1
|
Leykauf T, Klein J, Ernst M, Dorfner M, Ignatova A, Kreis W, Lanig H, Munkert J. Overexpression and RNAi-mediated Knockdown of Two 3β-hydroxy-Δ5-steroid dehydrogenase Genes in Digitalis lanata Shoot Cultures Reveal Their Role in Cardenolide Biosynthesis. PLANTA MEDICA 2023. [PMID: 37187191 DOI: 10.1055/a-2074-9186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
3β-hydroxy-Δ5-steroid dehydrogenases (3βHSDs) are supposed to be involved in 5β-cardenolide biosynthesis. Here, a novel 3βHSD (Dl3βHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3βHSD1 and Dl3βHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3βHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3βHSD1, Dl3βHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3βHSDs was realised by Agrobacterium-mediated transfer of Dl3βHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3βHSD1 and 35S:Dl3βHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3βHSD1 lines than in the controls. In the 35S:Dl3βHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3βHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3β-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3βHSD1 knockdown. These results can be taken as the first direct proof that Dl3βHSD1 is indeed involved in 5β-cardenolide biosynthesis.
Collapse
Affiliation(s)
- Tim Leykauf
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Klein
- Department of Plant Physiology, Friedrich-Schiller-Universität Jena, Germany
| | - Mona Ernst
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maja Dorfner
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anastasiia Ignatova
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Lanig
- National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer Munkert
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Zhang R, Yao M, Ma H, Xiao W, Wang Y, Yuan Y. Modular Coculture to Reduce Substrate Competition and Off-Target Intermediates in Androstenedione Biosynthesis. ACS Synth Biol 2023; 12:788-799. [PMID: 36857753 DOI: 10.1021/acssynbio.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Substrate competition within a metabolic network constitutes a common challenge in microbial biosynthesis system engineering, especially if indispensable enzymes can produce multiple intermediates from a single substrate. Androstenedione (4AD) is a central intermediate in the production of a series of steroidal pharmaceuticals; however, its yield via the coexpression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17α-hydroxylase/17,20-lyase (CYP17A1) in a microbial chassis affords a nonlinear pathway in which these enzymes compete for substrates and produce structurally similar unwanted intermediates, thereby reducing 4AD yields. To avoid substrate competition, we split the competing 3β-HSD and CYP17A1 pathway components into two separate Yarrowia lipolytica strains to linearize the pathway. This spatial segregation increased substrate availability for 3β-HSD in the upstream strain, consequently decreasing the accumulation of the unwanted intermediate 17-hydroxypregnenolone (17OHP5) from 94.8 ± 4.4% in single-chassis monocultures to 24.8 ± 12.6% in cocultures of strains expressing 3β-HSD and CYP17A1 separately. Orthologue screening to increase CYP17A1 catalytic efficiency and the preferential production of desired intermediates increased the biotransformation capacity in the downstream pathway, further decreasing 17OHP5 accumulation to 3.9%. Furthermore, nitrogen limitation induced early 4AD accumulation (final titer, 7.71 mg/L). This study provides a framework for reducing intrapathway competition between essential enzymes during natural product biosynthesis as well as a proof-of-concept platform for linear steroid production.
Collapse
Affiliation(s)
- Ruosi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haidi Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Zhou Y, Fan W, Zhang H, Zhang J, Zhang G, Wang D, Xiang G, Zhao C, Li L, He S, Lu Y, Zhao J, Meng Z, Zhang X, Meng H, Yin X, Yang S, Long G. Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1146-1159. [PMID: 36575579 DOI: 10.1111/tpj.16081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Marsdenia tenacissima is a medicinal plant widely distributed in the calcium-rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome-level genome assembly in Apocynaceae using combined SMRT sequencing and Hi-C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole-genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene-family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium-related adaptive evolution in the M. tenacissima genome. Calcium-induced differentially expressed genes (DEGs) were mainly enriched in cell-wall-related processes. Domains (e.g. Fasciclin and Amb_all) and cis-elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell-wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium-signal-related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high-quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.
Collapse
Affiliation(s)
- Yanli Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Wei Fan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Haoyue Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jingling Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Ding Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Guisheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Changhong Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Lianhua Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Simei He
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Yingchun Lu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Jiuxia Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Zhengui Meng
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Xianmin Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Hengling Meng
- The Life Science and Technology College, Honghe University, Mengzi, Yunnan, 661199, China
| | - Xinhua Yin
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| |
Collapse
|
4
|
Knockout of Arabidopsis thaliana VEP1, Encoding a PRISE (Progesterone 5β-Reductase/Iridoid Synthase-Like Enzyme), Leads to Metabolic Changes in Response to Exogenous Methyl Vinyl Ketone (MVK). Metabolites 2021; 12:metabo12010011. [PMID: 35050133 PMCID: PMC8778713 DOI: 10.3390/metabo12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why—or why not—certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more “accidental” roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.
Collapse
|
5
|
Klein J, Horn E, Ernst M, Leykauf T, Leupold T, Dorfner M, Wolf L, Ignatova A, Kreis W, Munkert J. RNAi-mediated gene knockdown of progesterone 5β-reductases in Digitalis lanata reduces 5β-cardenolide content. PLANT CELL REPORTS 2021; 40:1631-1646. [PMID: 34146141 PMCID: PMC8376734 DOI: 10.1007/s00299-021-02707-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 05/28/2023]
Abstract
Studying RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) in 5β-cardenolide formation. Progesterone 5β-reductases (P5βR) are assumed to catalyze the reduction of progesterone to 5β-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5β-cardenolides. P5βRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes. P5βRs are substrate-promiscuous enone-1,4-reductases recently termed PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes). Two PRISE genes, termed DlP5βR1 (AY585867.1) and DlP5βR2 (HM210089.1) were isolated from Digitalis lanata. To give experimental evidence for the participation of PRISEs in 5β-cardenolide formation, we here established several RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of D. lanata. Cardenolide contents were lower in D. lanata P5βR-RNAi lines than in wild-type shoots. We considered that the gene knockdowns may have had pleiotropic effects such as an increase in glutathione (GSH) which is known to inhibit cardenolide formation. GSH levels and expression of glutathione reductase (GR) were measured. Both were higher in the Dl P5βR-RNAi lines than in the wild-type shoots. Cardenolide biosynthesis was restored by buthionine sulfoximine (BSO) treatment in Dl P5βR2-RNAi lines but not in Dl P5βR1-RNAi lines. Since progesterone is a precursor of cardenolides but can also act as a reactive electrophile species (RES), we here discriminated between these by comparing the effects of progesterone and methyl vinyl ketone, a small RES but not a precursor of cardenolides. To the best of our knowledge, we here demonstrated for the first time that P5βR1 is involved in cardenolide formation. We also provide further evidence that PRISEs are also important for plants dealing with stress by detoxifying reactive electrophile species (RES).
Collapse
Affiliation(s)
- Jan Klein
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Elisa Horn
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Mona Ernst
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Tim Leykauf
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Tamara Leupold
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Maja Dorfner
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Laura Wolf
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Anastasiia Ignatova
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Wolfgang Kreis
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Jennifer Munkert
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
7
|
Yeast as a promising heterologous host for steroid bioproduction. J Ind Microbiol Biotechnol 2020; 47:829-843. [PMID: 32661815 PMCID: PMC7358296 DOI: 10.1007/s10295-020-02291-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
With the rapid development of synthetic biology and metabolic engineering technologies, yeast has been generally considered as promising hosts for the bioproduction of secondary metabolites. Sterols are essential components of cell membrane, and are the precursors for the biosynthesis of steroid hormones, signaling molecules, and defense molecules in the higher eukaryotes, which are of pharmaceutical and agricultural significance. In this mini-review, we summarize the recent engineering efforts of using yeast to synthesize various steroids, and discuss the structural diversity that the current steroid-producing yeast can achieve, the challenge and the potential of using yeast as the bioproduction platform of various steroids from higher eukaryotes.
Collapse
|
8
|
Rieck C, Geiger D, Munkert J, Messerschmidt K, Petersen J, Strasser J, Meitinger N, Kreis W. Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae. Microbiologyopen 2019; 8:e925. [PMID: 31436030 PMCID: PMC6925150 DOI: 10.1002/mbo3.925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5‐3β‐hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5‐isomerase gene from Comamonas testosteronii, (c) a mutated steroid‐5β‐reductase gene from Arabidopsis thaliana, and (d) a steroid 21‐hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed “CARD II yeast”, was capable of producing 5β‐pregnane‐3β,21‐diol‐20‐one, a central intermediate in 5β‐cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.
Collapse
Affiliation(s)
- Christoph Rieck
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Geiger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer Munkert
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Jan Petersen
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Juliane Strasser
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine Meitinger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|