1
|
Randolph CE, Walker KA, Yu R, Beveridge C, Manchanda P, Chopra G. Glial Biologist's Guide to Mass Spectrometry-Based Lipidomics: A Tutorial From Sample Preparation to Data Analysis. Glia 2025; 73:474-494. [PMID: 39751169 PMCID: PMC11784846 DOI: 10.1002/glia.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Neurological diseases are associated with disruptions in the brain lipidome that are becoming central to disease pathogenesis. Traditionally perceived as static structural support in membranes, lipids are now known to be actively involved in cellular signaling, energy metabolism, and other cellular activities involving membrane curvature, fluidity, fusion or fission. Glia are critical in the development, health, and function of the brain, and glial regulation plays a major role in disease. The major pathways of glial dysregulation related to function are associated with downstream products of metabolism including lipids. Taking advantage of significant innovations and technical advancements in instrumentation, lipidomics has emerged as a popular omics discipline, serving as the prevailing approach to comprehensively define metabolic alterations associated with organismal development, damage or disease. A key technological platform for lipidomics studies is mass spectrometry (MS), as it affords large-scale profiling of complex biological samples. However, as MS-based techniques are often refined and advanced, the relative comfort level among biologists with this instrumentation has not followed suit. In this review, we aim to highlight the importance of the study of glial lipids and to provide a concise record of best practices and steps for MS-based lipidomics. Specifically, we outline procedures for glia lipidomics workflows ranging from sample collection and extraction to mass spectrometric analysis to data interpretation. To ensure these approaches are more accessible, this tutorial aims to familiarize glia biologists with sample handling and analysis techniques for MS-based lipidomics, and to guide non-experts toward generating high quality lipidomics data.
Collapse
Affiliation(s)
| | | | - Ruilin Yu
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Connor Beveridge
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Palak Manchanda
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer Science (By Courtesy)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug DiscoveryWest LafayetteIndianaUSA
- Purdue Institute for Integrative NeuroscienceWest LafayetteIndianaUSA
- Purdue Institute of InflammationImmunology and Infectious DiseaseWest LafayetteIndianaUSA
- Purdue Institute for Cancer ResearchWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare EngineeringWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Yang HS. Lipid Biomarkers and Cardiometabolic Diseases: Critical Knowledge Gaps and Future Research Directions. Metabolites 2025; 15:108. [PMID: 39997733 PMCID: PMC11857555 DOI: 10.3390/metabo15020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
The past decade has witnessed transformative changes in our understanding of various lipid or lipid-related biomarkers (Table 1) and their relationships with cardiometabolic diseases [...].
Collapse
Affiliation(s)
- Hyun Suk Yang
- Department of Cardiovascular Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Wu L, Zhu SC, He Y, Zhu YX, Ou-Yang XL, Zhang D, Li CM. Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review. Front Med (Lausanne) 2025; 11:1538373. [PMID: 39882523 PMCID: PMC11774704 DOI: 10.3389/fmed.2024.1538373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV. Recent research in metabolomics and lipidomics has been propelled by rapid advancements in technologies including computational methods and mass spectrometry. Using metabolomics and lipidomics approach, a broad range of structurally diverse lipid species were detected and important lipid biomarkers were identified that are vital to the pathogenesis of AV. In this review, we will describe the recent progress in dyslipidemia of AV using metabolomics and lipidomics advances. We will begin with a literature overview of dyslipidemia of AV, followed by a short introduction of metabolomics and lipidomics. Finally, we will focus on applying metabolomics and lipidomics in dyslipidemia of AV.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sheng-Cai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang He
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Xia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Liang Ou-Yang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Fifth People's Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Guo Z, Yu H, Yang K, Feng W, Liu M, Wang T, Xiao R. Quantitative Determination of a Series of Oxysterols by an Optimized LC-MS/MS Analysis in Different Tissue Types. Int J Mol Sci 2024; 26:77. [PMID: 39795936 PMCID: PMC11720652 DOI: 10.3390/ijms26010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately. However, there are a lot of unsolved problems with the existing methods, such as the hindrance of applying a single method to different biological specimens or the challenge of simultaneous quantification due to differential groups on the ends of the oxysterol side chains. Herein, according to the physicochemical properties and structure of oxysterols, an optimized liquid chromatography-tandem mass spectrometry method for the quantification of oxysterols was established by optimizing the sample preparation process, chromatographic conditions, mobile phase pH, and solvent selection. Seven oxysterols were detected by this method, including 27-hydroxycholesterol, 7α-hydroxycholesterol, 7α,27-dihydroxycholesterol, 7-dehydrocholesterol, 7α-hydroxy-3-oxo-4-cholestenoic acid, 3-hydroxy-5-cholestenoic acid, and 24(S)-hydroxycholesterol. Non-derivatization extraction with methyl tert-butyl ether was used for different biospecimens, followed by simultaneous chromatographic separation of oxysterols on a phenyl hexyl column. By repeated validation, this method exhibited satisfactory linearity, precision, recovery, sensitivity, repeatability, and stability, and it was successfully applied to the detection of oxysterols in the plasma, cerebral cortex, and liver of mouse. In summary, our optimized method enables concurrent analysis and quantification of oxysterols and their metabolites in various biospecimens, presenting a broad range of applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing 100069, China; (Z.G.); (H.Y.); (K.Y.); (W.F.); (M.L.); (T.W.)
| |
Collapse
|
5
|
Liu Q, Li X, Sun Y, Wang Z, Zhang J. Novel theoretical database-assisted UHPLC-Q-TOF/MS strategy for profiling and identifying oxidized triglycerides in pharmaceutical excipient soybean oil. J Pharm Biomed Anal 2024; 249:116380. [PMID: 39067279 DOI: 10.1016/j.jpba.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Pharmaceutical excipient soybean oil is widely used in injections. Its main components, triglycerides, are easily oxidized due to their unsaturated fatty acyls, raising safety concerns. However, it is hard to analyze those oxidized triglycerides due to their diverse compositions and low abundance. In this study, all theoretical oxidized triglycerides were predicted and a database consisting of 329 oxidized triglycerides was constructed. Then, a novel theoretical database-assisted ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) strategy was developed to finely profile and identify oxidized triglycerides in soybean oil. A total of 106 and 116 oxidized triglycerides were identified and relatively quantified in oxidized soybean oil and long-term stored soybean oil and preparations. It was found that oxidized triglycerides containing carbonyl groups were significantly more prevalent than other forms and oxidized triglycerides with two oxidized fatty acyl chains had the highest relative abundance. Fifteen markers indicating the oxidation of soybean oil were discovered. This strategy could rapidly and directly analyze the oxidized triglycerides and assign their fatty acyl compositions for the first time. This study will improve the quality control of soybean oil and its preparations.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjian Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
7
|
Bai Y, Zou Y, Zeng Y, Hu L, Huang S, Wu K, Yi Q, Chen J, Liang G, Li Y, Huang W, Chen C. Benzylic rearrangement for urinary analysis of guanidino and ureido compounds in cardiac surgery-associated acute kidney injury using high-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9853. [PMID: 38923063 DOI: 10.1002/rcm.9853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
RationaleBecause acute kidney injury (AKI) is closely related to poor prognosis in critically ill patients, developing biomarkers for its prediction and early diagnosis is particularly important. Endogenous guanidino compounds (GCs) and ureido compounds (UCs) can participate in various biochemical processes because of their important physiological activities. The aim of this study was to investigate the alteration profiles of urinary GCs/UCs as potential biomarkers in patients with cardiac surgery–associated acute kidney injury (CSA‐AKI) at different stages.MethodsGCs/UCs were reacted with benzil via benzylic rearrangement, and their derivatives were used to investigate fragmentation mechanisms using tandem mass spectrometry (MS/MS) in positive ion mode. Furthermore, a high‐performance liquid chromatography (HPLC)–MS/MS method was developed to measure the concentrations of GCs/UCs in urine samples taken from patients with CSA‐AKI at different time points.ResultsMS/MS analysis in positive ion mode showed that benzylic GCs/UCs exhibited similar fragmentation processes, which could produce the characteristic ion (C13H12N+) at m/z 182.0. Furthermore, an obviously different fragmentation pattern of benzylic UCs in the positive ion mode might be due to the neutral loss of the H2CO2 group under low collision energy. Of the eight selected GCs/UCs, methylguanidine exhibited significantly increased concentrations in urine when CSA‐AKI occurred, whereas guanidinoethyl sulfonate (GDS), homoarginine (HArg) and homocitrulline (HCit) exhibited decreased concentrations. After recovery from AKI, the urinary concentrations of the aforementioned GCs/UCs returned to normal. Some of the aforementioned metabolites with significant changes (GDS, HArg and HCit) had large areas under the curve in the receiver operating characteristic curve for distinguishing AKI stages on the third day after surgery.ConclusionsIn patients with CSA‐AKI, urinary GCs/UCs were significantly disrupted due to injured kidney, and some GC/UC metabolites exhibited a good ability to become potential biomarkers for AKI stages. The present study provides essential resources and new therapeutic targets for further research on CSA‐AKI.
Collapse
Affiliation(s)
- Yunpeng Bai
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Yuming Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yingjia Zeng
- The Second Clinical Medical School of Kunming Medical University, Kunming, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Sumei Huang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Biological Resource Center of Maoming People's Hospital, Maoming, China
| | - Kunyong Wu
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Biological Resource Center of Maoming People's Hospital, Maoming, China
| | - Qingxia Yi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingchun Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guowu Liang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Yingbang Li
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Wendong Huang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Emergency, Maoming People's Hospital, Maoming, China
| |
Collapse
|
8
|
Xia F, Cui P, Liu L, Chen J, Zhou Q, Wang Q, Zhou H. Quantification of gut microbiome metabolites using chemical isotope derivatization strategy combined with LC-MS/MS: Application in neonatal hypoxic-ischemic encephalopathy rat model. J Pharm Biomed Anal 2024; 248:116312. [PMID: 38908236 DOI: 10.1016/j.jpba.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The gut microbiome plays pivotal roles in various physiological and pathological processes, with key metabolites including short chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (TRP) derivatives gaining significant attention for their diverse physiological roles. However, quantifying these metabolites presents challenges due to structural similarity, low abundance, and inherent technical limitations in traditional detection methods. In this study, we developed a precise and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method utilizing a chemical isotope derivatization technique employing 4-(aminomethyl)-N,N-dimethylaniline-d0/d6 (4-AND-d0/d6) reagents to quantify 37 typical gut microbiome-derived metabolites. This method achieved an impressive 1500-fold enhancement in sensitivity for detecting metabolites, compared to methods using non-derivatized, intact molecules. Moreover, the quantitative accuracy of our chemical isotope derivatization strategy proved comparable to the stable isotope labeled internal standards (SIL-IS) method. Subsequently, we successfully applied this newly developed method to quantify target metabolites in plasma, brain, and fecal samples obtained from a neonatal hypoxic-ischemic encephalopathy (HIE) rat model. The aim was to identify crucial metabolites associated with the progression of HIE. Overall, our sensitive and reliable quantification method holds promise in elucidating the role of gut microbiome metabolites in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Fangbo Xia
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China.
| | - Peng Cui
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Ling Liu
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Junhe Chen
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Qiqi Zhou
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Qian Wang
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China.
| | - Hongwei Zhou
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China.
| |
Collapse
|
9
|
Chen ZQ, Yang RJ, Zhu CW, Li Y, Yan R, Wan JB. Chemical Isotope Labeling and Dual-Filtering Strategy for Comprehensive Profiling of Urinary Glucuronide Conjugates. Anal Chem 2024; 96:13576-13587. [PMID: 39102235 PMCID: PMC11339728 DOI: 10.1021/acs.analchem.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Ru-Jie Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Chao-Wei Zhu
- Shenzhen
People’s Hospital, Shenzhen, Guangdong 518000, China
| | - Yang Li
- Shenzhen
People’s Hospital, Shenzhen, Guangdong 518000, China
| | - Ru Yan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Jian-Bo Wan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| |
Collapse
|
10
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
11
|
Mostafa ME, Agongo J, Grady SF, Pyles K, McCommis KS, Arnatt CK, Ford DA, Edwards JL. Double Cyclization Tandem Mass for Identification and Quantification of Phosphatidylcholines Using Isobaric Six-Plex Capillary nLC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1403-1412. [PMID: 38870035 DOI: 10.1021/jasms.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Multiplexing of phosphatidylcholine analysis is hindered by a lack of appropriate derivatization. Presented here is a tagging scheme that uses a quaternary amine tag and targets the hydroxy group of the phosphate, which switches the net charge from neutral to +2. Quantitative yields were achieved from >99% reaction completion derived by dimethoxymethyl morpholinium (DMTMM) activation. Fragmentation of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) releases two trimethylamines and the acyl chains through neutral loss and generates a unique double cyclization constant mass reporter. Selective incorporation of isotopes onto the tag produces a six-plex set of isobaric reagents. For equivalent six-plex-labeled samples, <14% RSD was achieved, followed by a dynamic range of 1:10 without signal compression. Quantification of PCs/LPCs in human hepatic cancer cells was conducted as six-plex using data-dependent analysis tandem MS. We report a six-plex qualitative and quantitative isobaric tagging strategy expanding the limits of analyzing PCs/LPCs.
Collapse
Affiliation(s)
- Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Julius Agongo
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Scott F Grady
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Kelly Pyles
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Christopher K Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
12
|
Grooms AJ, Burris BJ, Badu-Tawiah AK. Mass spectrometry for metabolomics analysis: Applications in neonatal and cancer screening. MASS SPECTROMETRY REVIEWS 2024; 43:683-712. [PMID: 36524560 PMCID: PMC10272294 DOI: 10.1002/mas.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chemical analysis by analytical instrumentation has played a major role in disease diagnosis, which is a necessary step for disease treatment. While the treatment process often targets specific organs or compounds, the diagnostic step can occur through various means, including physical or chemical examination. Chemically, the genome may be evaluated to give information about potential genetic outcomes, the transcriptome to provide information about expression actively occurring, the proteome to offer insight on functions causing metabolite expression, or the metabolome to provide a picture of both past and ongoing physiological function in the body. Mass spectrometry (MS) has been elevated among other analytical instrumentation because it can be used to evaluate all four biological machineries of the body. In addition, MS provides enhanced sensitivity, selectivity, versatility, and speed for rapid turnaround time, qualities that are important for instance in clinical procedures involving the diagnosis of a pediatric patient in intensive care or a cancer patient undergoing surgery. In this review, we provide a summary of the use of MS to evaluate biomarkers for newborn screening and cancer diagnosis. As many reviews have recently appeared focusing on MS methods and instrumentation for metabolite analysis, we sought to describe the biological basis for many metabolomic and additional omics biomarkers used in newborn screening and how tandem MS methods have recently been applied, in comparison to traditional methods. Similar comparison is done for cancer screening, with emphasis on emerging MS approaches that allow biological fluids, tissues, and breath to be analyzed for the presence of diagnostic metabolites yielding insight for treatment options based on the understanding of prior and current physiological functions of the body.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Benjamin J Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| |
Collapse
|
13
|
Higashi T. Derivatization to generate a product ion containing analyte-specific moiety in ESI-MS/MS. ANAL SCI 2024; 40:973-974. [PMID: 38789687 DOI: 10.1007/s44211-024-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Affiliation(s)
- Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
14
|
Yuan C, Jin Y, Zhang H, Chen S, Yi J, Xie Q, Dong J, Wu C. Strategy to Empower Nontargeted Metabolomics by Triple-Dimensional Combinatorial Derivatization with MS-TDF Software. Anal Chem 2024; 96:7634-7642. [PMID: 38691624 DOI: 10.1021/acs.analchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.
Collapse
Affiliation(s)
- Caixia Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Simian Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Jiajin Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jiyang Dong
- Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Bouza M, Foest D, Brandt S, García-Reyes JF, Franzke J. Enhanced Compound Analysis Using Reactive Paper Spray Mass Spectrometry: Leveraging Schiff Base Reaction for Amino Acid Detection. Anal Chem 2024; 96:5289-5297. [PMID: 38507224 PMCID: PMC10993198 DOI: 10.1021/acs.analchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes. These molecules are prone to interacting with substrates like paper, impeding elution and detection. Additionally, highly abundant species in biofluids, such as lipids, often suppress AA ionization. This study employs the Schiff base (SB) reaction utilizing aromatic aldehydes for AA derivatization to optimize reaction conditions time, temperature, and catalyst presence and dramatically increasing the conversion ratio (CR) of formed SB. For instance, using leucine as a model AA, the CR surged from 57% at room temperature to 89% at 70 °C, with added pyridine during and after 7.5 min, displaying a 43% CR compared to the bulk reaction. Evaluation of various aromatic aldehydes as derivatization agents highlighted the importance of specific oxygen substituents for achieving higher conversion rates. Furthermore, diverse derivatization agents unveiled unique fragmentation pathways, aiding in-depth annotation of the target analyte. Successfully applied to quantify AAs in human and rat plasma, this reactive PS-MS approach showcases promising potential in efficiently detecting conventionally challenging compounds in PS-MS analysis.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Daniel Foest
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Sebastian Brandt
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| |
Collapse
|
16
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Ly R, Torres LC, Ly N, Britz-McKibbin P. Expanding Lipidomic Coverage in Multisegment Injection-Nonaqueous Capillary Electrophoresis-Mass Spectrometry via a Convenient and Quantitative Methylation Strategy. Anal Chem 2023; 95:17513-17524. [PMID: 37991882 DOI: 10.1021/acs.analchem.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Orthogonal separation techniques coupled to high-resolution mass spectrometry are required for characterizing the human lipidome, given its inherent chemical and structural complexity. However, electrophoretic separations remain largely unrecognized in contemporary lipidomics research compared to established chromatographic and ion mobility methods. Herein, we introduce a novel derivatization protocol based on 3-methyl-1-p-tolyltriazene (MTT) as a safer alternative to diazomethane for quantitative phospholipid (PL) methylation (∼90%), which enables their rapid analysis by multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry (MSI-NACE-MS). Isobaric interferences and ion suppression effects were minimized by performing an initial reaction using 9-fluorenylmethyoxycarbonyl chloride prior to MTT and a subsequent back extraction in hexane. This charge-switch derivatization strategy expands lipidome coverage when using MSI-NACE-MS under positive ion mode with improved resolution, greater sensitivity, and higher throughput (∼3.5 min/sample), notably for zwitterionic PLs that are analyzed as their cationic phosphate methyl esters. Our method was validated by analyzing methyl-tert-butyl ether extracts of reference human plasma, which enabled a direct comparison of 48 phosphatidylcholine and 27 sphingomyelin species previously reported in an interlaboratory lipidomics harmonization study. The potential for plasma PL quantification by MSI-NACE-MS via a serial dilution of NIST SRM-1950 was also demonstrated based on estimation of relative response factors using their reported consensus concentrations. Moreover, lipid identification was supported by modeling predictable changes in the electrophoretic mobility for cationic PLs in conjunction with MS/MS. Overall, this work offers a practical derivatization protocol to expand lipidome coverage in CE-MS beyond the analysis of hydrophilic/polar metabolites under aqueous buffer conditions.
Collapse
Affiliation(s)
- Ritchie Ly
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Lucas Christian Torres
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Nicholas Ly
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
18
|
Randolph CE, Manchanda P, Arora H, Iyer S, Saklani P, Beveridge C, Chopra G. Mass Spectrometry-based Single-Cell Lipidomics: Advancements, Challenges, and the Path Forward. Trends Analyt Chem 2023; 169:117350. [PMID: 40255629 PMCID: PMC12007889 DOI: 10.1016/j.trac.2023.117350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
In the past decade, lipidomics, now recognized as standalone subdiscipline of metabolomics, has gained considerable attention. Due to its sensitivity and unparalleled versatility, mass spectrometry (MS) has emerged as the tool of choice for lipid identification and detection. Traditional MS-based lipidomics are performed on bulk cell samples. While informative, these bulk-scale cellular lipidome measurements mask cellular heterogeneity across seemingly homogeneous populations of cells. Unfortunately, single cell lipidomics methodology and analyses are considerably behind genomics, transcriptomics, and proteomics. Therefore, the cell-to-cell heterogeneity and related function remains largely unexplored for lipidomics. Herein, we review recent advances in MS-based single cell lipidomics. We also explore the root causes for the slow development of single-cell lipidomics techniques. We aim to provide insights on the pivotal knowledge gaps that have been neglected, prohibiting the propulsion of the single-cell lipidomics field forward, while also providing our perspective towards future methodologies that can pave a path forward.
Collapse
Affiliation(s)
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harshit Arora
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Pooja Saklani
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Connor Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, West Lafayette, IN 47907, USA
- Purdue University Integrative Data Science Initiative, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Yang RJ, Zou J, Liu JY, Dai JK, Wan JB. Click chemistry-based enrichment strategy for tracing cellular fatty acid metabolism by LC-MS/MS. J Pharm Anal 2023; 13:1221-1231. [PMID: 38024853 PMCID: PMC10657974 DOI: 10.1016/j.jpha.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 12/01/2023] Open
Abstract
Fatty acids (FAs), which were initially recognized as energy sources and essential building blocks of biomembranes, serve as the precursors of important signaling molecules. Tracing FA metabolism is essential to understanding the biochemical activity and role of FAs in physiological and pathological events. Inspired by the advances in click chemistry for protein enrichment, we herein established a click chemistry-based enrichment (CCBE) strategy for tracing the cellular metabolism of eicosapentaenoic acid (EPA, 20:5 n-3) in neural cells. Terminal alkyne-labeled EPA (EPAA) used as a surrogate was incubated with N2a, mouse neuroblastoma cells, and alkyne-labeled metabolites (ALMs) were selectively captured by an azide-modified resin via a Cu(I)-catalyzed azide-alkyne cycloaddition reaction for enrichment. After removing unlabeled metabolites, ALMs containing a triazole moiety were cleaved from solid-phase resins and subjected to liquid chromatography mass spectrometry (LC-MS) analysis. The proposed CCBE strategy is highly selective for capturing and enriching alkyne-labeled metabolites from the complicated matrices. In addition, this method can overcome current detection limits by enhancing MS sensitivity of targets, improving the chromatographic separation of sn-position glycerophospholipid regioisomers, facilitating structural characterization of ALMs by a specific MS/MS fragmentation signature, and providing versatile fluorescence detection of ALMs for cellular distribution. This CCBE strategy might be expanded to trace the metabolism of other FAs, small molecules, or drugs.
Collapse
Affiliation(s)
- Ru-Jie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jia-Yue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
20
|
He Y, Kaya I, Shariatgorji R, Lundkvist J, Wahlberg LU, Nilsson A, Mamula D, Kehr J, Zareba-Paslawska J, Biverstål H, Chergui K, Zhang X, Andren PE, Svenningsson P. Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents. Nat Commun 2023; 14:5804. [PMID: 37726325 PMCID: PMC10509278 DOI: 10.1038/s41467-023-41539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Prosaposin (PSAP) modulates glycosphingolipid metabolism and variants have been linked to Parkinson's disease (PD). Here, we find altered PSAP levels in the plasma, CSF and post-mortem brain of PD patients. Altered plasma and CSF PSAP levels correlate with PD-related motor impairments. Dopaminergic PSAP-deficient (cPSAPDAT) mice display hypolocomotion and depression/anxiety-like symptoms with mildly impaired dopaminergic neurotransmission, while serotonergic PSAP-deficient (cPSAPSERT) mice behave normally. Spatial lipidomics revealed an accumulation of highly unsaturated and shortened lipids and reduction of sphingolipids throughout the brains of cPSAPDAT mice. The overexpression of α-synuclein via AAV lead to more severe dopaminergic degeneration and higher p-Ser129 α-synuclein levels in cPSAPDAT mice compared to WT mice. Overexpression of PSAP via AAV and encapsulated cell biodelivery protected against 6-OHDA and α-synuclein toxicity in wild-type rodents. Thus, these findings suggest PSAP may maintain dopaminergic lipid homeostasis, which is dysregulated in PD, and counteract experimental parkinsonism.
Collapse
Affiliation(s)
- Yachao He
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Johan Lundkvist
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
- Sinfonia Biotherapeutics AB, Huddinge, Sweden
| | - Lars U Wahlberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Dejan Mamula
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Justyna Zareba-Paslawska
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Biverstål
- Sinfonia Biotherapeutics AB, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karima Chergui
- Laboratory of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per E Andren
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
21
|
Hirtzel E, Edwards M, Freitas D, Liu Z, Wang F, Yan X. Aziridination-Assisted Mass Spectrometry of Nonpolar Sterol Lipids with Isomeric Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1998-2005. [PMID: 37523498 PMCID: PMC10863044 DOI: 10.1021/jasms.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.
Collapse
Affiliation(s)
- Erin Hirtzel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dallas Freitas
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ziying Liu
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, Bezard E, Svenningsson P, Odell LR, Andrén PE. On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:836-846. [PMID: 37052344 PMCID: PMC10161219 DOI: 10.1021/jasms.2c00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Sooraj Baijnath
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Xiaoqun Zhang
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
23
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
24
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
25
|
Gao S, Zhou X, Yue M, Zhu S, Liu Q, Zhao XE. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
26
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
27
|
Jiang ST, Zhang L, Xu YY, Lu X. Letter to the editor: For the core set of the bile lipidome and meta-proteome signature, repeatability is the key. Hepatology 2022; 76:E74-E75. [PMID: 35478461 DOI: 10.1002/hep.32543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Shi-Tao Jiang
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | | | | | |
Collapse
|
28
|
Cerrato A, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Laganà A. Novel Aza-Paternò-Büchi Reaction Allows Pinpointing Carbon-Carbon Double Bonds in Unsaturated Lipids by Higher Collisional Dissociation. Anal Chem 2022; 94:13117-13125. [PMID: 36121000 PMCID: PMC9523615 DOI: 10.1021/acs.analchem.2c02549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The evaluation of double bond positions in fatty acyl
chains has
always been of great concern given their significance in the chemical
and biochemical role of lipids. Despite being the foremost technique
for lipidomics, it is difficult in practice to obtain identification
beyond the fatty acyl level by the sole high-resolution mass spectrometry.
Paternò–Büchi reactions of fatty acids (FAs)
with ketones have been successfully proposed for pinpointing double
bonds in FAs in combination with the collision-induced fragmentation
technique. In the present paper, an aza-Paternò–Büchi
(aPB) reaction of lipids with 6-azauracil (6-AU) was proposed for
the first time for the determination of carbon–carbon double
bonds in fatty acyl chains using higher collisional dissociation in
the negative ion mode. The method was optimized using free FA and
phospholipid analytical standards and compared to the standard Paternò–Büchi
reaction with acetone. The introduction of the 6-AU moiety allowed
enhancing the ionization efficiency of the FA precursor and diagnostic
product ions, thanks to the presence of ionizable sites on the derivatizing
agent. Moreover, the aPB derivatization allowed the obtention of deprotonated
ions of phosphatidylcholines, thanks to an intramolecular methyl transfer
from the phosphocholine polar heads during ionization. The workflow
was finally applied for pinpointing carbon–carbon double bonds
in 77 polar lipids from an yeast (Saccharomyces cerevisiae) extract.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
29
|
Cui P, Li X, Huang C, Li Q, Lin D. Metabolomics and its Applications in Cancer Cachexia. Front Mol Biosci 2022; 9:789889. [PMID: 35198602 PMCID: PMC8860494 DOI: 10.3389/fmolb.2022.789889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a complicated metabolic derangement and muscle wasting syndrome, affecting 50-80% cancer patients. So far, molecular mechanisms underlying CC remain elusive. Metabolomics techniques have been used to study metabolic shifts including changes of metabolite concentrations and disturbed metabolic pathways in the progression of CC, and expand further fundamental understanding of muscle loss. In this article, we aim to review the research progress and applications of metabolomics on CC in the past decade, and provide a theoretical basis for the study of prediction, early diagnosis, and therapy of CC.
Collapse
Affiliation(s)
- Pengfei Cui
- College of Food and Pharmacy, Xuchang University, Xuchang, China
| | - Xiaoyi Li
- Xuchang Central Hospital, Xuchang, China
| | - Caihua Huang
- Department of Physical Education, Xiamen University of Technology, Xiamen, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Review of Recent Advances in Lipid Analysis of Biological Samples via Ambient Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11110781. [PMID: 34822439 PMCID: PMC8623600 DOI: 10.3390/metabo11110781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
The rapid and direct structural characterization of lipids proves to be critical for studying the functional roles of lipids in many biological processes. Among numerous analytical techniques, ambient ionization mass spectrometry (AIMS) allows for a direct molecular characterization of lipids from various complex biological samples with no/minimal sample pretreatment. Over the recent years, researchers have expanded the applications of the AIMS techniques to lipid structural elucidation via a combination with a series of derivatization strategies (e.g., the Paternò–Büchi (PB) reaction, ozone-induced dissociation (OzID), and epoxidation reaction), including carbon–carbon double bond (C=C) locations and sn-positions isomers. Herein, this review summarizes the reaction mechanisms of various derivatization strategies for C=C bond analysis, typical instrumental setup, and applications of AIMS in the structural elucidation of lipids from various biological samples (e.g., tissues, cells, and biofluids). In addition, future directions of AIMS for lipid structural elucidation are discussed.
Collapse
|