1
|
Wang HC, Li YC, Hung MC. Itaconate targets the ERK2 signal to suppress estrogen receptor-positive breast cancer cell growth. Am J Cancer Res 2025; 15:1133-1147. [PMID: 40226449 PMCID: PMC11982726 DOI: 10.62347/lhyo6433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 04/15/2025] Open
Abstract
Over 70% of breast cancers are estrogen receptor (ER)-positive, with Tamoxifen (Tam) being a standard treatment. However, around 40% of these cancers develop resistance to Tam, which poses a significant clinical challenge. The ACOD1/itaconate (ITA) axis, a metabolic pathway that produces itaconate, has shown promise in inhibiting the growth of ER-positive breast cancer cells. Nonetheless, it remains unclear how effective ITA is against Tam-resistant breast cancer cells and the underlying mechanisms involved. The current report found that Tam-resistant cells exhibit increased sensitivity to ITA compared to their parental cells and show a synergetic effect in combination treatment with Tam. An unbiased proteomic analysis revealed that upregulating the ERK2 signaling pathway contributes to the sensitivity of ER-positive breast cancer cells to ITA. ITA treatment increases ERK2 phosphorylation at T185/Y187 sites by directly alkylating cysteine 254, leading to ERK2 activation and subsequent cell growth inhibition. These effects were abolished in ITA allylation-resistant cells when a cysteine residue was replaced with serine. Additionally, itaconate-induced ERK2 phosphorylation and activation inhibits the growth of Tam-resistant breast cancer cells, which effect is advanced in phosphorylation-mimic ERK2_T185E-expressing cells but blocked in those expressing non-phosphorylation-mimic ERK2_T185A. Furthermore, activated ERK2 interacts physically with API5 to disrupt API5's localization to the nucleus speckle, where API5 may interact with other molecules critical in regulating cell growth-related genes. Our findings clarify the mechanism through which ITA exerts its effects on tamoxifen-sensitive and resistant breast cancer cells and highlight the potential of itaconate as an alternative treatment strategy against breast cancer.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical UniversityTaichung 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical UniversityTaichung 406040, Taiwan
- Center for Molecular Medicine, China Medical UniversityTaichung 406040, Taiwan
| |
Collapse
|
2
|
Póti ÁL, Bálint D, Alexa A, Sok P, Ozsváth K, Albert K, Turczel G, Magyari S, Ember O, Papp K, Király SB, Imre T, Németh K, Kurtán T, Gógl G, Varga S, Soós T, Reményi A. Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold. Nat Commun 2024; 15:8607. [PMID: 39366929 PMCID: PMC11452651 DOI: 10.1038/s41467-024-52574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
For mitogen-activated protein kinases (MAPKs) a shallow surface-distinct from the substrate binding pocket-called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.
Collapse
Affiliation(s)
- Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kristóf Ozsváth
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sarolt Magyari
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Ember
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Papp
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Gergő Gógl
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilárd Varga
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Darabi S, Adeyelu T, Elliott A, Sukari A, Hodges K, Abdulla F, Zuazo CE, Wise-Draper T, Wang T, Demeure MJ. Genomic and Transcriptomic Landscape of RET Wild-Type Medullary Thyroid Cancer and Potential Use of Mitogen-Activated Protein Kinase-Targeted Therapy. J Am Coll Surg 2024; 239:50-60. [PMID: 38651727 PMCID: PMC11168784 DOI: 10.1097/xcs.0000000000001098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND About 75% of medullary thyroid cancers (MTCs) are sporadic with 45% to 70% being driven by a RET mutation. Selpercatinib is an approved treatment for RET-mutated (mut RET ) MTC; however, treatments are needed for wild-type RET MTC (wt RET ). Genomic alterations and transcriptomic signatures of wt RET MTC may reveal new therapeutic insights. STUDY DESIGN We did a retrospective analysis of MTC samples submitted for DNA/RNA sequencing and programmed cell death ligand 1 expression using immunohistochemistry at a Clinical Laboratory Improvement Amendments/College of American Pathologists-certified laboratory. Tumor microenvironment immune cell fractions were estimated using RNA deconvolution (quanTIseq). Transcriptomic signatures of inflammation and MAP kinase pathway activation scores were calculated. Mann-Whitney U, chi-square, and Fisher's exact tests were applied (p values adjusted for multiple comparisons). RESULTS The 160-patient cohort included 108 mut RET and 52 wt RET MTC samples. wt RET tumors frequently harbored mitogen-activated protein kinase (MAPK) pathway mutations, including HRAS (42.31%), KRAS (15.7%), NF1 (6.7%), and BRAF (2%), whereas only 1 MAPK pathway mutation ( NF1 ) was identified among mut RET MTC. Recurrent mutations seen in wt RET MTC included MGA , VHL, APC , STK11 , and NFE2L2 . Increased transcriptional activation of the MAPK pathway was observed in patients with wt RET harboring mutations in MAPK genes. Although the frequency of programmed cell death ligand 1 expression was similar in wt RET and mut RET (10.2% vs 7%, p = 0.531), wt RET tumors were more often tumor mutational burden high (7.7% vs 0%, p = 0.011), and wt RET MTC exhibited higher expression of immune checkpoint genes. CONCLUSIONS We identified molecular alterations and immune-related features that distinguish wt RET from mut RET MTC. Although RET mutation drives MTC in the absence of other alterations, we showed that wt RET MTC frequently harbors MAPK pathway mutations. These findings may indicate a potential basis for MAPK-targeted therapy, possibly in combination with immuno-oncology agents for selected patients with wt RET MTC.
Collapse
Affiliation(s)
- Sourat Darabi
- From the Cancer Institute, Hoag Memorial Hospital, Newport Beach, CA (Darabi, Zuazo, Wang, Demeure)
| | - Tolulope Adeyelu
- Clinical and Translational Research, Caris Life Science, Phoenix, AZ (Adeyelu, Elliott, Hodges, Abdulla)
| | - Andrew Elliott
- Clinical and Translational Research, Caris Life Science, Phoenix, AZ (Adeyelu, Elliott, Hodges, Abdulla)
| | - Ammar Sukari
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI (Sukari)
| | - Kurt Hodges
- Clinical and Translational Research, Caris Life Science, Phoenix, AZ (Adeyelu, Elliott, Hodges, Abdulla)
| | - Farah Abdulla
- Clinical and Translational Research, Caris Life Science, Phoenix, AZ (Adeyelu, Elliott, Hodges, Abdulla)
| | - Carlos E Zuazo
- From the Cancer Institute, Hoag Memorial Hospital, Newport Beach, CA (Darabi, Zuazo, Wang, Demeure)
| | - Trisha Wise-Draper
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH (Wise-Draper)
| | - Thomas Wang
- From the Cancer Institute, Hoag Memorial Hospital, Newport Beach, CA (Darabi, Zuazo, Wang, Demeure)
| | - Michael J Demeure
- From the Cancer Institute, Hoag Memorial Hospital, Newport Beach, CA (Darabi, Zuazo, Wang, Demeure)
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, AZ (Demeure)
| |
Collapse
|
4
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. iScience 2023; 26:107817. [PMID: 37744034 PMCID: PMC10514464 DOI: 10.1016/j.isci.2023.107817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are dysregulated in many pervasive diseases. Recently, we discovered that ERK1/2 is oxidized by signal-generated hydrogen peroxide in various cell types. Since the putative sites of oxidation lie within or near ERK1/2's ligand-binding surfaces, we investigated how oxidation of ERK2 regulates interactions with the model substrates Sub-D and Sub-F. These studies revealed that ERK2 undergoes sulfenylation at C159 on its D-recruitment site surface and that this modification modulates ERK2 activity differentially between substrates. Integrated biochemical, computational, and mutational analyses suggest a plausible mechanism for peroxide-dependent changes in ERK2-substrate interactions. Interestingly, oxidation decreased ERK2's affinity for some D-site ligands while increasing its affinity for others. Finally, oxidation by signal-generated peroxide enhanced ERK1/2's ability to phosphorylate ribosomal S6 kinase A1 (RSK1) in HeLa cells. Together, these studies lay the foundation for examining crosstalk between redox- and phosphorylation-dependent signaling at the level of kinase-substrate selection.
Collapse
Affiliation(s)
- Anthony E. Postiglione
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Laquaundra L. Adams
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anuoluwapo E. Odelade
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Supriya Patwardhan
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Meenal Chaudhari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Mathematics and Computer Science, University of Virginia at Wise, Wise, VA 24293, USA
| | - Avery S. Pardue
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anjali Kumari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - William A. LeFever
- Department of Chemistry, High Point University, High Point, NC 27268, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Olivia P. Tornow
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Johnathan Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biology, Belhaven University, Jackson, MS 39202, USA
| | - Jun Seop Jeong
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kimberly J. Nelson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dukka B. Kc
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeremiah D. Keyes
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biology, Penn State University Behrend, Erie, PA 16563, USA
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
6
|
Póti ÁL, Dénes L, Papp K, Bató C, Bánóczi Z, Reményi A, Alexa A. Phosphorylation-Assisted Luciferase Complementation Assay Designed to Monitor Kinase Activity and Kinase-Domain-Mediated Protein-Protein Binding. Int J Mol Sci 2023; 24:14854. [PMID: 37834301 PMCID: PMC10573712 DOI: 10.3390/ijms241914854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Protein kinases are key regulators of cell signaling and have been important therapeutic targets for three decades. ATP-competitive drugs directly inhibit the activity of kinases but these enzymes work as part of complex protein networks in which protein-protein interactions (often referred to as kinase docking) may govern a more complex activation pattern. Kinase docking is indispensable for many signaling disease-relevant Ser/Thr kinases and it is mediated by a dedicated surface groove on the kinase domain which is distinct from the substrate-binding pocket. Thus, interfering with kinase docking provides an alternative strategy to control kinases. We describe activity sensors developed for p90 ribosomal S6 kinase (RSK) and mitogen-activated protein kinases (MAPKs: ERK, p38, and JNK) whose substrate phosphorylation is known to depend on kinase-docking-groove-mediated protein-protein binding. The in vitro assays were based on fragment complementation of the NanoBit luciferase, which is facilitated upon substrate motif phosphorylation. The new phosphorylation-assisted luciferase complementation (PhALC) sensors are highly selective and the PhALC assay is a useful tool for the quantitative analysis of kinase activity or kinase docking, and even for high-throughput screening of academic compound collections.
Collapse
Affiliation(s)
- Ádám L. Póti
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Laura Dénes
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| | - Kinga Papp
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Reményi
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Sammons RM, Cho EJ, Dalby KN. Identification and biochemical characterization of small molecule inhibitors of ERK2 that target the D-recruitment site. Methods Enzymol 2023; 690:445-499. [PMID: 37858538 PMCID: PMC10950554 DOI: 10.1016/bs.mie.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Extracellular signal-regulated kinase (ERK) is the culmination of a mitogen-activated protein kinase cascade that regulates cellular processes like proliferation, migration, and survival. Consequently, abnormal ERK signaling often plays a role in the tumorigenesis and metastasis of numerous cancers. ERK inhibition is a sought-after treatment for cancers, especially since clinically approved drugs that target signaling upstream of ERK often induce acquired resistance. Furthermore, the ERK2 isoform may have a differential role in various cancers from the other canonical isoform, ERK1. We demonstrate that small molecules can inhibit ERK2 catalytic and noncatalytic functions by binding to the D-recruitment site (DRS), a protein-protein interaction site distal to the enzyme active site. Using a fluorescence anisotropy-based high-throughput screening, we identify compounds that bind to the DRS and exhibit dose-dependent inhibition of ERK2 activity and ERK2 phosphorylation. We characterize the dose-dependent potency of ERK2 inhibitors using fluorescence anisotropy-based binding assays, fluorescence-based ERK2 substrate phosphorylation assays, and in vitro ERK2 activation assays. In our example, the binding of a DRS inhibitor can be prevented by mutating the DRS residue Cys-159 to serine, indicating that this residue is essential for the interaction. Resulting inhibitors from this process can be assessed in cellular and in vivo experiments for inhibition of ERK signaling and can be evaluated as potential cancer drugs.
Collapse
Affiliation(s)
- R M Sammons
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX, United States
| | - E J Cho
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX, United States
| | - K N Dalby
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
8
|
Hong S, Jeon M, Kwon J, Park H, Lee G, Kim K, Ahn S. Targeting RAF Isoforms and Tumor Microenvironments in RAS or BRAF Mutant Colorectal Cancers with SJ-C1044 for Anti-Tumor Activity. Curr Issues Mol Biol 2023; 45:5865-5878. [PMID: 37504287 PMCID: PMC10378394 DOI: 10.3390/cimb45070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Colorectal cancer (CRC) is a significant global health issue characterized by a high prevalence of KRAS gene mutations. The RAS/MAPK pathway, involving KRAS, plays a crucial role in CRC progression. Although some RAS inhibitors have been approved, their efficacy in CRC is limited. To overcome these limitations, pan-RAF inhibitors targeting A-Raf, B-Raf, and C-Raf have emerged as promising therapeutic strategies. However, resistance to RAF inhibition and the presence of an immunosuppressive tumor microenvironment (TME) pose additional obstacles to effective therapy. Here, we evaluated the potential of a novel pan-RAF inhibitor, SJ-C1044, for targeting mutant KRAS-mediated signaling and inhibiting CRC cell proliferation. Notably, SJ-C1044 also exhibited inhibitory effects on immunokinases, specifically, CSF1R, VEGFR2, and TIE2, which play crucial roles in immune suppression. SJ-C1044 demonstrated potent antitumor activity in xenograft models of CRC harboring KRAS or BRAF mutations. Importantly, treatment with SJ-C1044 resulted in increased infiltration of T cells and reduced presence of tumor-associated macrophages and regulatory T cells within the TME. Thus, SJ-C1044 shows immunomodulatory potential and the ability to enhance antitumor responses. The study underscores the therapeutic potential of SJ-C1044 as a novel pan-RAF inhibitor capable of targeting oncogenic signaling pathways and overcoming immune suppression in CRC.
Collapse
Affiliation(s)
- Sungpyo Hong
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea; (S.H.)
| | - Myeongjin Jeon
- Research Center, Samjin Pharm. Co., Ltd., Seoul 07794, Republic of Korea; (M.J.); (G.L.)
| | - Jeonghee Kwon
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea; (S.H.)
| | - Hanbyeol Park
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea; (S.H.)
| | - Goeun Lee
- Research Center, Samjin Pharm. Co., Ltd., Seoul 07794, Republic of Korea; (M.J.); (G.L.)
| | - Kilwon Kim
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea; (S.H.)
| | - Soonkil Ahn
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea; (S.H.)
| |
Collapse
|
9
|
Fernandez MF, Choi J, Sosman J. New Approaches to Targeted Therapy in Melanoma. Cancers (Basel) 2023; 15:3224. [PMID: 37370834 PMCID: PMC10296143 DOI: 10.3390/cancers15123224] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
It was just slightly more than a decade ago when metastatic melanoma carried a dismal prognosis with few, if any, effective therapies. Since then, the evolution of cancer immunotherapy has led to new and effective treatment approaches for melanoma. However, despite these advances, a sizable portion of patients with advanced melanoma have de novo or acquired resistance to immune checkpoint inhibitors. At the same time, therapies (BRAF plus MEK inhibitors) targeting the BRAFV600 mutations found in 40-50% of cutaneous melanomas have also been critical for optimizing management and improving patient outcomes. Even though immunotherapy has been established as the initial therapy in most patients with cutaneous melanoma, subsequent effective therapy is limited to BRAFV600 melanoma. For all other melanoma patients, driver mutations have not been effectively targeted. Numerous efforts are underway to target melanomas with NRAS mutations, NF-1 LOF mutations, and other genetic alterations leading to activation of the MAP kinase pathway. In this era of personalized medicine, we will review the current genetic landscape, molecular classifications, emerging drug targets, and the potential for combination therapies for non-BRAFV600 melanoma.
Collapse
Affiliation(s)
| | | | - Jeffrey Sosman
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.F.F.); (J.C.)
| |
Collapse
|
10
|
Yu W, Weber DJ, MacKerell AD. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation. J Chem Theory Comput 2023; 19:3007-3021. [PMID: 37115781 PMCID: PMC10205696 DOI: 10.1021/acs.jctc.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Covalent drug design is an important component in drug discovery. Traditional drugs interact with their target in a reversible equilibrium, while irreversible covalent drugs increase the drug-target interaction duration by forming a covalent bond with targeted residues and thus may offer a more effective therapeutic approach. To facilitate the design of this class of ligands, computational methods can be used to help identify reactive nucleophilic residues, frequently cysteines, on a target protein for covalent binding, to test various warhead groups for their potential reactivities, and to predict noncovalent contributions to binding that can facilitate drug-target interactions that are important for binding specificity. To further aid covalent drug design, we extended a functional group mapping approach based on explicit solvent all-atom molecular simulations (SILCS: site identification by ligand competitive saturation) that intrinsically considers protein flexibility, functional group, and protein desolvation along with functional group-protein interactions. Through docking of a library of representative warhead fragments using SILCS-Monte Carlo (SILCS-MC), reactive cysteines can be correctly identified for proteins being tested. Furthermore, a machine learning model was trained to quantify the effectiveness of various warhead groups for proteins using metrics from SILCS-MC as well as experimental model compound warhead reactivity data. The ability to rank covalent molecular binders with similar warheads using SILCS ligand grid free energy (LGFE) ranking was also tested for several proteins. Based on these tools, an integrated SILCS-based workflow was developed, named SILCS-Covalent, which can both qualitatively and quantitatively inform covalent drug discovery.
Collapse
Affiliation(s)
- Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - David J. Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
11
|
Mehmood T, Pichyangkura R, Muanprasat C. Chitosan Oligosaccharide Promotes Junction Barrier through Modulation of PI3K/AKT and ERK Signaling Intricate Interplay in T84 Cells. Polymers (Basel) 2023; 15:polym15071681. [PMID: 37050295 PMCID: PMC10096774 DOI: 10.3390/polym15071681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan oligosaccharide (COS) is a breakdown product of chitin, a polymer of N-acetyl-D-glucosamine. COS promotes barrier function in intestinal epithelial cells. However, the exact mechanism of COS-induced barrier function remains unknown. This study was aimed to explore the intricate signaling cascades in the junction barrier induced by COS (100 μg/mL) in human intestinal epithelial cells (T84 cells). COS (100 μg/mL) promoted tight junction assembly and increased transepithelial electrical resistance (TEER). COS inhibited FITC-dextran flux in T84 cell monolayers at 2 h, 4 h, 6 h and 24 h post treatment. In addition, the effect of COS on TEER and FITC-dextran flux was abrogated by pre-incubation of wortmannin (2 μM), an AKT (protein kinase B) inhibitor, at 2 h and 4 h post treatment, indicating that COS-induced tight junction integrity was mediated at least in part by AKT activation. COS-induced TEER was amplified at 24 h and 48 h post treatment by pre-incubation with SC79 (2.5 μM), an AKT activator. Moreover, COS induced inhibition of extracellular signal-regulated kinase (ERK) in T84 cells. Wortmannin and SC79 pre-incubation promoted ERK activation and ERK inhibition, respectively, suggesting that COS-induced ERK inhibition was mediated by AKT. Collectively, this study reveals that COS promotes junction barrier integrity via regulating PI3K/AKT and ERK signaling intricate interplay in T84 cell monolayers. COS may be beneficial in promoting junction barrier in intestinal disorders.
Collapse
|
12
|
Qin D, Lei Y, Xie W, Zheng Q, Peng Z, Liu Y, Dai B, Ma T, Wei P, Gao C, Guo X, Gao J, Zhao J, Du J, Zeng Q, Zhang Z, Dong X, Shen H. Methionine sulfoxide suppresses adipogenic differentiation by regulating the mitogen-activated protein kinase signaling pathway. Cell Biol Int 2023; 47:648-659. [PMID: 36448374 DOI: 10.1002/cbin.11964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
In this study, methionine sulfoxide (MetO) was identified as an active metabolite that suppresses adipogenesis after screening obese individuals versus the normal population. MetO suppressed the gene and protein expression of CCAAT/enhancer binding protein (C/EBP) α, adipocyte fatty acid binding protein 4 (FABP4), and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) during human preadipocyte (HPA) differentiation. Adipogenesis decreased following MetO treatment; however, the preadipocyte number, proliferation, and apoptosis were unaffected. The activity of phosphorylated extracellular signal-related kinase (P-ERK) of the mitogen-activated protein kinase (MAPK) pathway was significantly inhibited in HPA after MetO treatment. Furthermore, treatment of preadipocytes with the selective P-ERK1/2 agonist Ro 67-7476 abolished the effect of MetO against adipogenesis suggesting that MetO function is dependent on the MAPK pathway. The mechanistic insights of adipogenesis suppression by MetO presented in this study shows its potential as an antiobesity drug.
Collapse
Affiliation(s)
- Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Yong Lei
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Wen Xie
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiuju Zheng
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Zhou Peng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Dai
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Tieliang Ma
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Ping Wei
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Gao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyi Zeng
- Shenzhen Bay Laboratory, Bayray Innovation Center, Shenzhen, China
| | - Zhongxiao Zhang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Shen
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| |
Collapse
|
13
|
Shah SD, Nayak AP, Sharma P, Villalba DR, Addya S, Huang W, Shapiro P, Kane MA, Deshpande DA. Targeted Inhibition of Select Extracellular Signal-regulated Kinases 1 and 2 Functions Mitigates Pathological Features of Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:23-38. [PMID: 36067041 PMCID: PMC9817918 DOI: 10.1165/rcmb.2022-0110oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
ERK1/2 (extracellular signal-regulated kinases 1 and 2) regulate the activity of various transcription factors that contribute to asthma pathogenesis. Although an attractive drug target, broadly inhibiting ERK1/2 is challenging because of unwanted cellular toxicities. We have identified small molecule inhibitors with a benzenesulfonate scaffold that selectively inhibit ERK1/2-mediated activation of AP-1 (activator protein-1). Herein, we describe the findings of targeting ERK1/2-mediated substrate-specific signaling with the small molecule inhibitor SF-3-030 in a murine model of house dust mite (HDM)-induced asthma. In 8- to 10-week-old BALB/c mice, allergic asthma was established by repeated intranasal HDM (25 μg/mouse) instillation for 3 weeks (5 days/week). A subgroup of mice was prophylactically dosed with 10 mg/kg SF-3-030/DMSO intranasally 30 minutes before the HDM challenge. Following the dosing schedule, mice were evaluated for alterations in airway mechanics, inflammation, and markers of airway remodeling. SF-3-030 treatment significantly attenuated HDM-induced elevation of distinct inflammatory cell types and cytokine concentrations in BAL and IgE concentrations in the lungs. Histopathological analysis of lung tissue sections revealed diminished HDM-induced pleocellular peribronchial inflammation, mucus cell metaplasia, collagen accumulation, thickening of airway smooth muscle mass, and expression of markers of cell proliferation (Ki-67 and cyclin D1) in mice treated with SF-3-030. Furthermore, SF-3-030 treatment attenuated HDM-induced airway hyperresponsiveness in mice. Finally, mechanistic studies using transcriptome and proteome analyses suggest inhibition of HDM-induced genes involved in inflammation, cell proliferation, and tissue remodeling by SF-3-030. These preclinical findings demonstrate that function-selective inhibition of ERK1/2 signaling mitigates multiple features of asthma in a murine model.
Collapse
Affiliation(s)
- Sushrut D. Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, and
| | - Ajay P. Nayak
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, and
| | - Pawan Sharma
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, and
| | | | - Sankar Addya
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland
| | | |
Collapse
|
14
|
Hamdy AK, Sakamoto T, Toma T, Sakamoto M, Abourehab MAS, Otsuka M, Fujita M, Tateishi H, Radwan MO. New Insights into the Structural Requirements of Isatin-Derived Pro-Apoptotic Agents against Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2022; 15:ph15121579. [PMID: 36559030 PMCID: PMC9784816 DOI: 10.3390/ph15121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Searching for bioactive compounds within the huge chemical space is like trying to find a needle in a haystack. Isatin is a unique natural compound which is endowed with different bio-pertinent activities, especially in cancer therapy. Herein, we envisaged that adopting a hybrid strategy of isatin and α,β-unsaturated ketone would afford new chemical entities with strong chemotherapeutic potential. Of interest, compounds 5b and 5g demonstrated significant antiproliferative activities against different cancer genotypes according to NCI-60 screening. Concomitantly, their IC50 against HL-60 cells were 0.38 ± 0.08 and 0.57 ± 0.05 µM, respectively, demonstrating remarkable apoptosis and moderate cell cycle arrest at G1 phase. Intriguingly, an impressive safety profile for 5b was reflected by a 37.2 times selectivity against HL-60 over PBMC from a healthy donor. This provoked us to further explore their mechanism of action by in vitro and in silico tools. Conclusively, 5b and 5g stand out as strong chemotherapeutic agents that hold clinical promise against acute myeloid leukemia.
Collapse
Affiliation(s)
- Ahmed K. Hamdy
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Takashi Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masaharu Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Drug Discovery, Science Farm, Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 12622, Egypt
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| |
Collapse
|
15
|
Abstract
Signaling via extracellular regulated kinase 1/2 (ERK1/2) and p90 ribosomal S6 kinase (RSK), a downstream effector, mediates numerous processes. For example, ERK1/2-RSK signaling is essential for estrogen homeostasis in the mammary gland and uterus to maintain physiological responsiveness. This review will focus on the coordination of ERK1/2-RSK2 and estrogen signaling through estrogen receptor alpha (ERα). The interrelationship and the feedback mechanisms between these pathways occurs at the level of transcription, translation, and posttranslational modification. Identifying how ERK1/2-RSK2 and estrogen signaling cooperate in homeostasis and disease may lead to novel therapeutic approaches in estrogen-dependent disorders.
Collapse
Affiliation(s)
- Deborah A Lannigan
- Correspondence: Deborah A. Lannigan, PhD, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Dent P, Booth L, Poklepovic A, Kirkwood JM. Neratinib kills B-RAF V600E melanoma via ROS-dependent autophagosome formation and death receptor signaling. Pigment Cell Melanoma Res 2022; 35:66-77. [PMID: 34482636 PMCID: PMC11559083 DOI: 10.1111/pcmr.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Melanoma cells expressing mutant B-RAF V600E are susceptible to treatment with the combination of a B-RAF inhibitor and a MEK1/2 inhibitor. We investigated the impact of the ERBB family and MAP4K inhibitor neratinib on the biology of PDX isolates of cutaneous melanoma expressing B-RAF V600E. Neratinib synergized with HDAC inhibitors to kill melanoma cells at their physiologic concentrations. Neratinib activated ATM, AMPK, ULK1, and PERK and inactivated mTORC1/2, ERK1/2, eIF2 alpha, and STAT3. Neratinib increased expression of Beclin1, ATG5, CD95, and FAS-L and decreased levels of multiple toxic BH3 domain proteins, MCL1, BCL-XL, FLIP-s, and ERBB1/2/4. ATG13 S318 phosphorylation and autophagosome formation was dependent upon ATM, and activation of ATM was dependent on reactive oxygen species. Reduced expression of ERBB1/2/4 required autophagosome formation and reduced MCL1/BCL-XL levels required eIF2 alpha phosphorylation. Maximal levels of eIF2 alpha phosphorylation required signaling by ATM-AMPK and autophagosome formation. Knock down of eIF2 alpha, CD95, FAS-L, Beclin1, and ATG5 or over-expression of FLIP-s significantly reduced killing. Combined knock down of Beclin1 and CD95 abolished cell death. Our data demonstrate that PDX melanoma cells expressing B-RAF V600E are susceptible to being killed by neratinib and more so when combined with HDACi.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - John M. Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Effects of Boletus Poisoning on Estrogen Receptors and Neurotransmitters in Rats Based on ERk1/2 Pathway. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10506-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Huestis MP, Dela Cruz D, DiPasquale AG, Durk MR, Eigenbrot C, Gibbons P, Gobbi A, Hunsaker TL, La H, Leung DH, Liu W, Malek S, Merchant M, Moffat JG, Muli CS, Orr CJ, Parr BT, Shanahan F, Sneeringer CJ, Wang W, Yen I, Yin J, Siu M, Rudolph J. Targeting KRAS Mutant Cancers via Combination Treatment: Discovery of a 5-Fluoro-4-(3 H)-quinazolinone Aryl Urea pan-RAF Kinase Inhibitor. J Med Chem 2021; 64:3940-3955. [PMID: 33780623 DOI: 10.1021/acs.jmedchem.0c02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optimization of a series of aryl urea RAF inhibitors led to the identification of type II pan-RAF inhibitor GNE-0749 (7), which features a fluoroquinazolinone hinge-binding motif. By minimizing reliance on common polar hinge contacts, this hinge binder allows for a greater contribution of RAF-specific residue interactions, resulting in exquisite kinase selectivity. Strategic substitution of fluorine at the C5 position efficiently masked the adjacent polar NH functionality and increased solubility by impeding a solid-state conformation associated with stronger crystal packing of the molecule. The resulting improvements in permeability and solubility enabled oral dosing of 7. In vivo evaluation of 7 in combination with the MEK inhibitor cobimetinib demonstrated synergistic pathway inhibition and significant tumor growth inhibition in a KRAS mutant xenograft mouse model.
Collapse
Affiliation(s)
- Malcolm P Huestis
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Darlene Dela Cruz
- Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Antonio G DiPasquale
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew R Durk
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Eigenbrot
- Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul Gibbons
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alberto Gobbi
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas L Hunsaker
- Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hank La
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dennis H Leung
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Liu
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shiva Malek
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mark Merchant
- Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John G Moffat
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine S Muli
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine J Orr
- Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brendan T Parr
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Frances Shanahan
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher J Sneeringer
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ivana Yen
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianping Yin
- Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael Siu
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joachim Rudolph
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
19
|
Booth L, West C, Von Hoff D, Kirkwood JM, Dent P. GZ17-6.02 Interacts With [MEK1/2 and B-RAF Inhibitors] to Kill Melanoma Cells. Front Oncol 2021; 11:656453. [PMID: 33898322 PMCID: PMC8061416 DOI: 10.3389/fonc.2021.656453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
We defined the lethal interaction between the novel therapeutic GZ17-6.02 and the standard of care combination of the MEK1/2 inhibitor trametinib and the B-RAF inhibitor dabrafenib in PDX isolates of cutaneous melanoma expressing a mutant B-RAF V600E protein. GZ17-6.02 interacted with trametinib/dabrafenib in an additive fashion to kill melanoma cells. Regardless of prior vemurafenib resistance, the drugs when combined interacted to prolong ATM S1981/AMPK T172 and eIF2α S51 phosphorylation and prolong the reduced phosphorylation of JAK2 Y1007, STAT3 Y705 and STAT5 Y694. In vemurafenib-resistant cells GZ17-6.02 caused a prolonged reduction in mTORC1 S2448, mTORC2 S2481 and ULK1 S757 phosphorylation; regardless of vemurafenib resistance, GZ17-6.02 caused a prolonged elevation in CD95 and FAS-L expression. Knock down of eIF2α, Beclin1, ATG5, ATM, AMPKα, CD95 or FADD significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with the kinase inhibitors. Expression of activated mTOR, activated STAT3, activated MEK1 or activated AKT significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with kinase inhibitors; protective effects that were significantly less pronounced in cells treated with trametinib/dabrafenib. Regardless of vemurafenib resistance, the drugs alone or in combination all reduced the expression of PD-L1 and increased the levels of MHCA, which was linked to degradation of multiple HDAC proteins. Our findings support the use of GZ17-6.02 in combination with trametinib/dabrafenib in the treatment of melanomas expressing mutant B-RAF V600E proteins.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS, United States
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
20
|
Crowe MS, Zavorotinskaya T, Voliva CF, Shirley MD, Wang Y, Ruddy DA, Rakiec DP, Engelman JA, Stuart DD, Freeman AK. RAF-Mutant Melanomas Differentially Depend on ERK2 Over ERK1 to Support Aberrant MAPK Pathway Activation and Cell Proliferation. Mol Cancer Res 2021; 19:1063-1075. [PMID: 33707308 DOI: 10.1158/1541-7786.mcr-20-1022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Half of advanced human melanomas are driven by mutant BRAF and dependent on MAPK signaling. Interestingly, the results of three independent genetic screens highlight a dependency of BRAF-mutant melanoma cell lines on BRAF and ERK2, but not ERK1. ERK2 is expressed higher in melanoma compared with other cancer types and higher than ERK1 within melanoma. However, ERK1 and ERK2 are similarly required in primary human melanocytes transformed with mutant BRAF and are expressed at a similar, lower amount compared with established cancer cell lines. ERK1 can compensate for ERK2 loss as seen by expression of ERK1 rescuing the proliferation arrest mediated by ERK2 loss (both by shRNA or inhibition by an ERK inhibitor). ERK2 knockdown, as opposed to ERK1 knockdown, led to more robust suppression of MAPK signaling as seen by RNA-sequencing, qRT-PCR, and Western blot analysis. In addition, treatment with MAPK pathway inhibitors led to gene expression changes that closely resembled those seen upon knockdown of ERK2 but not ERK1. Together, these data demonstrate that ERK2 drives BRAF-mutant melanoma gene expression and proliferation as a function of its higher expression compared with ERK1. Selective inhibition of ERK2 for the treatment of melanomas may spare the toxicity associated with pan-ERK inhibition in normal tissues. IMPLICATIONS: BRAF-mutant melanomas overexpress and depend on ERK2 but not ERK1, suggesting that ERK2-selective inhibition may be toxicity sparing.
Collapse
Affiliation(s)
- Matthew S Crowe
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Charles F Voliva
- Oncology, Novartis Institutes for BioMedical Research, Emeryville, California
| | - Matthew D Shirley
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Yanqun Wang
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Daniel P Rakiec
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Jeffery A Engelman
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Darrin D Stuart
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Alyson K Freeman
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Du J, Dong Z, Tan L, Tan M, Zhang F, Zhang K, Pan G, Li C, Shi S, Zhang Y, Liu Y, Cui H. Tubeimoside I Inhibits Cell Proliferation and Induces a Partly Disrupted and Cytoprotective Autophagy Through Rapidly Hyperactivation of MEK1/2-ERK1/2 Cascade via Promoting PTP1B in Melanoma. Front Cell Dev Biol 2020; 8:607757. [PMID: 33392197 PMCID: PMC7773826 DOI: 10.3389/fcell.2020.607757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tubeimoside I (TBMS1), also referred to as tubeimoside A, is a natural compound extracted from the plant Tu Bei Mu (Bolbostemma paniculatum), which is a traditional Chinese herb used to treat multiple diseases for more than 1,000 years. Studies in recent years reported its anti-tumor activity in several cancers. However, whether it is effective in melanoma remains unknown. In the current study, we discovered that TBMS1 treatment inhibited melanoma cell proliferation in vitro and tumorigenecity in vivo. Besides, we also observed that TBMS1 treatment induced a partly disrupted autophagy, which still remained a protective role, disruption of which by chloroquine (CQ) or 3-methyladenine (3-MA) enhanced TBMS1-induced cell proliferation inhibition. CQ combined with TBMS1 even induced cellular apoptosis. BRAF(V600E) mutation and its continuously activated downstream MEK1/2-ERK1/2 cascade are found in 50% of melanomas and are important for malanomagenesis. However, hyperactivating MEK1/2-ERK1/2 cascade can also inhibit tumor growth. Intriguingly, we observed that TBMS1 rapidly hyperactivated MEK1/2-ERK1/2, inhibition of which by its inhibitor SL-327 rescued the anti-cancerous effects of TBMS1. Besides, the targets of TBMS1 were predicted by the ZINC Database based on its structure. It is revealed that protein-tyrosine phosphatase 1B (PTP1B) might be one of the targets of TBMS1. Inhibition of PTP1B by its selective inhibitor TCS401 or shRNA rescued the anti-cancerous effects of TBMS1 in melanoma cells. These results indicated that TBMS1 might activate PTP1B, which further hyperactivates MEK1/2-ERK1/2 cascade, thereby inhibiting cell proliferation in melanoma. Our results provided the potentiality of TBMS1 as a drug candidate for melanoma therapy and confirmed that rapidly hyperactivating an oncogenic signaling pathway may also be a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fang Zhang
- Department of Nuclear Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
22
|
Zhang L, Ju Q, Sun J, Huang L, Wu S, Wang S, Li Y, Guan Z, Zhu Q, Xu Y. Discovery of Novel Dual Extracellular Regulated Protein Kinases (ERK) and Phosphoinositide 3-Kinase (PI3K) Inhibitors as a Promising Strategy for Cancer Therapy. Molecules 2020; 25:molecules25235693. [PMID: 33287111 PMCID: PMC7730961 DOI: 10.3390/molecules25235693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Concomitant inhibition of MAPK and PI3K signaling pathways has been recognized as a promising strategy for cancer therapy, which effectively overcomes the drug resistance of MAPK signaling pathway-related inhibitors. Herein, we report the scaffold-hopping generation of a series of 1H-pyrazolo[3,4-d]pyrimidine dual ERK/PI3K inhibitors. Compound 32d was the most promising candidate, with potent inhibitory activities against both ERK2 and PI3Kα which displays superior anti-proliferative profiles against HCT116 and HEC1B cancer cells. Meanwhile, compound 32d possessed acceptable pharmacokinetic profiles and showed more efficacious anti-tumor activity than GDDC-0980 and the corresponding drug combination (BVD-523 + GDDC-0980) in HCT-116 xenograft model, with a tumor growth inhibitory rate of 51% without causing observable toxic effects. All the results indicated that 32d was a highly effective anticancer compound and provided a promising basis for further optimization towards dual ERK/PI3K inhibitors.
Collapse
Affiliation(s)
- Lingzhi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Qiurong Ju
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Jinjin Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Lei Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Shiqi Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Shuping Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Yin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Zhe Guan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (Q.Z.); (Y.X.); Tel.: +86-025-86185303 (Y.X.)
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.Z.); (Q.J.); (J.S.); (L.H.); (S.W.); (S.W.); (Y.L.); (Z.G.)
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (Q.Z.); (Y.X.); Tel.: +86-025-86185303 (Y.X.)
| |
Collapse
|
23
|
Motta M, Pannone L, Pantaleoni F, Bocchinfuso G, Radio FC, Cecchetti S, Ciolfi A, Di Rocco M, Elting MW, Brilstra EH, Boni S, Mazzanti L, Tamburrino F, Walsh L, Payne K, Fernández-Jaén A, Ganapathi M, Chung WK, Grange DK, Dave-Wala A, Reshmi SC, Bartholomew DW, Mouhlas D, Carpentieri G, Bruselles A, Pizzi S, Bellacchio E, Piceci-Sparascio F, Lißewski C, Brinkmann J, Waclaw RR, Waisfisz Q, van Gassen K, Wentzensen IM, Morrow MM, Álvarez S, Martínez-García M, De Luca A, Memo L, Zampino G, Rossi C, Seri M, Gelb BD, Zenker M, Dallapiccola B, Stella L, Prada CE, Martinelli S, Flex E, Tartaglia M. Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum. Am J Hum Genet 2020; 107:499-513. [PMID: 32721402 DOI: 10.1016/j.ajhg.2020.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.
Collapse
|
24
|
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid-based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020; 59:18087-18094. [PMID: 32671943 DOI: 10.1002/anie.202009572] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 12/12/2022]
Abstract
The abundance of bacterial effectors have inspired us to explore their potential in rewiring malignant cell signaling. Their incapability for entering cells, however, hinders such application. Herein we developed a cationic lipid-based high throughput library screening platform for effective intracellular delivery of bacterial effectors. As the misregulated MAPK signaling is a hallmark of many types of cancer, we turned to the Shigella effector OspF which irreversibly inactivates ERK, the terminal component of MAPK cascade. We created a function-based screening assay to obtain AMPA-O16B lipid nanoparticles for effective OspF intracellular delivery, which inhibited the malignant MAPK signaling and tumor growth in vitro and in vivo. Furthermore, the optimized lipid nanoparticle formulation can deliver OspF to modulate the immunosuppressive responses in macrophages. Our work is a general strategy to explore the therapeutic potentials of naturally evolved bacterial effectors.
Collapse
Affiliation(s)
- Shaojun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Tian Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Jingyi Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Peng R Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid‐based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaojun Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qiao Tang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jin Chang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Tian Jiang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Jingyi Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| |
Collapse
|
26
|
Defnet AE, Hasday JD, Shapiro P. Kinase inhibitors in the treatment of obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:11-18. [PMID: 32361678 DOI: 10.1016/j.coph.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Chronic pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and asthma, are major causes of death and reduced quality of life. Characteristic of chronic pulmonary disease is excessive lung inflammation that occurs in response to exposure to inhaled irritants, chemicals, and allergens. Chronic inflammation leads to remodeling of the airways that includes excess mucus secretion, proliferation of smooth muscle cells, increased deposition of extracellular matrix proteins and fibrosis. Protein kinases have been implicated in mediating inflammatory signals and airway remodeling associated with reduced lung function in chronic pulmonary disease. This review will highlight the role of protein kinases in the lung during chronic inflammation and examine opportunities to use protein kinase inhibitors for the treatment of chronic pulmonary diseases.
Collapse
Affiliation(s)
- Amy E Defnet
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States.
| |
Collapse
|
27
|
Zamora-Olivares D, Kaoud TS, Zeng L, Pridgen JR, Zhuang DL, Ekpo YE, Nye JR, Telles M, Anslyn EV, Dalby KN. Quantification of ERK Kinase Activity in Biological Samples Using Differential Sensing. ACS Chem Biol 2020; 15:83-92. [PMID: 31775004 DOI: 10.1021/acschembio.9b00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of complex biological systems requires an ability to evaluate interacting networks of genes, proteins, and cellular reactions. Enabling technologies that support the rapid quantification of these networks will facilitate the development of biological models and help to identify treatment targets and to assess treatment plans. The biochemical process of protein phosphorylation, which underlies almost all aspects of cell signaling, is typically evaluated by immunoblotting procedures (Western blot) or more recently proteomics procedures, which provide qualitative estimates of the concentration of proteins and their modifications in cells. However, protein modifications are difficult to correlate with activity, and while immunoblotting and proteomics approaches have the potential to be quantitative, they require a complex series of steps that diminish reproducibility. Here, a complementary approach is presented that allows for the rapid quantification of a protein kinase activity in cell lysates and tumor samples. Using the activity of cellular ERK (extracellular signal-regulated kinase) as a test case, an array sensing approach that utilizes a library of differential peptide-based biosensors and chemometric tools was used to rapidly quantify nanograms of active ERK in micrograms of unfractionated cell lysates and tumor extracts. This approach has the potential both for high-throughput and for quantifying the activities of multiple protein kinases in a single biological sample. The critical advantages of this differential sensing approach over others are that it removes the need for the addition of exogenous inhibitors to suppress the activities of major off-target kinases and allows us to quantitate the amount of active kinase in tested samples rather than measuring the changes in its activity upon induction or inhibition.
Collapse
Affiliation(s)
- Diana Zamora-Olivares
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tamer S. Kaoud
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Lingyu Zeng
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Jacey R. Pridgen
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deborah L. Zhuang
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yakndara E. Ekpo
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica R. Nye
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mitchell Telles
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V. Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kevin N. Dalby
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|