1
|
Nakano T, Nakano M, Fukami T, Nakajima M. Cigarette smoking modulates m 6A modification, affecting the induction of CYP1A1 mRNA by regulating human ARNT and AHRR in A549 cells. Toxicol Lett 2025; 407:41-49. [PMID: 40118351 DOI: 10.1016/j.toxlet.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
N6-Methyladenosine (m6A) modification is a common epitranscriptomic mark of eukaryotic RNAs. This modification is installed by a methyltransferase like 3 (METTL3)-METTL14 complex and is eliminated by fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). Aberrant m6A modification is associated with the development and progression of cancer. Cigarette smoking is a major lifestyle habit and risk factor for lung cancer. This study aimed to clarify the effects of cigarette smoking on the expression of m6A modification-regulating enzymes and the significance of m6A modification in the biological responses to cigarette smoking. Treatment of cigarette smoke extract (CSE) significantly decreased METTL3 and METTL14 protein levels in human lung adenocarcinoma-derived A549 cells. The induction of CYP1A1 mRNA by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a typical ligand of the aryl hydrocarbon receptor (AHR), was attenuated by the knockdown (KD) of METTL3 or ALKBH5, whereas it was enhanced by the KD of FTO. As the underlying mechanisms, significantly decreased expression of AHR nuclear translocator (ARNT) by the KD of METTL3 or ALKBH5, and significantly decreased expression of AHR repressor (AHRR) by the KD of FTO were demonstrated. Formaldehyde-assisted isolation of regulatory elements assay revealed that the KD of METTL3 or ALKBH5 resulted in the compaction of the chromatin structure of ARNT promoter, suggesting that METTL3 and ALKBH5 promote the transcription of ARNT through the rearrangement of chromatin structure. Collectively, we found that CSE treatment decreased METTL3 and METTL14 protein levels, and m6A modification have impact on the induction of CYP1A1 by modulating ARNT and AHRR expression.
Collapse
Affiliation(s)
- Takumi Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Zhong S, Borlak J. Sex differences in the tumor promoting effects of tobacco smoke in a cRaf transgenic lung cancer disease model. Arch Toxicol 2024; 98:957-983. [PMID: 38245882 PMCID: PMC10861769 DOI: 10.1007/s00204-023-03671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Zhao C, Guan X, Zhang Q, Meng L, Lin W, Yang R, Li Y, Jiang G. Parent and halogenated polycyclic aromatic hydrocarbons exposure in aluminum smelter workers: Serum levels, accumulation trends, and association with health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169655. [PMID: 38159767 DOI: 10.1016/j.scitotenv.2023.169655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs) can be unintentionally formed and released during industrial thermal processes. However, information on internal exposure and health risks of PAHs and HPAHs for thermal industry workers is very limited. In this study, serum samples from 220 aluminum smelter workers in East China were analyzed, and the relationship between the levels of these pollutants and various health indicators was also assessed. The workers had markedly higher serum concentrations of PAHs and HPAHs than the controls. The serum concentrations of ∑13PAHs and ∑9HPAHs increased with increasing age and occupational exposure duration in male workers. A positive correlation was observed between the ∑13PAH and ∑9HPAH serum concentrations, and the concentration of ∑13PAHs was approximately 50 times higher than that of ∑9HPAHs. For benzo[a]pyrene equivalent (BaPeq)-based risk assessment, the contribution of PAHs and HPAHs to the risk was 80 % and 20 % in the workers. PAHs and HPAHs showed a positive association with pulmonary hypofunction, hypertension and abnormal electrocardiogram. This study indicates occupational exposure to these toxic pollutants remains a significant issue and provides evidence that elevated serum levels of ∑13PAHs and ∑9HPAHs may be associated with an increased risk of lung and cardiovascular diseases.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China
| | - Lingling Meng
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Wei Lin
- Department of Public Scientific Research Platform, Institute of Basic Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250014, China; Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Inoue C, Miki Y, Suzuki T. New Perspectives on Sex Steroid Hormones Signaling in Cancer-Associated Fibroblasts of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3620. [PMID: 37509283 PMCID: PMC10377312 DOI: 10.3390/cancers15143620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The importance of sex hormones, especially estrogen, in the pathogenesis of non-small-cell lung cancer (NSCLC) has attracted attention due to its high incidence among young adults and nonsmokers, especially those who are female. Cancer-associated fibroblasts (CAFs) reside in the cancer stroma and influence cancer growth, invasion, metastasis, and acquisition of drug resistance through interactions with cancer cells and other microenvironmental components. Hormone-mediated cell-cell interactions are classic cell-cell interactions and well-known phenomena in breast cancer and prostate cancer CAFs. In cancers of other organs, including NSCLC, the effects of CAFs on hormone-receptor expression and hormone production in cancer tissues have been reported; however, there are few such studies. Many more studies have been performed on breast and prostate cancers. Recent advances in technology, particularly single-cell analysis techniques, have led to significant advances in the classification and function of CAFs. However, the importance of sex hormones in cell-cell interactions of CAFs in NSCLC remains unclear. This review summarizes reports on CAFs in NSCLC and sex hormones in cancer and immune cells surrounding CAFs. Furthermore, we discuss the prospects of sex-hormone research involving CAFs in NSCLC.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Zhao L, Liu M, Liu L, Guo W, Yang H, Chen S, Yu J, Li M, Fang Q, Lai X, Yang L, Zhang X. The association of co-exposure to polycyclic aromatic hydrocarbon and phthalates with blood cell-based inflammatory biomarkers in children: A panel study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119479. [PMID: 35598818 DOI: 10.1016/j.envpol.2022.119479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The association of co-exposure to polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) with blood cell-based inflammatory biomarkers is largely unknown. We conducted a panel study of 144 children aged 4-12 years, with up to 3 repeated visits across 3 seasons. For each visit, we collected the first-morning urine for 4 consecutive days and fasting blood on the day of physical examination. We developed a gas chromatography/tandem mass spectrometry method to detect the metabolites of 10 PAHs (OH-PAHs) and 10 PAEs (mPAEs) in urine samples. We employed linear mixed-effects models to evaluate the individual associations of each OH-PAH and mPAE with blood cell-based inflammatory biomarkers over different lag times. Bayesian kernel machine regression (BKMR) and quantile g-computation were used to evaluate the overall associations of OH-PAHs and mPAEs mixtures with blood cell-based inflammatory biomarkers. After multiple adjustments, we found positive associations of summed hydroxylphenanthrene (∑OHPHE), summed OH-PAHs, and mono-n-butyl phthalate with inflammatory biomarkers such as neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the systemic immune-inflammation index (SII) at lag 0 (the day of physical examination). Each 1% increase in ∑OHPHE was related to a 0.18% (95% confidence interval: 0.10%, 0.25%) increase in SII, which was the strongest among the above associations. The results of BKMR and quantile g-computation suggested that co-exposure to PAHs and PAEs mixture was associated with an elevated white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and SII, to which ∑OHPHE and 1-hydroxypyrene (1-OHPYR) might be the major contributors. In addition, gender and age modified the associations of ∑OHPHE and 1-OHPYR with inflammatory biomarkers, where girls and younger children were more susceptible. In conclusion, co-exposure to PAHs and PAEs was associated with elevated inflammation in children, in which ∑OHPHE and 1-OHPYR might play important roles.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Public Health, Medical College of Qinghai University, Xining, Qinghai, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Fang
- Department of Medical Affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Li M, Liu Y, Xie S, Ma L, Zhao Z, Gong H, Sun Y, Huang T. Transcriptome analysis reveals that long noncoding RNAs contribute to developmental differences between medium-sized ovarian follicles of Meishan and Duroc sows. Sci Rep 2021; 11:22510. [PMID: 34795345 PMCID: PMC8602415 DOI: 10.1038/s41598-021-01817-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ovulation rate is an extremely important factor affecting litter size in sows. It differs greatly among pig breeds with different genetic backgrounds. Long non-coding RNAs (lncRNAs) can regulate follicle development, granulosa cell growth, and hormone secretion, which in turn can affect sow litter size. In this study, we identified 3554 lncRNAs and 25,491 mRNAs in M2 follicles of Meishan and Duroc sows. The lncRNA sequence and open reading frame lengths were shorter than mRNAs, and lncRNAs had fewer exons, were less abundant, and more conserved than protein-coding RNAs. Furthermore, 201 lncRNAs were differentially expressed (DE) between breeds, and quantitative trait loci analysis of DE lncRNAs were performed. A total of 127 DE lncRNAs were identified in 119 reproduction trait-related loci. In addition, the potential target genes of lncRNAs in cis or trans configurations were predicted. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that some potential target genes were involved in follicular development and hormone secretion-related biological processes or pathways, such as progesterone biosynthetic process, estrogen metabolic process, ovarian steroidogenesis, and PI3K-Akt signaling pathway. Furthermore, we also screened 19 differentially expressed lncRNAs in the PI3K-Akt signaling pathway as candidates. This study provides new insights into the roles of lncRNAs in follicular growth and development in pigs.
Collapse
Affiliation(s)
- Mengxun Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yi Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Su Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Zhichao Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Guangxi Yangxiang Animal Husbandry Co. Ltd., Guangxi, Guigang, 537100, China
| | - Hongbin Gong
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yishan Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
8
|
Takizawa M, Nakano M, Fukami T, Nakajima M. Decrease in ADAR1 expression by exposure to cigarette smoke enhances susceptibility to oxidative stress. Toxicol Lett 2020; 331:22-32. [PMID: 32439581 DOI: 10.1016/j.toxlet.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is the most frequent type of post-transcriptional nucleotide conversion in humans. It is known that innate abnormalities of A-to-I RNA editing are associated with the risk of certain diseases, such as amyotrophic lateral sclerosis. Extrinsic factors that modulate ADAR-mediated RNA editing remain to be clarified. In this study, we investigated the possibility that cigarette smoking may influence the expression of ADAR and that the changes may be biologically significant. Treatment of human lung adenocarcinoma A549 cells with cigarette smoke extract (CSE) induced a significant 50% decrease in ADAR1 protein levels. Since the decrease was counteracted by cotreatment with chloroquine, the CSE-dependent decrease in the ADAR1 protein levels may be due to the activation of autophagy. In addition to the in vitro study, we performed an in vivo study in mice and found a decrease in pulmonary Adar1 protein expression induced by cigarette smoking. Then, we investigated the biological significance of decreased ADAR1 expression. We found that knockdown of ADAR1 in A549 cells by siRNA resulted in an increase in the levels of protein carbonyl, a marker of oxidative stress. Moreover, knockdown of ADAR1 triggered a decrease in super oxide dismutase activity and heme oxygenase-1 expression, suggesting that ADAR1 plays a role to suppress oxidative stress. In conclusion, we show that ADAR1 expression is decreased by cigarette smoking and is a factor that contributes to the enhanced intracellular oxidative stress caused by cigarette smoking.
Collapse
Affiliation(s)
- Masashi Takizawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
9
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
10
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
11
|
Huang J, Jiang W, Tong X, Zhang L, Zhang Y, Fan H. Identification of gene and microRNA changes in response to smoking in human airway epithelium by bioinformatics analyses. Medicine (Baltimore) 2019; 98:e17267. [PMID: 31568004 PMCID: PMC6756728 DOI: 10.1097/md.0000000000017267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Smoking is a substantial risk factor for many respiratory diseases. This study aimed to identify the gene and microRNA changes related to smoking in human airway epithelium by bioinformatics analysis.From the Gene Expression Omnibus (GEO) database, the mRNA datasets GSE11906, GSE22047, GSE63127, and microRNA dataset GSE14634 were downloaded, and were analyzed using GEO2R. Functional enrichment analysis of the differentially expressed genes (DEGs) was enforced using DAVID. The protein-protein interaction (PPI) network and differentially expressed miRNAs (DEMs)- DEGs network were executed by Cytoscape.In total, 107 DEGs and 10 DEMs were determined. Gene Ontology (GO) analysis revealed that DEGs principally enriched in oxidation-reduction process, extracellular space and oxidoreductase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway demonstrated that DEGs were principally enriched in metabolism of xenobiotics by cytochrome P450 and chemical carcinogenesis. The PPI network revealed 15 hub genes, including NQO1, CYP1B1, AKR1C1, CYP1A1, AKR1C3, CEACAM5, MUCL1, B3GNT6, MUC5AC, MUC12, PTGER4, CALCA, CBR1, TXNRD1, and CBR3. Cluster analysis showed that these hub genes were associated with adenocarcinoma in situ, squamous cell carcinoma, cell differentiation, inflammatory response, oxidative DNA damage, oxidative stress response and tumor necrosis factor. Hsa-miR-627-5p might have the most target genes, including ITLN1, TIMP3, PPP4R4, SLC1A2, NOVA1, RNFT2, CLDN10, TMCC3, EPHA7, SRPX2, PPP1R16B, GRM1, HS3ST3A1, SFRP2, SLC7A11, and KLHDC8A.We identified several molecular changes induced by smoking in human airway epithelium. This study may provide some candidate genes and microRNAs for assessing the risk of lung diseases caused by smoking.
Collapse
Affiliation(s)
- Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Wanli Jiang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Yuan Zhang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| |
Collapse
|
12
|
Förster N, Mewis I, Glatt H, Haack M, Brigelius-Flohé R, Schreiner M, Ulrichs C. Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems. Food Funct 2018; 7:4660-4674. [PMID: 27775133 DOI: 10.1039/c6fo01231k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leaves of Moringa oleifera are used by tribes as biological cancer medicine. Scientific investigations with M. oleifera conducted so far have almost exclusively used total plant extracts. Studies on the activity of single compounds are missing. Therefore, the biological effects of the two main aromatic multi-glycosylated glucosinolates of M. oleifera were investigated in the present study. The cytotoxic effects of M. oleifera glucosinolates were identified for HepG2 cells (NRU assay), for V79-MZ cells (HPRT assay, SCE assay), and for two Salmonella typhimurium strains (Ames test). Genotoxic effects of these glucosinolates were not observed (Ames test, HPRT assay, and SCE assay). Reporter gene assays revealed a significant increase in the ARE-dependent promoter activity of NQO1 and GPx2 indicating an activation of the Nrf2 pathway by M. oleifera glucosinolates. Since both enzymes can also be induced via activation of the AhR, plasmids containing promoters of both enzymes mutated in the respective binding sites (pGL3enh-hNQO1-ARE, pGL3enh-hNQO1-XRE, pGL3bas-hGPX2-mutARE, pGL3bas-hGPX2-mutXRE) were transfected. Analyses revealed that the majority of the stimulating effects was mediated by the ARE motif, whereas the XRE motif played only a minor role. The stimulating effects of M. oleifera glucosinolates could be demonstrated both at the transcriptional (reporter gene assay, real time-PCR) and translational levels (enzyme activity) making them interesting compounds for further investigation.
Collapse
Affiliation(s)
- Nadja Förster
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14195 Berlin, Germany.
| | - Inga Mewis
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Hansruedi Glatt
- Former Department of Nutritional Toxicology, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany and Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Michael Haack
- Former Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Regina Brigelius-Flohé
- Former Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Monika Schreiner
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14195 Berlin, Germany.
| |
Collapse
|
13
|
Glassberg MK, Catanuto P, Shahzeidi S, Aliniazee M, Lilo S, Rubio GA, Elliot SJ. Estrogen deficiency promotes cigarette smoke-induced changes in the extracellular matrix in the lungs of aging female mice. Transl Res 2016; 178:107-117. [PMID: 27519148 DOI: 10.1016/j.trsl.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/12/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023]
Abstract
Female smokers have a faster decline in lung function with increasing age and overall develop a greater loss of lung function than male smokers. This raises the question of whether estrogen status in women affects susceptibility to cigarette smoke (CS)-induced lung disease. Mouse models suggest that female mice are more susceptible than males to CS-induced lung disease. Moreover, young CS-exposed female mice develop emphysema earlier than male mice. The purpose of this study was to characterize the relationship of estrogen status on the pattern and severity of CS-induced lung disease. In this study, 15-month-old female C57BL/6J mice were ovariectomized and administered either placebo (pla) or 17β-estradiol (E2, 0.025 mg) 2 weeks after ovariectomy. They were further divided into those that were exposed to CS and no-smoke controls (NSC). Mice were exposed to CS in stainless steel inhalation chambers 3 hours a day, 5 days a week for 6 months, and sacrificed after 24 weeks of CS exposure. Blood and urine were collected at sacrifice to measure estrogen and cotinine levels, a metabolite of nicotine. Uterine weight was recorded as an indicator of estrogen status. Results showed that CS in the absence of E2 induced a decrease in hydroxyproline content, macrophage number, and respiratory chain complex-1 protein. CS without E2 also resulted in an increase in matrix metalloproteinase-2 activity and apoptosis and a change in the ratio of estrogen receptor subtype. These findings were abrogated with administration of E2, suggesting that estrogen deficiency increases susceptibility to CS-induced lung disease.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Fla; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Paola Catanuto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla
| | - Shahriar Shahzeidi
- Division of Pediatric Pulmonology, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Fla
| | | | - Sarit Lilo
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Fla
| | - Gustavo A Rubio
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla
| | - Sharon J Elliot
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla
| |
Collapse
|
14
|
Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, Wiegman CH, Adcock IM, Knight DA, Hirota JA, Hansbro PM. Animal models of COPD: What do they tell us? Respirology 2016; 22:21-32. [DOI: 10.1111/resp.12908] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Bernadette Jones
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Celeste L. Harrison
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Cornelis H. Wiegman
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Ian M. Adcock
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Darryl A. Knight
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Jeremy A. Hirota
- James Hogg Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| |
Collapse
|
15
|
Cohen A, Burgos-Aceves MA, Smith Y. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer. Transl Lung Cancer Res 2016; 5:322-30. [PMID: 27413713 DOI: 10.21037/tlcr.2016.06.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers.
Collapse
Affiliation(s)
- Amit Cohen
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Mario Alberto Burgos-Aceves
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Yoav Smith
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| |
Collapse
|
16
|
Martínez-Ramírez OC, Pérez-Morales R, Petrosyan P, Castro-Hernández C, Gonsebatt ME, Rubio J. Differences in 4-hydroxyestradiol levels in leukocytes are related to CYP1A1(∗)2C, CYP1B1(∗)3 and COMT Val158Met allelic variants. Steroids 2015; 102:1-6. [PMID: 26123186 DOI: 10.1016/j.steroids.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 12/31/2022]
Abstract
Exposure to estrogen and its metabolites, including catechol estrogens (CEs) and catechol estrogen quinones (CE-Qs) is closely related to breast cancer. Polymorphisms of the genes involved in the catechol estrogens metabolism pathway (CEMP) have been shown to affect the production of CEs and CE-Qs. In this study, we measured the induction of CYP1A1, CYP1B1, COMT, and GSTP1 by 17β-estradiol (17β-E2) in leukocytes with CYP1A1(∗)2C, CYP1B1(∗)3, COMT Val158Met and GSTP1 Ile105Val polymorphisms by semi quantitative RT-PCR and compared the values to those of leukocytes with wild type alleles; we also compared the differences in formation of 4- hydroxyestradiol (4-OHE2) and DNA-adducts. The data show that in the leukocytes with mutant alleles treatment with 17β-E2 up-regulates CYP1A1 and CYP1B1 and down-regulates COMT mRNA levels, resulting in major increments in 4-OHE2 levels compared to leukocytes with wild-type alleles. Therefore, we propose induction levels of gene expression and intracellular 4-OHE2 concentrations associated with allelic variants in response to exposure of 17β-E2 as a noninvasive biomarker that can help determine the risk of developing non-hereditary breast cancer in women.
Collapse
Affiliation(s)
- O C Martínez-Ramírez
- Escuela de Nutrición, Universidad Autónoma del Estado de Morelos, Río Iztacihuatl s/n. Col. Vista Hermosa, C.P. 62350, Mexico
| | - R Pérez-Morales
- Departamento de Biología Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, C.P. 35010 Durango, Mexico
| | - P Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico
| | - C Castro-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico
| | - M E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico
| | - J Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico.
| |
Collapse
|
17
|
Schneberger D, Cloonan D, DeVasure JM, Bailey KL, Romberger DJ, Wyatt TA. Effect of elevated carbon dioxide on bronchial epithelial innate immune receptor response to organic dust from swine confinement barns. Int Immunopharmacol 2015; 27:76-84. [PMID: 25921030 PMCID: PMC4465527 DOI: 10.1016/j.intimp.2015.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
Hypercapnia is known to have immunoregulatory effects within the lung. Cell culture systems demonstrate this in both macrophages and alveolar cell lines, suggesting that the alveoli are affected by changes in CO2 levels. We hypothesized that hypercapnia would also modulate human bronchial epithelial cell immune responses. Innate immune responses to Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand) and a complex innate immune stimulus, an extract from the organic dust of swine confinement barns (barn dust extract or BDE), were tested in a human bronchial epithelial cell line, BEAS-2B. Both TLR ligands showed a decrease in IL-6 and IL-8 production, and an increase in MCP-1 in response to elevated CO2 indicating an enhancement in cytokine production to hypercapnia. This change was not reflected in expression levels of TLR receptor RNA which remained unchanged in response to elevated CO2. Interestingly, barn dust showed an increase in IL-6, IL-8 and MCP-1 response at 9% CO2, suggesting that elevated CO2 exerts different effects on different stimuli. Our results show that airway epithelial cell immune responses to barn dust respond differently to hypercapnic conditions than individual TLR ligands.
Collapse
Affiliation(s)
- D Schneberger
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - D Cloonan
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - J M DeVasure
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - K L Bailey
- Research Service, Veterans Administration Nebraska Western Iowa Health Care System, Omaha, NE 68105, United States; Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - D J Romberger
- Research Service, Veterans Administration Nebraska Western Iowa Health Care System, Omaha, NE 68105, United States; Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - T A Wyatt
- Research Service, Veterans Administration Nebraska Western Iowa Health Care System, Omaha, NE 68105, United States; Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States.
| |
Collapse
|
18
|
Aoshiba K, Tsuji T, Itoh M, Yamaguchi K, Nakamura H. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 2015; 89:243-252. [PMID: 25677028 DOI: 10.1159/000369861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Collapse
Affiliation(s)
- Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Japan
| | | | | | | | | |
Collapse
|
19
|
Haroun RAH, Zakhary NI, Mohamed MR, Abdelrahman AM, Kandil EI, Shalaby KA. Assessment of the Prognostic Value of Methylation Status and Expression Levels of FHIT, GSTP1 and p16 in Non-Small Cell Lung Cancer in Egyptian Patients. Asian Pac J Cancer Prev 2014; 15:4281-7. [DOI: 10.7314/apjcp.2014.15.10.4281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
McGee SP, Zhang H, Karmaus W, Sabo-Attwood T. Influence of sex and disease severity on gene expression profiles in individuals with idiopathic pulmonary fibrosis. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2014; 5:71-86. [PMID: 24959312 PMCID: PMC4065396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
Epidemiological studies suggest sex-specific trends in the prevalence and mortality of idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) that are distinct for each disease. While the expression of numerous immune and extracellular matrix (ECM) genes in the lung have been well characterized in these diseases, associations elucidating their sex-specific expression patterns by disease type and severity, and the evaluation of hormone-related genes, have not been well studied. Here we performed targeted transcriptional profiling of 48 genes was performed on lung tissue samples from males and females with mild or medium severity IPF or COPD. The genes assessed included those involved in inflammation, ECM remodeling and hormonal processes. Data for 36 lung tissue samples were obtained that were stratified by disease and sex. Expression levels revealed a subset of genes which show differential expression among sexes, disease type, and disease severity. The most significant observations were the increased expression primarily of ECM genes in medium severity IPF (CATHK, COL1A1, COL3, MMP1, MMP7, IL-1RN) compared to mild IPF and COPD. Two genes, CH3L1 and MMP7 showed a tendency of interaction between sex and disease in IPF severity. Surprisingly, there were no significant differences in any of the sex genes measured between the IPF groups; however, ESR1 and AR expression levels were higher and lower, respectively, compared to COPD samples. Overall, this work highlights two genes, CH3L1 and MMP7, that may contribute to gender trends observed for IPF and COPD and are potential targets for future research.
Collapse
Affiliation(s)
- Sean P McGee
- Department of Environmental Health Sciences, University of South Carolina921 Assembly Street, Columbia, SC, 29208, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, University of Memphis3825 DeSoto Avenue, Memphis, TN 38152, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, University of Memphis3825 DeSoto Avenue, Memphis, TN 38152, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, University of Florida2187 Mowry Rd, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Kuo LC, Cheng LC, Lin CJ, Li LA. Dioxin and estrogen signaling in lung adenocarcinoma cells with different aryl hydrocarbon receptor/estrogen receptor α phenotypes. Am J Respir Cell Mol Biol 2014; 49:1064-73. [PMID: 23855798 DOI: 10.1165/rcmb.2012-0497oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Evidence suggests that estrogen affects the pulmonary response to carcinogenic pollutants, such as dioxins. In this study, we examined dioxin and estrogen signaling cross-talk in lung adenocarcinoma cell lines that were engineered to exhibit different aryl hydrocarbon receptor (AhR)/estrogen receptor (ER) α phenotypes. Data showed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) weakly antagonized estrogen-activated ERα activity in cells expressing abundant ERα, but little AhR. Increase of AhR expression or presence of a dioxin-responsive element in proximity silenced the antiestrogenic effect of TCDD. AhR was bound to dioxin-responsive element and transcriptionally active in both TCDD-untreated and -treated lung adenocarcinoma cells. 17β-estradiol (E2) reduced basal and TCDD-induced AhR activity only in ERα-positive cells. AhR and ERα exhibited a protein-protein interaction in the presence of E2. Cotreatment with TCDD moderated this protein interaction. Colocalization of ERα and AhR at the estrogen-responsive site under E2 and TCDD/E2 treatments implied that E2 ∣ ERα might hijack AhR away from the dioxin-responsive site. Increasing the relative expression of AhR to ERα counteracted inhibition of AhR activity by E2 ∣ ERα. When AhR and ERα were both highly expressed, TCDD and E2 up-regulated expression of dual-responsive genes cytochrome P450 (CYP) 1A1 and CYP1B1 in a cumulative manner, increasing the danger of metabolic activation of carcinogens. Whereas TCDD ∣ AhR and E2 ∣ ERα appeared to regulate CYP1B1 separately through their binding sites, E2 ∣ ERα increased the TCDD responsiveness and mRNA expression of CYP1A1 in a noncanonical way. In conclusion, AhR/ERα expression pattern, estrogen level, and promoter context determine the genomic action of dioxin in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Lun-Cheng Kuo
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | | | | | | |
Collapse
|
22
|
Alshaarawy O, Zhu M, Ducatman A, Conway B, Andrew ME. Polycyclic aromatic hydrocarbon biomarkers and serum markers of inflammation. A positive association that is more evident in men. ENVIRONMENTAL RESEARCH 2013; 126:98-104. [PMID: 23972896 PMCID: PMC4610391 DOI: 10.1016/j.envres.2013.07.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants, occurring from anthropogenic and natural sources. Several animal studies have reported a positive association of PAHs with inflammation. However, it is not clear if lower background exposure to PAHs is associated with inflammation in humans, independent of smoking, a major source of PAHs. METHODS We examined participants from the National Health and Nutrition Examination Survey 2001-2002, 2003-2004, and 2005-2006. Our exposures of interest were eight urinary monohydroxy polycyclic aromatic hydrocarbon biomarkers. Our outcomes were serum markers of inflammation; C-reactive protein (CRP) (≤10 mg/L) and total white blood cell (WBC) count (4000-12,000 cells/μL). RESULTS Compared to participants with summed biomarkers of low-molecular weight (LMW) PAHs in the lowest quartile, the multivariable odds ratios (95% confidence interval) of high serum CRP (≥3 mg/L) and high total WBC count (defined as at or above the 95 percentile of total WBC distribution) among participants in the highest exposure quartile were 1.77 (1.13, 2.76) and 1.34 (1.12, 1.60) respectively. Urinary 1-hydroxypyrene, the biomarker of the higher molecular weight pyrene, was positively associated with total WBC count, and to lesser extent with serum CRP. In subsequent analyses, the positive association between LMW PAHs and serum CRP and total WBC count was found to be present within the stratified subgroups, independent of smoking and other potential confounders. The positive association was more evident among adult males when compared to females. CONCLUSIONS Urinary PAH biomarkers were found to be positively associated with serum CRP and total WBC count independent of smoking and other potential confounders. The association was more evident in men.
Collapse
Affiliation(s)
- Omayma Alshaarawy
- Department of Epidemiology, West Virginia University School of Public Health, Morgantown, WV, USA.
| | | | | | | | | |
Collapse
|
23
|
Serum cotinine levels and prehypertension in never smokers. Int J Hypertens 2013; 2013:284524. [PMID: 23476744 PMCID: PMC3588205 DOI: 10.1155/2013/284524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Background. Few studies have shown that self-reported secondhand smoke exposure in never smokers is associated with high blood pressure. However, there are no studies investigating the relationship between secondhand smoke exposure, measured objectively by serum cotinine levels, and high blood pressure in never smokers.
Methods. We examined never smokers (n = 2027) from the National Health and Nutrition Examination Survey 2005–2008. Our exposure of interest was the secondhand smoke exposure estimated by serum cotinine level and our outcome was prehypertension (n = 734), defined as a systolic blood pressure of 120–139 mmHg or diastolic blood pressure of 80–89 mmHg. Results. We found that, in never smokers, serum cotinine levels were positively associated with prehypertension. Compared to those with cotinine levels in the lowest quartile (≤0.024 ng/mL), the multivariable odds ratio (95% confidence interval) of prehypertension among those with cotinine levels in the highest quartile (≥0.224 ng/mL) was 1.45(1.00, 2.11); P trend = 0.0451. In subsequent subgroup analyses, the positive association was found to be stronger among men, non-Whites, and non-obese subjects. Conclusion. Higher secondhand smoke exposure measured objectively by serum cotinine levels was found to be associated with prehypertension in certain subgroups of a representative sample of the US population.
Collapse
|
24
|
Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation. Proc Natl Acad Sci U S A 2012; 109:13331-6. [PMID: 22853951 DOI: 10.1073/pnas.1203280109] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.
Collapse
|
25
|
Verma MK, Miki Y, Sasano H. Sex steroid receptors in human lung diseases. J Steroid Biochem Mol Biol 2011; 127:216-22. [PMID: 21856418 DOI: 10.1016/j.jsbmb.2011.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
Abstract
Several epidemiological studies have reported that gender differences exist in clinical and biological manifestations of human lung diseases. In particular, women are far more likely to develop both neoplastic and non-neoplastic lung diseases than men. This gender difference above suggests that sex steroid may be involved in the pathogenesis of various lung diseases. These sex steroids mediate their effects through sex steroid receptors including estrogen receptors (ER) i.e. ERα and ERβ progesterone receptors (PR) i.e. PR-A and PR-B and androgen receptors (ARs), all of which have been reported to be expressed in lung tissue. Therefore it becomes important to clarify the potential roles of sex steroid receptor in both neoplastic and non-neoplastic lung diseases toward improved treatment options for the patients. In this review, we summarized a number of studies in humans and experimental animals that have identified possible roles of sex steroids in respiratory physiology and pathology.
Collapse
Affiliation(s)
- Mohit K Verma
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi-ken, Japan
| | | | | |
Collapse
|
26
|
Tam A, Morrish D, Wadsworth S, Dorscheid D, Man SFP, Sin DD. The role of female hormones on lung function in chronic lung diseases. BMC WOMENS HEALTH 2011; 11:24. [PMID: 21639909 PMCID: PMC3129308 DOI: 10.1186/1472-6874-11-24] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 06/03/2011] [Indexed: 01/25/2023]
Abstract
Background The prevalence, morbidity, and mortality of inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) are increasing in women. There is a dearth of data on the biological mechanisms to explain such observations. However, some large epidemiologic studies suggest that lung function fluctuates during the menstrual cycle in female patients with airways disease but not in women without disease, suggesting that circulating estradiol and progesterone may be involved in this process. Discussion In asthma, estradiol shuttles adaptive immunity towards the TH2 phenotype while in smokers estrogens may be involved in the generation of toxic intermediate metabolites in the airways of female smokers, which may be relevant in COPD pathogenesis. In CF, estradiol has been demonstrated to up-regulate MUC5B gene in human airway epithelial cells and inhibit chloride secretion in the airways. Progesterone may augment airway inflammation. Summary Taken together, clinical and in-vivo data have demonstrated a sex-related difference in that females may be more susceptible to the pathogenesis of lung diseases. In this paper, we review the effect of female sex hormones in the context of these inflammatory airway diseases.
Collapse
Affiliation(s)
- Anthony Tam
- The UBC James Hogg Research Centre, Providence Heart+Lung Centre & Department of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Anttila S, Raunio H, Hakkola J. Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol 2011; 44:583-90. [PMID: 21097654 DOI: 10.1165/rcmb.2010-0189rt] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Lung cancer is strongly associated with exogenous risk factors, in particular tobacco smoking and asbestos exposure. New research data are accumulating about the regulation of the metabolism of tobacco carcinogens and the metabolic response to oxidative stress. These data provide mechanistic details about why well known risk factors cause lung cancer. The purpose of this review is to evaluate the present knowledge of the role of cytochrome P450 (CYP) enzymes in the metabolism of tobacco carcinogens and associations with tobacco and asbestos carcinogenesis. Major emphasis is placed on human data and regulatory pathways involved in CYP regulation and lung carcinogenesis. The most exciting new research findings concern cross-talk of the CYP-regulating aryl hydrocarbon receptor with other transcription factors, such as nuclear factor-erythroid 2-related factor 2, involved in the regulation of xenobiotic metabolism and antioxidant enzymes. This cross-talk between transcription factors may provide mechanistic evidence for clinically relevant issues, such as differences in lung cancers between men and women and the synergism between tobacco and asbestos as lung carcinogens.
Collapse
Affiliation(s)
- Sisko Anttila
- Dept. of Pathology, HUSLAB and Helsinki University Hospital, Finland.
| | | | | |
Collapse
|
28
|
Tamási V, Monostory K, Prough RA, Falus A. Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cell Mol Life Sci 2011; 68:1131-46. [PMID: 21184128 PMCID: PMC11115005 DOI: 10.1007/s00018-010-0600-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/04/2010] [Accepted: 11/18/2010] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 enzymes (P450s) are important targets in cancer, due to their role in xenobiotic metabolism. Since P450s are the "bridges" between the environment and our body, their function can be linked in many ways to carcinogenesis: they activate dietary and environmental components to ultimate carcinogens (i), the cancer tissue maintains its drug resistance with altered expression of P450s (ii), P450s metabolize (sometimes activate) drugs used for cancer treatment (iii) and they are potential targets for anticancer therapy (iiii). These highly polymorphic enzymes are regulated at multiple molecular levels. Regulation is as important as genetic difference in the existing individual variability in P450 activity. In this review, examples of the transcriptional (DNA methylation, histone modification, modulation by xenosensors) and post-transcriptional (miRNA) regulation will be presented and thereby introduce potential molecular targets at which the metabolism of anticancer drugs, the elimination of cancerogenes or the progress of carcinogenesis could be affected.
Collapse
Affiliation(s)
- Viola Tamási
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, PO Box 370, Budapest, 1445, Hungary.
| | | | | | | |
Collapse
|
29
|
Rahmanian SD, Diaz PT, Wewers ME. Tobacco use and cessation among women: research and treatment-related issues. J Womens Health (Larchmt) 2011; 20:349-57. [PMID: 21375414 PMCID: PMC3058892 DOI: 10.1089/jwh.2010.2173] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The prevalence of tobacco use in women has increased over the past century. This has resulted in dramatic increases in smoking-related lung diseases, such as chronic obstructive pulmonary disease (COPD) and lung cancer. There is growing literature suggesting that women may be more susceptible than men to the effects of tobacco and to the development of COPD. Women may also have specific barriers that interfere with smoking cessation. This article addresses possible differences in lung function decline and nicotine metabolism in women compared to men. Differences in COPD between the sexes are discussed. Finally, barriers to smoking cessation in women are presented.
Collapse
Affiliation(s)
- Shiva D Rahmanian
- Department of Medicine, College of Public Health, The Ohio State University, Grant Medical Center, 111 S. Grant Ave. #2, Columbus, OH 43215-4701, USA.
| | | | | |
Collapse
|
30
|
Baik CS, Strauss GM, Speizer FE, Feskanich D. Reproductive factors, hormone use, and risk for lung cancer in postmenopausal women, the Nurses' Health Study. Cancer Epidemiol Biomarkers Prev 2010; 19:2525-33. [PMID: 20739629 PMCID: PMC2952036 DOI: 10.1158/1055-9965.epi-10-0450] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is increasing evidence suggesting that female hormones may play a significant role in lung cancer development. We evaluated the associations between reproductive factors, exogenous hormone use, and lung cancer incidence in the Nurses' Health Study. METHODS We assessed age at menopause, age at menarche, type of menopause, parity, age at first birth, postmenopausal hormone (PMH) use, and past oral contraceptive use in 107,171 postmenopausal women. Cox models were used to estimate the hazard ratios for each exposure, adjusting for smoking and other covariates. RESULTS We identified 1,729 lung cancer cases during follow-up from 1984 to 2006. Menopause onset before 44 years of age (hazard ratio, 1.39; 95% confidence interval, 1.14-1.70) and past oral contraceptive use for >5 years (hazard ratio, 1.22; 95% confidence interval, 1.05-1.42) were associated with increased lung cancer risk. These associations were strongest in current smokers and small cell histology. In never smokers, increased parity was associated with decreased risk among parous women (P trend = 0.03), whereas in current smokers, older age at first birth was associated with increased risk (P trend = 0.02). PMH use was not associated with overall lung cancer incidence. However, nonsignificant results of increased risk in adenocarcinoma were seen with current PMH use. CONCLUSIONS Our findings suggest female hormones may influence lung carcinogenesis, although the effect is likely modest, varied by histologic subtype, and altered by smoking. IMPACT Further investigation of the pathophysiology of female hormones in lung cancer subtypes and their interaction with smoking will lead to better understanding of lung carcinogenesis.
Collapse
Affiliation(s)
- Christina S Baik
- Division of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
31
|
Raherison C, Biron E, Nocent-Ejnaini C, Taillé C, Tillie-Leblond I, Prudhomme A. Existe-t-il des spécificités chez les femmes atteintes de BPCO ? Rev Mal Respir 2010; 27:611-24. [DOI: 10.1016/j.rmr.2010.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
|
32
|
Abstract
Lung cancer has reached epidemic proportions in women, and is now the most common cause of cancer death among both men and women in the United States. While smoking rates have declined marginally in women, the rising impact of lung cancer in women may imply that women are at higher risk from carcinogens secondary to underlying factors related to sex. These factors include differences in female physiology such as bronchial responsiveness and airway size, sex-based differences in nicotine metabolism via the cytochrome p450 system driven by hormones, and differences in DNA repair capacity, as well as the evolution of cigarettes. These hypotheses will be explored in depth in this article.
Collapse
Affiliation(s)
- Kavitha Ramchandran
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
33
|
Tan XL, Wang T, Xiong S, Kumar SV, Han W, Spivack SD. Smoking-Related Gene Expression in Laser Capture-Microdissected Human Lung. Clin Cancer Res 2009; 15:7562-7570. [PMID: 19996203 DOI: 10.1158/1078-0432.ccr-09-1694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE: Interindividual differences in quantitative expression could underlie a propensity for lung cancer. To determine precise individual gene expression signatures on a lung compartment-specific basis, we investigated the expression of carcinogen metabolism genes encoding cytochromes P450 (CYP) 1B1, 2A13, GSTP1, and a tumor suppressor gene p16 in laser capture-microdissected samples of human alveolar compartment (AC) and bronchial epithelial compartment (BEC) lung tissue from 62 smokers and nonsmokers. EXPERIMENTAL DESIGN: Tobacco exposure was determined by plasma nicotine, cotinine, and smoking history. Precise mRNA expression was determined using our RNA-specific qRT-PCR strategy, and correlated with detailed demographic and clinical characteristics. RESULTS: Several correlations of mRNA expression included (a) CYP1B1 in AC (positively with plasma nicotine level, P = 0.008; plasma cotinine level, P = 0.001), (b) GSTP1 in AC (positively with plasma cotinine level, P = 0.003), and (c) GSTP1 in BEC (negatively with smoke dose, P = 0.043; occupational risk, P = 0.019). CYP2A13 was rarely expressed in AC and not expressed in BEC. p16 expression was not correlated with any measured factor. For each gene, subjects showed expression that was individually concordant between these compartments. No clear association of mRNA expression with lung cancer risk was observed in this pilot analysis. CONCLUSIONS: The association between lung mRNA expression and tobacco exposure implies that gene-tobacco interaction is a measurable quantitative trait, albeit with wide interindividual variation. Gene expression tends to be concordant for alveolar and bronchial compartments for these genes in an individual, controlling for proximate tobacco exposure. (Clin Cancer Res 2009;15(24):7562-70).
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Authors' Affiliations: Division of Pulmonary Medicine, Department of Medicine, Department of Epidemiology and Population Health, and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; and Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | | | | | | |
Collapse
|
34
|
Skupinska K, Misiewicz-Krzeminska I, Stypulkowski R, Lubelska K, Kasprzycka-Guttman T. Sulforaphane and its analogues inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene. J Biochem Mol Toxicol 2009; 23:18-28. [PMID: 19202560 DOI: 10.1002/jbt.20259] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
CYP1A1 and CYP1A2 enzymes metabolize polycyclic aromatic hydrocarbons (PAHs) to the reactive oxyderivatives. PAHs can induce the activity of both enzymes, which increases its conversion and enhances risk of carcinogenesis. Thus, the inhibition of CYP enzymes is recognized as a cancer chemoprevention strategy. A well-known group of chemopreventive agents is isothiocyanates, which occur naturally in Brassica vegetables. In this paper, a naturally occurring sulforaphane and its two synthetic analogues isothiocyanate-2-oxohexyl and alyssin were investigated. The aim of the study was to determine whether the differences in the isothiocyanate structure change its ability to inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene in HepG2 and Mcf7 cells. Also a mechanistic study was performed including isothiocyanates' influence on CYP1A1 and CYP1A2 catalytic activity, enzymatic protein level, and AhR translocation. It was shown that both enzymes were significantly induced by benzo[a]pyrene, and isothiocyanates were capable of decreasing the induced activity. The inhibitory properties depend on the types of isothiocyanate and enzyme. In general, CYP1A2 was altered in the more meaningful way than CYP1A1 by isothiocyanates. Sulforaphane exhibited weak inhibitory properties, whereas both analogues were capable of inhibiting BaP-induced activity with the similar efficacy. The mechanistic study revealed that analogues decreased the CYP1A2 activity via the protein-level reduction and CYP1A1 directly. The results indicate that isothiocyanates can be considered as potent chemopreventive substances and the change in the sulforaphane structure increases its chemopreventive potency.
Collapse
|
35
|
Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 2009; 9:187. [PMID: 19531241 PMCID: PMC2703651 DOI: 10.1186/1471-2407-9-187] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/16/2009] [Indexed: 02/08/2023] Open
Abstract
CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Department of Medicine, Division of Forensic Sciences and Toxicology, University of Crete, Crete, Greece.
| | | | | |
Collapse
|
36
|
Ivanova MM, Mazhawidza W, Dougherty SM, Minna JD, Klinge CM. Activity and intracellular location of estrogen receptors alpha and beta in human bronchial epithelial cells. Mol Cell Endocrinol 2009; 305:12-21. [PMID: 19433257 PMCID: PMC2767333 DOI: 10.1016/j.mce.2009.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 11/26/2022]
Abstract
Gender differences in lung disease and cancer are well-established. We reported estrogenic transcriptional responses in lung adenocarcinoma cells from females but not males despite similar estrogen receptor (ER) expression. Here we tested the hypothesis that normal human bronchial epithelial cells (HBECs) show gender-independent estrogenic responses. We report that a small sample of HBECs express approximately twice as much ERbeta as ERalpha. ERalpha and ERbeta were located in the cytoplasm, nucleus, and mitochondria. In contrast to lung adenocarcinoma cells, estradiol (E2) induced estrogen response element (ERE)-mediated luciferase reporter activity in transiently transfected HBECs regardless of donor gender. Overexpression of ERalpha-VP16 increased ERE-mediated transcriptional activity in all HBECs. E2 increased and 4-hydroxytamoxifen and ICI 182,780 inhibited HBEC proliferation and cyclin D1 expression in a cell line-specific manner. In conclusion, the response of HBECs to ER ligands is gender-independent suggesting that estrogenic sensitivity may be acquired during lung carcinogenesis.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Williard Mazhawidza
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Susan M. Dougherty
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research NB8.206, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
37
|
Skupinska K, Misiewicz-Krzeminska I, Lubelska K, Kasprzycka-Guttman T. The effect of isothiocyanates on CYP1A1 and CYP1A2 activities induced by polycyclic aromatic hydrocarbons in Mcf7 cells. Toxicol In Vitro 2009; 23:763-71. [PMID: 19362136 DOI: 10.1016/j.tiv.2009.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 12/13/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs)--environmental carcinogens--are metabolized by CYP1A1 and CYP1A2 enzymes to oxy-derivatives, which are able to bind to DNA and initiate carcinogenesis. PAHs induce CYP1A1 and CYP1A2 activity, which increases the risk of development of carcinogenesis. Isothiocyanates (ITCs), naturally occurring in Brassica vegetables, possess chemopreventive properties and are able to reduce the CYP1A enzyme activity. In this paper we report our study of the ability of ITCs: sulforaphane and its analogues: isothiocyanate-2-oxohexyl and alyssin, to inhibit CYP1A1 and CYP1A2 enzyme activity induced by the PAHs, anthracene (ANT) and dibenzo[a,h]anthracene (DBA) in human breast cancer cell line Mcf7. The aim was to determine whether the differences in structure of ITCs change their inhibitory properties, and whether these properties depend on the type of inducer. The results indicate that the properties of ITCs depend on the type of PAH: ITCs are more potent in inhibiting activity induced by the weaker inducer. It was also found that the change in ITCs' structure influences their activities. ITC 2-oxohexyl was the weakest inhibitor, whereas sulforaphane and alyssin exhibited similar potency. The study revealed that inhibition of CYP1A1 activity is direct whereas inhibition of CYP1A2 activity is not only direct but is also caused by the level of protein disturbance.
Collapse
|
38
|
Cote ML, Yoo W, Wenzlaff AS, Prysak GM, Santer SK, Claeys GB, Van Dyke AL, Land SJ, Schwartz AG. Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis 2009; 30:626-35. [PMID: 19174490 PMCID: PMC2664455 DOI: 10.1093/carcin/bgp033] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 01/21/2023] Open
Abstract
To explore the potential role for estrogen in lung cancer susceptibility, candidate single-nucleotide polymorphism (SNPs) in tobacco and estrogen metabolism genes were evaluated. Population-based cases (n = 504) included women aged 18-74, diagnosed with NSCLC in metropolitan Detroit between November 2001 and October 2005. Population-based controls (n = 527) were identified through random digit dialing and matched on race and age. Eleven SNPs in 10 different genes were examined in relation to risk: CYP1A1 Msp1, CYP1A1 Ile462Val, CYP1B1 Leu432Val, CYP17, CYP19A1, XRCC1 Gln399Arg, COMT Val158Met, NQO1 Pro187Ser, GSTM1, GSTT1 and GSTP1 Ile105Val. Lung cancer risk associated with individual SNPs was seen for GSTP1 [A allele; odds ratio (OR) = 1.85; 95% confidence interval (CI), 1.04-3.27] and XRCC1 (A/A genotype; OR = 1.68; 95% CI, 1.01-2.79) in white women and CYP1B1 (G allele; OR = 11.1; 95% CI, 1.18-104) in black women smokers. White women smokers carrying two risk genotypes at the following loci were at increased risk of lung cancer compared with individuals not carrying risk alleles at these loci: CYP17 and GSTM1, COMT and GSTM1, CYP17 and GSTT1, XRCC1 and GSTP1, CYP1B1 and XRCC1 and COMT and XRCC1. The most parsimonious model of lung cancer risk in white smoking women included age, family history of lung cancer, history of chronic lung disease, pack-years, body mass index, XRCC1 A/A genotype, GSTM1 null and COMT A/G or G/G genotype. These findings support the need for continued study of estrogen in relation to lung cancer risk. Polymorphisms in the tobacco metabolism, estrogen metabolism and DNA repair pathways will be useful in developing more predictive models of individual risk.
Collapse
Affiliation(s)
- Michele L Cote
- Population Studies and Prevention Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Traynor AM, Schiller JH, Stabile LP, Kolesar JM, Eickhoff JC, Dacic S, Hoang T, Dubey S, Marcotte SM, Siegfried JM. Pilot study of gefitinib and fulvestrant in the treatment of post-menopausal women with advanced non-small cell lung cancer. Lung Cancer 2009; 64:51-9. [PMID: 18701186 PMCID: PMC3164240 DOI: 10.1016/j.lungcan.2008.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Estrogen receptor beta (ERbeta) has been detected in non-small cell lung cancer (NSCLC) cell lines and tumor specimens. The ER down-regulator, fulvestrant, blocked estradiol-stimulation of tumor growth and gene transcription in NSCLC preclinical models and showed additive effects with the epidermal growth factor receptor (EGFR) inhibitor gefitinib. The safety and tolerability of combination therapy with the EGFR inhibitor, gefitinib, and fulvestrant was explored. METHODS Post-menopausal women with advanced NSCLC received gefitinib 250 mg po daily and fulvestrant 250 mg IM monthly. RESULTS Twenty-two patients were enrolled. Eight patients had adenocarcinoma, six NSCLC-NOS, four squamous cell, and four BAC. Seven patients were never-smokers. Eight patients received > or =2 lines of prior chemotherapy, six received one prior chemotherapy, and eight were treatment-naïve. One patient experienced grade 4 dyspnea possibly related to treatment; all other grade 3/4 toxicities were unrelated to treatment. Twenty patients were evaluable for response: three partial responses (PRs) were confirmed (response rate of 15%, 95% CI: 5-36%). The median progression-free survival (PFS), overall survival (OS), and estimated 1-year OS were 12 weeks (3-112 weeks), 38.5 weeks (7-135 weeks), and 41% (95% CI: 20-62%), respectively. Survival outcomes did not differ by prior lines of therapy. A subset analysis revealed that OS in the eight patients whose tumors exhibited at least 60% ERbeta nuclear IHC staining measured 65.5 weeks, while that of the five patients with ERbeta staining of less than 60% was 21 weeks. One patient with bronchioalveolar carcinoma (BAC) and a PR had an EGFR L858R mutation in exon 21. There was no correlation between ERbeta IHC expression and histology or smoking history. CONCLUSIONS Combination therapy with gefitinib and fulvestrant in this population was well tolerated and demonstrated disease activity.
Collapse
Affiliation(s)
- Anne M Traynor
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Scott LM, Durant P, Leone-Kabler S, Wood CE, Register TC, Townsend A, Cline JM. Effects of prior oral contraceptive use and soy isoflavonoids on estrogen-metabolizing cytochrome P450 enzymes. J Steroid Biochem Mol Biol 2008; 112:179-85. [PMID: 18955142 PMCID: PMC2646417 DOI: 10.1016/j.jsbmb.2008.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Estrogen exposure and metabolism may play an important role in the development of estrogen-sensitive cancers in postmenopausal women. In this study we investigated whether past oral contraceptive (OC) administration or current dietary isoflavonoids (IF) affected expression and/or activity of steroid hormone-metabolizing cytochrome P450 (CYP) enzymes using complementary primate and cell culture models. One-hundred-eighty-one female cynomolgus macaques were randomized to receive OC or nothing for 26 months premenopausally, then ovariectomized and randomized to one of three diets for 36 months: an IF-depleted soy protein isolate (Soy-) diet, a Soy diet with IF (Soy+), or a Soy- diet supplemented with conjugated equine estrogens (CEE). Prior OC-treatment significantly reduced CYP gene expression in the mammary gland (< or =60% of OC-). Dietary IFs had no effect on CYP expression, while CEE-treatment decreased CYP1A1 and increased CYP3A4 mRNA in a tissue-specific manner. For in vitro studies, we measured effects of the isoflavonoids genistein, daidzein and equol on CYP activity using intact V79 cells stably transfected to express CYP1A1, CYP1B1, or CYP3A4. All three IFs significantly altered CYP activity in a dose-dependent and isoform-specific manner (20-95% inhibition versus controls). These results suggest potential mechanisms for prior OC and dietary IF effects on cancer risk in estrogen-responsive tissues.
Collapse
Affiliation(s)
- L M Scott
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ben-Zaken Cohen S, Paré PD, Man SFP, Sin DD. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: examining sex differences in cigarette smoke metabolism. Am J Respir Crit Care Med 2007; 176:113-20. [PMID: 17413125 DOI: 10.1164/rccm.200611-1655pp] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Smoking-related lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer are growing epidemics in women in the United States and elsewhere. Although some of this disturbing trend in women can be attributed to changing smoking habits, there is emerging evidence that women may be biologically more susceptible to the harmful effects of cigarette smoke than are men. Estrogen and related compounds may up-regulate the expression of cytochrome P450 (CYP) enzymes in lungs and liver, which are involved in the metabolism of various constituents of cigarette smoke. Although metabolism of foreign substances is usually beneficial in eliminating potential toxins from the body, in some instances the metabolic process can transform harmless substances into toxic chemicals through a process called metabolic bioactivation. One important xenobiotic substrate for CYP enzymes in cigarette smoke is polycyclic aromatic hydrocarbon, which in its native form is relatively harmless in small doses but upon bioactivation by CYP enzymes, can become very toxic substances for the lungs. In this article, we explore CYP and other related pathways as potential mechanisms and targets of future research and novel discoveries to curb the growing epidemic of COPD and lung cancer in women.
Collapse
Affiliation(s)
- Sigal Ben-Zaken Cohen
- James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St. Paul's Hospital, and the Department of Medicine, The University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | | | | | | |
Collapse
|
42
|
Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, Basbaum C. Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 2006; 1:e93. [PMID: 17183725 PMCID: PMC1762353 DOI: 10.1371/journal.pone.0000093] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer death in the world, and greater than 90% of lung cancers are cigarette smoke-related. Current treatment options are inadequate, because the molecular basis of cigarette-induced lung cancer is poorly understood. Methodology/Principal Findings Here, we show that human primary or immortalized bronchial epithelial cells exposed to cigarette smoke for eight days in culture rapidly proliferate, show anchorage-independent growth, and form tumors in nude mice. Using this model of the early stages of smoke-induced tumorigenesis, we examined the molecular changes leading to lung cancer. We observed that the embryonic signaling pathways mediated by Hedgehog and Wnt are activated by smoke. Pharmacological inhibition of these pathways blocked the transformed phenotype. Conclusions/Significance These experiments provide a model in which the early stages of smoke-induced tumorigenesis can be elicited, and should permit us to identify molecular changes driving this process. Results obtained so far indicate that smoke-induced lung tumors are driven by activation of two embryonic regulatory pathways, Hedgehog (Hh) and Wnt. Based on the current and emerging availability of drugs to inhibit Hh and Wnt signaling, it is possible that an understanding of the role of Hh and Wnt in lung cancer pathogenesis will lead to the development of new therapies.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Biomedical Sciences Program, Cardiovascular Research Institute and Department of Anatomy, University of California at San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
43
|
Thum T, Erpenbeck VJ, Moeller J, Hohlfeld JM, Krug N, Borlak J. Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1655-61. [PMID: 17107849 PMCID: PMC1665420 DOI: 10.1289/ehp.8861] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 07/19/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases (CYP) play an important role in the defense against inhaled toxicants, and expression of CYP enzymes may differ among various lung cells and tissue compartments. METHODS We studied the effects of tobacco smoke in volunteers and investigated gene expression of 19 CYPs and 3 flavin-containing monooxygenases, as well as isoforms of glutathione S-transferases (GST) and uridine diphosphate glucuronosyltransferases (UGT) and the microsomal epoxide hydrolase (EPHX1) in bronchoalveolar lavage cells and bronchial biopsies derived from smokers (n = 8) and nonsmokers (n = 10). We also investigated gene expression of nuclear transcription factors known to be involved in the regulation of xenobiotic metabolism enzymes. RESULTS Gene expression of CYP1A1, CYP1B1, CYP2S1, GSTP1, and EPHX1 was induced in bronchoalveolar lavage cells of smokers, whereas expression of CYP2B6/7, CYP3A5, and UGT2A1 was repressed. In bronchial biopsies of smokers, CYP1A1, CYP1B1, CYP2C9, GSTP1, and GSTA2 were induced, but CYP2J2 and EPHX1 were repressed. Induction of CYP1A1 and CYP1B1 transcript abundance resulted in increased activity of the coded enzyme. Finally, expression of the liver X receptor and the glucocorticoid receptor was significantly up-regulated in bronchoalveolar lavage cells of smokers. CONCLUSIONS We found gene expression of pulmonary xenobiotic metabolizing enzymes and certain key transcription factors to be regulated in bronchoalveolar lavage cells and bronchial biopsies of smokers. The observed changes demonstrate tissue specificity in xenobiotic metabolism, with likely implications for the metabolic activation of procarcinogens to ultimate carcinogens of tobacco smoke.
Collapse
Affiliation(s)
- Thomas Thum
- Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Bayerische Julius-Maximilians Universität, Medizinische Klinik I, Würzburg, Germany
| | - Veit J. Erpenbeck
- Immunology/Allergology and Clinical Inhalation, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Julia Moeller
- Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Immunology/Allergology and Clinical Inhalation, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jens M. Hohlfeld
- Immunology/Allergology and Clinical Inhalation, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Norbert Krug
- Immunology/Allergology and Clinical Inhalation, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
44
|
Abstract
PURPOSE The origins of expression microarray and reverse transcription-PCR (RT-PCR) signals in human saliva were evaluated. EXPERIMENTAL DESIGN The "RNA" extracts from human saliva samples were treated with vehicle, DNase, or RNase. Two-step amplification and hybridization to Affymetrix 133A cDNA microarrays were then done. Confirmatory RT-PCR experiments used conventionally designed PCR primer pairs for the reference housekeeper transcripts encoding 36B4, beta-actin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA sequences, which are known to be homologous to genomic DNA pseudogene sequences. Negative controls included the omission of reverse transcriptase ("no-RT") to detect any DNA-derived signal. Finally, an RNA-specific RT-PCR strategy eliminated confounding signals from contaminating genomic DNA. RESULTS Microarray experiments revealed that untreated, DNase-treated, and RNase-treated "RNA" extracts from saliva all yielded negligible overall signals. Specific microarray signals for 36B4, beta-actin, and GAPDH were low, and were unaffected by RNase. Real-time quantitative RT-PCR reactions using conventional, non-RNA-specific primers on saliva samples yielded PCR products for 36B4, beta-actin, and GAPDH; DNase-treated saliva samples did not yield a PCR product, and the "no-RT" and "+RT" conditions yielded similar amounts of PCR product. The RNA-specific RT-PCR strategy, across all conditions, yielded no PCR product from saliva. CONCLUSIONS The combination of (a) a minimal microarray signal, which was unaffected by RNase treatment, (b) the presence of a conventional RT-PCR housekeeper product in both RNase-treated and no-RT saliva samples, (c) the absence of a conventional RT-PCR housekeeper product in DNase-treated conditions, and (d) the absence of a RNA-specific RT-PCR product shows that any microarray or RT-PCR signal in the saliva must arise from genomic DNA, not RNA. Thus, saliva extracts do not support mRNA expression studies.
Collapse
Affiliation(s)
- Shalini V Kumar
- Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
45
|
Cauchi S, Han W, Kumar SV, Spivack SD. Haplotype-environment interactions that regulate the human glutathione S-transferase P1 promoter. Cancer Res 2006; 66:6439-48. [PMID: 16778223 DOI: 10.1158/0008-5472.can-05-4457] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phase II detoxification of carcinogens is reported to mediate some of the anticarcinogenesis effects of candidate chemopreventive agents. We explored the interaction between sequence variation in the GSTP1 gene promoter and candidate chemopreventive exposure in regulating human GSTP1 expression. Polymorphisms along 1.8 kb of the GSTP1 promoter were identified in leukocytes [peripheral blood mononuclear cells (PBMC)] from 40 Caucasian subjects. Ten promoter polymorphisms (9 previously unreported) displayed strong linkage disequilibrium, yielding identification of three frequently observed haplotypes [HAP1 (43%), HAP2 (36%), and HAP3 (8%)]. Each haplotype was cloned into luciferase reporter constructs and transfected into normal human bronchial epithelial cells. Basal HAP3 reporter activity was significantly elevated (1.8-fold) but decreased to the same levels as HAP2 and HAP1 with increasing concentrations of sulforaphane, benzyl isothiocyanate (BITC), and epigallocatechin gallate (EGCG). To confirm native HAP3 functionality, we quantitated mRNA expression in uncultured PBMCs and in laser microdissected normal lung epithelial cells (MNLEC) from the same patients. Basal mRNA expression was higher in HAP3 individuals [1.8-fold (PBMC) and 4-fold (MNLEC) for HAP3 heterozygotes and 2.3-fold (PBMC), and 15-fold (MNLEC) for the HAP3 homozygote] than in the other genotypes. PBMC GSTP1 mRNA expression correlated to MNLEC expression (R2 = 0.77). After culture and in vitro exposure to sulforaphane, BITC, or EGCG, the elevated GSTP1 mRNA expression of PBMCs from HAP3 individuals decreased to common expression levels. Elevated HAP3 function was confirmed at the protein level in PBMCs (5-fold higher for HAP3 heterozygotes and 7.6-fold for the HAP3 homozygote). These data suggest a potentially protective GSTP1 promoter haplotype and unpredicted inhibitory chemopreventive agent-haplotype interactions.
Collapse
Affiliation(s)
- Stephane Cauchi
- Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, NY, USA
| | | | | | | |
Collapse
|