interactions, such as protein-protein, protein-DNA, and protein-ligand interactions, which play essential roles in various biological events.
Collapse
Affiliation(s)
- Satoko Akashi
- International Graduate School of Arts and Sciences, Yokohama City University, Tsurumi-ku, Kanagawa, Japan.
| |
Collapse
|
48
|
Sriyam S, Sinchaikul S, Tantipaiboonwong P, Tzao C, Phutrakul S, Chen ST. Enhanced detectability in proteome studies. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 849:91-104. [PMID: 17140866 DOI: 10.1016/j.jchromb.2006.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/11/2006] [Accepted: 10/27/2006] [Indexed: 11/30/2022]
Abstract
The discovery of candidate biomarkers from biological materials coupled with the development of detection methods holds both incredible clinical potential as well as significant challenges. However, the proteomic techniques still provide the low dynamic range of protein detection at lower abundances. This review describes the current development of potential methods to enhance the detection and quantification in proteome studies. It also includes the bioinformatics tools that are helpfully used for data mining of protein ontology. Therefore, we believe that this review provided many proteomic approaches, which would be very potent and useful for proteome studies and for further diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Supawadee Sriyam
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Krijgsveld J, Gauci S, Dormeyer W, Heck AJR. In-gel isoelectric focusing of peptides as a tool for improved protein identification. J Proteome Res 2006; 5:1721-30. [PMID: 16823980 DOI: 10.1021/pr0601180] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the analysis of proteins in complex samples, pre-fractionation is imperative to obtain the necessary depth in the number of reliable protein identifications by mass spectrometry. Here we explore isoelectric focusing of peptides (peptide IEF) as an effective fractionation step that at the same time provides the added possibility to eliminate spurious peptide identifications by filtering for pI. Peptide IEF in IPG strips is fast and sharply confines peptides to their pI. We have evaluated systematically the contribution of pI filtering and accurate mass measurements on the total number of protein identifications in a complex protein mixture (Drosophila nuclear extract). At the same time, by varying Mascot identification cutoff scores, we have monitored the false positive rate among these identifications by searching reverse protein databases. From mass spectrometric analyses at low mass accuracy using an LTQ ion trap, false positive rates can be minimized by filtering of peptides not focusing at their expected pI. Analyses using an LTQ-FT mass spectrometer delivers low false positive rates by itself due to the high mass accuracy. In a direct comparison of peptide IEF with SDS-PAGE as a pre-fractionation step, IEF delivered 25% and 43% more proteins when identified using FT-MS and LTQ-MS, respectively. Cumulatively, 2190 non redundant proteins were identified in the Drosophila nuclear extract at a false positive rate of 0.5%. Of these, 1751 proteins (80%) were identified after peptide IEF and FT-MS alone. Overall, we show that peptide IEF allows to increase the confidence level of protein identifications, and is more sensitive than SDS-PAGE.
Collapse
Affiliation(s)
- Jeroen Krijgsveld
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Collins CD, Purohit S, Podolsky RH, Zhao HS, Schatz D, Eckenrode SE, Yang P, Hopkins D, Muir A, Hoffman M, McIndoe RA, Rewers M, She JX. The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vascul Pharmacol 2006; 45:258-67. [PMID: 17030152 DOI: 10.1016/j.vph.2006.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/05/2006] [Accepted: 08/05/2006] [Indexed: 11/17/2022]
Abstract
The long asymptomatic period before the onset of chronic diseases offers good opportunities for disease prevention. Indeed, many chronic diseases may be preventable by avoiding those factors that trigger the disease process (primary prevention) or by use of therapy that modulates the disease process before the onset of clinical symptoms (secondary prevention). Accurate prediction is vital for disease prevention so that therapy can be given to those individuals who are most likely to develop the disease. The utility of predictive markers is dependent on three parameters, which must be carefully assessed: sensitivity, specificity and positive predictive value. Specificity is important if a biomarker is to be used to identify individuals either for counseling or for preventive therapy. However, a reciprocal relationship exists between sensitivity and specificity. Thus, successful biomarkers will be highly specific without sacrificing sensitivity. Unfortunately, biomarkers with ideal specificity and sensitivity are difficult to find for many diseases. One potential solution is to use the combinatorial power of a large number of biomarkers, each of which alone may not offer satisfactory specificity and sensitivity. Recent technological advances in genetics, genomics, proteomics, and bioinformatics offer a great opportunity for biomarker discovery. The newly identified biomarkers have the potential to bring increased accuracy in disease diagnosis and classification, as well as therapeutic monitoring. In this review, we will use type 1 diabetes (T1D) as an example, when appropriate, to discuss pertinent issues related to high throughput biomarker discovery.
Collapse
Affiliation(s)
- C D Collins
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, CA4124, Augusta, GA 30912-2400, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|