1
|
Sakurabayashi S, Yamada T, Nakatani K. The heterodimer of 2-amino-1,8-naphthyridine and 3-aminoisoquinoline binds to the CTG/CTG triad via hydrogen bonding. Bioorg Med Chem Lett 2024; 114:129985. [PMID: 39393501 DOI: 10.1016/j.bmcl.2024.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the aberrant expansion of CTG repeats within the DMPK gene. This study investigated the potential binding of "X-linker-Y" type molecules to the CTG/CTG motif present in CTG repeats, using heterocyclic units X and Y capable of forming complementary hydrogen bonds with nucleobases. Among the tested molecules, the heterodimer of 2-amino-1,8-naphthyridine (X) and 3-aminoisoquinoline (Y) showed significant binding to the CTG/CTG motif. NMR analysis suggested hydrogen-bonded interactions between 3-aminoisoquinoline and thymine.
Collapse
Affiliation(s)
- Shuhei Sakurabayashi
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|
2
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Mahmud SMH, Goh KOM, Hosen MF, Nandi D, Shoombuatong W. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features. Sci Rep 2024; 14:2961. [PMID: 38316843 PMCID: PMC10844231 DOI: 10.1038/s41598-024-52653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
DNA-binding proteins (DBPs) play a significant role in all phases of genetic processes, including DNA recombination, repair, and modification. They are often utilized in drug discovery as fundamental elements of steroids, antibiotics, and anticancer drugs. Predicting them poses the most challenging task in proteomics research. Conventional experimental methods for DBP identification are costly and sometimes biased toward prediction. Therefore, developing powerful computational methods that can accurately and rapidly identify DBPs from sequence information is an urgent need. In this study, we propose a novel deep learning-based method called Deep-WET to accurately identify DBPs from primary sequence information. In Deep-WET, we employed three powerful feature encoding schemes containing Global Vectors, Word2Vec, and fastText to encode the protein sequence. Subsequently, these three features were sequentially combined and weighted using the weights obtained from the elements learned through the differential evolution (DE) algorithm. To enhance the predictive performance of Deep-WET, we applied the SHapley Additive exPlanations approach to remove irrelevant features. Finally, the optimal feature subset was input into convolutional neural networks to construct the Deep-WET predictor. Both cross-validation and independent tests indicated that Deep-WET achieved superior predictive performance compared to conventional machine learning classifiers. In addition, in extensive independent test, Deep-WET was effective and outperformed than several state-of-the-art methods for DBP prediction, with accuracy of 78.08%, MCC of 0.559, and AUC of 0.805. This superior performance shows that Deep-WET has a tremendous predictive capacity to predict DBPs. The web server of Deep-WET and curated datasets in this study are available at https://deepwet-dna.monarcatechnical.com/ . The proposed Deep-WET is anticipated to serve the community-wide effort for large-scale identification of potential DBPs.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- Department of Computer Science, American International University-Bangladesh (AIUB), Kuratoli, Dhaka, 1229, Bangladesh.
- Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, 1229, Bangladesh.
| | - Kah Ong Michael Goh
- Faculty of Information Science & Technology (FIST), Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia.
| | - Md Faruk Hosen
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Dip Nandi
- Department of Computer Science, American International University-Bangladesh (AIUB), Kuratoli, Dhaka, 1229, Bangladesh
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
4
|
Paquette AR, Boddy CN. Double Stranded DNA Binding Stapled Peptides: An Emerging Tool for Transcriptional Regulation. Chembiochem 2023; 24:e202300594. [PMID: 37750576 DOI: 10.1002/cbic.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Stapled peptides have rapidly established themselves as a powerful technique to mimic α-helical interactions with a short peptide sequence. There are many examples of stapled peptides that successfully disrupt α-helix-mediated protein-protein interactions, with an example currently in clinical trials. DNA-protein interactions are also often mediated by α-helices and are involved in all transcriptional regulation processes. Unlike DNA-binding small molecules, which typically lack DNA sequence selectivity, DNA-binding proteins bind with high affinity and high selectivity. These are ideal candidates for the design DNA-binding stapled peptides. Despite the parallel to protein-protein interaction disrupting stapled peptides and the need for sequence specific DNA binders, there are very few DNA-binding stapled peptides. In this review we examine all the known DNA-binding stapled peptides. Their design concepts are compared to stapled peptides that disrupt protein-protein interactions and based on the few examples in the literature, DNA-binding stapled peptide trends are discussed.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
5
|
Mirzakhanian A, Khoury M, Trujillo DE, Kim B, Ca D, Minehan T. DNA major versus minor groove occupancy of monomeric and dimeric crystal violet derivatives. Toward structural correlations. Bioorg Med Chem 2023; 94:117438. [PMID: 37757605 DOI: 10.1016/j.bmc.2023.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
Six monomeric (1a-1f) and five dimeric (2a-2e) derivatives of the triphenylmethane dye crystal violet (CV) have been prepared. Evaluation of the binding of these compounds to CT DNA by competitive fluorescent intercalator displacement (FID) assays, viscosity experiments, and UV and CD spectroscopy suggest that monomeric derivative 1a and dimeric derivative 2d likely associate with the major groove of DNA, while dimeric derivatives 2a and 2e likely associate with the minor groove of DNA. Additional evidence for the groove occupancy assignments of these derivatives was obtained from ITC experiments and from differential inhibition of DNA cleavage by the major groove binding restriction enzyme BamHI, as revealed by agarose gel electrophoresis. The data indicate that major groove ligands may be optimally constructed from dye units containing a sterically bulky 3,5-dimethyl-N,N-dimethylaniline group; furthermore, the groove-selectivity of olefin-tethered dimer 2d suggests that stereoelectronic interactions (n → π*) between the ligand and DNA are also an important design consideration in the crafting of major-groove binding ligands.
Collapse
Affiliation(s)
- Aren Mirzakhanian
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Michael Khoury
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Donald E Trujillo
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Byoula Kim
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Donnie Ca
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Thomas Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
6
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
7
|
Mondal S, Panda R, Das S, Sultana F, Dutta S, Mondal MA. Synthesis and ct-DNA Binding Study of a Donor–π-Acceptor Dihydropyrimidinone Fluorophore. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Kołat D, Zhao LY, Kciuk M, Płuciennik E, Kałuzińska-Kołat Ż. AP-2δ Is the Most Relevant Target of AP-2 Family-Focused Cancer Therapy and Affects Genome Organization. Cells 2022; 11:4124. [PMID: 36552887 PMCID: PMC9776946 DOI: 10.3390/cells11244124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Formerly hailed as "undruggable" proteins, transcription factors (TFs) are now under investigation for targeted therapy. In cancer, this may alter, inter alia, immune evasion or replicative immortality, which are implicated in genome organization, a process that accompanies multi-step tumorigenesis and which frequently develops in a non-random manner. Still, targeting-related research on some TFs is scarce, e.g., among AP-2 proteins, which are known for their altered functionality in cancer and prognostic importance. Using public repositories, bioinformatics tools, and RNA-seq data, the present study examined the ligandability of all AP-2 members, selecting the best one, which was investigated in terms of mutations, targets, co-activators, correlated genes, and impact on genome organization. AP-2 proteins were found to have the conserved "TF_AP-2" domain, but manifested different binding characteristics and evolution. Among them, AP-2δ has not only the highest number of post-translational modifications and extended strands but also contains a specific histidine-rich region and cleft that can receive a ligand. Uterine, colon, lung, and stomach tumors are most susceptible to AP-2δ mutations, which also co-depend with cancer hallmark genes and drug targets. Considering AP-2δ targets, some of them were located proximally in the spatial genome or served as co-factors of the genes regulated by AP-2δ. Correlation and functional analyses suggested that AP-2δ affects various processes, including genome organization, via its targets; this has been eventually verified in lung adenocarcinoma using expression and immunohistochemistry data of chromosomal conformation-related genes. In conclusion, AP-2δ affects chromosomal conformation and is the most appropriate target for cancer therapy focused on the AP-2 family.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu 610041, China
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland
| | | |
Collapse
|
9
|
Zhuang JJ, Liu Q, Wu DL, Tie L. Current strategies and progress for targeting the "undruggable" transcription factors. Acta Pharmacol Sin 2022; 43:2474-2481. [PMID: 35132191 PMCID: PMC9525275 DOI: 10.1038/s41401-021-00852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
Collapse
Affiliation(s)
- Jing-Jing Zhuang
- Marine College, Shandong University, Weihai, 264209, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Da-Lei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Jung W, Kwon J, Cho W, Yeom J. Chiral Biomaterials for Nanomedicines: From Molecules to Supraparticles. Pharmaceutics 2022; 14:pharmaceutics14091951. [PMID: 36145699 PMCID: PMC9505685 DOI: 10.3390/pharmaceutics14091951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chirality, the property whereby an object or a system cannot be superimposed on its mirror image, prevails amongst nature over various scales. Especially in biology, numerous chiral building blocks and chiral-specific interactions are involved in many essential biological activities. Despite the prevalence of chirality in nature, it has been no longer than 70 years since the mechanisms of chiral-specific interactions drew scientific attention and began to be studied. Owing to the advent of chiral-sensitive equipment such as circular dichroism spectrometers or chiral liquid columns for chromatography, it has recently been possible to achieve a deeper understanding of the chiral-specific interactions and consequential impacts on the functionality and efficiency of nanomedicine. From this point of view, it is worthwhile to examine previously reported chiral biomaterials with their compositions and possible applications to achieve new paradigms of biomaterials. This review discusses chiral materials on various scales and their biological applications.
Collapse
Affiliation(s)
- Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Wonjoon Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
11
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
12
|
Vardevanyan PO, Parsadanyan MA, Antonyan AP, Shahinyan MA. Study of complexes of Hoechst 33258 with poly(rA)-poly(rU) depending on various ionic strengths in the water-saline solution. J Biomol Struct Dyn 2022; 40:1182-1188. [PMID: 32954957 DOI: 10.1080/07391102.2020.1823883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Comparative study of the complexes of groove-binding ligand Hoechst 33258 (H33258) with synthetic homopolynucleotides poly(rA)-poly(rU) and poly(dA)-poly(dT) has been carried out at various concentration ratios of r = ligand/nucleic acids (NA) and different ionic strengths of the water-saline solution 0.02, 0.04 and 0.1 M, using the method of UV-melting. It was revealed that the melting curves of the complexes of poly(dA)-poly(dT) with H33258 at the low concentrations of ligand are biphasic, which actually does not depend on the solution ionic strength. In the case of the complexes of poly(rA)-poly(rU)-H33258, the melting curves become quasi-biphasic only at the ionic strength 0.02 M and relatively high concentrations of the ligand. Differential melting curves (DMC) of the mentioned polynucleotides and their complexes with H33258 were obtained as well. DMC of poly(rA)-poly(rU) were found to be significantly wide at the ionic strengths of the solution 0.02 and 0.04 M and to show an intrinsic heterogeneity of double-stranded structure of this polynucleotide.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Poghos O Vardevanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Marine A Parsadanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Ara P Antonyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Mariam A Shahinyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
13
|
Sun L, Yan Y, Lv H, Li J, Wang Z, Wang K, Wang L, Li Y, Jiang H, Zhang Y. Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth. Cell Chem Biol 2021; 29:373-385.e6. [PMID: 34706270 DOI: 10.1016/j.chembiol.2021.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022]
Abstract
Rapamycin is widely recognized as an inhibitor of mTOR, and has been approved for clinical use as an immunosuppressant. Its potencies in anti-cancer, anti-aging, and neurodegenerative diseases are emergingly established. The exploration of other targets of rapamycin will further elucidate its underlying mechanisms of action. In this study, we use a chemical proteomics strategy that has identified STAT3, a transcription factor considered to be undruggable, as a direct functional protein target of rapamycin. Together with other multi-dimensional proteomics data, we show that rapamycin treatment in cell culture significantly inhibits c-Myc-regulated gene expression. Furthermore, we show that rapamycin suppresses tumor growth along with a decreased expression of STAT3 and c-Myc in an in vivo xenograft mouse model for hepatocellular carcinoma. Our data suggest that rapamycin acts directly on STAT3 to decrease its transcription activity, providing important information for the pharmacological and pharmaceutical development of STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Heng Lv
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wang
- ShanghaiTech University, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
14
|
Li M, Lu D, Cheng Y, Wu C, Zhang J, Shi W, Ding Z, Li Y, Cheng B, Lin X, Shao X, Li H, Fang L, Liu K, Su W. A novel pyrrole-imidazole polyamide targets Aurora kinase A and suppresses tumor growth in vivo. Biochem Biophys Res Commun 2021; 571:167-173. [PMID: 34330060 DOI: 10.1016/j.bbrc.2021.07.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
Aurora kinase A (Aurora A) plays a critical role in regulating cell mitotic progression and has been considered as a promising drug target for cancer therapy. To develop a novel molecule targeting Aurora A with high selectivity and efficacy, we designed and synthesized a pyrrole-imidazole polyamide (PIP) Hoechst conjugate, PIP-Ht, targeting to a cell-cycle regulated DNA sequence locating at the promoter of human Aurora A gene (AURKA). PIP-Ht potently suppressed AURKA promoter activities, mRNA expression and protein level, induced tumor cell cycle delay and inhibited tumor cell proliferation in vitro. Furthermore, subcutaneous injection of PIP-Ht into mice bearing human cancer xenografts induced significant tumor growth suppression and cell apoptosis. Collectively, PIP-Ht exhibits the potential as an effective therapeutic candidate for the tumor treatment.
Collapse
Affiliation(s)
- Meiqing Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danyi Lu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yulian Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Chunlei Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenli Shi
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zhihao Ding
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanyan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binghua Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ximing Shao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongchang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lijing Fang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ke Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Wu Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Ganguly S, Murugan NA, Ghosh D, Narayanaswamy N, Govindaraju T, Basu G. DNA Minor Groove-Induced cis- trans Isomerization of a Near-Infrared Fluorescent Probe. Biochemistry 2021; 60:2084-2097. [PMID: 34142803 DOI: 10.1021/acs.biochem.1c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of small molecules that exhibit turn-on far-red or near-infrared (NIR) fluorescence upon DNA binding and understanding how they bind DNA are important for imaging and bioanalytical applications. Here we report the DNA-bound structure and the DNA binding mechanism of quinone cyanine dithiazole (QCy-DT), a recently reported AT-specific turn-on NIR fluorescent probe for double-stranded DNA. The nuclear magnetic resonance (NMR)-derived structure showed minor groove binding but no specific ligand-DNA interactions, consistent with an endothermic and entropy-driven binding mechanism deduced from isothermal titration calorimetry. Minor groove binding is typically fast because it minimally perturbs the DNA structure. However, QCy-DT exhibited unusually slow DNA binding. The cyanine-based probe is capable of cis-trans isomerization due to overlapping methine bridges, with 16 possible slowly interconverting cis/trans isomers. Using NMR, density functional theory, and free energy calculations, we show that the DNA-free and DNA-bound environments of QCy-DT prefer distinctly different isomers, indicating that the origin of the slow kinetics is a cis-trans isomerization and that the minor groove preferentially selects an otherwise unstable cis/trans isomer of QCy-DT. Flux analysis showed the conformational selection pathway to be the dominating DNA binding mechanism at low DNA concentrations, which switches to the induced fit pathway at high DNA concentrations. This report of cis/trans isomerization of a ligand, upon binding the DNA minor groove, expands the prevailing understanding of unique discriminatory powers of the minor groove and has an important bearing on using polymethine cyanine dyes to probe the kinetics of molecular interactions.
Collapse
Affiliation(s)
- Sudakshina Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| |
Collapse
|
16
|
Fan Q, Nørgaard RC, Grytten I, Ness CM, Lucas C, Vekterud K, Soedling H, Matthews J, Lemma RB, Gabrielsen OS, Bindesbøll C, Ulven SM, Nebb HI, Grønning-Wang LM, Sæther T. LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells 2020; 9:cells9051214. [PMID: 32414201 PMCID: PMC7290792 DOI: 10.3390/cells9051214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 01/02/2023] Open
Abstract
The cholesterol-sensing nuclear receptor liver X receptor (LXR) and the glucose-sensing transcription factor carbohydrate responsive element-binding protein (ChREBP) are central players in regulating glucose and lipid metabolism in the liver. More knowledge of their mechanistic interplay is needed to understand their role in pathological conditions like fatty liver disease and insulin resistance. In the current study, LXR and ChREBP co-occupancy was examined by analyzing ChIP-seq datasets from mice livers. LXR and ChREBP interaction was determined by Co-immunoprecipitation (CoIP) and their transactivity was assessed by real-time quantitative polymerase chain reaction (qPCR) of target genes and gene reporter assays. Chromatin binding capacity was determined by ChIP-qPCR assays. Our data show that LXRα and ChREBPα interact physically and show a high co-occupancy at regulatory regions in the mouse genome. LXRα co-activates ChREBPα and regulates ChREBP-specific target genes in vitro and in vivo. This co-activation is dependent on functional recognition elements for ChREBP but not for LXR, indicating that ChREBPα recruits LXRα to chromatin in trans. The two factors interact via their key activation domains; the low glucose inhibitory domain (LID) of ChREBPα and the ligand-binding domain (LBD) of LXRα. While unliganded LXRα co-activates ChREBPα, ligand-bound LXRα surprisingly represses ChREBPα activity on ChREBP-specific target genes. Mechanistically, this is due to a destabilized LXRα:ChREBPα interaction, leading to reduced ChREBP-binding to chromatin and restricted activation of glycolytic and lipogenic target genes. This ligand-driven molecular switch highlights an unappreciated role of LXRα in responding to nutritional cues that was overlooked due to LXR lipogenesis-promoting function.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Rikke Christine Nørgaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Ivar Grytten
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway;
| | - Cecilie Maria Ness
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Christin Lucas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Kristin Vekterud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Roza Berhanu Lemma
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Odd Stokke Gabrielsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Hilde Irene Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Line Mariann Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
- Correspondence: ; Tel.: +47-22-851510
| |
Collapse
|
17
|
Nafie MS, Arafa K, Sedky NK, Alakhdar AA, Arafa RK. Triaryl dicationic DNA minor-groove binders with antioxidant activity display cytotoxicity and induce apoptosis in breast cancer. Chem Biol Interact 2020; 324:109087. [PMID: 32294457 DOI: 10.1016/j.cbi.2020.109087] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Despite advances in cancer treatment modalities, DNA still stands as one of the targets for anticancer agents. DNA minor groove binders (MGBs) represent an important investigational chemotherapeutic class with promising cytotoxic capacity. Herein this study reports the potent cytotoxic effect of a series of repurposed flexible bis-imidamides 1-4, triaryl bis-guanidine 5 and bis-N-substituted guanidines 6,7 having a 1,4-diphenoxybenzene scaffold backbone on MCF-7 and MDA-MB-231 breast cancer cell lines. Of these compounds, imidamide 4 was chosen for further in-vitro, in-vivo and molecular dynamics (MD) studies owing to its promising anti-tumor activity, with IC50 values on MCF-7 and MDA-MB-231 breast cancer cell lines of 1.9 and 2.08 μM, respectively. Annexin V/propidium iodide apoptosis assay revealed apoptosis induction on imidamide 4 treated MCF-7 cells. RT-PCR assay results demonstrated the proapoptotic effect of compound 4 through increase of mRNA levels of the pro-apoptotic genes; p53, PUMA, and Bax, and inhibiting the anti-apoptotic Bcl-2 gene expression in MCF-7 cells. Moreover, compound 4 induced a G0/G1 cell-cycle arrest in MCF-7 in a dose-dependent manner. Corroborating in-vivo experiments on Ehrlich ascites carcinoma (EAC)-bearing mice, reflected the anticancer strength of derivative 4. For further target validation, molecular dynamics (MD) studies demonstrated an energetically favorable binding of imidamide 4 with the DNA minor groove AT rich site. In effect, imidamide 4 can be viewed as a promising hit dicationic compound with good cytotoxic and apoptotic inducing activity against breast cancer that can be adopted for future optimization.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Chemistry Department, Faculty of Science Suez Canal University, Ismailia, 41522, Egypt
| | - Kholoud Arafa
- Center for Materials Science, Zewail City of Science and Technology, 12578, Cairo, Egypt
| | - Nada K Sedky
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, 41611, Cairo, Egypt
| | - Amira A Alakhdar
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, 12578, Cairo, Egypt.
| |
Collapse
|
18
|
Epigenetic therapies in acute myeloid leukemia: where to from here? Blood 2020; 134:1891-1901. [PMID: 31697822 DOI: 10.1182/blood.2019003262] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
A hallmark of acute myeloid leukemia (AML) is epigenetic dysregulation, which is initiated by recurrent translocations and/or mutations in transcription factors and chromatin regulators. This manifests as a block in myeloid differentiation and an increase in malignant self-renewal. These common features of AML have led to widespread optimism that epigenetic therapies would dramatically change the natural history of this disease. Although preclinical studies with these drugs fueled this optimism, results from early clinical trials have offered a more sobering message. Here, we provide an overview of epigenetic therapies that are currently approved by therapeutic regulatory authorities across the world and those undergoing early-phase clinical trials. We also discuss the conceptual and molecular factors that may explain some of the disparity between the bench and bedside, as well as emerging avenues for combining the current generation of epigenetic therapies with other classes of agents and the development of novel epigenetic therapies. With further research and development of this exciting class of drugs, we may finally be able to dramatically improve outcomes for patients afflicted with this aggressive and often incurable malignancy.
Collapse
|
19
|
Koval VS, Arutyunyan AF, Salyanov VI, Kostyukov AA, Melkina OE, Zavilgelsky GB, Klimova RR, Kushch AA, Korolev SP, Agapkina YY, Gottikh MB, Vaiman AV, Rybalkina EY, Susova OY, Zhuze AL. DNA sequence-specific ligands. XVIII. Synthesis, physico-chemical properties; genetic, virological, and biochemical studies of fluorescent dimeric bisbenzimidazoles DBPA(n). Bioorg Med Chem 2020; 28:115378. [PMID: 32089391 DOI: 10.1016/j.bmc.2020.115378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
A set of AT-specific fluorescent dimeric bisbenzimidazoles DBPA(n) with linkers of different lengths bound to DNA in the minor groove were synthesized and their genetic, virological, and biochemical studies were performed. The DBPA(n) were shown to be effective inhibitors of the histon-like protein H-NS, a regulator of the DNA transcription factor, as well as of the Aliivibrio logei Quorum Sensing regulatory system in E. coli cells. Their antiviral activity was tested in model cell lines infected with herpes simplex virus type I. Also, it was found that DBPA(n) could inhibit catalytic activities of HIV-1 integrase at low micromolar concentrations. All of the dimeric bisbenzimidazoles DBPA(n) manifested fluorescent properties, were well soluble in water, nontoxic up to concentrations of 200 µM, and could penetrate into nuclei followed by binding to DNA.
Collapse
Affiliation(s)
- Vasiliy S Koval
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Albert F Arutyunyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Victor I Salyanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Olga E Melkina
- Scientific Center "Kurchatov Institute", Research Institute of Genetics & Selection of Industrial Microorganisms, Moscow 117545, Russia
| | - Gennadii B Zavilgelsky
- Scientific Center "Kurchatov Institute", Research Institute of Genetics & Selection of Industrial Microorganisms, Moscow 117545, Russia
| | - Regina R Klimova
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alla A Kushch
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Sergey P Korolev
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119991, Russia
| | - Yulia Yu Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119991, Russia
| | - Marina B Gottikh
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119991, Russia
| | - Andrey V Vaiman
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology", The Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Ekaterina Yu Rybalkina
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology", The Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Olga Yu Susova
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology", The Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Alexei L Zhuze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
20
|
Harding DP, Kingsley LJ, Spraggon G, Wheeler SE. Importance of model size in quantum mechanical studies of DNA intercalation. J Comput Chem 2020; 41:1175-1184. [PMID: 32011009 DOI: 10.1002/jcc.26164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 01/19/2020] [Indexed: 01/11/2023]
Abstract
The convergence of DFT-computed interaction energies with increasing binding site model size was assessed. The data show that while accurate intercalator interaction energies can be derived from binding site models featuring only the flanking nucleotides for uncharged intercalators that bind parallel to the DNA base pairs, errors remain significant even when including distant nucleotides for intercalators that are charged, exhibit groove-binding tails that engage in noncovalent interactions with distant nucleotides, or that bind perpendicular to the DNA base pairs. Consequently, binding site models that include at least three adjacent nucleotides are required to consistently predict converged binding energies. The computationally inexpensive HF-3c method is shown to provide reliable interaction energies and can be routinely applied to such large models.
Collapse
Affiliation(s)
- Drew P Harding
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia.,Department of Chemistry, Texas A&M University, College Station, Texas
| | - Laura J Kingsley
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Steven E Wheeler
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia
| |
Collapse
|
21
|
SDBP-Pred: Prediction of single-stranded and double-stranded DNA-binding proteins by extending consensus sequence and K-segmentation strategies into PSSM. Anal Biochem 2019; 589:113494. [PMID: 31693872 DOI: 10.1016/j.ab.2019.113494] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
Abstract
Identification of DNA-binding proteins (DNA-BPs) is a hot issue in protein science due to its key role in various biological processes. These processes are highly concerned with DNA-binding protein types. DNA-BPs are classified into single-stranded DNA-binding proteins (SSBs) and double-stranded DNA-binding proteins (DSBs). SSBs mainly involved in DNA recombination, replication, and repair, while DSBs regulate transcription process, DNA cleavage, and chromosome packaging. In spite of the aforementioned significance, few methods have been proposed for discrimination of SSBs and DSBs. Therefore, more predictors with favorable performance are indispensable. In this work, we present an innovative predictor, called SDBP-Pred with a novel feature descriptor, named consensus sequence-based K-segmentation position-specific scoring matrix (CSKS-PSSM). We encoded the local discriminative features concealed in PSSM via K-segmentation strategy and the global potential features by applying the notion of the consensus sequence. The obtained feature vector then input to support vector machine (SVM) with linear, polynomial and radial base function (RBF) kernels. Our model with SVM-RBF achieved the highest accuracies on three tests namely jackknife, 10-fold, and independent tests, respectively than the recent method. The obtained prediction results illustrate the superlative prediction performance of SDBP-Pred over existing studies in the literature so far.
Collapse
|
22
|
Abstract
Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
23
|
Chen W, Wu G, Zhu Y, Zhang W, Zhang H, Zhou Y, Sun P. HOXA10 deteriorates gastric cancer through activating JAK1/STAT3 signaling pathway. Cancer Manag Res 2019; 11:6625-6635. [PMID: 31406476 PMCID: PMC6642621 DOI: 10.2147/cmar.s201342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background: HOXA10 has been reported to be deregulated in many kinds of cancers including gastric cancer. But its role in gastric cancer progression is controversial. Therefore, the current study was performed to explore the role and mechanism of HOXA10 in gastric cancer. Materials and methods: IHC and Western blotting assays were used to assess HOXA10 expression in gastric cancer tissues and cells. Lentivirus infection was used to alter HOXA10, STAT3 and JAK1 expression in gastric cancer NCI-N87 and MKN28 cells. MTT, cloning formation, flow cytometry and in vivo xenotransplantation experiments were carried out to assess cell proliferation, cloning formation, apoptosis and tumorigenesis. Results: HOXA10 expression was obviously increased in gastric cancer tissues and cells when compared with the normal gastric tissue samples and cells. Upregulation of HOXA10 significantly enhanced cell proliferation, cloning formation and tumorigenesis abilities and reduced cell apoptosis in gastric cancer, and promoted the activation of JAK1/STAT3 signaling. In addition, we showed that the effects of HOXA10 on the promotion of cell viability and tumorigenesis and cell apoptosis repression were all weakened when JAK1 or STAT3 was downregulated. Conclusion: This study demonstrates that HOXA10 functions as an oncogene in gastric cancer through activating JAK1/STAT3 signaling.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Han Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
24
|
Du X, Diao Y, Liu H, Li S. MsDBP: Exploring DNA-Binding Proteins by Integrating Multiscale Sequence Information via Chou’s Five-Step Rule. J Proteome Res 2019; 18:3119-3132. [DOI: 10.1021/acs.jproteome.9b00226] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiuquan Du
- The School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Yanyu Diao
- The School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Heng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuo Li
- Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
25
|
Regulation of fibroblast-like synoviocyte transformation by transcription factors in arthritic diseases. Biochem Pharmacol 2019; 165:145-151. [PMID: 30878552 DOI: 10.1016/j.bcp.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Inflammation in the synovium is known to mediate joint destruction in several forms of arthritis. Fibroblast-like synoviocytes (FLS) are cells that reside in the synovial lining of joints and are known to be key contributors to inflammation associated with arthritis. FLS are a major source of inflammatory cytokines and catabolic enzymes that promote joint degeneration. We now know that there exists a direct correlation between the signaling pathways that are activated by the pro-inflammatory molecules produced by the FLS, and the severity of joint degeneration in arthritis. Research focused on understanding the signaling pathways that are activated by these pro-inflammatory molecules has led to major advancements in the understanding of the joint pathology in arthritis. Transcription factors (TFs) that act as downstream mediators of the pro-inflammatory signaling cascades in various cell types have been reported to play an important role in inducing the deleterious transformation of the FLS. Interestingly, recent studies have started uncovering that several TFs that were previously reported to play role in embryonic development and cancer, but not known to have pronounced roles in tissue inflammation, can actually play crucial roles in the regulation of the pathological properties of the FLS. In this review, we will discuss reports that have been able to impart novel arthritogenic roles to TFs that are specialized in embryonic development. We also discuss the therapeutic potential of targeting these newly identified regulators of FLS transformation in the treatment of arthritis.
Collapse
|
26
|
Depauw S, Lambert M, Jambon S, Paul A, Peixoto P, Nhili R, Morongiu L, Figeac M, Dassi C, Paul-Constant C, Billoré B, Kumar A, Farahat AA, Ismail MA, Mineva E, Sweat DP, Stephens CE, Boykin DW, Wilson WD, David-Cordonnier MH. Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model. J Med Chem 2019; 62:1306-1329. [PMID: 30645099 PMCID: PMC6561105 DOI: 10.1021/acs.jmedchem.8b01448] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed. As an attractive alternative by inhibiting the DNA binding, we selected a series of heterocyclic diamidines as efficient competitors for the HOXA9/DNA interaction through binding as minor groove DNA ligands on the HOXA9 cognate sequence. Selected DB818 and DB1055 compounds altered HOXA9-mediated transcription in luciferase assays, cell survival, and cell cycle, but increased cell death and granulocyte/monocyte differentiation, two main HOXA9 functions also highlighted using transcriptomic analysis of DB818-treated murine Hoxa9-transformed hematopoietic cells. Altogether, these data demonstrate for the first time the propensity of sequence-selective DNA ligands to inhibit HOXA9/DNA binding both in vitro and in a murine Hoxa9-dependent leukemic cell model.
Collapse
Affiliation(s)
- Sabine Depauw
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Mélanie Lambert
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Samy Jambon
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Paul Peixoto
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Raja Nhili
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Laura Morongiu
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Martin Figeac
- Functional and Structural Genomic Platform, Lille University, F-59000 Lille, France
| | - Christelle Dassi
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Charles Paul-Constant
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Benjamin Billoré
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Abdelbasset A. Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ekaterina Mineva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel P. Sweat
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - Chad E. Stephens
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| |
Collapse
|
27
|
Ilic S, Cohen S, Singh M, Tam B, Dayan A, Akabayov B. DnaG Primase-A Target for the Development of Novel Antibacterial Agents. Antibiotics (Basel) 2018; 7:E72. [PMID: 30104489 PMCID: PMC6163395 DOI: 10.3390/antibiotics7030072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial primase-an essential component in the replisome-is a promising but underexploited target for novel antibiotic drugs. Bacterial primases have a markedly different structure than the human primase. Inhibition of primase activity is expected to selectively halt bacterial DNA replication. Evidence is growing that halting DNA replication has a bacteriocidal effect. Therefore, inhibitors of DNA primase could provide antibiotic agents. Compounds that inhibit bacterial DnaG primase have been developed using different approaches. In this paper, we provide an overview of the current literature on DNA primases as novel drug targets and the methods used to find their inhibitors. Although few inhibitors have been identified, there are still challenges to develop inhibitors that can efficiently halt DNA replication and may be applied in a clinical setting.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Meenakshi Singh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Benjamin Tam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Adi Dayan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
28
|
DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC. J Theor Biol 2018; 452:22-34. [PMID: 29753757 DOI: 10.1016/j.jtbi.2018.05.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/21/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022]
Abstract
A DNA-binding protein (DNA-BP) is a protein that can bind and interact with a DNA. Identification of DNA-BPs using experimental methods is expensive as well as time consuming. As such, fast and accurate computational methods are sought for predicting whether a protein can bind with a DNA or not. In this paper, we focus on building a new computational model to identify DNA-BPs in an efficient and accurate way. Our model extracts meaningful information directly from the protein sequences, without any dependence on functional domain or structural information. After feature extraction, we have employed Random Forest (RF) model to rank the features. Afterwards, we have used Recursive Feature Elimination (RFE) method to extract an optimal set of features and trained a prediction model using Support Vector Machine (SVM) with linear kernel. Our proposed method, named as DNA-binding Protein Prediction model using Chou's general PseAAC (DPP-PseAAC), demonstrates superior performance compared to the state-of-the-art predictors on standard benchmark dataset. DPP-PseAAC achieves accuracy values of 93.21%, 95.91% and 77.42% for 10-fold cross-validation test, jackknife test and independent test respectively. The source code of DPP-PseAAC, along with relevant dataset and detailed experimental results, can be found at https://github.com/srautonu/DNABinding. A publicly accessible web interface has also been established at: http://77.68.43.135:8080/DPP-PseAAC/.
Collapse
|
29
|
Campbell IB, Macdonald SJ, Procopiou PA. Medicinal chemistry in drug discovery in big pharma: past, present and future. Drug Discov Today 2018; 23:219-234. [DOI: 10.1016/j.drudis.2017.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022]
|
30
|
Bai F, Liu K, Li H, Wang J, Zhu J, Hao P, Zhu L, Zhang S, Shan L, Ma W, Bode AM, Zhang W, Li H, Dong Z. Veratramine modulates AP-1-dependent gene transcription by directly binding to programmable DNA. Nucleic Acids Res 2018; 46:546-557. [PMID: 29237043 PMCID: PMC5778533 DOI: 10.1093/nar/gkx1241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
Because the transcription factor activator protein-1 (AP-1) regulates a variety of protein-encoding genes, it is a participant in many cellular functions, including proliferation, transformation, epithelial mesenchymal transition (EMT), and apoptosis. Inhibitors targeting AP-1 have potential use in the treatment of cancer and other inflammatory diseases. Here, we identify veratramine as a potent natural modulator of AP-1, which selectively binds to a specific site (TRE 5'-TGACTCA-3') of the AP-1 target DNA sequence and regulates AP-1-dependent gene transcription without interfering with cystosolic signaling cascades that might lead to AP-1 activation. Moreover, RNA-seq experiments demonstrate that veratramine does not act on the Hedgehog signaling pathway in contrast to its analogue, cyclopamine, and likely does not harbor the same teratogenicity and toxicity. Additionally, veratramine effectively suppresses EGF-induced AP-1 transactivation and transformation of JB6 P+ cells. Finally, we demonstrate that veratramine inhibits solar-ultraviolet-induced AP-1 activation in mice. The identification of veratramine and new findings in its specific regulation of AP-1 down stream genes pave ways to discovering and designing regulators to regulate transcription factor.
Collapse
Affiliation(s)
- Fang Bai
- Faculty of Chemical, Environmental, and Biological Science and Technology, Dalian University of Technology, Dalian 116023, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, China
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- China-US (Henan) Hormel Cancer Institute, No.127 Dongmin Road, Zhengzhou 450008, China
| | - Huiliang Li
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jiawei Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junsheng Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- China-US (Henan) Hormel Cancer Institute, No.127 Dongmin Road, Zhengzhou 450008, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lili Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shoude Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Shan
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weidong Zhang
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Honglin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- China-US (Henan) Hormel Cancer Institute, No.127 Dongmin Road, Zhengzhou 450008, China
| |
Collapse
|
31
|
Son DJ, Zheng J, Jung YY, Hwang CJ, Lee HP, Woo JR, Baek SY, Ham YW, Kang MW, Shong M, Kweon GR, Song MJ, Jung JK, Han SB, Kim BY, Yoon DY, Choi BY, Hong JT. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain. Am J Cancer Res 2017; 7:4632-4642. [PMID: 29158850 PMCID: PMC5695154 DOI: 10.7150/thno.18630] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo. It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.
Collapse
|
32
|
Alqinyah M, Hooks SB. Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell Signal 2017; 42:77-87. [PMID: 29042285 DOI: 10.1016/j.cellsig.2017.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Regulators of G protein signaling (RGS) are a family of proteins classically known to accelerate the intrinsic GTPase activity of G proteins, which results in accelerated inactivation of heterotrimeric G proteins and inhibition of G protein coupled receptor signaling. RGS proteins play major roles in essential cellular processes, and dysregulation of RGS protein expression is implicated in multiple diseases, including cancer, cardiovascular and neurodegenerative diseases. The expression of RGS proteins is highly dynamic and is regulated by epigenetic, transcriptional and post-translational mechanisms. This review summarizes studies that report dysregulation of RGS protein expression in disease states, and presents examples of drugs that regulate RGS protein expression. Additionally, this review discusses, in detail, the transcriptional and post-transcriptional mechanisms regulating RGS protein expression, and further assesses the therapeutic potential of targeting these mechanisms. Understanding the molecular mechanisms controlling the expression of RGS proteins is essential for the development of therapeutics that indirectly modulate G protein signaling by regulating expression of RGS proteins.
Collapse
Affiliation(s)
- Mohammed Alqinyah
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
33
|
Pramanik B, Ahmed S, Roy R, Das BK, Singha N, Das D. A DNA-NDI Hybrid to Efficiently Detect Histone in Parts per Trillion (ppt) Level. ChemistrySelect 2017. [DOI: 10.1002/slct.201701888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039
| | - Sahnawaz Ahmed
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039
| | - Rupam Roy
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039
| | - Basab K. Das
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039
| | - Nilotpal Singha
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039
| | - Debapratim Das
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039
| |
Collapse
|
34
|
Fontaine F, Overman J, Moustaqil M, Mamidyala S, Salim A, Narasimhan K, Prokoph N, Robertson AAB, Lua L, Alexandrov K, Koopman P, Capon RJ, Sierecki E, Gambin Y, Jauch R, Cooper MA, Zuegg J, Francois M. Small-Molecule Inhibitors of the SOX18 Transcription Factor. Cell Chem Biol 2017; 24:346-359. [PMID: 28163017 DOI: 10.1016/j.chembiol.2017.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity.
Collapse
Affiliation(s)
- Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Moustaqil
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Sreeman Mamidyala
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Nina Prokoph
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Avril A B Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda Lua
- Protein Expression Facility, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Sierecki
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Yann Gambin
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
35
|
Lee TH, Park S, Yoo G, Jang C, Kim MH, Kim SH, Kim SY. Demethyleugenol β-Glucopyranoside Isolated from Agastache rugosa Decreases Melanin Synthesis via Down-regulation of MITF and SOX9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7733-7742. [PMID: 27673705 DOI: 10.1021/acs.jafc.6b03256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Agastache rugosa (Fisch. & C. A. Mey.) Kuntze has been well-known for its antioxidative properties. This study investigated the anti-melanogenesis effect of demethyleugenol β-d-glucopyranoside (1) from A. rugosa by studying molecular regulation of melanogenesis in melan-a mouse melanocytes and normal human epidermal melanocytes (NHEMs) and in in vivo models. The SRY (sex-determining region on the Y chromosome)-related high-mobility group (HMG) box 9 (SOX9), one of the critical factors that affect skin pigmentation, is up-regulated. Interestingly, 1 down-regulated the expression of SOX9 and microphthalmia-associated transcription factor (MITF). Reduction of these two transcription factors resulted in a decrease in melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase. As a result, 1 significantly inhibited melanin synthesis in melan-a mouse melanocytes and NHEMs. In addition, the anti-melanogenic effect of 1 was confirmed in zebrafish and reconstructed skin tissue models. In conclusion, 1, as a potent SOX9 regulator, ameliorates skin pigmentation.
Collapse
Affiliation(s)
- Taek Hwan Lee
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - SeonJu Park
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Guijae Yoo
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Cheongyun Jang
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi-Hyun Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center , Incheon 21565, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
36
|
Zhang JT, Liu JY. Drugging the "undruggable" DNA-binding domain of STAT3. Oncotarget 2016; 7:66324-66325. [PMID: 27661130 PMCID: PMC5341805 DOI: 10.18632/oncotarget.12181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jian-Ting Zhang
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
37
|
iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets. Molecules 2016; 21:E95. [PMID: 26797600 PMCID: PMC6274413 DOI: 10.3390/molecules21010095] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022] Open
Abstract
Knowledge of protein-protein interactions and their binding sites is indispensable for in-depth understanding of the networks in living cells. With the avalanche of protein sequences generated in the postgenomic age, it is critical to develop computational methods for identifying in a timely fashion the protein-protein binding sites (PPBSs) based on the sequence information alone because the information obtained by this way can be used for both biomedical research and drug development. To address such a challenge, we have proposed a new predictor, called iPPBS-Opt, in which we have used: (1) the K-Nearest Neighbors Cleaning (KNNC) and Inserting Hypothetical Training Samples (IHTS) treatments to optimize the training dataset; (2) the ensemble voting approach to select the most relevant features; and (3) the stationary wavelet transform to formulate the statistical samples. Cross-validation tests by targeting the experiment-confirmed results have demonstrated that the new predictor is very promising, implying that the aforementioned practices are indeed very effective. Particularly, the approach of using the wavelets to express protein/peptide sequences might be the key in grasping the problem's essence, fully consistent with the findings that many important biological functions of proteins can be elucidated with their low-frequency internal motions. To maximize the convenience of most experimental scientists, we have provided a step-by-step guide on how to use the predictor's web server (http://www.jci-bioinfo.cn/iPPBS-Opt) to get the desired results without the need to go through the complicated mathematical equations involved.
Collapse
|
38
|
Patel S, Chueng STD, Yin PT, Dardir K, Song Z, Pasquale N, Kwan K, Sugiyama H, Lee KB. Induction of stem-cell-derived functional neurons by NanoScript-based gene repression. Angew Chem Int Ed Engl 2015; 54:11983-8. [PMID: 26292201 PMCID: PMC5568028 DOI: 10.1002/anie.201504902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/22/2023]
Abstract
Even though gene repression is a powerful approach to exogenously regulate cellular behavior, developing a platform to effectively repress targeted genes, especially for stem-cell applications, remains elusive. Herein, we introduce a nanomaterial-based platform that is capable of mimicking the function of transcription repressor proteins to downregulate gene expression at the transcriptional level for enhancing stem-cell differentiation. We developed the "NanoScript" platform by integrating multiple gene repression molecules with a nanoparticle. First, we show a proof-of-concept demonstration using a GFP-specific NanoScript to knockdown GFP expression in neural stem cells (NSCs-GFP). Then, we show that a Sox9-specific NanoScript can repress Sox9 expression to initiate enhanced differentiation of NSCs into functional neurons. Overall, the tunable properties and gene-knockdown capabilities of NanoScript enables its utilization for gene-repression applications in stem cell biology.
Collapse
Affiliation(s)
- Sahishnu Patel
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA) http://kblee.rutgers.edu/
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA) http://kblee.rutgers.edu/
| | - Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Kholud Dardir
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA) http://kblee.rutgers.edu/
| | - Zhichao Song
- Department of Cell Biology & Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Nicholas Pasquale
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA) http://kblee.rutgers.edu/
| | - Kelvin Kwan
- Department of Cell Biology & Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8501 (Japan)
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA) http://kblee.rutgers.edu/.
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA).
| |
Collapse
|
39
|
Patel S, Chueng STD, Yin PT, Dardir K, Song Z, Pasquale N, Kwan K, Sugiyama H, Lee KB. Induction of Stem-Cell-Derived Functional Neurons by NanoScript-Based Gene Repression. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Huang W, Dong Z, Chen Y, Wang F, Wang CJ, Peng H, He Y, Hangoc G, Pollok K, Sandusky G, Fu XY, Broxmeyer HE, Zhang ZY, Liu JY, Zhang JT. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene 2015; 35:783-92. [PMID: 26073084 DOI: 10.1038/onc.2015.215] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/26/2015] [Accepted: 05/10/2015] [Indexed: 12/30/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in malignant tumors and has important roles in multiple aspects of cancer aggressiveness. Thus targeting STAT3 promises to be an attractive strategy for treatment of advanced metastatic tumors. Although many STAT3 inhibitors targeting the SH2 domain have been reported, few have moved into clinical trials. Targeting the DNA-binding domain (DBD) of STAT3, however, has been avoided due to its 'undruggable' nature and potentially limited selectivity. In a previous study, we reported an improved in silico approach targeting the DBD of STAT3 that resulted in a small-molecule STAT3 inhibitor (inS3-54). Further studies, however, showed that inS3-54 has off-target effect although it is selective to STAT3 over STAT1. In this study, we describe an extensive structure and activity-guided hit optimization and mechanistic characterization effort, which led to identification of an improved lead compound (inS3-54A18) with increased specificity and pharmacological properties. InS3-54A18 not only binds directly to the DBD and inhibits the DNA-binding activity of STAT3 both in vitro and in situ but also effectively inhibits the constitutive and interleukin-6-stimulated expression of STAT3 downstream target genes. InS3-54A18 is completely soluble in an oral formulation and effectively inhibits lung xenograft tumor growth and metastasis with little adverse effect on animals. Thus inS3-54A18 may serve as a potential candidate for further development as anticancer therapeutics targeting the DBD of human STAT3 and DBD of transcription factors may not be 'undruggable' as previously thought.
Collapse
Affiliation(s)
- W Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Z Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - F Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - C J Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H Peng
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Pollok
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G Sandusky
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pathology and Molecular Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - X-Y Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Z-Y Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J-Y Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - J-T Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
41
|
Abstract
Deciphering mechanisms of drug resistance is crucial to winning the battle against cancer. A new study points to an unexpected function of YAP in drug resistance and illuminates its potential role as a therapeutic target.
Collapse
|
42
|
Fang L, Yao G, Pan Z, Wu C, Wang HS, Burley GA, Su W. Fully Automated Synthesis of DNA-Binding Py-Im Polyamides Using a Triphosgene Coupling Strategy. Org Lett 2014; 17:158-61. [DOI: 10.1021/ol503388a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lijing Fang
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Guiyang Yao
- Key Laboratory for the Chemistry and Molecular Engineer of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhengyin Pan
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Chunlei Wu
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Heng-Shan Wang
- Key Laboratory for the Chemistry and Molecular Engineer of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Wu Su
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
43
|
Huang W, Dong Z, Wang F, Peng H, Liu JY, Zhang JT. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem Biol 2014; 9:1188-96. [PMID: 24661007 PMCID: PMC4033648 DOI: 10.1021/cb500071v] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Signal transducer and activator of
transcription 3 (STAT3) plays
important roles in multiple aspects of cancer aggressiveness including
migration, invasion, survival, self-renewal, angiogenesis, and tumor
cell immune evasion by regulating the expression of multiple downstream
target genes. STAT3 is constitutively activated in many malignant
tumors and its activation is associated with high histological grade
and advanced cancer stages. Thus, inhibiting STAT3 promises an attracting
strategy for treatment of advanced and metastatic cancers. Herein,
we identified a STAT3 inhibitor, inS3-54, by targeting the DNA-binding
domain of STAT3 using an improved virtual screening strategy. InS3-54
preferentially suppresses proliferation of cancer over non-cancer
cells and inhibits migration and invasion of malignant cells. Biochemical
analyses show that inS3-54 selectively inhibits STAT3 binding to DNA
without affecting the activation and dimerization of STAT3. Furthermore,
inS3-54 inhibits expression of STAT3 downstream target genes and STAT3
binding to chromatin in situ. Thus, inS3-54 represents a novel probe
for development of specific inhibitors targeting the DNA-binding domain
of STAT3 and a potential therapeutic for cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jing-Yuan Liu
- Department
of Computation and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| | | |
Collapse
|
44
|
Leung CH, Zhong HJ, Chan DSH, Ma DL. Bioactive iridium and rhodium complexes as therapeutic agents. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.034] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Heffern MC, Yamamoto N, Holbrook RJ, Eckermann AL, Meade TJ. Cobalt derivatives as promising therapeutic agents. Curr Opin Chem Biol 2012; 17:189-96. [PMID: 23270779 DOI: 10.1016/j.cbpa.2012.11.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 01/08/2023]
Abstract
Inorganic complexes are versatile platforms for the development of potent and selective pharmaceutical agents. Cobalt possesses a diverse array of properties that can be manipulated to yield promising drug candidates. Investigations into the mechanism of cobalt therapeutic agents can provide valuable insight into the physicochemical properties that can be harnessed for drug development. This review presents examples of bioactive cobalt complexes with special attention to their mechanisms of action. Specifically, cobalt complexes that elicit biological effects through protein inhibition, modification of drug activity, and bioreductive activation are discussed. Insights gained from these examples reveal features of cobalt that can be rationally tuned to produce therapeutics with high specificity and improved efficacy for the biomolecule or pathway of interest.
Collapse
Affiliation(s)
- Marie C Heffern
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, United States
| | | | | | | | | |
Collapse
|