1
|
Chen T, Yang J, Lin Y, Tsai Y, Lai C, Tsai W, Chen Y. Farnesoid X receptor induction decreases invasion and tumor progression by JAK2/occludin signaling in human glioblastoma cells. Exp Cell Res 2025; 447:114500. [PMID: 40058449 DOI: 10.1016/j.yexcr.2025.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Glioblastoma multiforme (GBM) is a brain cancer characterized by low survival and high recurrence rates. Farnesoid X receptor (FXR), a nuclear receptor for bile acids, is expressed at low levels in GBM. This study explores the impact of FXR regulation on GBM cell migration and invasion. Higher FXR expression correlated with increased survival in GBM patients, based on TCGA data. FXR overexpression inhibited cell viability, migration and invasion as well as matrix metalloproteinase 2 (MMP2) activity, while knockdown of FXR exerted the opposite effects. The expression of the tight junction proteins occludin and ZO-1 was enhanced after FXR overexpression. Moreover, a JAK2 activator reversed the migration and invasion of FXR-overexpressing GBM cells. In an animal study, FXR overexpression combined with temozolomide treatment decreased tumor mass, and MMP2 expression and elevated occludin expression in mice. In conclusion, FXR overexpression inhibits the progression of GBM, which may be mediated by inhibiting JAK2 and enhancing tight junction protein expression.
Collapse
Affiliation(s)
- TzuMin Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - JenFu Yang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - YiHsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - YuLing Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - ChienRui Lai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - WenChiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang Y, Zhang C, Zhang J, Huang H, Guo J. Construction and Validation of a Novel T/NK-Cell Prognostic Signature for Pancreatic Cancer Based on Single-Cell RNA Sequencing. Cancer Invest 2024; 42:876-892. [PMID: 39523741 DOI: 10.1080/07357907.2024.2424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Evidence with regards to the distinction between primary and metastatic tumors in pancreatic cancer and driving factors for metastases remains limited. METHODS Single-cell RNA sequencing (scRNA-seq) was conducted on metastatic pancreatic cancer. Bioinformatics analysis on relevant sequencing data was used to construct a risk model to predict patient prognosis. Furthermore, immune infiltration and metabolic differences were assessed. The biological function of key differential genes was evaluated. RESULTS Paired primary and metastatic tumor tissues from 3 pancreatic cancer patients were collected and conducted scRNA-seq. Subsequently, the T/NK cell subgroup was the most different cell type between primary tumors and liver metastases and was selected for further analysis. Eventually, 6 specifically expressed genes of T/NK cells (B2M, ZFP36L2, ANXA1, ARL4C, TSPYL2, FYN) were used constructing the prognostic model. The stability of this model was validated by an external cohort. Meanwhile, different immune infiltration abundances occurred between high and low risk groups stratified by the model. The high-risk group had a stronger metabolic capability. CONCLUSIONS A novel prognostic T/NK-cell signature for pancreatic cancer was constructed based on scRNA-seq data and externally validated. The involved key genes may play a role in multiple metabolic pathways of metastasis and affect the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu Wang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jianlu Zhang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Huang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Shukla M, Sarkar RR. Differential cellular communication in tumor immune microenvironment during early and advanced stages of lung adenocarcinoma. Mol Genet Genomics 2024; 299:100. [PMID: 39460829 DOI: 10.1007/s00438-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Heterogeneous behavior of each cell type and their cross-talks in tumor immune microenvironment (TIME) refers to tumor immunological heterogeneity that emerges during tumor progression and represents formidable challenges for effective anti-tumor immune response and promotes drug resistance. To comprehensively elucidate the heterogeneous behavior of individual cell types and their interactions across different stages of tumor development at system level, a computational framework was devised that integrates cell specific data from single-cell RNASeq into networks illustrating interactions among signaling and metabolic response genes within and between cells in TIME. This study identified stage specific novel markers which remodel the cross-talks, thereby facilitating immune stimulation. Particularly, multicellular knockout of metabolic gene APOE (Apolipoprotein E in mast cell, myeloid cell and fibroblast) combined with signaling gene CAV1 (Caveolin1 in endothelial and epithelial cells) resulted in the activation of T-cell mediated signaling pathways. Additionally, this knockout also initiated intervention of cytotoxic gene regulations during tumor immune cell interactions at the early stage of Lung Adenocarcinoma (LUAD). Furthermore, a unique interaction motif from multiple cells emerged significant in regulating the overall immune response at the advanced stage of LUAD. Most significantly, FCER1G (Fc Fragment of IgE Receptor Ig) was identified as the common regulator in activating the anti-tumor immune response at both stages. Predicted markers exhibited significant association with patient overall survival in patient specific dataset. This study uncovers the significance of signaling and metabolic interplay within TIME and discovers important targets to enhance anti-tumor immune response at each stage of tumor development.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Lin YH, Chen TM, Tsai YL, Tsai WC, Wang HH, Chen Y, Wu ST. The Reduction of PSMB4 in T24 and J82 Bladder Cancer Cells Inhibits the Angiogenesis and Migration of Endothelial Cells. Int J Mol Sci 2024; 25:5559. [PMID: 38791597 PMCID: PMC11122396 DOI: 10.3390/ijms25105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Bladder cancer (BC) is a malignant tumor of the urinary system with high mortality and recurrence rates. Proteasome subunit type 4 (PSMB4) is highly expressed and has been identified as having oncogenic properties in a variety of cancer types. This study aimed to explore the effect of PSMB4 knockdown on the survival, migration, and angiogenesis of human bladder cancer cells with different degrees of malignancy. We analyzed the effects of PSMB4 knockdown in bladder cancer cells and endothelial cells in the tumor microenvironment. PSMB4 was highly expressed in patients with low- and high-grade urothelial carcinoma. Inhibition of PSMB4 reduced protein expression of focal adhesion kinase (FAK) and myosin light chain (MLC), leading to reduced migration. Furthermore, the suppression of PSMB4 decreased the levels of vascular endothelial factor B (VEGF-B), resulting in lower angiogenic abilities in human bladder cancer cells. PSMB4 inhibition affected the migratory ability of HUVECs and reduced VEGFR2 expression, consequently downregulating angiogenesis. In the metastatic animal model, PSMB4 knockdown reduced the relative volumes of lung tumors. Our findings suggest the role of PSMB4 as a potential target for therapeutic strategies against human bladder cancer.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.L.); (T.-M.C.)
| | - Tzu-Min Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.L.); (T.-M.C.)
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei 11490, Taiwan;
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.L.); (T.-M.C.)
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
5
|
Xu W, Zhang W, Zhao D, Wang Q, Zhang M, Li Q, Zhu W, Xu C. Unveiling the role of regulatory T cells in the tumor microenvironment of pancreatic cancer through single-cell transcriptomics and in vitro experiments. Front Immunol 2023; 14:1242909. [PMID: 37753069 PMCID: PMC10518406 DOI: 10.3389/fimmu.2023.1242909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background In order to investigate the impact of Treg cell infiltration on the immune response against pancreatic cancer within the tumor microenvironment (TME), and identify crucial mRNA markers associated with Treg cells in pancreatic cancer, our study aims to delve into the role of Treg cells in the anti-tumor immune response of pancreatic cancer. Methods The ordinary transcriptome data for this study was sourced from the GEO and TCGA databases. It was analyzed using single-cell sequencing analysis and machine learning. To assess the infiltration level of Treg cells in pancreatic cancer tissues, we employed the CIBERSORT method. The identification of genes most closely associated with Treg cells was accomplished through the implementation of weighted gene co-expression network analysis (WGCNA). Our analysis of single-cell sequencing data involved various quality control methods, followed by annotation and advanced analyses such as cell trajectory analysis and cell communication analysis to elucidate the role of Treg cells within the pancreatic cancer microenvironment. Additionally, we categorized the Treg cells into two subsets: Treg1 associated with favorable prognosis, and Treg2 associated with poor prognosis, based on the enrichment scores of the key genes. Employing the hdWGCNA method, we analyzed these two subsets to identify the critical signaling pathways governing their mutual transformation. Finally, we conducted PCR and immunofluorescence staining in vitro to validate the identified key genes. Results Based on the results of immune infiltration analysis, we observed significant infiltration of Treg cells in the pancreatic cancer microenvironment. Subsequently, utilizing the WGCNA and machine learning algorithms, we ultimately identified four Treg cell-related genes (TRGs), among which four genes exhibited significant correlations with the occurrence and progression of pancreatic cancer. Among them, CASP4, TOB1, and CLEC2B were associated with poorer prognosis in pancreatic cancer patients, while FYN showed a correlation with better prognosis. Notably, significant differences were found in the HIF-1 signaling pathway between Treg1 and Treg2 cells identified by the four genes. These conclusions were further validated through in vitro experiments. Conclusion Treg cells played a crucial role in the pancreatic cancer microenvironment, and their presence held a dual significance. Recognizing this characteristic was vital for understanding the limitations of Treg cell-targeted therapies. CASP4, FYN, TOB1, and CLEC2B exhibited close associations with infiltrating Treg cells in pancreatic cancer, suggesting their involvement in Treg cell functions. Further investigation was warranted to uncover the mechanisms underlying these associations. Notably, the HIF-1 signaling pathway emerged as a significant pathway contributing to the duality of Treg cells. Targeting this pathway could potentially revolutionize the existing treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenjia Zhang
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Laboratory of Emergency Medicine, School of the Secondary Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wenxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gastroenterology, Kunshan Third People’s Hospital, Suzhou, Jiangsu, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Peng S, Yin Y, Zhang Y, Zhu F, Yang G, Fu Y. FYN/TOPK/HSPB1 axis facilitates the proliferation and metastasis of gastric cancer. J Exp Clin Cancer Res 2023; 42:80. [PMID: 37016377 PMCID: PMC10071617 DOI: 10.1186/s13046-023-02652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND FYN is a nonreceptor tyrosine kinase that regulates diverse pathological processes. The pro-cancer role of FYN in multiple malignancies has been elucidated. However, the mechanisms that FYN promotes gastric cancer (GC) progression remain largely unknown. METHODS In vitro and in vivo assays were used to investigate the function of FYN. FYN, TOPK, p-TOPK expression in GC specimens were detected by immunohistochemistry. Phosphoproteomics assays identify TOPK downstream substrate molecules. The molecular mechanism was determined using COIP assays, pull-down assays, immunofluorescence co-localization assays, western blotting, 32p-labeled isotope radioautography assays, vitro kinase assays, and TOPK knockout mice. RESULTS FYN was found to be significantly upregulated in GC tissues as well as in GC cells. Knockdown of FYN expression markedly attenuated the malignant phenotype of GC cells in vitro and in vivo. Mechanistically, we identified TOPK/PBK as a novel downstream substrate of FYN, FYN directly phosphorylates TOPK at Y272. One phosphospecific antibodies against Y272 was developed to validate the phosphorylation of TOPK by FYN. Moreover, the TOPK-272F mutation impaired the interaction between TOPK and FYN, leading to disappeared TOPK phosphorylation. Consistently, human GC tissues displayed increased p-TOPK(Y272), which correlated with poor survival. Phosphoproteomics results showed a significant downregulation of both HSPB1 and p-HSPB1(ser15) in TOPK-knockdown cells, which was confirmed by TOPK-konckout mice. CONCLUSIONS FYN directly binds to TOPK in GC cells and phosphorylates TOPK at the Y272, which leads to proliferation and metastasis of GC. FYN-TOPK axis facilitates GC progression by phosphorylating HSPB1. Collectively, our study elucidates the pivotal role of the FYN-TOPK-HSPB1 cascade in GC.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China
| | - YuHan Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China
| | - YiZheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
8
|
Nakayama J, Makinoshima H, Gong Z. Gastrulation Screening to Identify Anti-metastasis Drugs in Zebrafish Embryos. Bio Protoc 2022; 12:e4525. [PMID: 36313195 PMCID: PMC9548519 DOI: 10.21769/bioprotoc.4525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
Few models exist that allow for rapid and effective screening of anti-metastasis drugs. Here, we present a drug screening protocol utilizing gastrulation of zebrafish embryos for identification of anti-metastasis drugs. Based on the evidence that metastasis proceeds through utilizing the molecular mechanisms of gastrulation, we hypothesized that chemicals interrupting zebrafish gastrulation might suppress the metastasis of cancer cells. Thus, we developed a phenotype-based chemical screen that uses epiboly, the first morphogenetic movement in gastrulation, as a marker. The screen only needs zebrafish embryos and enables hundreds of chemicals to be tested in five hours by observing the epiboly progression of chemical-treated embryos. In the screen, embryos at the two-cell stage are firstly corrected and then developed to the sphere stage. The embryos are treated with a test chemical and incubated in the presence of the chemical until vehicle-treated embryos develop to the 90% epiboly stage. Finally, positive 'hit' chemicals that interrupt epiboly progression are selected by comparing epiboly progression of the chemical-treated and vehicle-treated embryos under a stereoscopic microscope. A previous study subjected 1,280 FDA-approved drugs to the screen and identified adrenosterone and pizotifen as epiboly-interrupting drugs. These were validated to suppress metastasis of breast cancer cells in mice models of metastasis. Furthermore, 11β-hydroxysteroid dehydrogenase 1 (HSD11β1) and serotonin receptor 2C (HTR2C), the primary targets of adrenosterone and pizotifen, respectively, promoted metastasis through induction of epithelial-mesenchymal transition (EMT). Therefore, this screen could be converted into a chemical genetic screening platform for identification of metastasis-promoting genes. Graphical abstract.
Collapse
Affiliation(s)
- Joji Nakayama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
,
Shonai Regional Industry Promotion Center, Tsuruoka, Japan
,
Department of Biological Science, National University of Singapore, Singapore
,
*For correspondence:
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
,
Division of Translational Research, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, Singapore
| |
Collapse
|
9
|
Moser R, Gurley KE, Nikolova O, Qin G, Joshi R, Mendez E, Shmulevich I, Ashley A, Grandori C, Kemp CJ. Synthetic lethal kinases in Ras/p53 mutant squamous cell carcinoma. Oncogene 2022; 41:3355-3369. [PMID: 35538224 DOI: 10.1038/s41388-022-02330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.
Collapse
Affiliation(s)
- Russell Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kay E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olga Nikolova
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | | | - Rashmi Joshi
- New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Nakayama J, Tan L, Li Y, Goh BC, Wang S, Makinoshima H, Gong Z. A zebrafish embryo screen utilizing gastrulation identifies the HTR2C inhibitor pizotifen as a suppressor of EMT-mediated metastasis. eLife 2021; 10:e70151. [PMID: 34919051 PMCID: PMC8824480 DOI: 10.7554/elife.70151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Metastasis is responsible for approximately 90% of cancer-associated mortality but few models exist that allow for rapid and effective screening of anti-metastasis drugs. Current mouse models of metastasis are too expensive and time consuming to use for rapid and high-throughput screening. Therefore, we created a unique screening concept utilizing conserved mechanisms between zebrafish gastrulation and cancer metastasis for identification of potential anti-metastatic drugs. We hypothesized that small chemicals that interrupt zebrafish gastrulation might also suppress metastatic progression of cancer cells and developed a phenotype-based chemical screen to test the hypothesis. The screen used epiboly, the first morphogenetic movement in gastrulation, as a marker and enabled 100 chemicals to be tested in 5 hr. The screen tested 1280 FDA-approved drugs and identified pizotifen, an antagonist for serotonin receptor 2C (HTR2C) as an epiboly-interrupting drug. Pharmacological and genetic inhibition of HTR2C suppressed metastatic progression in a mouse model. Blocking HTR2C with pizotifen restored epithelial properties to metastatic cells through inhibition of Wnt signaling. In contrast, HTR2C induced epithelial-to-mesenchymal transition through activation of Wnt signaling and promoted metastatic dissemination of human cancer cells in a zebrafish xenotransplantation model. Taken together, our concept offers a novel platform for discovery of anti-metastasis drugs.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
| | - Lora Tan
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Yan Li
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Shu Wang
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- Institute of Bioengineering and NanotechnologySingaporeSingapore
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Zhiyuan Gong
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| |
Collapse
|
11
|
Wang S, Li X, Zhang Q, Chai X, Wang Y, Förster E, Zhu X, Zhao S. Nyap1 Regulates Multipolar-Bipolar Transition and Morphology of Migrating Neurons by Fyn Phosphorylation during Corticogenesis. Cereb Cortex 2021; 30:929-941. [PMID: 31609430 DOI: 10.1093/cercor/bhz137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
The coordination of cytoskeletal regulation is a prerequisite for proper neuronal migration during mammalian corticogenesis. Neuronal tyrosine-phosphorylated adaptor for the phosphoinositide 3-kinase 1 (Nyap1) is a member of the Nyap family of phosphoproteins, which has been studied in neuronal morphogenesis and is involved in remodeling of the actin cytoskeleton. However, the precise role of Nyap1 in neuronal migration remains unknown. Here, overexpression and knockdown of Nyap1 in the embryonic neocortex of mouse by in utero electroporation-induced abnormal morphologies and multipolar-bipolar transitions of migrating neurons. The level of phosphorylated Nyap1 was crucial for neuronal migration and morphogenesis in neurons. Furthermore, Nyap1 regulated neuronal migration as a downstream target of Fyn, a nonreceptor protein-tyrosine kinase that is a member of the Src family of kinases. Importantly, Nyap1 mediated the role of Fyn in the multipolar-bipolar transition of migrating neurons. Taken together, these results suggest that cortical radial migration is regulated by a molecular hierarchy of Fyn via Nyap1.
Collapse
Affiliation(s)
- Shuzhong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuzhao Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Qianru Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, 710021, PR China
| | - Yi Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, PR China
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum 44801, Germany
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
12
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Monroe JD, Basheer F, Gibert Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021; 10:1132. [PMID: 34067095 PMCID: PMC8150686 DOI: 10.3390/cells10051132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | - Faiza Basheer
- School of Medicine, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| |
Collapse
|
14
|
Liu Y, Xu X, Tang H, Pan Y, Hu B, Huang G. Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int J Mol Med 2021; 47:67. [PMID: 33649774 PMCID: PMC7952246 DOI: 10.3892/ijmm.2021.4900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
There is a growing evidence that Fyn kinase is upregulated in glioblastoma multiforme (GBM), where it plays a key role in tumor proliferation and invasion. In the present study, the antitumor effects of rosmarinic acid (RA), a Fyn inhibitor, were explored in human‑derived U251 and U343 glioma cell lines. These cells were treated with various concentrations of RA to determine its effects on proliferation, migration, invasion, apoptosis, and gene and protein expression levels. The CCK‑8 assay revealed that RA significantly suppressed cell viability of U251 and U343 cells. Furthermore, RA significantly reduced proliferation rates, inhibited migration and invasion, and decreased the expression levels of invasion‑related factors, such as matrix metalloproteinase (MMP)‑2 and MMP‑9. TUNEL staining revealed that RA resulted in a dose‑dependent increase of U251 and U343 cell apoptosis. In line with this finding, the expression of apoptosis suppressor protein Bcl‑2 was downregulated and that of the pro‑apoptotic proteins Bax and cleaved caspase‑3 was increased. In addition, it was revealed that the phosphatidylinositol 3‑kinase (PI3K)/Akt/nuclear factor‑κB (NF‑κB) signaling pathway was involved in RA‑induced cytotoxicity in U251 and U343 cells. Collectively, the present study suggested RA as a drug candidate for the treatment of GBM.
Collapse
Affiliation(s)
- Yunsheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Xiangping Xu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Han Tang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yuchen Pan
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
15
|
Comba A, Dunn PJ, Argento AE, Kadiyala P, Ventosa M, Patel P, Zamler DB, Núñez FJ, Zhao L, Castro MG, Lowenstein PR. Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antiglioma immune responses. Neuro Oncol 2021; 22:806-818. [PMID: 31950181 DOI: 10.1093/neuonc/noaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-grade gliomas are aggressive and immunosuppressive brain tumors. Molecular mechanisms that regulate the inhibitory immune tumor microenvironment (TME) and glioma progression remain poorly understood. Fyn tyrosine kinase is a downstream target of the oncogenic receptor tyrosine kinase pathway and is overexpressed in human gliomas. Fyn's role in vivo in glioma growth remains unknown. We investigated whether Fyn regulates glioma initiation, growth and invasion. METHODS We evaluated the role of Fyn using genetically engineered mouse glioma models (GEMMs). We also generated Fyn knockdown stem cells to induce gliomas in immune-competent and immune-deficient mice (nonobese diabetic severe combined immunodeficient gamma mice [NSG], CD8-/-, CD4-/-). We analyzed molecular mechanism by RNA sequencing and bioinformatics analysis. Flow cytometry was used to characterize immune cellular infiltrates in the Fyn knockdown glioma TME. RESULTS We demonstrate that Fyn knockdown in diverse immune-competent GEMMs of glioma reduced tumor progression and significantly increased survival. Gene ontology (GO) analysis of differentially expressed genes in wild-type versus Fyn knockdown gliomas showed enrichment of GOs related to immune reactivity. However, in NSG and CD8-/- and CD4-/- immune-deficient mice, Fyn knockdown gliomas failed to show differences in survival. These data suggest that the expression of Fyn in glioma cells reduces antiglioma immune activation. Examination of glioma immune infiltrates by flow cytometry displayed reduction in the amount and activity of immune suppressive myeloid derived cells in the Fyn glioma TME. CONCLUSIONS Gliomas employ Fyn mediated mechanisms to enhance immune suppression and promote tumor progression. We propose that Fyn inhibition within glioma cells could improve the efficacy of antiglioma immunotherapies.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Patrick J Dunn
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anna E Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria Ventosa
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Priti Patel
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel B Zamler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lili Zhao
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Wang H, Hou W, Perera A, Bettler C, Beach JR, Ding X, Li J, Denning MF, Dhanarajan A, Cotler SJ, Joyce C, Yin J, Ahmed F, Roberts LR, Qiu W. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep 2021; 34:108765. [PMID: 33626345 PMCID: PMC7954228 DOI: 10.1016/j.celrep.2021.108765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Databases, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Janus Kinase 1/genetics
- Janus Kinase 1/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/antagonists & inhibitors
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Retrospective Studies
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Carlee Bettler
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Yin
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
17
|
Terasaki M, Takahashi S, Nishimura R, Kubota A, Kojima H, Ohta T, Hamada J, Kuramitsu Y, Maeda H, Miyashita K, Takahashi M, Mutoh M. A Marine Carotenoid of Fucoxanthinol Accelerates the Growth of Human Pancreatic Cancer PANC-1 Cells. Nutr Cancer 2021; 74:357-371. [PMID: 33590779 DOI: 10.1080/01635581.2020.1863994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fucoxanthin and its metabolite fucoxanthinol (FxOH), highly polar xanthophylls, exert strong anticancer effects against many cancer cell types. However, the effects of Fx and FxOH on pancreatic cancer, a high mortality cancer, remain unclear. We herein investigated whether FxOH induces apoptosis in human pancreatic cancer cells. FxOH (5.0 μmol/L) significantly promoted the growth of human pancreatic cancer PANC-1 cells, but induced apoptosis in human colorectal cancer DLD-1 cells. A microarray-based gene analysis revealed that the gene sets of cell cycle, adhesion, PI3K/AKT, MAPK, NRF2, adipogenesis, TGF-β, STAT, and Wnt signals in PANC-1 cells were markedly altered by FxOH. A western blot analysis showed that FxOH up-regulated the expression of integrin β1 and PPARγ as well as the activation of pFAK(Tyr397), pPaxillin(Tyr31), and pAKT(Ser473) in PANC-1 cells, but exerted the opposite effects in DLD-1 cells. Moreover, the expression of FYN, a downstream target of integrin subunits, was up-regulated (7.4-fold by qPCR) in FxOH-treated PANC-1 cells. These results suggest that FxOH accelerates the growth of PANC-1 cells by up-regulating the expression of integrin β1, FAK, Paxillin, FYN, AKT, and PPARγ.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Shouta Takahashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Ryuta Nishimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Junichi Hamada
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
|
19
|
Hosseini-Valiki F, Taghiloo S, Tavakolian G, Amjadi O, Tehrani M, Hedayatizadeh-Omran A, Alizadeh-Navaei R, Zaboli E, Shekarriz R, Asgarian-Omran H. Expression Analysis of Fyn and Bat3 Signal Transduction Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev 2020; 21:2615-2621. [PMID: 32986360 PMCID: PMC7779459 DOI: 10.31557/apjcp.2020.21.9.2615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 09/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is correlated with defects in T-cell function resulting imparity in antitumor immune responses. Tim-3 is a co-inhibitory immune checkpoint receptor expressed on exhausted T-cells during tumor progression. Fyn and Bat3 are two important adaptor molecules involved in inhibition and activation of Tim-3 downstream signaling, respectively. In this study, the expression of Tim-3, Fyn, and Bat3 mRNA was evaluated in CLL patients. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 54 patients with CLL and 34 healthy controls. Total RNA was extracted from all samples and applied for cDNA synthesis. The relative expression of Tim-3, Fyn, and Bat3 mRNA was determined by TaqMan Real-Time PCR using GAPDH as an internal control. RESULTS Tim-3 mRNA expression was not significantly different between CLL patients and healthy controls. Fyn mRNA expression was significantly lower in CLL patients and conversely, Bat3 mRNA expression was higher in CLL patients compared to healthy controls. Interestingly, the mRNA expression of Fyn inhibitory adaptor molecule was remarkably associated with expression of Tim-3 in CLL patients. CONCLUSION We have highlighted for the first time the expression of Fyn and Bat3 adaptor molecules in CLL patients. Our data demonstrated the strong correlation between the expression of Tim-3 and Fyn inhibitory molecules in CLL implying an important role for Tim-3-Fyn cooperation in induction of T-cell exhaustion.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Male
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Prognosis
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Fereshteh Hosseini-Valiki
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Golvash Tavakolian
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Omolbanin Amjadi
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohsen Tehrani
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ramin Shekarriz
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hossein Asgarian-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
20
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
21
|
Zhang X, Huang Z, Guo Y, Xiao T, Tang L, Zhao S, Wu L, Su J, Zeng W, Huang H, Li Z, Tao J, Zhou J, Chen X, Peng C. The phosphorylation of CD147 by Fyn plays a critical role for melanoma cells growth and metastasis. Oncogene 2020; 39:4183-4197. [PMID: 32291412 DOI: 10.1038/s41388-020-1287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN), is a transmembrane glycoprotein that is highly expressed in tumor cells, particularly melanoma cells, and plays critical roles in tumor cell metastasis through the regulation of matrix metalloprotease (MMP) expression. In this study, we identified Fyn as a novel interacting protein of CD147. Fyn is a member of the Src family of nonreceptor tyrosine kinases that regulates diverse physiological processes, such as T lymphocyte differentiation, through the TCR signaling pathway. Our findings demonstrated that Fyn directly phosphorylates CD147 at Y140 and Y183. Two phosphospecific antibodies against Y140 and Y183 were developed to validate the phosphorylation of CD147 by Fyn. Moreover, the CD147-FF (Y140F/Y183F) mutation impaired the interaction between CD147 and GnT-V, leading to decreased CD147 glycosylation and membrane recruitment. In addition, CD147-FF significantly blocked MMP-9 expression as well as cell migration. Moreover, we found that Fyn is overexpressed in clinical melanoma tissues as well as in melanoma cell lines. Knockdown of Fyn expression markedly attenuated the malignant phenotype of melanoma cells in vitro and in vivo through downregulation of CD147 phosphorylation, indicating that Fyn/CD147 is a potential target molecule in melanoma treatment. Finally, through virtual screening, we identified amodiaquine as a potential inhibitor targeting the Fyn/CD147 axis. Amodiaquine treatment dramatically inhibited the phosphorylation of CD147 by Fyn, thus attenuating melanoma cell growth and invasion in vitro and in vivo, suggesting that amodiaquine is a promising inhibitor for melanoma treatment.
Collapse
Affiliation(s)
- Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yeye Guo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ta Xiao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Wu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Xue F, Jia Y, Zhao J. Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma. Surg Oncol 2020; 33:108-117. [PMID: 32561075 DOI: 10.1016/j.suronc.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tyrosine-protein kinase Fyn (FYN) plays a crucial role in Src family, which participates in the signal transduction of brain nerves and the development and activation of T lymphocytes in physiological conditions. We probed into the roles and mechanisms of FYN in lung adenocarcinoma (LUAD). METHODS Cell activity, apoptosis, invasion, and migration were detected by CCK-8, FCM, transwell, and wound-healing assays, respectively. The angiogenesis capacity was evaluated by in vitro angiogenesis test. Relative mRNA and protein expressions were determined by qRT-PCR, Western blot, and immunohistochemistry assays, respectively. Insulin-like growth factors-I (IGF-I) was used as an agonist of PI3K/AKT pathway. RESULTS We demonstrated that FYN expression correlated with LUAD prognosis and was down-regulated in LUAD tissues and LUAD cells. Overexpression of FYN suppressed the cell viability, together with invasion and migration abilities of A549 cells. FYN overexpression accelerated the cell apoptosis and reduced the angiogenesis capacity of A549 cells. Overexpression of FYN suppressed E-cadherin, Vimentin, Snail, and PI3K/AKT expressions in A549 cells. High expression level of FYN reduced the migration and invasion capacities of A549 cells via down-regulating the PI3K/AKT pathway. CONCLUSION Collectively, our findings reveal that overexpression of FYN inhibits the epithelial-to-mesenchymal transition (EMT) through down-regulating the PI3K/AKT pathway in A549 cells.
Collapse
Affiliation(s)
- Feng Xue
- Department of Cardiothoracic Surgery, No.215 Hospital of Shaanxi Nuclear Industry, No.35, West Weiyang Road, Xianyang, Shaanxi, 712000, China
| | - Yong Jia
- Department of Oncological Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, No.2 West Weiyang Road, Xianyang, Shaanxi, 712000, China
| | - Jian Zhao
- Department of Thoracic Surgery, Xi'an Chest Hospital, The Eastern Section of Aerospace Avenue, Chang'an District, Xi'an, Shaanxi, 710100, China.
| |
Collapse
|
23
|
Mukherjee A, Singh R, Udayan S, Biswas S, Reddy PP, Manmadhan S, George G, Kumar S, Das R, Rao BM, Gulyani A. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. eLife 2020; 9:50571. [PMID: 32017701 PMCID: PMC7000222 DOI: 10.7554/elife.50571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Randhir Singh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sreeram Udayan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Saumya Manmadhan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shilpa Kumar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Bangalore, India
| | - Balaji M Rao
- North Carolina State University, Raleigh, United States
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
24
|
Glycofullerenes as non-receptor tyrosine kinase inhibitors- towards better nanotherapeutics for pancreatic cancer treatment. Sci Rep 2020; 10:260. [PMID: 31937861 PMCID: PMC6959220 DOI: 10.1038/s41598-019-57155-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
The water-soluble glycofullerenes GF1 and GF2 were synthesized using two-step modified Bingel-Hirsch methodology. Interestingly, we identified buckyballs as a novel class of non-receptor Src kinases inhibitors. The evaluated compounds were found to inhibit Fyn A and BTK proteins with IC50 values in the low micromolar range, with the most active compound at 39 µM. Moreover, we have demonstrated that formation of protein corona on the surface of [60]fullerene derivatives is changing the landscape of their activity, tuning the selectivity of obtained carbon nanomaterials towards Fyn A and BTK kinases. The performed molecular biology studies revealed no cytotoxicity and no influence of engineered carbon nanomaterials on the cell cycle of PANC-1 and AsPC-1 cancer cell lines. Incubation with the tested compounds resulted in the cellular redox imbalance triggering the repair systems and influenced the changing of protein levels.
Collapse
|
25
|
Molecular Biology of Basal and Squamous Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:171-191. [PMID: 32918219 DOI: 10.1007/978-3-030-46227-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalent keratinocyte-derived neoplasms of the skin are basal cell carcinoma and squamous cell carcinoma. Both so-called non-melanoma skin cancers comprise the most common cancers in humans by far. Common risk factors for both tumor entities include sun exposure, DNA repair deficiencies leading to chromosomal instability, or immunosuppression. Yet, fundamental differences in the development of the two different entities have been and are currently unveiled. The constitutive activation of the sonic hedgehog signaling pathway by acquired mutations in the PTCH and SMO genes appears to represent the early basal cell carcinoma developmental determinant. Although other signaling pathways are also affected, small hedgehog inhibitory molecules evolve as the most promising basal cell carcinoma treatment options systemically as well as topically in current clinical trials. For squamous cell carcinoma development, mutations in the p53 gene, especially UV-induced mutations, have been identified as early events. Yet, other signaling pathways including epidermal growth factor receptor, RAS, Fyn, or p16INK4a signaling may play significant roles in squamous cell carcinoma development. The improved understanding of the molecular events leading to different tumor entities by de-differentiation of the same cell type has begun to pave the way for modulating new molecular targets therapeutically with small molecules.
Collapse
|
26
|
Hervás-Marín D, Higgins F, Sanmartín O, López-Guerrero JA, Bañó MC, Igual JC, Quilis I, Sandoval J. Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma. PLoS One 2019; 14:e0223341. [PMID: 31860637 PMCID: PMC6924689 DOI: 10.1371/journal.pone.0223341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although most cSCCs have good prognosis, a subgroup of high-risk cSCC has a higher frequency of recurrence and mortality. Therefore, the identification of molecular risk factors associated with this aggressive subtype is of major interest. In this work we carried out a global-scale approach to investigate the DNA-methylation profile in patients at different stages, from premalignant actinic keratosis to low-risk invasive and high-risk non-metastatic and metastatic cSCC. The results showed massive non-sequential changes in DNA-methylome and identified a minimal methylation signature that discriminates between stages. Importantly, a direct comparison of low-risk and high-risk stages revealed epigenetic traits characteristic of high-risk tumours. Finally, a prognostic prediction model in cSCC patients identified a methylation signature able to predict the overall survival of patients. Thus, the analysis of DNA-methylation in cSCC revealed changes during the evolution of the disease through the different stages that can be of great value not only in the diagnosis but also in the prognosis of the disease.
Collapse
Affiliation(s)
- David Hervás-Marín
- Department of Biostatistics, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Faatiemah Higgins
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) Universitat de València, Burjassot, Valencia, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Onofre Sanmartín
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, Spain
| | | | - M. Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) Universitat de València, Burjassot, Valencia, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - J. Carlos Igual
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) Universitat de València, Burjassot, Valencia, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Inma Quilis
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) Universitat de València, Burjassot, Valencia, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit (UByMP), Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
27
|
Nishikawa S, Menju T, Takahashi K, Miyata R, Sonobe M, Yoshizawa A, Date H. Prognostic Significance of Phosphorylated Fyn in Patients with Lung Adenocarcinoma after Lung Resection. Ann Thorac Cardiovasc Surg 2019; 25:246-252. [PMID: 31189776 PMCID: PMC6823168 DOI: 10.5761/atcs.oa.19-00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: Src family tyrosine kinases, including Fyn, are non-receptor tyrosine kinases that drive malignancy in various kinds of cancers. Fyn has also been suggested to be an effector of epidermal growth factor receptor (EGFR) signaling, and is recognized as a potential therapeutic target. However, little is known about the clinical importance of phosphorylated Fyn (pFyn) in lung adenocarcinoma. The purpose of this study is to examine the prognostic significance of pFyn in this disease. Methods: A total of 282 lung adenocarcinoma specimens were collected from patients who underwent surgery at our institute. A tissue microarray was assembled from paraffin-embedded tumor blocks. pFyn expression was analyzed through immunostaining of the tissue microarray and each case was classified as positive or negative. The association of clinical information with pFyn expression was analyzed statistically. Results: pFyn was positive in 107 cases. A pFyn-positive status was significantly associated with male gender, p53 mutant, pathological stage, tumor size, plural invasion, lymphatic invasion, vascular invasion, and differentiation. pFyn positivity was associated with poor relapse-free survival (RFS; hazard ratio [HR]: 2.11, 95% confidence interval [CI]: 1.32–3.42, p <0.01) and poor overall survival (OS; HR: 1.95, 95% CI: 1.17–3.33, p = 0.01). Conclusion: pFyn expression may affect the prognosis of patients with lung adenocarcinoma after lung resection.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Koji Takahashi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Ryo Miyata
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Makoto Sonobe
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Kyoro, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
28
|
Lee V, Yang X, Prouty S, Denchev T, Marshall C, Maeno H, Bashir H, O'Day C, Seykora JT. Srcasm Regulates Tyrosine Kinases in Skin Cancer: Implications for Precision Medicine. J Investig Dermatol Symp Proc 2018; 19:S103-S105. [PMID: 30471750 DOI: 10.1016/j.jisp.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer in humans, with an incidence of approximately 700,000 cases per year in the United States (Rogers et al., 2010). It is known that cSCC is strongly associated with sun exposure, specifically UVB and UVA, as well as other risk factors, such as human papillomavirus infection, immunodeficiency, and specific medications (Ratushny et al., 2012). However, the precise sequence of biological events leading to tumor development remains unknown. With projected higher incidence of patients with cSCCs in the future, there is a strong need to elucidate the molecular pathways that regulate formation of cSCCs.
Collapse
Affiliation(s)
- Vivian Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaoping Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tzvete Denchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christine Marshall
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Maeno
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hasan Bashir
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Conor O'Day
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Yin L, Wang Y, Guo X, Xu C, Yu G. Comparison of gene expression in liver regeneration and hepatocellular carcinoma formation. Cancer Manag Res 2018; 10:5691-5708. [PMID: 30532592 PMCID: PMC6245377 DOI: 10.2147/cmar.s172945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Liver -cell proliferation occurs in hepatocellular carcinoma (HCC) and liver regeneration (LR). The development and progression of HCC and LR have many similar molecular pathways with very different results. In simple terms, LR is a controllable process of organ recovery and function reconstruction, whereas liver cancer is uncontrollable. Do they share common key pathways and genes? Methods In this study, the dynamic transcriptome profile at ten time points (0, 2, 6, 12, 24, 30, 36, 72, 120, and 168 hours) during LR in rats after two-thirds hepatectomy and eight stages (normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, and very early, early advanced, and very advanced HCC) representing a stepwise carcinogenic process from preneoplastic lesions to end-stage HCC were analyzed in detail. A variety of bioinformatic methods, including MaSigPro, weighted gene-coexpression network analysis, and spatial analysis of functional enrichment, were used to analyze, elucidate, and compare similarities and differences between LR and HCC formation. Results Key biological processes and genes were identified. From the comparison, we found that cell proliferation and angiogenesis were the most significantly dysregulated processes shared by LR and HCC. The pattern of cell-proliferation-related gene expression in progression stage during LR is similar to the transition process from dysplasia to early-stage HCC. LR and HCC showed different expression patterns as a whole. Some key genes, including FYN, XPO1, FOXM1, EZH2, and NRF1, were identified as playing critical roles in both LR and HCC. Conclusion These findings could contribute to revealing the molecular mechanism of development and regulation mechanism of normal and abnormal proliferation, which could provide new ideas and treatment methods for regenerative medicine, oncological drug development, and oncological treatment.
Collapse
Affiliation(s)
- Li Yin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ; .,Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China
| | - Yahao Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| | - Guoying Yu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| |
Collapse
|
30
|
Valenti MT, Dalle Carbonare L, Mottes M. Ectopic expression of the osteogenic master gene RUNX2 in melanoma Maria Teresa Valenti, Luca Dalle Carbonare, Monica Mottes. World J Stem Cells 2018; 10:78-81. [PMID: 30079129 PMCID: PMC6068731 DOI: 10.4252/wjsc.v10.i7.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
The transcription factor RUNX2 is the osteogenic master gene expressed in mesenchymal stem cells during osteogenic commitment as well as in pre-osteoblasts and early osteoblasts. However, RUNX2 is also ectopically expressed in melanoma and other cancers. Malignant melanoma (MM) is a highly metastatic skin cancer. The incidence of MM has increased considerably in the past half-century. The expression levels and mutation rates of genes such as BRAF, KIT, NRAS, PTEN, P53, TERT and MITF are higher in melanoma than in other solid malignancies. Additionally, transcription factors can affect cellular processes and induce cellular transformation since they control gene expression. Recently, several studies have identified alterations in RUNX2 expression. In particular, the regulation of KIT by RUNX2 and the increased expression of RUNX2 in melanoma specimens have been shown. Melanocytes, whose transformation results in melanoma, arise from the neural crest and therefore show “stemness” features. RUNX2 plays an important role in the re-activation of the MAPK and PI3K/AKT pathways, thus endowing melanoma cells with a high metastatic potential. In melanoma, the most frequent metastatic sites are the lung, liver, brain and lymph nodes. In addition, bone metastatic melanoma has been described. Notably, studies focusing on RUNX2 may contribute to the identification of an appropriate oncotarget in melanoma.
Collapse
Affiliation(s)
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37100, Italy
| |
Collapse
|
31
|
Polini B, Digiacomo M, Carpi S, Bertini S, Gado F, Saccomanni G, Macchia M, Nieri P, Manera C, Fogli S. Oleocanthal and oleacein contribute to the in vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer. Toxicol In Vitro 2018; 52:243-250. [PMID: 29959992 DOI: 10.1016/j.tiv.2018.06.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Although the anticancer properties of extra virgin olive oil (EVOO) extracts have been recognized, the role of single compounds in non-melanoma skin cancer is still unknown. The in vitro chemopreventive and anticancer action of EVOO extracts and oil-derived compounds in non-melanoma skin cancer models were evaluated on cutaneous squamous cell carcinoma cells and on immortalized human keratinocytes stimulated with epidermal growth factor. Preparation of EVOO extracts and isolation of single compounds was carried out by chromatographic methods. Antitumor activity was assessed by cell-based assays (cell viability, migration, clonogenicity, and spheroid formation) and apoptosis documented by internucleosomal DNA fragmentation. Finally, inhibition of key oncogenic signaling nodes involved in the progression from actinic keratosis to cutaneous squamous cell carcinoma was studied by western blot. EVOO extracts reduced non-melanoma skin cancer cell viability and migration, prevented colony and spheroid formation, and inhibited proliferation of atypical keratinocytes stimulated with epidermal growth factor. Such a pharmacological activity was promoted by oleocanthal and oleacein through the inhibition of Erk and Akt phosphorylation and the suppression of B-Raf expression, whereas tyrosol and hydroxytyrosol did not have effect. The current study provides in vitro evidence for new potential clinical applications of EVOO extracts and/or single oil-derived compounds in the prevention and treatment of non-melanoma skin cancers.
Collapse
Affiliation(s)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
32
|
Poon CLC, Brumby AM, Richardson HE. Src Cooperates with Oncogenic Ras in Tumourigenesis via the JNK and PI3K Pathways in Drosophila epithelial Tissue. Int J Mol Sci 2018; 19:ijms19061585. [PMID: 29861494 PMCID: PMC6032059 DOI: 10.3390/ijms19061585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.
Collapse
Affiliation(s)
- Carole L C Poon
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony M Brumby
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Helena E Richardson
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
33
|
Zheng L, Meng X, Li X, Zhang Y, Li C, Xiang C, Xing Y, Xia Y, Xi T. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer. FASEB J 2018; 32:588-600. [PMID: 28939591 DOI: 10.1096/fj.201700461rr] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is a major adjuvant therapy for patients who are diagnosed with estrogen receptor-α (ER)-positive breast cancer; however, TAM resistance occurs often during treatment and the underlying mechanism is unclear. Here, we report that miR-125a-3p inhibits ERα transcriptional activity and, thus, ER+ breast cancer cell proliferation, which causes cell-cycle arrest at the G1/S stage, inducing apoptosis and suppressing tumor growth by targeting cyclin-dependent kinase 3 (CDK3) in vitro and in vivo. In addition, CDK3 and miR-125a-3p expression levels were measured in 37 cancerous tissues paired with noncancerous samples, and their expression levels were negatively associated with miR-125a-3p level. Of interest, miR-125a-3p level is down-regulated in MCF-7 TAM-resistant (TamR) cells. Of more importance, up-regulation of miR-125a-3p resensitizes MCF-7 TamR cells to TAM, which is dependent on CDK3 expression. These results suggest that miR-125a-3p can function as a novel tumor suppressor in ER+ breast cancer by targeting CDK3, which may be a potential therapeutic approach for TamR breast cancer therapy.-Zheng, L., Meng, X., Li, X., Zhang, Y., Li, C., Xiang, C., Xing, Y., Xia, Y., Xi, T. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Xia Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Cheng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chenxi Xiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
34
|
The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 2018; 7:29689-707. [PMID: 27102439 PMCID: PMC5045426 DOI: 10.18632/oncotarget.8822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.
Collapse
|
35
|
Britan A, Cusin I, Hinard V, Mottin L, Pasche E, Gobeill J, Rech de Laval V, Gleizes A, Teixeira D, Michel PA, Ruch P, Gaudet P. Accelerating annotation of articles via automated approaches: evaluation of the neXtA5 curation-support tool by neXtProt. Database (Oxford) 2018; 2018:5255187. [PMID: 30576492 PMCID: PMC6301339 DOI: 10.1093/database/bay129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/04/2018] [Accepted: 11/09/2018] [Indexed: 11/14/2022]
Abstract
The development of efficient text-mining tools promises to boost the curation workflow by significantly reducing the time needed to process the literature into biological databases. We have developed a curation support tool, neXtA5, that provides a search engine coupled with an annotation system directly integrated into a biocuration workflow. neXtA5 assists curation with modules optimized for the thevarious curation tasks: document triage, entity recognition and information extraction.Here, we describe the evaluation of neXtA5 by expert curators. We first assessed the annotations of two independent curators to provide a baseline for comparison. To evaluate the performance of neXtA5, we submitted requests and compared the neXtA5 results with the manual curation. The analysis focuses on the usability of neXtA5 to support the curation of two types of data: biological processes (BPs) and diseases (Ds). We evaluated the relevance of the papers proposed as well as the recall and precision of the suggested annotations.The evaluation of document triage by neXtA5 precision showed that both curators agree with neXtA5 for 67 (BP) and 63% (D) of abstracts, while curators agree on accepting or rejecting an abstract ~80% of the time. Hence, the precision of the triage system is satisfactory.For concept extraction, curators approved 35 (BP) and 25% (D) of the neXtA5 annotations. Conversely, neXtA5 successfully annotated up to 36 (BP) and 68% (D) of the terms identified by curators. The user feedback obtained in these tests highlighted the need for improvement in the ranking function of neXtA5 annotations. Therefore, we transformed the information extraction component into an annotation ranking system. This improvement results in a top precision (precision at first rank) of 59 (D) and 63% (BP). These results suggest that when considering only the first extracted entity, the current system achieves a precision comparable with expert biocurators.
Collapse
Affiliation(s)
- Aurore Britan
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Isabelle Cusin
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Valérie Hinard
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Luc Mottin
- Haute école spécialisée de Suisse occidentale, Haute Ecole de Gestion de Genève, Carouge, Switzerland
- SIB Text Mining, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Emilie Pasche
- Haute école spécialisée de Suisse occidentale, Haute Ecole de Gestion de Genève, Carouge, Switzerland
- SIB Text Mining, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Julien Gobeill
- Haute école spécialisée de Suisse occidentale, Haute Ecole de Gestion de Genève, Carouge, Switzerland
- SIB Text Mining, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Valentine Rech de Laval
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Anne Gleizes
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Daniel Teixeira
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Pierre-André Michel
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Patrick Ruch
- Haute école spécialisée de Suisse occidentale, Haute Ecole de Gestion de Genève, Carouge, Switzerland
- SIB Text Mining, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| | - Pascale Gaudet
- Computer and Laboratory Investigation of Proteins of Human Origin Group, SIB Swiss Institute of Bioinformatics, Geneva 4, Switzerland
| |
Collapse
|
36
|
Lyu SC, Han DD, Li XL, Ma J, Wu Q, Dong HM, Bai C, He Q. Fyn knockdown inhibits migration and invasion in cholangiocarcinoma through the activated AMPK/mTOR signaling pathway. Oncol Lett 2017; 15:2085-2090. [PMID: 29434909 PMCID: PMC5776937 DOI: 10.3892/ol.2017.7542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and fatal tumor. In previous decades, there has been a steady increase in the incidence and mortality rates of this tumor worldwide. Metastasis is regarded as the major factor that contributes to poor prognosis in CCA patients. Studies therefore aim to develop novel therapeutic targets to control CCA metastasis. Fyn is known to enhance expression and promote metastasis in various cancers, including pancreatic cancer, prostate cancer and colorectal cancer. However, the exact function and mechanism of Fyn in CCA metastasis remains unclear. In the present study, mRNA and protein expression levels of Fyn, AMP-activated protein kinase (AMPK), phosphorylated (p-)AMPK, mammalian target of rapamycin (mTOR) and p-mTOR were measured, using the reverse transcription-quantitative polymerase chain reaction and western blot analysis, in CCA tissues and cell lines. In addition, Transwell assays were used to determine the migratory and invasive abilities of human CCA QBC939, following transfection. In the present study, it was found that Fyn was overexpressed in CCA cell lines. Fyn knockdown inhibited CCA cell migration and invasion. Furthermore, it was demonstrated that Fyn knockdown induces phosphorylation of AMPK, inhibits downstream phosphorylation of mTOR, and activate the AMPK/mTOR signaling pathway. Compound C, an AMPK inhibitor, inhibited the AMPK/mTOR signaling pathway, and reversed the effect of Fyn knockdown on migration and invasion of CCA cells. In conclusion, the present study suggests that Fyn knockdown inhibits cell migration and invasion by regulating the AMPK/mTOR signaling pathway in CCA cell lines and that Fyn knockdown is a potential target for anti-CCA therapy.
Collapse
Affiliation(s)
- Shao-Cheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Dong-Dong Han
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xian-Liang Li
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jun Ma
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hong-Meng Dong
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chun Bai
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
37
|
Li Y, Wang Y. Bioinformatics analysis of gene expression data for the identification of critical genes in breast invasive carcinoma. Mol Med Rep 2017; 16:8657-8664. [PMID: 28990063 PMCID: PMC5779935 DOI: 10.3892/mmr.2017.7717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
Gene expression data were analyzed in order to identify critical genes in breast invasive carcinoma (BRCA). Data from 1,073 BRCA samples and 99 normal samples were analyzed, which were obtained from The Cancer Genome Atlas. Differentially expressed genes (DEGs) were identified using the significance analysis of microarrays method and a functional enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. Relevant microRNAs (miRNAs), transcription factors (TFs) and associated small molecule drugs were revealed by Fisher's exact test. Furthermore, protein-protein interaction (PPI) information was downloaded from the Human Protein Reference Database. Interactions with a Pearson's correlation coefficient >0.5 were identified and PPI networks were subsequently constructed. A survival analysis was also conducted according to the Kaplan-Meier method. Initially, the 1,073 BRCA samples were clustered into seven groups, and 5,394 DEGs that were identified in ≥4 groups were selected. These DEGs were involved in the cell cycle, ubiquitin-mediated proteolysis, oxidative phosphorylation and human immunodeficiency virus infection. In addition, TFs, including Sp1 transcription factor, DAN domain BMP antagonist family member 5, MYCN proto-oncogene, bHLH transcription factor and cAMP responsive element binding protein (CREB)1, were identified in the BRCA groups. Seven PPI networks were subsequently constructed and the top 10 hub genes were acquired, including RB transcriptional corepressor 1, inhibitor of nuclear factor (NF)-κB kinase subunit γ, NF-κB subunit 2, transporter 1, ATP binding cassette subfamily B member, CREB binding protein and proteasome subunit α3. A significant difference in survival was observed between the two combined groups (groups-2, −4 and −5 vs. groups-1, −3, −6 and −7). In conclusion, numerous critical genes were detected in BRCA, and relevant miRNAs, TFs and small molecule drugs were identified. These findings may advance understanding regarding the pathogenesis of BRCA.
Collapse
Affiliation(s)
- Yi Li
- Department of Thoracic Oncology, Cancer Center, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yongsheng Wang
- Department of Thoracic Oncology, Cancer Center, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
38
|
Moriya C, Taniguchi H, Miyata K, Nishiyama N, Kataoka K, Imai K. Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice. Carcinogenesis 2017; 38:638-648. [PMID: 28498896 DOI: 10.1093/carcin/bgx040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/04/2017] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer, with aggressive properties characterized by metastasis, recurrence and drug resistance. Cancer stem cells are considered to be responsible for these properties. PRDM14, a transcriptional regulator that maintains pluripotency in embryonic stem cells, is overexpressed in some cancers. Here, we assessed PRDM14 expression and the effects of PRDM14 knockdown on cancer stem-like phenotypes in pancreatic cancer. We observed that PRDM14 protein was overexpressed in pancreatic cancer tissues compared with normal pancreatic tissues. Using lentiviral shRNA-transduced pancreatic cancer cells, we found that PRDM14 knockdown decreased sphere formation, number of side population and cell surface marker-positive cells and subcutaneous xenograft tumors and liver metastasis in mice. This was accompanied by upregulation of some microRNAs (miRNAs), including miR-125a-3p. miR-125a-3p, a tumor suppressor that is down-regulated in pancreatic cancer, has been suggested to regulate the expression of the Src-family kinase, Fyn. In PRDM14-knockdown cells, Fyn was expressed at lower levels and downstream proteins were less activated. These changes were considered to cause suppression of the above cancer phenotypes. In addition, we used small interfering RNA (siRNA)-based therapy targeting PRDM14 in a mouse model of liver metastasis induced using MIA-PaCa2 cells, and this treatment significantly decreased metastasis and in vitro migration. Taken together, these results suggest that targeting the overexpression of PRDM14 suppresses cancer stem-like phenotypes, including liver metastasis, via miRNA regulation and siRNA-based therapy targeting it shows promise as a treatment for patients with pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Kanjiro Miyata
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan and
| | - Kazunori Kataoka
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohzoh Imai
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
39
|
Culbreth M, Zhang Z, Aschner M. Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. Neurotoxicology 2017; 62:200-206. [PMID: 28736149 DOI: 10.1016/j.neuro.2017.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is a potent developmental neurotoxicant that induces an oxidative stress response in the brain. It has been demonstrated that MeHg exposure increases nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Nrf2 is a transcription factor that translocates to the nucleus in response to oxidative stress, and upregulates phase II detoxifying enzymes. Although, Nrf2 activity is augmented subsequent to MeHg exposure, it has yet to be established whether Nrf2 moves into the nucleus as a result. Furthermore, the potential effect MeHg might have on the non-receptor tyrosine kinase, Fyn, has not been addressed. Fyn phosphorylates Nrf2 in the nucleus, resulting in its inactivation, and consequent downregulation of the oxidative stress response. Here, we observe Nrf2 translocates to the nucleus subsequent to MeHg-induced oxidative stress. This response is concomitant with reduced Fyn expression and nuclear localization. Moreover, we detected an increase in phosphorylated Akt and glycogen synthase kinase 3 beta (GSK-3β) at activating and inhibitory sites, respectively. Akt phosphorylates and inhibits GSK-3β, which subsequently prevents Fyn phosphorylation to signal nuclear import. Our results demonstrate MeHg downregulates Fyn to maintain Nrf2 activity, and further illuminate a potential mechanism by which MeHg elicits neurotoxicity.
Collapse
Affiliation(s)
- Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
40
|
Jiang P, Li Z, Tian F, Li X, Yang J. Fyn/heterogeneous nuclear ribonucleoprotein E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. Int J Oncol 2017; 51:169-183. [PMID: 28560430 PMCID: PMC5467783 DOI: 10.3892/ijo.2017.4018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is characterized by a dense desmoplastic reaction in which extracellular matrix proteins accumulate and surround tumor cells. Integrins and their related signaling molecules are associated with progression of pancreatic cancer. In the present study, the association between the metastasis of pancreatic cancer and the expression of hnRNP E1 and integrin β1 was evaluated. In vitro and in vivo experiments were designed to study the mechanism underlying the regulation of integrin β1 splicing by the Fyn/hnRNP E1 spliceosome. Expression of hnRNP E1 and integrin β1A were associated with metastasis of pancreatic cancer. Inhibition of Fyn activity upregulated the expression of P21-activated kinase 1 and promoted the phosphorylation and nuclear localization of hnRNP E1, leading to the construction of a spliceosome complex that affected the alterative splicing of integrin β1. In the hnRNP E1 spliceosome complex, hnRNP A1 and serine/arginine-rich splicing factor 1 were responsible for binding to the pre-mRNA of integrin β1. Suppression of Fyn activity and/or overexpression of hnRNP E1 decreased the metastasis of pancreatic cancer cells. In pancreatic cancer, the present study demonstrated a novel mechanism by which Fyn/hnRNP E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. hnRNP E1 and integrin β1A are associated with the metastasis of pancreatic cancer and may be novel molecular targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
41
|
Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S, Nagarajan N, Oka SI, Yokota T, Kinugawa S, Hsu CP, Li H, Tsutsui H, Sadoshima J. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J Clin Invest 2016; 126:3403-16. [PMID: 27525436 DOI: 10.1172/jci85624] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/30/2016] [Indexed: 01/05/2023] Open
Abstract
NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2- production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling.
Collapse
|
42
|
Xie YG, Yu Y, Hou LK, Wang X, Zhang B, Cao XC. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncol Rep 2016; 36:1000-6. [DOI: 10.3892/or.2016.4894] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 11/06/2022] Open
|
43
|
Song CL, Liu B, Wang JP, Zhang BL, Zhang JC, Zhao LY, Shi YF, Li YX, Wang G, Diao HY, Li Q, Xue X, Wu JD, Liu J, Yu YP, Cai D, Liu ZX. Anti-apoptotic effect of microRNA-30b in early phase of rat myocardial ischemia-reperfusion injury model. J Cell Biochem 2016; 116:2610-9. [PMID: 25925903 DOI: 10.1002/jcb.25208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
This study aimed to investigate the effect of microRNA-30b (miR-30b) in rat myocardial ischemic-reperfusion (I/R) injury model. We randomly divided Sprague-Dawley (SD) rats (n = 80) into five groups: 1) control group; 2) miR-30b group; 3) sham-operated group; 4) I/R group, and 5) I/R+miR-30b group. Real-time quantitative polymerase chain reaction, immunohistochemical staining and Western blot analysis were conducted. TUNEL assay was employed for testing cardiomyocyte apoptosis. Our results showed that miR-30b levels were down-regulated in I/R group and I/R + miR-30b group compared with sham-operated group (both P < 0.05). However, miR-30b level in I/R + miR-30b group was higher than I/R group (P < 0.05). Markedly, the apoptotic rate in I/R group showed highest in I/R group (P < 0.05). Additionally, the results illustrated that protein levels of Bcl-2, Bax, and caspase-3 were at higher levels in ischemic regions in I/R group, comparing to sham-operated group (all P < 0.05), while Bcl-2/Bax was reduced (P < 0.05). Bcl-2 level and Bcl-2/Bax were obviously increased in I/R + miR-30b group by comparison with I/R group, and expression levels of Bax and caspase-3 were down-regulated (all P < 0.05). We also found that in I/R + miR-30b group, KRAS level was apparently lower and p-AKT level was higher by comparing with I/R group (both P < 0.05). Our study indicated that miR-30b overexpression had anti-apoptotic effect on early phase of rat myocardial ischemia injury model through targeting KRAS and activating the Ras/Akt pathway.
Collapse
Affiliation(s)
- Chun-Li Song
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Bin Liu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jin-Peng Wang
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Bei-Lin Zhang
- Department of Physiology, the College of Basic Medical Sciences of Jilin University, Changchun, 130021, P. R. China
| | - Ji-Chang Zhang
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Li-Yan Zhao
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Yong-Feng Shi
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Yang-Xue Li
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Guan Wang
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Hong-Ying Diao
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Qian Li
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Xin Xue
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jun-Duo Wu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jia Liu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Yun-Peng Yu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Dan Cai
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Zhi-Xian Liu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| |
Collapse
|
44
|
Indovina P, Casini N, Forte IM, Garofano T, Cesari D, Iannuzzi CA, Del Porro L, Pentimalli F, Napoliello L, Boffo S, Schenone S, Botta M, Giordano A. SRC Family Kinase Inhibition in Ewing Sarcoma Cells Induces p38 MAP Kinase-Mediated Cytotoxicity and Reduces Cell Migration. J Cell Physiol 2016; 232:129-35. [PMID: 27037775 DOI: 10.1002/jcp.25397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 11/11/2022]
Abstract
Ewing sarcoma (ES) is a highly aggressive bone and soft tissue cancer, representing the second most common primary malignant bone tumor in children and adolescents. Although the development of a multimodal therapy, including both local control (surgery and/or radiation) and systemic multidrug chemotherapy, has determined a significant improvement in survival, patients with metastatic and recurrent disease still face a poor prognosis. Moreover, considering that ES primarily affects young patients, there are concerns about long-term adverse effects of the therapy. Therefore, more rational strategies, targeting specific molecular alterations underlying ES, are required. Recent studies suggest that SRC family kinases (SFKs), which are aberrantly activated in most cancer types, could represent key therapeutic targets also for ES. Here, we challenged ES cell lines with a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221), which was previously shown to be a valuable proapoptotic agent in other tumor types while not affecting normal cells. We observed that SI221 significantly reduced ES cell viability and proved to be more effective than the well-known SFK inhibitor PP2. SI221 was able to induce apoptosis in ES cells and also reduced ES cell clonogenic potential. Furthermore, SI221 was also able to reduce ES cell migration. At the molecular level, our data suggest that SFK inhibition through SI221 could reduce ES cell viability at least in part by hindering an SFK-NOTCH1 receptor-p38 mitogen-activated protein kinase (MAPK) axis. Overall, our study suggests a potential application of specific SFK inhibition in ES therapy. J. Cell. Physiol. 232: 129-135, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.
| | - Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | | | - Daniele Cesari
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Carmelina Antonella Iannuzzi
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Leonardo Del Porro
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Luca Napoliello
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | | | - Maurizio Botta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
45
|
Liu Q, Tian FJ, Xie QZ, Zhang J, Liu L, Yang J. Fyn Plays a Pivotal Role in Fetomaternal Tolerance Through Regulation of Th17 Cells. Am J Reprod Immunol 2016; 75:569-79. [PMID: 26892111 DOI: 10.1111/aji.12498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Fu-ju Tian
- Institute of Embryo-Fetal Original Adult Disease; the International Peace Maternity & Child Health Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qing-zhen Xie
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Jun Zhang
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Liu Liu
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Jing Yang
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| |
Collapse
|
46
|
Ceccherini E, Indovina P, Zamperini C, Dreassi E, Casini N, Cutaia O, Forte IM, Pentimalli F, Esposito L, Polito MS, Schenone S, Botta M, Giordano A. SRC family kinase inhibition through a new pyrazolo[3,4-d]pyrimidine derivative as a feasible approach for glioblastoma treatment. J Cell Biochem 2015; 116:856-63. [PMID: 25521525 DOI: 10.1002/jcb.25042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Glioblastoma (GB) is the most common and aggressive primary tumor of the central nervous system. The current standard of care for GB consists of surgical resection, followed by radiotherapy combined with temozolomide chemotherapy. However, despite this intensive treatment, the prognosis remains extremely poor. Therefore, more effective therapies are urgently required. Recent studies indicate that SRC family kinases (SFKs) could represent promising molecular targets for GB therapy. Here, we challenged four GB cell lines with a new selective pyrazolo[3,4-d]pyrimidine derivative SFK inhibitor, called SI221. This compound exerted a significant cytotoxic effect on GB cells, without significantly affecting non-tumor cells (primary human skin fibroblasts), as evaluated by MTS assay. We also observed that SI221 was more effective than the well-known SFK inhibitor PP2 in GB cells. Notably, despite the high intrinsic resistance to apoptosis of GB cells, SI221 was able to induce this cell death process in all the GB cell lines, as observed through cytofluorimetric analysis and caspase-3 assay. SI221 also exerted a long-term inhibition of GB cell growth and was able to reduce GB cell migration, as shown by clonogenic assay and scratch test, respectively. Moreover, through in vitro pharmacokinetic assays, SI221 proved to have a high metabolic stability and a good potential to cross the blood brain barrier, which is an essential requirement for a drug intended to treat brain tumors. Therefore, despite the need of developing strategies to improve SI221 solubility, our results suggest a potential application of this selective SFK inhibitor in GB therapy.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 2015; 142:19-25. [PMID: 26455550 DOI: 10.1016/j.lfs.2015.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Dietary guidelines published in the past two decades have acknowledged the beneficial effects of myricetin, an important and common type of herbal flavonoid, against several human diseases such as inflammation, cardiovascular pathologies, and cancer. An increasing number of studies have shown the beneficial effects of myricetin against different types of cancer by modifying several cancer hallmarks including aberrant cell proliferation, signaling pathways, apoptosis, angiogenesis, and tumor metastasis. Most importantly, myricetin interacts with oncoproteins such as protein kinase B (PKB) (Akt), Fyn, MEK1, and JAK1-STAT3 (Janus kinase-signal transducer and activator of transcription 3), and it attenuates the neoplastic transformation of cancer cells. In addition, myricetin exerts antimitotic effects by targeting the overexpression of cyclin-dependent kinase 1 (CDK1) in liver cancer. Moreover, it also targets the mitochondria and promotes different kinds of cell death in various cancer cells. In the present paper, a critical review of the available literature is presented to identify the molecular targets underlying the anticancer effects of myricetin.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, UK
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Abstract
Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM.
Collapse
|
49
|
Wang L, Shi ZM, Jiang CF, Liu X, Chen QD, Qian X, Li DM, Ge X, Wang XF, Liu LZ, You YP, Liu N, Jiang BH. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma. Oncotarget 2015; 5:5416-27. [PMID: 24980823 PMCID: PMC4170647 DOI: 10.18632/oncotarget.2116] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Therapeutic applications of microRNAs (miRNAs) in RAS-driven glioma were valuable, but their specific roles and functions have yet to be fully elucidated. Here, we firstly report that miR-143 directly targets the neuroblastoma RAS viral oncogene homolog (N-RAS) and functions as a tumor-suppressor in glioma. Overexpression of miR-143 decreased the expression of N-RAS, inhibited PI3K/AKT, MAPK/ERK signaling, and attenuated the accumulation of p65 in nucleus of glioma cells. In human clinical specimens, miR-143 was downregulated where an adverse with N-RAS expression was observed. Furthermore, overexpression of miR-143 decreased glioma cell migration, invasion, tube formation and slowed tumor growth and angiogenesis in a manner associated with N-RAS downregulation in vitro and in vivo. Finally, miR-143 also sensitizes glioma cells to temozolomide (TMZ),the first-line drug for glioma treatment. Taken together, for the first time, our results demonstrate that miR-143 plays a significant role in inactivating the RAS signaling pathway through the inhibition of N-RAS, which may provide a novel therapeutic strategy for treatment of glioma and other RAS-driven cancers.
Collapse
Affiliation(s)
- Lin Wang
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China. These authors contributed equally to this work
| | - Zhu-Mei Shi
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China. Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. These authors contributed equally to this work
| | - Cheng-Fei Jiang
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China. These authors contributed equally to this work
| | - Xue Liu
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Qiu-Dan Chen
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xu Qian
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Dong-Mei Li
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xie-Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - Yong-Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-Hua Jiang
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, China. Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
50
|
Soura E, Chasapi V, Stratigos AJ. Pharmacologic treatment options for advanced epithelial skin cancer. Expert Opin Pharmacother 2015; 16:1479-93. [DOI: 10.1517/14656566.2015.1052743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|