1
|
Marchette RCN, Vendruscolo LF, Koob GF. The Dynorphin/-Opioid Receptor System at the Interface of Hyperalgesia/Hyperkatifeia and Addiction. CURRENT ADDICTION REPORTS 2025; 12:11. [PMID: 40124896 PMCID: PMC11925990 DOI: 10.1007/s40429-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/25/2025]
Abstract
Purpose of Review Drug addiction is characterized by compulsive drug seeking and use, accompanied by negative emotional states (hyperkatifeia) and heightened pain sensitivity (hyperalgesia) during withdrawal. Both hyperalgesia and hyperkatifeia are integral components of substance use disorders, negatively impacting treatment and recovery. The underlying neurobiological mechanisms of hyperalgesia and hyperkatifeia involve alterations of brain reward and stress circuits, including the dynorphin/κ-opioid receptor (KOR) system. The dynorphin/KOR system modulates pain perception, negative affect, and addictive behaviors. Here, we review the preclinical evidence of dynorphin/KOR signaling in opioid withdrawal-induced hyperalgesia and hyperkatifeia. Recent Findings In opioid dependence models, pharmacological and genetic interventions of the dynorphin/KOR system attenuate somatic and motivational signs of withdrawal and addictive-like behaviors, highlighting its therapeutic potential. Understanding the intricate interplay between dynorphin/KOR signaling, hyperalgesia, hyperkatifeia, and addiction offers novel insights into treatment strategies for opioid use disorder and other substance use disorders. Summary Further research is needed to elucidate precise mechanisms of the sexual dimorphism of dynorphin/KOR signaling and identify targeted interventions to mitigate hyperalgesia and hyperkatifeia and facilitate recovery from addiction.
Collapse
Affiliation(s)
- Renata C. N. Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, Division of Intramural Clinical and Biological Research, National Institute on Drug Abuse, Intramural Research Program, and National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD 21224 USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| |
Collapse
|
2
|
Singh SB, Martin GE, McKittrick B, Crowther J, Fraenkel H, Lunn C, Bayne M, Perkins JB, Gullo V. History and Prospects of Drug Discovery and Development Collaboration between Industry and Academia. JOURNAL OF NATURAL PRODUCTS 2024; 87:1235-1245. [PMID: 38554098 DOI: 10.1021/acs.jnatprod.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Research collaborations and licensing deals are critical for the discovery and development of life-saving drugs. This practice has been ongoing since the inception of the pharmaceutical industry. The current process of drug discovery and development is complex, regulated, and highly regimented, having evolved over time. Academia excels in the discovery of fundamental scientific concepts and biological processes, while industry excels in translational science and product development. Potential for collaboration exists at every step of the drug discovery and development continuum. This perspective walks through such collaborative activities, provides examples, and offers tips for potential collaborations.
Collapse
Affiliation(s)
- Sheo B Singh
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Gary E Martin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Brian McKittrick
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| | - Jonathan Crowther
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| | - Howard Fraenkel
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| | - Charles Lunn
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| | - Marvin Bayne
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| | - John B Perkins
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| | - Vincent Gullo
- Charles A Dana Research Institute of Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07054, United States
| |
Collapse
|
3
|
Didik S, Golosova D, Xu B, Staruschenko A. Opioids and the Kidney: A Compendium. KIDNEY360 2023; 4:1816-1823. [PMID: 37927032 PMCID: PMC10758516 DOI: 10.34067/kid.0000000000000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Opioids are a class of medications used in pain management. Unfortunately, long-term use, overprescription, and illicit opioid use have led to one of the greatest threats to mankind: the opioid crisis. Accompanying the classical analgesic properties of opioids, opioids produce a myriad of effects including euphoria, immunosuppression, respiratory depression, and organ damage. It is essential to ascertain the physiological role of the opioid/opioid receptor axis to gain an in-depth understanding of the effects of opioid use. This knowledge will aid in the development of novel therapeutic interventions to combat the increasing mortality rate because of opioid misuse. This review describes the current knowledge of opioids, including the opioid epidemic and opioid/opioid receptor physiology. Furthermore, this review intricately relates opioid use to kidney damage, navigates kidney structure and physiology, and proposes potential ways to prevent opioid-induced kidney damage.
Collapse
Affiliation(s)
- Steven Didik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veteran's Hospital, Tampa, Florida
| | - Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Biyang Xu
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veteran's Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| |
Collapse
|
4
|
Alabi PE, Gautier C, Murphy TP, Gu X, Lepas M, Aimanianda V, Sello JK, Ene IV. Small molecules restore azole activity against drug-tolerant and drug-resistant Candida isolates. mBio 2023; 14:e0047923. [PMID: 37326546 PMCID: PMC10470600 DOI: 10.1128/mbio.00479-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
Each year, fungi cause more than 1.5 billion infections worldwide and have a devastating impact on human health, particularly in immunocompromised individuals or patients in intensive care units. The limited antifungal arsenal and emerging multidrug-resistant species necessitate the development of new therapies. One strategy for combating drug-resistant pathogens is the administration of molecules that restore fungal susceptibility to approved drugs. Accordingly, we carried out a screen to identify small molecules that could restore the susceptibility of pathogenic Candida species to azole antifungals. This screening effort led to the discovery of novel 1,4-benzodiazepines that restore fluconazole susceptibility in resistant isolates of Candida albicans, as evidenced by 100-1,000-fold potentiation of fluconazole activity. This potentiation effect was also observed in azole-tolerant strains of C. albicans and in other pathogenic Candida species. The 1,4-benzodiazepines selectively potentiated different azoles, but not other approved antifungals. A remarkable feature of the potentiation was that the combination of the compounds with fluconazole was fungicidal, whereas fluconazole alone is fungistatic. Interestingly, the potentiators were not toxic to C. albicans in the absence of fluconazole, but inhibited virulence-associated filamentation of the fungus. We found that the combination of the potentiators and fluconazole significantly enhanced host survival in a Galleria mellonella model of systemic fungal infection. Taken together, these observations validate a strategy wherein small molecules can restore the activity of highly used anti-infectives that have lost potency. IMPORTANCE In the last decade, we have been witnessing a higher incidence of fungal infections, due to an expansion of the fungal species capable of causing disease (e.g., Candida auris), as well as increased antifungal drug resistance. Among human fungal pathogens, Candida species are a leading cause of invasive infections and are associated with high mortality rates. Infections by these pathogens are commonly treated with azole antifungals, yet the expansion of drug-resistant isolates has reduced their clinical utility. In this work, we describe the discovery and characterization of small molecules that potentiate fluconazole and restore the susceptibility of azole-resistant and azole-tolerant Candida isolates. Interestingly, the potentiating 1,4-benzodiazepines were not toxic to fungal cells but inhibited their virulence-associated filamentous growth. Furthermore, combinations of the potentiators and fluconazole decreased fungal burdens and enhanced host survival in a Galleria mellonella model of systemic fungal infections. Accordingly, we propose the use of novel antifungal potentiators as a powerful strategy for addressing the growing resistance of fungi to clinically approved drugs.
Collapse
Affiliation(s)
- Philip E. Alabi
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Thomas P. Murphy
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Xilin Gu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathieu Lepas
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Jason K. Sello
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Wang S, Wang Y, Hu K, Wang K, Zhou X. Controllable carbonyl-assisted C(sp 3)–C(sp 3) bond reduction and reorganization. Org Chem Front 2023. [DOI: 10.1039/d2qo01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Unprecedentedly preferential reduction of unstrained C(sp3)–C(sp3) bond over ketone, hydrogenative [2+2+2]-cycloreversion of 2,4-diacylcyclohexanols, and cyclizative degradation of poly(vinylketone) have been achieved by organolanthanide catalysis.
Collapse
Affiliation(s)
- Shengke Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
6
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
7
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
8
|
Marchette RCN, Gregory-Flores A, Tunstall BJ, Carlson ER, Jackson SN, Sulima A, Rice KC, Koob GF, Vendruscolo LF. κ-Opioid receptor antagonism reverses heroin withdrawal-induced hyperalgesia in male and female rats. Neurobiol Stress 2021; 14:100325. [PMID: 33997152 PMCID: PMC8095052 DOI: 10.1016/j.ynstr.2021.100325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 10/29/2022] Open
Abstract
Although opioids are potent analgesics, a consequence of chronic opioid use is hyperalgesia during withdrawal, which may contribute to opioid misuse. Dynorphin, the endogenous ligand of κ-opioid receptors (KORs), is upregulated in opioid-dependent rats and in animal models of chronic pain. However, the role of KORs in opioid withdrawal-induced hyperalgesia remains to be determined. We hypothesized that KOR antagonism would reverse opioid withdrawal-induced hyperalgesia in opioid-dependent rats. Male and female Wistar rats received daily injections of heroin (2-6 mg/kg, SC) and were tested for mechanical sensitivity in the electronic von Frey test 4-6 h into withdrawal. Female rats required significantly more heroin than male rats to reach comparable levels of both heroin-induced analgesia and hyperalgesia (6 mg/kg vs. 2 mg/kg). Once hyperalgesia was established, we tested the effects of the KOR antagonists nor-binaltorphimine (norBNI; 30 mg/kg, SC) and 5'-guanidinonaltrindole (5'GNTI; 30 mg/kg, SC). When the animals continued to receive their daily heroin treatment (or saline treatment in the repeated saline group) five times per week throughout the experiment, both KOR antagonists reversed heroin withdrawal-induced hyperalgesia. The anti-hyperalgesia effect of norBNI was more prolonged in males than in females (14 days vs. 7 days), whereas 5'GNTI had more prolonged effects in females than in males (14 days vs. 4 days). The behavioral effects of 5'GNTI coincided with higher 5'GNTI levels in the brain than in plasma when measured at 24 h, whereas 5'GNTI did not reverse hyperalgesia at 30 min posttreatment when 5'GNTI levels were higher in plasma than in the brain. Finally, we tested the effects of 5'GNTI on naloxone-induced and spontaneous signs of opioid withdrawal and found no effect in either male or female rats. These findings indicate a functional role for KORs in heroin withdrawal-induced hyperalgesia that is observed in rats of both sexes.
Collapse
Affiliation(s)
- Renata C N Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Adriana Gregory-Flores
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erika R Carlson
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Shelley N Jackson
- Structural Biology Core, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, National Institute on Drug Abuse, Intramural Research Program, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse, Intramural Research Program, Bethesda, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
9
|
Design, Synthesis and Functional Analysis of Cyclic Opioid Peptides with Dmt-Tic Pharmacophore. Molecules 2020; 25:molecules25184260. [PMID: 32957550 PMCID: PMC7570497 DOI: 10.3390/molecules25184260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
The opioid receptors are members of the G-protein-coupled receptor (GPCR) family and are known to modulate a variety of biological functions, including pain perception. Despite considerable advances, the mechanisms by which opioid agonists and antagonists interact with their receptors and exert their effect are still not completely understood. In this report, six new hybrids of the Dmt-Tic pharmacophore and cyclic peptides, which were shown before to have a high affinity for the µ-opioid receptor (MOR) were synthesized and characterized pharmacologically in calcium mobilization functional assays. All obtained ligands turned out to be selective antagonists of the δ-opioid receptor (DOR) and did not activate or block the MOR. The three-dimensional structural determinants responsible for the DOR antagonist properties of these analogs were further investigated by docking studies. The results indicate that these compounds attach to the DOR in a slightly different orientation with respect to the Dmt-Tic pharmacophore than Dmt-TicΨ[CH2-NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]), a prototypical DOR antagonist peptide. Key pharmacophoric contacts between the DOR and the ligands were maintained through an analogous spatial arrangement of pharmacophores, which could provide an explanation for the predicted high-affinity binding and the experimentally observed functional properties of the novel synthetic ligands.
Collapse
|
10
|
De Caro C, Raucci F, Saviano A, Cristiano C, Casillo GM, Di Lorenzo R, Sacchi A, Laneri S, Dini I, De Vita S, Chini MG, Bifulco G, Calignano A, Maione F, Mascolo N. Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomed Pharmacother 2020; 126:110042. [PMID: 32203893 DOI: 10.1016/j.biopha.2020.110042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
Medicinal plants from traditional chinese medicine are used increasingly worldwide for their benefits to health and quality of life for the relevant clinical symptoms related to pain. Among them, Salvia miltiorrhiza Bunge is traditionally used in asian countries as antioxidant, anticancer, anti-inflammatory and analgesic agent. In this context, several evidences support the hypothesis that some tanshinones, in particular cryptotanshinone (CRY), extracted from the roots (Danshen) of this plant exhibit analgesic actions. However, it is surprisingly noted that no pharmacological studies have been carried out to explore the possible analgesic action of this compound in terms of modulation of peripheral and/or central pain. Therefore, in the present study, by using peripheral and central pain models of nociception, such as tail flick and hot plate test, the analgesic effect of CRY in mice was evaluated. Successively, by the aim of a computational approach, we have evaluated the interaction mode of this diterpenoid on opioid and cannabinoid system. Finally, CRY was dosed in mice serum by an HPLC method validated according to European Medicines Agency guidelines validation rules. Here, we report that CRY displayed anti-nociceptive activity on both hot plate and tail flick test, with a prominent long-lasting peripheral analgesic effect. These evidences were indirectly confirmed after the daily administration of the tanshinone for 7 and 14 days. In addition, the analgesic effect of CRY was reverted by naloxone and cannabinoid antagonists and amplified by arginine administration. These findings were finally supported by HPLC and docking studies, that revealed a noteworthy presence of CRY on mice serum 1 h after its intraperitoneal administration and a possible interaction of tested compound on μ and k receptors. Taken together, these results provide a new line of evidences showing that CRY can produce analgesia against various phenotypes of nociception with a mechanism that seems to be related to an agonistic activity on opioid system.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Antonia Sacchi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Irene Dini
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Maria Giovanna Chini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy; Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia, I-86090, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Nicola Mascolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| |
Collapse
|
11
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Ma H, Obeng S, Wang H, Zheng Y, Li M, Jali AM, Stevens DL, Dewey WL, Selley DE, Zhang Y. Application of Bivalent Bioisostere Concept on Design and Discovery of Potent Opioid Receptor Modulators. J Med Chem 2019; 62:11399-11415. [PMID: 31782922 DOI: 10.1021/acs.jmedchem.9b01767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we described the structural modification of previously identified μ opioid receptor (MOR) antagonist NAN, a 6α-N-7'-indolyl substituted naltrexamine derivative, and its 6β-N-2'-indolyl substituted analogue INTA by adopting the concept of "bivalent bioisostere". Three newly prepared opioid ligands, 25 (NBF), 31, and 38, were identified as potent MOR antagonists both in vitro and in vivo. Moreover, these three compounds significantly antagonized DAMGO-induced intracellular calcium flux and displayed varying degrees of inhibition on cAMP production. Furthermore, NBF produced much less significant withdrawal effects than naloxone in morphine-pelleted mice. Molecular modeling studies revealed that these bivalent bioisosteres may adopt similar binding modes in the MOR and the "address" portions of them may have negative or positive allosteric modulation effects on the function of their "message" portions compared with NAN and INTA. Collectively, our successful application of the "bivalent bioisostere concept" identified a promising lead to develop novel therapeutic agents toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - David L Stevens
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - William L Dewey
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| |
Collapse
|
13
|
Molecular insights into the interaction of hemorphin and its targets. Sci Rep 2019; 9:14747. [PMID: 31611567 PMCID: PMC6791854 DOI: 10.1038/s41598-019-50619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hemorphins are atypical endogenous opioid peptides produced by the cleavage of hemoglobin beta chain. Several studies have reported the therapeutic potential of hemorphin in memory enhancement, blood regulation, and analgesia. However, the mode of interaction of hemorphin with its target remains largely elusive. The decapeptide LVV-hemorphin-7 is the most stable form of hemorphin. It binds with high affinity to mu-opioid receptors (MOR), angiotensin-converting enzyme (ACE) and insulin-regulated aminopeptidase (IRAP). In this study, computational methods were used extensively to elucidate the most likely binding pose of mammalian LVV-hemorphin-7 with the aforementioned proteins and to calculate the binding affinity. Additionally, alignment of mammalian hemorphin sequences showed that the hemorphin sequence of the camel harbors a variation - a Q > R substitution at position 8. This study also investigated the binding affinity and the interaction mechanism of camel LVV-hemorphin-7 with these proteins. To gain a better understanding of the dynamics of the molecular interactions between the selected targets and hemorphin peptides, 100 ns molecular dynamics simulations of the best-ranked poses were performed. Simulations highlighted major interactions between the peptides and key residues in the binding site of the proteins. Interestingly, camel hemorphin had a higher binding affinity and showed more interactions with all three proteins when compared to the canonical mammalian LVV-hemorphin-7. Thus, camel LVV-hemorphin-7 could be explored as a potent therapeutic agent for memory loss, hypertension, and analgesia.
Collapse
|
14
|
Montgomery D, Anand JP, Griggs NW, Fernandez TJ, Hartman JG, Sánchez-Santiago AA, Pogozheva ID, Traynor JR, Mosberg HI. Novel Dimethyltyrosine-Tetrahydroisoquinoline Peptidomimetics with Aromatic Tetrahydroisoquinoline Substitutions Show in Vitro Kappa and Mu Opioid Receptor Agonism. ACS Chem Neurosci 2019; 10:3682-3689. [PMID: 31199621 DOI: 10.1021/acschemneuro.9b00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dimethyltyrosine-tetrahydroisoquinoline (Dmt-Tiq) scaffold was originally developed in the production of selective delta opioid receptor (DOR) antagonists. Installation of a 7-benzyl pendant on the tetrahydroisoquinoline core of this classic opioid scaffold introduced kappa opioid receptor (KOR) agonism. Further modification of this pendant resulted in retention of KOR agonism and the addition of mu opioid receptor (MOR) partial agonism, a bifunctional profile with potential to be used in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas J. Fernandez
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua G. Hartman
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashley A. Sánchez-Santiago
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Obeng S, Wang H, Jali A, Stevens DL, Akbarali HI, Dewey WL, Selley DE, Zhang Y. Structure-Activity Relationship Studies of 6α- and 6β-Indolylacetamidonaltrexamine Derivatives as Bitopic Mu Opioid Receptor Modulators and Elaboration of the "Message-Address Concept" To Comprehend Their Functional Conversion. ACS Chem Neurosci 2019; 10:1075-1090. [PMID: 30156823 PMCID: PMC6405326 DOI: 10.1021/acschemneuro.8b00349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Structure-activity relationship (SAR) studies of numerous opioid ligands have shown that introduction of a methyl or ethyl group on the tertiary amino group at position 17 of the epoxymorphinan skeleton generally results in a mu opioid receptor (MOR) agonist while introduction of a cyclopropylmethyl group typically leads to an antagonist. Furthermore, it has been shown that introduction of heterocyclic ring systems at position 6 can favor antagonism. However, it was reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(2'-indolyl)acetamido]morphinan (INTA), which bears a cyclopropylmethyl group at position 17 and an indole ring at position 6, acted as a MOR agonist. We herein report a SAR study on INTA with a series of its complementary derivatives to understand how introduction of an indole moiety with α or β linkage at position 6 of the epoxymorphinan skeleton may influence ligand function. Interestingly, one of INTA derivatives, compound 15 (NAN) was identified as a MOR antagonist both in vitro and in vivo. Molecular modeling studies revealed that INTA and NAN may interact with different domains of the MOR allosteric binding site. In addition, INTA may interact with W293 and N150 residues found in the orthosteric site to stabilize MOR activation conformation while NAN does not. These results suggest that INTA and NAN may be bitopic ligands and the type of allosteric interactions with the MOR influence their functional activity. These insights along with our enriched comprehension of the "message-address" concept will to benefit future ligand design.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Regulation/physiology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- Male
- Mice
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Secondary
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
16
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
17
|
Qin Y, Ni L, Shi J, Zhu Z, Shi S, Lam AL, Magiera J, Sekar S, Kuo A, Smith MT, Li T. Synthesis and Biological Evaluation of Fentanyl Analogues Modified at Phenyl Groups with Alkyls. ACS Chem Neurosci 2019; 10:201-208. [PMID: 30179508 DOI: 10.1021/acschemneuro.8b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A series of fentanyl analogues modified at the phenyl group of the phenethyl with alkyl and/or hydroxyl and alkoxy, and the phenyl group in the anilido moiety replaced with benzyl or substituted benzyl, were synthesized. The in vitro opioid receptor functional activity of these compounds was evaluated by assessment of their ability to modulate forskolin-stimulated cAMP accumulation and by their ability to induce β-arrestin2 recruitment. Compound 12 is a potent μ-opioid (MOP) receptor agonist, a potent κ-opioid (KOP) receptor antagonist with weak β-arrestin2 recruitment activity. Compounds 10 and 11 are potent MOP receptor agonists with weak δ-opioid (DOP) receptor antagonist activity and moderate KOP receptor antagonist activity as well as weak β-arrestin2 recruitment activity at the MOP receptor. These compounds are promising leads for discovery of potent opioid analgesics with reduced side effects relative to clinically available strong opioid analgesics.
Collapse
Affiliation(s)
- Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Luofan Ni
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiawei Shi
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhiying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Saijian Shi
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ai-leen Lam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Julia Magiera
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sunderajhan Sekar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T. Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
18
|
Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S. Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br J Pharmacol 2018; 175:2857-2868. [PMID: 28378462 PMCID: PMC6016677 DOI: 10.1111/bph.13809] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 01/12/2023] Open
Abstract
Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptor (μ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Pooja Dasgupta
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Anika Mann
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Elke Miess
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Andrea Kliewer
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Sebastian Fritzwanker
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Ralph Steinborn
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Stefan Schulz
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| |
Collapse
|
19
|
Novakov IA, Babushkin AS, Yablokov AS, Nawrozkij MB, Vostrikova OV, Shejkin DS, Mkrtchyan AS, Balakin KV. Synthesis and structure—activity relationships of cyclopropane-containing analogs of pharmacologically active compounds. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2087-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
dos Santos NM, Pereira NC, de Albuquerque AP, Dias Viegas FP, Veloso C, Vilela FC, Giusti-Paiva A, da Silva ML, da Silva JR, Viegas Jr. C. 3-Hydroxy-piperidinyl-N-benzyl-acyl-arylhydrazone derivatives reduce neuropathic pain and increase thermal threshold mediated by opioid system. Biomed Pharmacother 2018; 99:492-498. [DOI: 10.1016/j.biopha.2018.01.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/30/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
|
21
|
Sader S, Anant K, Wu C. To probe interaction of morphine and IBNtxA with 7TM and 6TM variants of the human μ-opioid receptor using all-atom molecular dynamics simulations with an explicit membrane. Phys Chem Chem Phys 2018; 20:1724-1741. [PMID: 29265141 DOI: 10.1039/c7cp06745c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IBNtxA, a morphine derivative, is 10-fold more potent and has a better safety profile than morphine. Animal studies indicate that the analgesic effect of IBNtxA appears to be mediated by the activation of truncated splice variants (6TM) of the Mu opioid receptor (MOR-1) where transmembrane helix 1 (TM1) is removed. Interestingly, morphine is unable to activate 6TM variants. To date, a high resolution structure of 6TM variants is missing, and the interaction of 6TM variants with IBNtxA and morphine remains elusive. In this study we used homology modeling, docking and molecular dynamics (MD) simulations to study a representative 6TM variant (G1) and a full-length 7TM variant of human MOR-1 in complex with IBNtxA and morphine respectively. The structural models of human G1 and 7TM were obtained by homology modeling using the X-ray solved crystal structure of the active mouse 7TM bound to an agonist BU72 (PDB id: ) as the template. Our 6000 ns MD data show that either TM1 truncation (i.e. from 7TM to 6TM) or ligand modification (i.e. from morphine to IBNtxA) alone causes the loss of key morphine-7TM interactions that are well-known to be required for MOR-1 activation. Receptor disruptions are mainly located at TMs 2, 3, 6 and 7 in comparison with the active crystal complex. However, when both perturbations occur in the 6TM-IBNtxA complex, the key ligand-receptor interactions and the receptor conformation are recovered to resemble those in the active 7TM-morphine complex. Our molecular switch analysis further explains well why morphine is not able to activate 6TM variants. The close resemblance between 6TM-IBTtxA and 7TM in complex with PZM21, a G-protein biased 7TM agonist, suggests the possible biased agonism of IBNtxA on G1, which is consistent with its reduced side effects.
Collapse
Affiliation(s)
- Safaa Sader
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | | | | |
Collapse
|
22
|
Sośnicki JG, Idzik TJ, Borzyszkowska A, Maciejewska G, Struk Ł. Synthesis of Polycyclic δ-Lactams with Bridged Benzomorphan Skeleton: Selectivity and Diversity Driven by Substituents. J Org Chem 2018; 83:1745-1760. [DOI: 10.1021/acs.joc.7b02509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacek G. Sośnicki
- Faculty
of Chemical Technology and Engineering, Department of Organic and
Physical Chemistry, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, Szczecin 71-065, Poland
| | - Tomasz J. Idzik
- Faculty
of Chemical Technology and Engineering, Department of Organic and
Physical Chemistry, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, Szczecin 71-065, Poland
| | - Aleksandra Borzyszkowska
- Faculty
of Chemical Technology and Engineering, Department of Organic and
Physical Chemistry, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, Szczecin 71-065, Poland
| | - Gabriela Maciejewska
- Faculty
of Chemistry, Wrocław University of Technology, Wybrzeże
Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Struk
- Faculty
of Chemical Technology and Engineering, Department of Organic and
Physical Chemistry, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, Szczecin 71-065, Poland
| |
Collapse
|
23
|
Tryptophan-Containing Non-Cationizable Opioid Peptides - a new chemotype with unusual structure and in vivo activity. Future Med Chem 2017; 9:2099-2115. [PMID: 29130348 DOI: 10.4155/fmc-2017-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.
Collapse
|
24
|
Stockdale DP, Titunick MB, Biegler JM, Reed JL, Hartung AM, Wiemer DF, McLaughlin PJ, Neighbors JD. Selective opioid growth factor receptor antagonists based on a stilbene isostere. Bioorg Med Chem 2017; 25:4464-4474. [PMID: 28693915 PMCID: PMC5567982 DOI: 10.1016/j.bmc.2017.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 02/01/2023]
Abstract
As part of an ongoing drug development effort aimed at selective opioid receptor ligands based on the pawhuskin natural products we have synthesized a small set of amide isosteres. These amides were centered on lead compounds which are selective antagonists for the delta and kappa opioid receptors. The amide isomers revealed here show dramatically different activity from the parent stilbene compounds. Three of the isomers synthesized showed antagonist activity for the opioid growth factor (OGF)/opioid growth factor receptor (OGFR) axis which is involved in cellular and organ growth control. This cellular signaling mechanism is targeted by "low-dose" naltrexone therapy which is being tested clinically for multiple sclerosis, Crohn's disease, cancer, and wound healing disorders. The compounds described here are the first selective small molecule ligands for the OGF/OGFR system and will serve as important leads and probes for further study.
Collapse
Affiliation(s)
- David P Stockdale
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, United States
| | - Michelle B Titunick
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jessica M Biegler
- Department of Pharmacology and Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Pennsylvania State University Cancer Institute, Hershey, PA 17033, United States
| | - Jessie L Reed
- Department of Pharmacology and Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Pennsylvania State University Cancer Institute, Hershey, PA 17033, United States
| | - Alyssa M Hartung
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, United States
| | - David F Wiemer
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, United States
| | - Patricia J McLaughlin
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Pennsylvania State University Cancer Institute, Hershey, PA 17033, United States
| | - Jeffrey D Neighbors
- Department of Pharmacology and Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Pennsylvania State University Cancer Institute, Hershey, PA 17033, United States.
| |
Collapse
|
25
|
Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today 2017; 22:1719-1729. [PMID: 28743488 DOI: 10.1016/j.drudis.2017.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
Biased activation of G-protein-coupled receptors (GPCRs) is shifting drug discovery efforts and appears promising for the development of safer drugs. The most effective analgesics to treat acute pain are agonists of the μ opioid receptor (μ-OR), a member of the GPCR superfamily. However, the analgesic use of opioid drugs, such as morphine, is hindered by adverse effects. Only a few μ-OR agonists have been reported to selectively activate the Gi over β-arrestin signaling pathway, resulting in lower gastrointestinal dysfunction and respiratory suppression. Here, we discuss the strategies that led to the development of biased μ-OR agonists, and potential areas for improvement, with an emphasis on structural aspects of the ligand-receptor recognition process.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Andrés F Marmolejo-Valencia
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Yangmei Li
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Karina Martinez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico.
| |
Collapse
|
26
|
Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J Comput Aided Mol Des 2017; 31:467-482. [PMID: 28364251 DOI: 10.1007/s10822-017-0016-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of -11.52 ± 1.14 kcal mol-1 by alchemical free energy estimations, which is close to the experimental values -10.91 ± 0.2 and -10.80 ± 0.05 kcal mol-1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin's selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.
Collapse
|
27
|
Binding mode analyses of NAP derivatives as mu opioid receptor selective ligands through docking studies and molecular dynamics simulation. Bioorg Med Chem 2017; 25:2463-2471. [PMID: 28302509 DOI: 10.1016/j.bmc.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Mu opioid receptor selective antagonists are highly desirable because of their utility as pharmacological probes for receptor characterization and functional studies. Furthermore, the mu opioid receptors act as an important target in drug abuse and addiction treatment. Previously, we reported NAP as a novel lead compound with high selectivity and affinity towards the mu opioid receptor. Based on NAP, we have synthesized its derivatives and further characterized their binding affinities and selectivity towards the receptor. NMP and NGP were identified as the two most selective MOR ligands among NAP derivatives. In the present study, molecular modeling methods were applied to assess the dual binding modes of NAP derivatives, particularly on NMP and NGP, in three opioid receptors, in order to analyze the effects of structural modifications on the pyridyl ring of NAP on the binding affinity and selectivity. The results indicated that the steric hindrance, electrostatic, and hydrophobic effects caused by the substituents on the pyridyl ring of NAP contributed complimentarily on the binding affinity and selectivity of NAP derivatives to three opioid receptors. Analyses of these contributions provided insights on future design of more potent and selective mu opioid receptor ligands.
Collapse
|
28
|
Hassan LEA, Dahham SS, Fadul SM, Umar MI, Majid ASA, Khaw KY, Majid AMSA. Evaluation of in vitro and in vivo anti-inflammatory effects of (-)-pseudosemiglabrin, a major phytoconstituent isolated from Tephrosia apollinea (Delile) DC. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:312-320. [PMID: 27553975 DOI: 10.1016/j.jep.2016.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tephrosia apollinea (Delile) DC (Leguminosae) has been used in folk medicine in Arabian countries to treat inflammatory disorders. The plant has been described to treat swelling, bone fracture, bronchitis, cough, earache and wounds. AIM OF THE STUDY the current study aims to evaluate the anti-inflammatory properties of the major active phytoconstituent of T. apollinea and elucidate the mechanisms by which it inhibits inflammation in vitro and in vivo. MATERIAL AND METHODS The compound, (-)-pseudosemiglabrin (SSG) was isolated as a major component from the aerial parts of T. apollinea using column chromatography techniques. Sub-chronic in vivo anti-inflammatory effect of SSG was assessed using cotton pellet granuloma assay in SD rats and serum levels of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and nitric oxide (NO) were measured, whereas, tail flick assay was performed to assess the analgesic effect of SSG. Furthermore, the anti-inflammatory effects of SSG were confirmed by measuring the levels of IL-1, TNF-α, and NO in vitro using human macrophage cell lines (U937). In addition COX inhibition assay was also conducted in cells-free system. In silico study was performed to dock SSG in cyclooxygenase enzymes and opioid receptor to predict its structure-activity and molecular mechanism. RESULTS SSG displayed potential inhibition of granuloma tissue in rats and significantly (P<0.05) lowered the production of cytokines (TNF- α and IL-1) in vivo as well as human macrophages. Further investigation revealed that, SSG selectively inhibited COX-2 by 60% with negligible effect on COX-1. The selectivity of SSG towards COX-2 was confirmed in silico wherein, SSG demonstrated significant binding affinity with binding energy (-9.42kcal/mol). The binding found to be through covalent energy with Ser-530 amino acid residue of the active pocket of COX-2. SSG was found to prolong the flick tail time in mice by two folds. Further computational studies reveal that SSG binds to opioid receptor (µ-OR) through Ile-144 and Thr-218 with affinity two folds compared to the reference compounds, codeine and aspirin. CONCLUSION In the present study the major phytoconstituent (-)-pseudosemiglabrin (SSG) from the aerial parts of T. apollinea demonstrated potent anti-inflammatory effect by inhibiting of granuloma tissue in rats and prolonging the tail flick time in mice. Investigation of levels of pro-inflammatory cytokines in SSG-treated rats and human macrophages demonstrated that SSG significantly inhibited TNF-α and IL-1. Also SSG showed selective inhibitory effect towards COX-2. In silico study exhibited pronounced binding affinity between SSG and µ-opioid receptor better than that of codeine and aspirin. The obtained results justify the use of aerial parts of T. apollinea to treat various inflammatory diseases and indicate that (-)-pseudosemiglabrin has a great potential to be further developed as a promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Loiy Elsir Ahmed Hassan
- EMAN Testing & Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences Universiti Sains, Malaysia; Department of Botany, Faculty of Science& Technology, Omdurman Islamic University, P.O. Box 383, Sudan.
| | - Saad S Dahham
- EMAN Testing & Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences Universiti Sains, Malaysia
| | - Samah M Fadul
- School of Heath Sciences, Ahfad Univeristy for Women, P.O. Box 167, Omdurman, Sudan
| | - Muhammad Ihtisham Umar
- Departments of Pharmacology, School of Pharmaceutical Sciences, 11800 Minden, Pulau Pinang, Malaysia
| | | | - Kooi Yeong Khaw
- Departments of Pharmacology, School of Pharmaceutical Sciences, 11800 Minden, Pulau Pinang, Malaysia
| | - Amin Malik Shah Abdul Majid
- EMAN Testing & Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences Universiti Sains, Malaysia
| |
Collapse
|
29
|
Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem 2016; 59:8381-97. [PMID: 27556704 DOI: 10.1021/acs.jmedchem.6b00748] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.
Collapse
Affiliation(s)
- András Váradi
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Gina F Marrone
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Travis C Palmer
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ankita Narayan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Márton R Szabó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Valerie Le Rouzic
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Steven G Grinnell
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Joan J Subrath
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Evelyn Warner
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Sanjay Kalra
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jeremy Pagirsky
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jessica M Medina
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jin Xu
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ying-Xian Pan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Gavril W Pasternak
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jay P McLaughlin
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Susruta Majumdar
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| |
Collapse
|
30
|
Strack M, Bedini A, Yip KT, Lombardi S, Siegmund D, Stoll R, Spampinato SM, Metzler-Nolte N. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin. Chemistry 2016; 22:14605-10. [PMID: 27553294 DOI: 10.1002/chem.201602432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/12/2023]
Abstract
Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies.
Collapse
Affiliation(s)
- Martin Strack
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Andrea Bedini
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - King T Yip
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Sara Lombardi
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Daniel Siegmund
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
31
|
Zouikr I, Bartholomeusz MD, Hodgson DM. Early life programming of pain: focus on neuroimmune to endocrine communication. J Transl Med 2016; 14:123. [PMID: 27154463 PMCID: PMC4859995 DOI: 10.1186/s12967-016-0879-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
Abstract
Chronic pain constitutes a challenge for the scientific community and a significant economic and social cost for modern societies. Given the failure of current drugs to effectively treat chronic pain, which are based on suppressing aberrant neuronal excitability, we propose in this review an integrated approach that views pain not solely originating from neuronal activation but also the result of a complex interaction between the nervous, immune, and endocrine systems. Pain assessment must also extend beyond measures of behavioural responses to noxious stimuli to a more developmentally informed assessment given the significant plasticity of the nociceptive system during the neonatal period. Finally integrating the concept of perinatal programming into the pain management field is a necessary step to develop and target interventions to reduce the suffering associated with chronic pain. We present clinical and animal findings from our laboratory (and others) demonstrating the importance of the microbial and relational environment in programming pain responsiveness later in life via action on hypothalamo-pituitary adrenal (HPA) axis activity, peripheral and central immune system, spinal and supraspinal mechanisms, and the autonomic nervous system.
Collapse
Affiliation(s)
- I Zouikr
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia. .,Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN BSI East Building 4F 409, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - M D Bartholomeusz
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia
| | - D M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
32
|
Synthesis and Pharmacological Evaluation of Novel 1-(1,4-Alkylaryldisubstituted-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives. MOLECULES (BASEL, SWITZERLAND) 2016; 21:molecules21050582. [PMID: 27144554 PMCID: PMC6274338 DOI: 10.3390/molecules21050582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/03/2022]
Abstract
Novel 1-(1,4-alkylaryldisubstituted-4,5-dihydro-1H-imidazo)-3-substituted urea derivatives have been synthesized and evaluated for their central nervous system activity. Compounds 3a–m were prepared in the reaction between the respective 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a–c and appropriate isocyanates 2 in dichloromethane. The compounds were subjected to in silico ADMET studies in order to select best candidates for in vivo experiments. The effects of the compounds on the spontaneous locomotor activity and amphetamine-evoked hyperactivity were estimated. Analgesic activity, without or in the presence of naloxone, was assessed in the writhing test. The tendency to change the HTR, evoked by l-5-HTP and the involvement in alteration in body temperature in mice was studied. Additionally, to check possible occurrence of drug-induced changes in the muscle relaxant activity of mice, which may have contributed to their behaviour in other tests, the rota-rod and chimney tests were performed. The new urea derivatives exerted significant activities in the performed pharmacological tests, although the presented results show a preliminary estimation, and thus, need to be extended for identification and understanding the complete pharmacological profile of the examined compounds.
Collapse
|
33
|
Molecular switches of the κ opioid receptor triggered by 6'-GNTI and 5'-GNTI. Sci Rep 2016; 6:18913. [PMID: 26742690 PMCID: PMC4705513 DOI: 10.1038/srep18913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
The κ opioid receptor (κOR) is a member of G-protein-coupled receptors, and is considered as a promising drug target for treating neurological diseases. κOR selective 6'-GNTI was proved to be a G-protein biased agonist, whereas 5'-GNTI acts as an antagonist. To investigate the molecular mechanism of how these two ligands induce different behaviors of the receptor, we built two systems containing the 5'-GNTI-κOR complex and the 6'-GNTI-κOR complex, respectively, and performed molecular dynamics simulations of the two systems. We observe that transmembrane (TM) helix 6 of the κOR rotates about 4.6(o) on average in the κOR-6'-GNTI complex. Detailed analyses of the simulation results indicate that E297(6.58) and I294(6.55) play crucial roles in the rotation of TM6. In the simulation of the κOR-5'-GNTI system, it is revealed that 5'-GNTI can stabilize TM6 in the inactive state form. In addition, the kink of TM7 is stabilized by a hydrogen bond between S324(7.47) and the residue V69(1.42) on TM1.
Collapse
|
34
|
Deekonda S, Rankin D, Davis P, Lai J, Vanderah TW, Porecca F, Hruby VJ. Design synthesis and structure-activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands. Bioorg Med Chem 2015; 24:85-91. [PMID: 26712115 DOI: 10.1016/j.bmc.2015.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/11/2015] [Accepted: 11/21/2015] [Indexed: 11/19/2022]
Abstract
Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porecca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA.
| |
Collapse
|
35
|
Multitarget opioid ligands in pain relief: New players in an old game. Eur J Med Chem 2015; 108:211-228. [PMID: 26656913 DOI: 10.1016/j.ejmech.2015.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022]
Abstract
Still nowadays pain is one of the most common disabling conditions and yet it remains too often unsolved. Analgesic opioid drugs, and mainly MOR agonists such as morphine, are broadly employed for pain management. MOR activation, however, has been seen to cause not only analgesia but also undesired side effects. A potential pain treatment option is represented by the simultaneous targeting of different opioid receptors. In fact, ligands possessing multitarget capabilities led to an improved pharmacological fingerprint. This review focuses on the examination of multitarget opioid ligands which have been distinguished in peptide and non-peptide and further listed as bivalent and bifunctional ligands. Moreover, the potential of these compounds, both as analgesic drugs and pharmacological tools to explore heteromer receptors, has been stressed.
Collapse
|
36
|
Váradi A, Marrone GF, Eans SO, Ganno ML, Subrath JJ, Le Rouzic V, Hunkele A, Pasternak GW, McLaughlin JP, Majumdar S. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior. ACS Chem Neurosci 2015; 6:1813-24. [PMID: 26325040 DOI: 10.1021/acschemneuro.5b00153] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.
Collapse
Affiliation(s)
- András Váradi
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gina F. Marrone
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Shainnel O. Eans
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Joan J. Subrath
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Valerie Le Rouzic
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gavril W. Pasternak
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Jay P. McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Susruta Majumdar
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
37
|
Abstract
Opioids can be classified according to their mode of synthesis into alkaloids, semi-synthetic and synthetic compounds.There are three classical receptors (DOP, KOP and MOP). The novel NOP receptor is considered to be a non-opioid branch of the opioid receptor family.Opioids can either act as agonists, antagonists or partial agonists at these receptors.Opioid agonists bind to G-protein coupled receptors to cause cellular hyperpolarisation.MOP receptor agonists act in the central and peripheral nervous system to elicit analgesia.
Collapse
|
38
|
Robinson JE, Vardy E, DiBerto JF, Chefer VI, White KL, Fish EW, Chen M, Gigante E, Krouse MC, Sun H, Thorsell A, Roth BL, Heilig M, Malanga CJ. Receptor Reserve Moderates Mesolimbic Responses to Opioids in a Humanized Mouse Model of the OPRM1 A118G Polymorphism. Neuropsychopharmacology 2015; 40:2614-22. [PMID: 25881115 PMCID: PMC4569952 DOI: 10.1038/npp.2015.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/09/2022]
Abstract
The OPRM1 A118G polymorphism is the most widely studied μ-opioid receptor (MOR) variant. Although its involvement in acute alcohol effects is well characterized, less is known about the extent to which it alters responses to opioids. Prior work has shown that both electrophysiological and analgesic responses to morphine but not to fentanyl are moderated by OPRM1 A118G variation, but the mechanism behind this dissociation is not known. Here we found that humanized mice carrying the 118GG allele (h/mOPRM1-118GG) were less sensitive than h/mOPRM1-118AA littermates to the rewarding effects of morphine and hydrocodone but not those of other opioids measured with intracranial self-stimulation. Reduced morphine reward in 118GG mice was associated with decreased dopamine release in the nucleus accumbens and reduced effects on GABA release in the ventral tegmental area that were not due to changes in drug potency or efficacy in vitro or receptor-binding affinity. Fewer MOR-binding sites were observed in h/mOPRM1-118GG mice, and pharmacological reduction of MOR availability unmasked genotypic differences in fentanyl sensitivity. These findings suggest that the OPRM1 A118G polymorphism decreases sensitivity to low-potency agonists by decreasing receptor reserve without significantly altering receptor function.
Collapse
Affiliation(s)
- J Elliott Robinson
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eyal Vardy
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vladimir I Chefer
- Intramural Research Program, National Institute on Drug Abuse (NIDA), Baltimore, MD, USA
| | - Kate L White
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meng Chen
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eduardo Gigante
- Intramural Research Program, National Institute on Drug Abuse (NIDA), Baltimore, MD, USA
| | - Michael C Krouse
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Sun
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,NIMH Psychoactive Drug Screening Program (PDSP), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markus Heilig
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C J Malanga
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina School of Medicine, Physicians' Office Building, 170 Manning Drive, CB 7025, Chapel Hill, NC 27599-7025, USA, Tel: +1 919 966 1683, Fax: +1 919 843 4576, E-mail:
| |
Collapse
|
39
|
Váradi A, Palmer TC, Haselton N, Afonin D, Subrath JJ, Le Rouzic V, Hunkele A, Pasternak GW, Marrone GF, Borics A, Majumdar S. Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction. ACS Chem Neurosci 2015; 6:1570-7. [PMID: 26148793 DOI: 10.1021/acschemneuro.5b00137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a novel approach to synthesize carfentanil amide analogues utilizing the isocyanide-based four-component Ugi multicomponent reaction. A small library of bis-amide analogues of carfentanil was created using N-alkylpiperidones, aniline, propionic acid, and various aliphatic isocyanides. Our lead compound showed high affinity for mu (MOR) and delta opioid receptors (DOR) with no appreciable affinity for kappa (KOR) receptors in radioligand binding assays. The compound was found to be a mixed MOR agonist/partial DOR agonist in [(35)S]GTPγS functional assays, and it showed moderate analgesic potency in vivo. The compound showed no visible signs of physical dependence or constipation in mice. In addition, it produced less respiratory depression than morphine. Most mixed MOR/DOR opioids reported in the literature are peptides and thereby systemically inactive. Our approach utilizing a multicomponent reaction has the promise to deliver potent and efficacious small-molecule analgesics with potential clinical utility.
Collapse
Affiliation(s)
- András Váradi
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Travis C. Palmer
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Nathan Haselton
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Daniel Afonin
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Joan J. Subrath
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Valerie Le Rouzic
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Amanda Hunkele
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gavril W. Pasternak
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gina F. Marrone
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Attila Borics
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary H-6726
| | - Susruta Majumdar
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
40
|
Deekonda S, Wugalter L, Kulkarni V, Rankin D, Largent-Milnes TM, Davis P, Bassirirad NM, Lai J, Vanderah TW, Porreca F, Hruby VJ. Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands. Bioorg Med Chem 2015; 23:6185-94. [PMID: 26299827 PMCID: PMC4642887 DOI: 10.1016/j.bmc.2015.07.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 07/30/2015] [Indexed: 02/02/2023]
Abstract
A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity.
Collapse
MESH Headings
- Amides/chemical synthesis
- Amides/chemistry
- Amides/pharmacokinetics
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Drug Evaluation, Preclinical
- Half-Life
- Ligands
- Male
- Narcotic Antagonists/chemical synthesis
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/pharmacokinetics
- Protein Binding
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/chemistry
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lauren Wugalter
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Vinod Kulkarni
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
41
|
Nieto CT, Gonzalez-Nunez V, Rodríguez RE, Diez D, Garrido NM. Design, synthesis, pharmacological evaluation and molecular dynamics of β-amino acids morphan-derivatives as novel ligands for opioid receptors. Eur J Med Chem 2015; 101:150-62. [PMID: 26134550 DOI: 10.1016/j.ejmech.2015.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Structure-Activity Relationship (SAR) is a current approach in the design of new pharmacological agents. We previously reported the synthesis of a novel analogue of morphine, a 2-azabicyclo[3.3.1]nonane, which contains a β-amino acid. This bicyclic core exhibits two distinctive chemical handles for further elaboration, which allowed us to create a library of morphan-containing compounds by in silico molecular docking on the μ opioid receptor. Lead candidates were synthesized and biological tests were performed to evaluate their ability to bind to opioid receptors. The four top compounds, three phenyl esters and an N-phenylethyl morphan derivative, were selected for Molecular Dynamics simulations to get topological and thermodynamic information. Aromatic morphan derivatives displayed an interacting domain which fits into a hydrophobic cleft and the effect of the substituents in their affinity was explained by the differences in the calculated binding free energies. Our results indicate that the 3D arrangement of the aromatic ring in the morphine derivatives is not a key issue for a specific ligand - μ receptor interaction. Thus, these morphan derivatives represent a new class of opioid receptor ligands which may be of great use in the clinical practice.
Collapse
Affiliation(s)
- Carlos T Nieto
- Departamento de Química Orgánica, Faculty of Chemistry, Universidad de Salamanca, Spain
| | - Veronica Gonzalez-Nunez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Neuroscience Institute of Castilla y Leon (INCyL), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Raquel E Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Neuroscience Institute of Castilla y Leon (INCyL), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - David Diez
- Departamento de Química Orgánica, Faculty of Chemistry, Universidad de Salamanca, Spain
| | - Narciso M Garrido
- Departamento de Química Orgánica, Faculty of Chemistry, Universidad de Salamanca, Spain.
| |
Collapse
|
42
|
Lee HJ, Yeomans DC. Opioid induced hyperalgesia in anesthetic settings. Korean J Anesthesiol 2014; 67:299-304. [PMID: 25473457 PMCID: PMC4252340 DOI: 10.4097/kjae.2014.67.5.299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022] Open
Abstract
Pain is difficult to investigate and difficult to treat, in part, because of problems in quantification and assessment. The use of opioids, combined with classic anesthetics to maintain hemodynamic stability by controlling responses to intraoperative painful events has gained significant popularity in the anesthetic field. However, several side effects profiles concerning perioperative use of opioid have been published. Over the past two decades, many concerns have arisen with respect to opioid-induced hyperalgesia (OIH), which is the paradoxical effect wherein opioid usage may decrease pain thresholds and increase atypical pain unrelated to the original, preexisting pain. This brief review focuses on the evidence, mechanisms, and modulatory and pharmacologic management of OIH in order to elaborate on the clinical implication of OIH.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA. ; Department of Anesthesia, Pusan National University School of Medicine, Busan, Korea
| | - David C Yeomans
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
43
|
Varghese V, Hudlicky T. A Short History of the Discovery and Development of Naltrexone and Other Morphine Derivatives. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Kim J, Lee WS, Koo J, Lee J, Park SB. Synthesis and library construction of privileged tetra-substituted Δ5-2-oxopiperazine as β-turn structure mimetics. ACS COMBINATORIAL SCIENCE 2014; 16:24-32. [PMID: 24215277 DOI: 10.1021/co400128a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we developed an efficient and practical procedure for the synthesis of tetra-substituted Δ5-2-oxopiperazine that mimics the bioactive β-turn structural motif of proteins. This synthetic route is robust and modular enough to accommodate four different substituents to obtain a high level of molecular diversity without any deterioration in stereochemical enrichment of the natural and unnatural amino acids. Through the in silico studies, including a distance calculation of side chains and a conformational overlapping of our model compound with a native β-turn structure, we successfully demonstrated the conformational similarity of tetra-substituted Δ5-2-oxopiperazine to the β-turn motif. For the library construction in a high-throughput manner, the fluorous tag technology was adopted with the use of a solution-phase parallel synthesis platform. A 140-membered pilot library of tetra-substituted Δ5-2-oxopiperazines was achieved with an average purity of 90% without further purification.
Collapse
Affiliation(s)
- Jonghoon Kim
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Won Seok Lee
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Jaeyoung Koo
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Jeongae Lee
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Seung Bum Park
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| |
Collapse
|
45
|
Skrabalova J, Drastichova Z, Novotny J. Morphine as a Potential Oxidative Stress-Causing Agent. MINI-REV ORG CHEM 2013; 10:367-372. [PMID: 24376392 PMCID: PMC3871421 DOI: 10.2174/1570193x113106660031] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/21/2022]
Abstract
Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.
Collapse
Affiliation(s)
- Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
46
|
Salutaridine and its derivatives as thebaine-equivalents in the synthesis of aporphines. OPEN CHEM 2013. [DOI: 10.2478/s11532-013-0330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHere we report the transformation of tetracyclic morphinan salutaridine (1) into 2,3,10,11-tetrasubstituted (R)-aporphines. This method serves as another chemical proof of the previously verified biosynthetic connection with pentacyclic morphinan-6,8-diene-type thebaine. In the presence of nucleophiles, this procedure could lead to pharmacologically interesting new tetrasubstituted aporphinoids. The enantioselective synthesis of 7S-salutaridinol (2) has been also achieved in order to investigate the acid-catalyzed reactions of this natural morphinan.
Collapse
|
47
|
The Orthoester Johnson-Claisen Rearrangement in the Synthesis of Bioactive Molecules, Natural Products, and Synthetic Intermediates - Recent Advances. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Binding mode characterization of 6α- and 6β-N-heterocyclic substituted naltrexamine derivatives via docking in opioid receptor crystal structures and site-directed mutagenesis studies: application of the 'message-address' concept in development of mu opioid receptor selective antagonists. Bioorg Med Chem 2013; 21:6405-13. [PMID: 24055076 DOI: 10.1016/j.bmc.2013.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/15/2013] [Accepted: 08/23/2013] [Indexed: 01/20/2023]
Abstract
Highly selective opioid receptor antagonists are essential pharmacological probes in opioid receptor structural characterization and opioid agonist functional studies. Currently, there is no highly selective, nonpeptidyl and reversible mu opioid receptor antagonist available. Among a series of naltrexamine derivatives that have been designed and synthesized, two compounds, NAP and NAQ, were previously identified as novel leads for this purpose based on their in vitro and in vivo pharmacological profiles. Both compounds displayed high binding affinity and selectivity to the mu opioid receptor. To further study the interaction of these two ligands with the three opioid receptors, the recently released opioid receptor crystal structures were employed in docking studies to further test our original hypothesis that the ligands recognize a unique 'address' domain in the mu opioid receptor involving Trp318 that facilitates their selectivity. These modeling results were supported by site-directed mutagenesis studies on the mu opioid receptor, where the mutants Y210A and W318A confirmed the role of the latter in binding. Such work not only enriched the 'message-address' concept, also facilitated our next generation ligand design and development.
Collapse
|
49
|
Ligand/kappa-opioid receptor interactions: insights from the X-ray crystal structure. Eur J Med Chem 2013; 66:114-21. [PMID: 23792349 DOI: 10.1016/j.ejmech.2013.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022]
Abstract
During the past five years, the three-dimensional structures of 14 different G-protein coupled receptors (GPCRs) have been resolved by X-ray crystallography. The most recently published structures, those of the opioid receptors (ORs), are remarkably important in pain modulation, drug addiction, and mood disorders. These structures, confirmed previously proposed key interactions conferring potency and antagonistic properties, including the well-known interaction with Asp138, conserved in all aminergic GPCRs. In addition, crystallization of the opioid receptors highlighted the potential function of the ECL2 and ICL2 loops. We have previously reported a set of potent and selective kappa opioid receptor peptide agonists, of which ff(D-nle)r-NH₂ is among the most potent and selective ones. These peptides were identified from the deconvolution of a 6,250,000 tetrapeptide combinatorial library. A derivative of this set is currently the subject of a phase 2 clinical trial in the United States. In this work, we describe comparative molecular modeling studies of kappa-OR peptide agonists with the co-crystallized antagonist, JDTic, and also report structure-activity relationships of 23 tetrapeptides. The overall binding and contact interactions are sound and interactions known to favor selectivity and potency were observed. Additional modeling studies will reveal conformational changes that the kappa-OR undergoes upon binding to these peptide agonists.
Collapse
|
50
|
Cordomí A, Gómez-Tamayo JC, Gigoux V, Fourmy D. Sulfur-containing amino acids in 7TMRs: molecular gears for pharmacology and function. Trends Pharmacol Sci 2013; 34:320-31. [PMID: 23611707 DOI: 10.1016/j.tips.2013.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
Seven-transmembrane receptors (7TMRs) mediate the majority of physiological responses to hormones and neurotransmitters in higher organisms. Tertiary structure stability and activation of these versatile membrane proteins require formation or disruption of complex networks of well-recognized interactions (such as H-bonds, ionic, or aromatic-aromatic) but also of other type of interactions which have been less studied. In this review, we compile evidence from crystal structure, biophysical, and site-directed mutagenesis data that indicate or support the importance of interactions involving Met and Cys in 7TMRs in terms of pharmacology and function. We show examples of Met/Cys-aromatic and Met-Met interactions participating in ligand binding, in tuning the orientation of functionally important aromatic residues during activation or even in modulating the type of signaling response. Collectively, data presented enlarge the repertoire of interactions governing 7TMR functioning.
Collapse
Affiliation(s)
- Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|