1
|
Brunchault MR, Hesse AM, Schaeffer J, Fröhlich A, Saintpierre A, Decourt C, Combes F, Nawabi H, Couté Y, Belin S. Proteomics-based characterization of ribosome heterogeneity in adult mouse organs. Cell Mol Life Sci 2025; 82:175. [PMID: 40272563 PMCID: PMC12022211 DOI: 10.1007/s00018-025-05708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
The translation process, leading to protein synthesis from mRNA, has been long thought to be invariable in all cellular organisms. Increasing evidence shows that it is finely regulated by variable features of the translation machinery. Notably, ribosomes, the functional units of protein synthesis, are suggested to display variations in their composition, depending on the developmental stage, cell type or physio-pathological context, thus hinting a new level of actionable regulation of gene expression. Yet, a comprehensive map of the heterogeneity of ribosome composition in ribosomal proteins (RPs) in different organs and tissues is not available. In this work, we explored tissue-specific ribosome heterogeneity using mass spectrometry-based quantitative proteomic characterization of ribosomal fractions purified from 14 adult mouse organs and tissues. We performed crossed clustering and statistical analyses of RP composition to highlight stable, variable and tissue-specific RPs across organs and tissues. Focusing on specific RPs, we validated their varying abundances using a targeted proteomic approach and western blot analyses, providing further insights into the tissue-specific ribosome RP signature. Finally, we investigated the origin of RP variations in ribosome fraction of the different tissues, by comparing RP relative amounts in our ribosomal proteomic dataset with their corresponding transcript abundances in three independent transcriptomic datasets. Interestingly, we found that, in some tissues, the RP abundance in purified ribosomes does not always correlate with the corresponding RP transcript level, arguing for a translational regulation of RP expression, and/or a regulated incorporation of RPs into ribosomes. Altogether, our data support the notion of a tissue-specific RP signature of ribosomes, which opens avenues to study how specific ribosomal composition provides an additional level of regulation to control gene expression in different tissues and organs.
Collapse
Affiliation(s)
- Marie R Brunchault
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Julia Schaeffer
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- IBDM, CNRS, UMR 7288, Aix-Marseille Université, Marseille, France
| | - Albrecht Fröhlich
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Ana Saintpierre
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Charlotte Decourt
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Florence Combes
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France.
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
2
|
Mampay M, Al‐Hity G, Rolle SO, Alzboon W, Stewart NA, Flint MS, Sheridan GK. Impact of Psychological Stress and Spontaneous Tumour Regression on the Hippocampal Proteome in a Mouse Model of Breast Cancer. J Neurochem 2025; 169:e70052. [PMID: 40172096 PMCID: PMC11963485 DOI: 10.1111/jnc.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Cognitive impairment is common in people diagnosed with breast cancer, but the molecular mechanisms that underlie maladaptive changes in the brain are unknown. The psychological stress of a cancer diagnosis is certainly a contributing factor. Here, we investigated alterations in the hippocampal proteome in response to both cancer and psychological stress using label-free quantitative mass spectrometry techniques. An orthotopic syngeneic model of triple-negative breast cancer (TNBC) was established by injecting Py230 cells into the mammary fat pads of female C57Bl/6 mice. Half of the mice were subjected to a daily restraint stress paradigm. Mice that experienced both cancer and restraint stress lost weight and displayed larger tumours compared to non-stressed mice. Their urinary corticosterone levels were also elevated, as measured by enzyme-linked immunosorbent assay. Non-stressed tumour-bearing mice displayed higher levels of TNFα in the prefrontal cortex (PFC) compared to stressed mice with cancer. Flow cytometry results suggested that the CD4+/CD8+ T cell ratios were also raised in non-stressed tumour-bearing mice compared to both controls and stressed mice with TNBC. Bioinformatic analysis of hippocampal proteomes indicated that cancer alone causes reduced mitochondrial respiration and ATP synthesis, as well as impaired glutamate recycling and synaptic plasticity. Moreover, daily stress in TNBC mice caused further mitochondrial dysfunction, increased oxidative phosphorylation, and altered lipid metabolism. Importantly, over half of the mammary tumours that initially developed spontaneously regressed after 7-9 weeks in these young immunocompetent mice. Tumour regression inhibited TNFα increases in the PFC. However, the hippocampal proteomes of tumour-bearing mice were largely similar to mice in which tumours regressed, suggesting that spontaneous regression of breast cancer confers lasting physiological dysregulations that impact hippocampal protein expression. This study in mice may help to identify molecular mechanisms responsible for long-term memory impairments in cancer survivors and reveal novel drug targets for cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Applied SciencesUniversity of BrightonBrightonUK
| | - Gheed Al‐Hity
- School of Applied SciencesUniversity of BrightonBrightonUK
| | | | - Walla Alzboon
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | | | | |
Collapse
|
3
|
Thai A, Doescher C, Kamal N, Teramoto D, Fung C, Cha E, La V, Cheng P, Sedighim S, Keklikian A, Thankam FG. Single cell transcriptomics profiling of the stromal cells in the pathologic association of ribosomal proteins in the ischemic myocardium and epicardial fat. Cell Tissue Res 2025; 399:173-192. [PMID: 39641799 PMCID: PMC11787193 DOI: 10.1007/s00441-024-03933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Sustenance of ischemia in the surviving cardiac tissue following myocardial infarction (MI) elicits a proinflammatory milieu resulting in subsequent pathological episodes. Also, the activation and release of ribosomal proteins under ischemic insults have been unveiled; however, their extra ribosomal functions are unknown. We identified the ribosomal proteins including RPL10A, RPL14, RPL30, RPS18, FAU-40 (RPS30), and RPSA (Laminin Receptor, LR) in the vesicles of ischemia challenged epicardial adipose tissue derived stromal cells (EATDS). The present study aimed to assess the association of these proteins in the epicardial adipose tissues (EAT) and left ventricular (LV) myocardium and isolated stromal cells (EATDS and LVSCs) from hyperlipidemic (HL), MI and coronary artery bypass graft (CABG) swine models. The findings revealed an upregulation of RPL10A, RPL14, RPL30, RPS18, RPS30, and RPSA in the LV tissues of CABG and HL swine with a concomitant reduction in the MI group. RPS30 displayed similar upregulation in EAT, whereas the expression of other ribosomal proteins was not significantly altered. Additionally, the ischemic LVSCs and EATDS displayed altered expression status of these genes compared to the control. Also, the RPS18 + , RPL30 + and RPSA + LVSCs favored ischemia and revealed similar anti-inflammatory and regenerative sub-phenotypes reflecting the protective/survival mechanisms. Further understanding regarding the underlying molecular mechanisms and functions of these ribosomal proteins offers immense translational opportunities in the better management of ischemic cardiac complications.
Collapse
Affiliation(s)
- An Thai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Christian Doescher
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Nawfal Kamal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Darren Teramoto
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Cameron Fung
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Ed Cha
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vy La
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Pauline Cheng
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Sharona Sedighim
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Angelo Keklikian
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
4
|
Wang H, Li L, Zhou G, Wang L, Wu Z. RPL39 Was Associated With Sex Differences in Pulmonary Arterial Hypertension. Can Respir J 2025; 2025:7139235. [PMID: 39957991 PMCID: PMC11824382 DOI: 10.1155/carj/7139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a malignant cardiovascular disease with a complex etiology, in which several types of cells play important roles. Sex differences in disease susceptibility and survival have been observed in PAH patients, but few studies have analyzed the effect of changes in cell type and number on sex differences in PAH at the single-cell level. In this study, we performed a series of analyses on GSE169471 and GSE228644 datasets and found significant changes in the ratio of several types of cells in male PAH lung tissues. Surprisingly, we found that the ratio of macrophages in male PAH samples was 7 times higher than that in females. Consistently, the ratio of M1 macrophages was also significantly increased in male PAH samples. The different expression genes (DEGs) in macrophages were mainly involved in the ribosome pathway, which is closely related to cell proliferation. Inhibition of ribosomal protein L39 (RPL39), a core gene in the ribosome pathway, can inhibit macrophage proliferation and attenuate the sex differences in PAH. In conclusion, our study suggests that ribosome pathway-associated cell proliferation of macrophages might be associated with sex differences in PAH.
Collapse
Affiliation(s)
- Haixia Wang
- National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (Co-Construction), Department of Scientific Research, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- Department of Preventive Medicine, Shihezi University Medical School Shihezi, Xinjiang, China
| | - Ling Li
- Department of Preventive Medicine, Shihezi University Medical School Shihezi, Xinjiang, China
| | - Guangyuan Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Wang
- Department of Respiratory and Critical Care Medicine, Miyun Teaching Hospital of Capital Medical University, Beijing, China
| | - Zeang Wu
- National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (Co-Construction), Department of Scientific Research, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Geisen ABC, Santana Acevedo N, Oshima J, Dittrich M, Potabattula R, Haaf T. rDNA Copy Number Variation and Methylation During Normal and Premature Aging. Aging Cell 2025:e14497. [PMID: 39853912 DOI: 10.1111/acel.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Ribosomal RNA is the main component of the ribosome, which is essential for protein synthesis. The diploid human genome contains several hundred copies of the rDNA transcription unit (TU). Droplet digital PCR and deep bisulfite sequencing were used to determine the absolute copy number (CN) and the methylation status of individual rDNA TU in blood samples of healthy individuals. The absolute CN ranged from 243 to 895 (median 469). There was no difference in absolute CN between males and females and no gain or loss of copies with age (15-71 years). The number of rDNA TU with a completely unmethylated (0%) or lowly methylated (1%-10%) promoter region significantly decreased, whereas the number of copies with higher (11%-100%) methylation increased with age. The number of presumably active TU with a hypomethylated (0%-10%) promoter varied from 94 to 277 (median 180), independent from absolute CN. In contrast, the number of inactive hypermethylated (11%-100%) copies strongly increased with absolute CN. Promoter hypermethylation compensates to some extent for the enormous CN variation among individuals. Patients with Werner syndrome, a premature aging syndrome displayed the same CN variation and age-related methylation changes as controls. The role of rDNA CN variation as a modulating factor in human health and disease is largely unexplored. In particular, very low and high CN may be associated with increased disease risk.
Collapse
Affiliation(s)
- Alva B C Geisen
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
6
|
Matsuda Y, Masuda M, Uematsu H, Sugino A, Ooka H, Kudo S, Fujii S, Asai M, Okamoto S, Ishihara T, Nanto K, Tsujimura T, Hata Y, Higashino N, Nakao S, Kusuda M, Mano T. Association between body size and atrial myopathy: Investigation using the prevalence of left atrial low-voltage areas. Heliyon 2025; 11:e41112. [PMID: 39758405 PMCID: PMC11699372 DOI: 10.1016/j.heliyon.2024.e41112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/20/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Background Left atrial low-voltage areas (LVAs) are known to be associated with atrial myopathy and atrial fibrillation (AF) recurrence after catheter ablation. However, the association between body size and prevalence of LVAs has not been fully elucidated. The purpose of this study was to clarify the association between body size and the prevalence of LVAs in patients with AF ablation. Methods In total, 1,479 (age, 68 ± 10 years; female, 500 [34 %]) consecutive patients who underwent initial AF ablation were enrolled. Body mass index (BMI), height and body weight were used as indicators of body size. BMI was divided into four groups, namely <18.5 kg/m2, 18.5-25.0 kg/m2, 25.0-30.0 kg/m2, ≥30.0 kg/m2. LVAs were defined as areas with bipolar voltage of <0.5 mV covering ≥5 cm2 of left atrium. Rhythm outcome following the catheter ablation procedure was followed for 24 months. Results LVAs were found in 349 (24 %) patients. A J-curve phenomenon was found between BMI or body weight and the prevalence of LVAs. In particular, BMI <18.5 kg/m2 was an independent predictor of LVAs (odds ratio, 1.9; 95 % confidence interval: 1.01-3.5; p = 0.046). Conversely, the prevalence of LVAs increased with decreasing height. For rhythm outcome, there was a significant difference in freedom from AF recurrence among groups stratified by BMI (p = 0.001). Conclusions A J-curve phenomenon existed between BMI or body weight and the prevalence of LVAs, which reflects atrial myopathy, in patients with AF ablation. In contrast, the prevalence of LVAs increased with decreasing height.
Collapse
Affiliation(s)
- Yasuhiro Matsuda
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Masaharu Masuda
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Hiroyuki Uematsu
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Ayako Sugino
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Hirotaka Ooka
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Satoshi Kudo
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Subaru Fujii
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Mitsutoshi Asai
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Shin Okamoto
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Takayuki Ishihara
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Kiyonori Nanto
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Takuya Tsujimura
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Yosuke Hata
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Naoko Higashino
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Sho Nakao
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Masaya Kusuda
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Toshiaki Mano
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| |
Collapse
|
7
|
Dansereau SJ, Cui H, Dartawan RP, Sheng J. The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies. Genes (Basel) 2025; 16:48. [PMID: 39858595 PMCID: PMC11765398 DOI: 10.3390/genes16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases. Given its broad range of interactions within the cell, RNA can be targeted by a therapeutic or modified as a pharmacologic scaffold for diseases such as nucleotide repeat disorders, infectious diseases, and cancer. RNA therapeutic techniques that have been researched include, but are not limited to, CRISPR/Cas gene editing, anti-sense oligonucleotides (ASOs), siRNA, small molecule treatments, and RNA aptamers. The knowledge gleaned from studying RNA-centric mechanisms will inevitably improve the design of RNA-based therapeutics. Building on this understanding, we explore the physiological diversity of RNA functions, examine specific dysfunctions, such as splicing errors and viral interactions, and discuss their therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA; (S.J.D.); (H.C.)
| |
Collapse
|
8
|
Shishkin SS. Moonlighting Proteins of Human and Some Other Eukaryotes. Evolutionary Aspects. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S36-S59. [PMID: 40164152 DOI: 10.1134/s0006297924602855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/02/2025]
Abstract
This review presents materials on formation of the concept of moonlighting proteins and general characteristics of different similar proteins. It is noted that the concept under consideration is based on the data on the existence in different organisms of individual genes, protein products of which have not one, but at least two fundamentally different functions, for example, depending on cellular or extracellular location. An important feature of these proteins is that their functions can be switched. As a result, in different cellular compartments or outside the cells, as well as under a number of other circumstances, one of the possible functions can be carried out, and under other conditions, another. It is emphasized that the significant interest in moonlighting proteins is due to the fact that information is currently accumulating about their involvement in many vital molecular processes (glycolysis, translation, transcription, replication, etc.). Alternative hypotheses on the evolutionary origin of moonlighting proteins are discussed.
Collapse
Affiliation(s)
- Sergei S Shishkin
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
9
|
Hong Y, Lin Q, Zhang Y, Liu J, Zheng Z. Research Progress of Ribosomal Proteins in Reproductive Development. Int J Mol Sci 2024; 25:13151. [PMID: 39684863 DOI: 10.3390/ijms252313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ribosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy. Despite these findings, the precise mechanisms through which ribosomal proteins influence reproductive development via these cellular activities remain elusive. Therefore, elucidating the mechanisms of action is essential for a comprehensive understanding of the role and function of ribosomal proteins in reproductive development. This paper systematically reviews the progress in research on nucleolar stress, oxidative stress, cell proliferation and autophagy concerning ribosomal proteins during reproductive development. Furthermore, we explore the potential of ribosomal proteins as diagnostic markers for various diseases. Additionally, we propose the development of drugs and therapies targeting ribosomal proteins, underscoring the potential for novel medical interventions in the context of reproductive health.
Collapse
Affiliation(s)
- Yuqi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Tomkova K, Roman M, Adebayo AS, Sheikh S, Yusoff S, Gulston M, Joel-David L, Lai FY, Murgia A, Eagle-Hemming B, Aujla H, Chad T, Richardson GD, Griffin JL, Murphy GJ, Woźniak MJ. Multimorbidity is associated with myocardial DNA damage, nucleolar stress, dysregulated energy metabolism, and senescence in cardiovascular disease. NPJ AGING 2024; 10:58. [PMID: 39604391 PMCID: PMC11603063 DOI: 10.1038/s41514-024-00183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
This study investigates why individuals with multimorbidity-two or more chronic conditions-are more prone to adverse outcomes after surgery. In our cohort, ninety-eight of 144 participants had multimorbidity. The myocardial transcriptome and metabolites involved in energy production were measured in 53 and 57 sequential participants, respectively. Untargeted analysis of the metabolome in blood and myocardium was performed in 30 sequential participants. Mitochondrial respiration in circulating mononuclear cells was measured in 70 participants. Results highlighted four main biological processes associated with multimorbidity: DNA damage with epigenetic changes, mitochondrial energy disruption, cellular aging (senescence) and innate immune response. Histone 2B, its ubiquitination enzymes and AKT3 were upregulated in the multimorbid group. Plasma senescence-associated proteins (IL-1β, GM-CSF) increased with more comorbidities. DNA damage and nucleolar instability were specifically apparent in multimorbid myocardium. We conclude that multimorbidity in cardiovascular patients accelerates biological aging, making them more vulnerable to metabolic stress.
Collapse
Affiliation(s)
- Kristina Tomkova
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Marius Roman
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Adewale S Adebayo
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Sophia Sheikh
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Syabira Yusoff
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
- Cardiovascular Sciences, King's College London, London, UK
| | - Melanie Gulston
- Department of Biochemistry and Cambridge Systems Biology Centre, The Sanger Building, 80 Tennis Court Road, Cambridge, UK
| | - Lathishia Joel-David
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Florence Y Lai
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, The Sanger Building, 80 Tennis Court Road, Cambridge, UK
| | - Bryony Eagle-Hemming
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Hardeep Aujla
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Tom Chad
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, The Sanger Building, 80 Tennis Court Road, Cambridge, UK
- University of Aberdeen, King's College, Aberdeen, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Marcin J Woźniak
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
11
|
Zuo S, Shi H, Zu Y, Wang J, Zheng X, Zhang K, Dai J, Zhao Y. Reduced transcriptome analysis in zebrafish uncovers disruptors of spliceosome and ribosome biosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175967. [PMID: 39226955 DOI: 10.1016/j.scitotenv.2024.175967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Abnormal biosynthesis of spliceosomes and ribosomes can lead to their dysfunction, which in turn disrupts protein synthesis and results in various diseases. While genetic factors have been extensively studied, our understanding of how environmental compounds interfere with spliceosome and ribosome biosynthesis remains limited. In the present study, we employed a Reduced Transcriptome Analysis (RTA) approach, integrating large-scale transcriptome data sets of zebrafish and compiling a specific zebrafish gene panel focusing on the spliceosome and ribosome, to elucidate the potential disruptors targeting their biosynthesis. Transcriptomic data sets for 118 environmental substances and 1400 related gene expression profiles were integrated resulting in 513 exposure signatures. Among these substances, several categories including PCB126, transition metals Lanthanum (La) and praseodymium (Pr), heavy metals Cd2+ and AgNO3 and atrazine were highlighted for inducing the significant transcriptional alterations. Furthermore, we found that the transcriptional patterns were distinct between categories, yet overlapping patterns were generally observed within each group. For instance, over 82 % differentially expressed ribosomal genes were shared between La and Pr within the equivalent concentration range. Additionally, transcriptional complexities were also evident across various organs and developmental stages of zebrafish, with notable differences in the inhibition of the transcription of various spliceosome subunits. Overall, our results provide novel insights into the understanding of the adverse effects of environmental compounds, thereby contributing to their environmental risk assessments.
Collapse
Affiliation(s)
- Shaoqi Zuo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Zu
- International Research Center for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Jie Wang
- International Research Center for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuehan Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
12
|
Almutairy AF, Alhamed AS, Grant SG, Falso MJ, Day BW, Simmons CR, Latimer JJ. Cancer-specific alterations in nuclear matrix proteins determined by multi-omics analyses of ductal carcinoma in situ. Front Oncol 2024; 14:1406946. [PMID: 39165691 PMCID: PMC11333849 DOI: 10.3389/fonc.2024.1406946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Breast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC. Methods Our objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant culture using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS. Results Sixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were increasingly upregulated with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques. Discussion These genes should form the basis of, or contribute to, a molecular diagnostic panel that could identify DCIS lesions likely to be indolent and therefore not requiring aggressive treatment.
Collapse
Affiliation(s)
- Ali F. Almutairy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Abdullah S. Alhamed
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Pharmacology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Stephen G. Grant
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miranda J. Falso
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Billy W. Day
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colton R. Simmons
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jean J. Latimer
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Obstetrics and Gynecology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Liu J, Ito M, Liu L, Nakashima K, Satoh S, Konno A, Suzuki T. Involvement of ribosomal protein L17 and Y-box binding protein 1 in the assembly of hepatitis C virus potentially via their interaction with the 3' untranslated region of the viral genome. J Virol 2024; 98:e0052224. [PMID: 38899899 PMCID: PMC11265288 DOI: 10.1128/jvi.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The 3' untranslated region (3'UTR) of the hepatitis C virus (HCV) RNA genome, which contains a highly conserved 3' region named the 3'X-tail, plays an essential role in RNA replication and promotes viral IRES-dependent translation. Although our previous work has found a cis-acting element for genome encapsidation within 3'X, there is limited information on the involvement of the 3'UTR in particle formation. In this study, proteomic analyses identified host cell proteins that bind to the 3'UTR containing the 3'X region but not to the sequence lacking the 3'X. Further characterization showed that RNA-binding proteins, ribosomal protein L17 (RPL17), and Y-box binding protein 1 (YBX1) facilitate the efficient production of infectious HCV particles in the virus infection cells. Using small interfering RNA (siRNA)-mediated gene silencing in four assays that distinguish between the various stages of the HCV life cycle, RPL17 and YBX1 were found to be most important for particle assembly in the trans-packaging assay with replication-defective subgenomic RNA. In vitro assays showed that RPL17 and YBX1 bind to the 3'UTR RNA and deletion of the 3'X region attenuates their interaction. Knockdown of RPL17 or YBX1 resulted in reducing the amount of HCV RNA co-precipitating with the viral Core protein by RNA immunoprecipitation and increasing the relative distance in space between Core and double-stranded RNA by confocal imaging, suggesting that RPL17 and YBX1 potentially affect HCV RNA-Core interaction, leading to efficient nucleocapsid assembly. These host factors provide new clues to understanding the molecular mechanisms that regulate HCV particle formation. IMPORTANCE Although basic research on the HCV life cycle has progressed significantly over the past two decades, our understanding of the molecular mechanisms that regulate the process of particle formation, in particular encapsidation of the genome or nucleocapsid assembly, has been limited. We present here, for the first time, that two RNA-binding proteins, RPL17 and YBX1, bind to the 3'X in the 3'UTR of the HCV genome, which potentially acts as a packaging signal, and facilitates the viral particle assembly. Our study revealed that RPL17 and YBX1 exert a positive effect on the interaction between HCV RNA and Core protein, suggesting that the presence of both host factors modulate an RNA structure or conformation suitable for packaging the viral genome. These findings help us to elucidate not only the regulatory mechanism of the particle assembly of HCV but also the function of host RNA-binding proteins during viral infection.
Collapse
Affiliation(s)
- Jie Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Liang Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shinya Satoh
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Alu Konno
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
14
|
Liu L, Wu Y, Liu K, Zhu M, Guang S, Wang F, Liu X, Yao X, He J, Fu C. The absence of the ribosomal protein Rpl2702 elicits the MAPK-mTOR signaling to modulate mitochondrial morphology and functions. Redox Biol 2024; 73:103174. [PMID: 38701646 PMCID: PMC11088351 DOI: 10.1016/j.redox.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.
Collapse
Affiliation(s)
- Ling Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Mengdan Zhu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Shouhong Guang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fengsong Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
15
|
Solheim ET, Gerking Y, Kråkenes T, Herdlevær I, Birkeland E, Totland C, Dick F, Vedeler CA. Multi-omics profiling reveals dysregulated ribosome biogenesis and impaired cell proliferation following knockout of CDR2L. BMC Cancer 2024; 24:645. [PMID: 38802745 PMCID: PMC11129367 DOI: 10.1186/s12885-024-12399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.
Collapse
Affiliation(s)
- Eirik Tveit Solheim
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway.
| | - Yola Gerking
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
| | - Torbjørn Kråkenes
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Ida Herdlevær
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Cecilie Totland
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Fiona Dick
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
| | - Christian Alexander Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Feng J, Li Y, Wang C, Wang Y, Wan Y, Zheng M, Chen T, Xiao X. Peripheral blood transcriptomic analysis identifies potential inflammation and immune signatures for central retinal artery occlusion. Sci Rep 2024; 14:7398. [PMID: 38548806 PMCID: PMC10978867 DOI: 10.1038/s41598-024-57052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Central retinal artery occlusion (CRAO) is an acute retinal ischaemic disease, but early diagnosis is challenging due to a lack of biomarkers. Blood samples were collected from CRAO patients and cataract patients. Gene expression profiles were distinct between arterial/venous CRAO blood (A-V group) and venous CRAO/control blood (V-C group) samples. Differentially expressed genes (DEGs) were subjected to GO and KEGG enrichment analyses. Hub genes were identified by Cytoscape and used to predict gene interactions via GeneMANIA. Immune cell infiltration was analysed by CIBERSORT. More than 1400 DEGs were identified in the A-V group and 112 DEGs in the V-C group compared to controls. The DEGs in both groups were enriched in the ribosome pathway, and those in the V-C group were also enriched in antigen processing/MHC pathways. Network analysis identified ribosomal proteins (RPS2 and RPS5) as the core genes of the A-V group and MHC genes (HLA-F) as the core genes of the V-C group. Coexpression networks showed ribosomal involvement in both groups, with additional immune responses in the V-C group. Immune cell analysis indicated increased numbers of neutrophils and T cells. Ribosomal and MHC-related genes were identified as potential CRAO biomarkers, providing research directions for prevention, diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Wu X, Pan X, Zhou Y, Pan J, Kang J, Yu JJJ, Cao Y, Quan C, Gong L, Li Y. Identification of key genes for atherosclerosis in different arterial beds. Sci Rep 2024; 14:6543. [PMID: 38503760 PMCID: PMC10951242 DOI: 10.1038/s41598-024-55575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Atherosclerosis (AS) is the pathologic basis of various cardiovascular and cerebrovascular events, with a high degree of heterogeneity among different arterial beds. However, mechanistic differences between arterial beds remain unexplored. The aim of this study was to explore key genes and potential mechanistic differences between AS in different arterial beds through bioinformatics analysis. Carotid atherosclerosis (CAS), femoral atherosclerosis (FAS), infrapopliteal atherosclerosis (IPAS), abdominal aortic atherosclerosis (AAS), and AS-specific differentially expressed genes (DEGs) were screened from the GSE100927 and GSE57691 datasets. Immune infiltration analysis was used to identify AS immune cell infiltration differences. Unsupervised cluster analysis of AS samples from different regions based on macrophage polarization gene expression profiles. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes with AS. Hub genes were then screened by LASSO regression, SVM-REF, and single-gene differential analysis, and a nomogram was constructed to predict the risk of AS development. The results showed that differential expression analysis identified 5, 4, 121, and 62 CAS, FAS, IPAS, AAS-specific DEGs, and 42 AS-common DEGs, respectively. Immune infiltration analysis demonstrated that the degree of macrophage and mast cell enrichment differed significantly in different regions of AS. The CAS, FAS, IPAS, and AAS could be distinguished into two different biologically functional and stable molecular clusters based on macrophage polarization gene expression profiles, especially for cardiomyopathy and glycolipid metabolic processes. Hub genes for 6 AS (ADAP2, CSF3R, FABP5, ITGAX, MYOC, and SPP1), 4 IPAS (CLECL1, DIO2, F2RL2, and GUCY1A2), and 3 AAS (RPL21, RPL26, and RPL10A) were obtained based on module gene, gender stratification, machine learning algorithms, and single-gene difference analysis, respectively, and these genes were effective in differentiating between different regions of AS. This study demonstrates that there are similarities and heterogeneities in the pathogenesis of AS between different arterial beds.
Collapse
Affiliation(s)
- Xize Wu
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - J J Jiajia Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Yingyue Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Chao Quan
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
18
|
Qin Y, Li T, An P, Ren Z, Xi J, Tang B. Important role of DNA methylation hints at significant potential in tuberculosis. Arch Microbiol 2024; 206:177. [PMID: 38494532 DOI: 10.1007/s00203-024-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, has persisted as a major global public health threat for millennia. Until now, TB continues to challenge efforts aimed at controlling it, with drug resistance and latent infections being the two main factors hindering treatment efficacy. The scientific community is still striving to understand the underlying mechanisms behind Mtb's drug resistance and latent infection. DNA methylation, a critical epigenetic modification occurring throughout an individual's growth and development, has gained attention following advances in high-throughput sequencing technologies. Researchers have observed abnormal DNA methylation patterns in the host genome during Mtb infection. Given the escalating issue of drug-resistant Mtb, delving into the role of DNA methylation in TB's development is crucial. This review article explores DNA methylation's significance in human growth, development and disease, and its role in regulating Mtb's evolution and infection processes. Additionally, it discusses potential applications of DNA methylation research in tuberculosis.
Collapse
Affiliation(s)
- Yuexuan Qin
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Tianyue Li
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Peiyan An
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Zhi Ren
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Jun Xi
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| | - Bikui Tang
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| |
Collapse
|
19
|
Purushothaman K, Crawford AD, Rocha SD, Göksu AB, Lange BM, Mydland LT, Vij S, Qingsong L, Øverland M, Press CM. Cyberlindnera jadinii yeast as a functional protein source: Modulation of immunoregulatory pathways in the intestinal proteome of zebrafish ( Danio rerio). Heliyon 2024; 10:e26547. [PMID: 38468924 PMCID: PMC10925985 DOI: 10.1016/j.heliyon.2024.e26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.
Collapse
Affiliation(s)
- Kathiresan Purushothaman
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Alexander D. Crawford
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio D.C. Rocha
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Aleksandar B. Göksu
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Byron Morales Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Shubha Vij
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, 387380, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Charles McL. Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Wu Y, Yao N, Du B, Zhu Y, Ji X, Lv C, Lai J. Ribosomal protein L22 like 1: a promising biomarker for lung adenocarcinoma. J Cancer 2024; 15:2549-2560. [PMID: 38577587 PMCID: PMC10988297 DOI: 10.7150/jca.91759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
No studies have reported the effect of ribosomal protein L22 like 1 (RPL22L1) in lung adenocarcinoma (LUAD). Therefore, we aimed to systematically investigate the role of RPL22L1 in LUAD. The expression of RPL22L1 was analyzed using TCGA, GEO, TIMER, UALCAN databases, and validated by immunohistochemistry (IHC). Gene methylation analysis was performed using the UALCAN, GSCA and MethSurv databases. The immune infiltrates were investigated using the Single Sample Gene Set Enrichment Analysis (ssGSEA), TIMER database, and TISCH database. The results demonstrated that RPL22L1 was up-regulated in LUAD, and verified by IHC. Kaplan-Meier analysis suggested that patients with high RPL22L1 expression had poor prognosis. Multivariate analysis confirmed that RPL22L1 was an independent prognostic factor. Furthermore, RPL22L1 overexpression was associated with hypomethylation, and two CpGs of RPL22L1 were significantly associated with prognosis. Up-regulated RPL22L1 was enriched in MYC targets, E2F targets, G2M checkpoint, mTORC1 signaling, cell cycle, and so on. Moreover, RPL22L1 expression was negatively correlated with immune cell infiltration, and patients with high RPL22L1 expression had lower immune, stromal, and estimate scores. Single-cell analysis suggested that RPL22L1 might have a potential function in the tumor microenvironment (TME) of LUAD. In conclusion, RPL22L1 may be a promising biomarker for LUAD.
Collapse
Affiliation(s)
- Yahua Wu
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Na Yao
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Bin Du
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Yingjiao Zhu
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Xiaohui Ji
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chengliu Lv
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| |
Collapse
|
21
|
Zhu Y, Yang X, Bai N, Liu Q, Yang J. AoRab7A interacts with AoVps35 and AoVps41 to regulate vacuole assembly, trap formation, conidiation, and functions of proteasomes and ribosomes in Arthrobotrys oligospora. Microbiol Res 2024; 280:127573. [PMID: 38103468 DOI: 10.1016/j.micres.2023.127573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Rab GTPases regulate vesicle trafficking in organisms and play crucial roles in growth and development. Arthrobotrys oligospora is a ubiquitous nematode-trapping (NT) fungus, it can form elaborate traps to capture nematodes. Our previous study found that deletion of Aorab7A abolished the trap formation and sporulation. Here, we investigated the regulatory mechanism of AoRab7A using transcriptomic, biochemical, and phenotypic comparisons. Transcriptome analysis, yeast library screening, and yeast two-hybrid assay identified two vacuolar protein sorting (Vps) proteins, AoVps41 and AoVps35, as putative targets of AoRab7A. The deletion of Aovps41 and Aovps35 caused considerable defects in multiple phenotypic traits, such as conidiation and trap formation. We further found a close connection between AoRab7A and Vps proteins in vesicle-vacuole fusion, which triggered vacuolar fragmentation. Further transcriptome analysis showed that AoRab7A and AoVps35 play essential roles in many cellular processes and components including proteasomes, autophagy, fatty acid degradation, and ribosomes in A. oligospora. Furthermore, we verified that AoRab7A, AoVps41, and AoVps35 are involved in ribosome and proteasome functions. The absence of these proteins inhibited the biosynthesis of nascent proteins and enhanced ubiquitination. Our findings suggest that AoRab7A interacts with AoVps41 and AoVps35 to mediate vacuolar fusion and influence lipid droplet accumulation, autophagy, and stress response. These proteins are especially required for the conidiation and trap development of A. oligospora.
Collapse
Affiliation(s)
- Yingmei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
22
|
Wang J, Guo X, Chen Y, Zhang W, Ren J, Gao A. The m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. Toxicology 2024; 503:153758. [PMID: 38367942 DOI: 10.1016/j.tox.2024.153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Benzene exposure leads to hematotoxicity, and epigenetic modification is considered to be a potential mechanism of benzene pathogenesis. As a newly discovered post-transcriptional modification, the roles of N6-methyladenosine (m6A) in benzene hematotoxicity are still unclear. m6A can only exert its gene regulatory function after being recognized by m6A reading proteins. In this study, we found that the expression of m6A reader IGF2BP1 decreased in benzene poisoning workers and in 20 μM benzene metabolite 1,4-BQ-treated AHH-1 cells. Further overexpression of IGF2BP1 in mice alleviated 50 ppm benzene-induced hematopoietic damage, suggesting that IGF2BP1 plays a critical role in benzene hematotoxicity. Next, we examined transcriptome-wide m6A methylation in vitro to search for target genes of IGF2BP1. We found that benzene metabolite 1,4-BQ treatment altered the m6A methylation levels of various genes. The comprehensive analysis of mRNA expression and m6A methylation uncovered that the hypomethylated Ribosomal Protein L36 (RPL36) and its consequent reduced expression impaired cell proliferation. Mechanically, m6A modification reduced RNA stability to down-regulate RPL36 expression. Moreover, overexpression of IGF2BP1 relieved RPL36 reduction and cell proliferation inhibition caused by benzene in vitro and in vivo by directly binding with RPL36 mRNA. In conclusion, the m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. IGF2BP1 and RPL36 may be key molecules and potential therapeutic targets for benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
23
|
Liu A, Chen C, Chen K, Shi Y, Grabowski RC, Qiu X. Effects of parental exposure to amitriptyline on the survival, development, behavior, and gene expression in zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169173. [PMID: 38064809 DOI: 10.1016/j.scitotenv.2023.169173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
In mammals, parental exposure to amitriptyline (AMI) has been proven to contribute to congenital disabilities in their offspring. However, no studies have paid attention to the adverse effects of parental exposure to amitriptyline on fish offspring. In this study, we exposed adult zebrafish (F0) to AMI (0.8 μg/L) for 21 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water for 5 days. The mortality rate, average hatching time, and heart rate at 48 h post-fertilization (hpf) of F1 were investigated. Our results showed that parental exposure to AMI induced tachycardia and increased mortality in F1 zebrafish. Under a light/dark transition test, F1 larvae born from AMI-exposed parents exhibited lower locomotor activity in the dark period and decreased thigmotaxis in the light period. The transcriptome analysis showed that parental AMI exposure dysregulated some key pathways in their offspring. Through the prediction of key driver analysis, six differentially expressed genes (DEGs) were revealed as key driver genes involved in protein processing in endoplasmic reticulum (hspa5, hsp70.1, hsp90a), ribosome (rps27a) and PPAR signaling pathway (pparab and fabp2). Considering that the concentration of AMI residual components in natural water bodies may be over our test concentration (0.8 μg/L), our findings suggested that toxicity of parental exposure to the offspring of fish should receive greater attention.
Collapse
Affiliation(s)
- Anqi Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Robert C Grabowski
- Centre for Water, Environment and Development, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
24
|
Almutairy A, Alhamed A, Grant SG, Sarachine Falso MJ, Day BW, Simmons CR, Latimer JJ. Cancer-Specific Alterations in Nuclear Matrix Proteins Determined by Multi-omics Analyses of Ductal Carcinoma in Situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580215. [PMID: 38405693 PMCID: PMC10888842 DOI: 10.1101/2024.02.13.580215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Breast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC. Our objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS. Sixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were upregulated increasingly with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques.
Collapse
|
25
|
Feng L, Wang G, Song Q, Feng X, Su J, Ji G, Li M. Proteomics revealed an association between ribosome-associated proteins and amyloid beta deposition in Alzheimer's disease. Metab Brain Dis 2024; 39:263-282. [PMID: 38019374 DOI: 10.1007/s11011-023-01330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Most scholars believe that amyloid-beta (Aβ) has the potential to induce apoptosis, stimulate an inflammatory cascade, promote oxidative stress and exacerbate the pathological progression of Alzheimer's disease (AD). Therefore, it is crucial to investigate the deposition of Aβ in AD. At approximately 6 months of age, APP/PS1 double transgenic mice gradually exhibit the development of plaques, as well as spatial and learning impairment. Notably, the hippocampus is specifically affected in the course of AD. Herein, 6-month-old APP/PS1 double transgenic mice were utilized, and the differentially expressed (DE) proteins in the hippocampus were identified and analyzed using 4D label-free quantitative proteomics technology and parallel reaction monitoring (PRM). Compared to wild-type mice, 29 proteins were upregulated and 25 proteins were downregulated in the AD group. Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the DE proteins were mainly involved in 'ribosomal large subunit biogenesis'. Molecular function (MF) analysis results were primarily associated with '5.8S rRNA binding' and 'structural constituent of ribosome'. In terms of cellular components (CC), the DE proteins were mainly found in 'polysomal ribosome', 'cytosolic large ribosomal subunit', 'cytosolic ribosome', and 'large ribosomal subunit', among others. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the results were mainly enriched in the 'Ribosome signaling pathway'. The key target proteins identified were ribosomal protein (Rp)l18, Rpl17, Rpl19, Rpl24, Rpl35, and Rpl6. The PRM verification results were consistent with the findings of the 4D label-free quantitative proteomics analysis. Overall, these findings suggest that Rpl18, Rpl17, Rpl19, Rpl24, Rpl35, and Rpl6 may have potential therapeutic value for the treatment of AD by targeting Aβ.
Collapse
Affiliation(s)
- Lina Feng
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Qile Song
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Xiaotong Feng
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jing Su
- Department of Geriatric Cardiovascular, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road, Taian, 271000, Shandong, China.
| | - Guangcheng Ji
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Boshuo Road, Changchun, 130117, Jilin, China.
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
26
|
Gelfo V, Venturi G, Zacchini F, Montanaro L. Decoding Ribosome Heterogeneity: A New Horizon in Cancer Therapy. Biomedicines 2024; 12:155. [PMID: 38255260 PMCID: PMC10813612 DOI: 10.3390/biomedicines12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The traditional perception of ribosomes as uniform molecular machines has been revolutionized by recent discoveries, revealing a complex landscape of ribosomal heterogeneity. Opposing the conventional belief in interchangeable ribosomal entities, emerging studies underscore the existence of specialized ribosomes, each possessing unique compositions and functions. Factors such as cellular and tissue specificity, developmental and physiological states, and external stimuli, including circadian rhythms, significantly influence ribosome compositions. For instance, muscle cells and neurons are characterized by distinct ribosomal protein sets and dynamic behaviors, respectively. Furthermore, alternative forms of ribosomal RNA (rRNAs) and their post-transcriptional modifications add another dimension to this heterogeneity. These variations, orchestrated by spatial, temporal, and conditional factors, enable the manifestation of a broad spectrum of specialized ribosomes, each tailored for potentially distinct functions. Such specialization not only impacts mRNA translation and gene expression but also holds significant implications for broader biological contexts, notably in the realm of cancer research. As the understanding of ribosomal diversity deepens, it also paves the way for exploring novel avenues in cellular function and offers a fresh perspective on the molecular intricacies of translation.
Collapse
Affiliation(s)
- Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Giulia Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Federico Zacchini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Lorenzo Montanaro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
27
|
Roodgar-Saffari J, Zarrinpour V, Forghanifard MM. SiRNA-mediated Silencing of the RPS19 Gene Induces Apoptosis and Inhibits Cell Cycle Progression in Chronic Myeloid Leukemia Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:436-447. [PMID: 39895916 PMCID: PMC11786124 DOI: 10.22088/ijmcm.bums.13.4.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 02/04/2025]
Abstract
This research delves into the therapeutic implications of utilizing small interfering RNA (siRNA) to target the ribosomal protein S19 (RPS19) gene in chronic myeloid leukemia (CML) using the K562 cell line model. The primary objective was to investigate how gene silencing affects apoptosis promotion and cell cycle arrest. The study employed bioinformatics tools and databases to explore the interactions involving RPS19 and neighboring proteins. Subsequently, siRNA-mediated gene silencing was utilized to suppress RPS19 expression in K-562 cells, with assessments conducted on cell cycle progression and apoptosis through flow cytometry analysis. Furthermore, real-time PCR was employed to evaluate the expression levels of RPS19, along with the closely associated RPS16 and RPS18 genes. Silencing the RPS19 gene in siRNA-transfected K-562 cells led to an increase in apoptotic cells by over 20%, with a significant accumulation in the sub-G1 and G1 phases. Additionally, the knockdown of RPS19 resulted in a 75% decrease in RPS16 expression and a 50% decrease in RPS18 expression. These results demonstrate the therapeutic potential of targeting RPS19 in CML cells, suggesting a promising approach for precise treatment strategies in leukemia and potentially other types of cancer.
Collapse
|
28
|
Kitamura K, Hoshino T, Okabe A, Fukuyo M, Rahmutulla B, Tanaka N, Kobayashi S, Tanaka T, Shida T, Ueda M, Minamoto T, Matsubara H, Kaneda A, Ishii H, Matsushita K. The Link of mRNA and rRNA Transcription by PUF60/FIR through TFIIH/P62 as a Novel Therapeutic Target for Cancer. Int J Mol Sci 2023; 24:17341. [PMID: 38139171 PMCID: PMC10743661 DOI: 10.3390/ijms242417341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tyuji Hoshino
- Department of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan;
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Nobuko Tanaka
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| | - Sohei Kobayashi
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Medical Technology and Sciences, Health and Sciences, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Takashi Shida
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan;
| | - Mashiro Ueda
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Hideshi Ishii
- Medical Data Science, Center of Medical Innovation and Translational Research (CoMIT), Osaka University, Osaka 565-0871, Japan;
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| |
Collapse
|
29
|
Kour R, Kim J, Roy A, Richardson B, Cameron MJ, Knott JG, Mazumder B. Loss of function of ribosomal protein L13a blocks blastocyst formation and reveals a potential nuclear role in gene expression. FASEB J 2023; 37:e23275. [PMID: 37902531 PMCID: PMC10999073 DOI: 10.1096/fj.202301475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
Ribosomal proteins play diverse roles in development and disease. Most ribosomal proteins have canonical roles in protein synthesis, while some exhibit extra-ribosomal functions. Previous studies in our laboratory revealed that ribosomal protein L13a (RPL13a) is involved in the translational silencing of a cohort of inflammatory proteins in myeloid cells. This prompted us to investigate the role of RPL13a in embryonic development. Here we report that RPL13a is required for early development in mice. Crosses between Rpl13a+/- mice resulted in no Rpl13a-/- offspring. Closer examination revealed that Rpl13a-/- embryos were arrested at the morula stage during preimplantation development. RNA sequencing analysis of Rpl13a-/- morulae revealed widespread alterations in gene expression, including but not limited to several genes encoding proteins involved in the inflammatory response, embryogenesis, oocyte maturation, stemness, and pluripotency. Ex vivo analysis revealed that RPL13a was localized to the cytoplasm and nucleus between the two-cell and morula stages. RNAi-mediated depletion of RPL13a phenocopied Rpl13a-/- embryos and knockdown embryos exhibited increased expression of IL-7 and IL-17 and decreased expression of the lineage specifier genes Sox2, Pou5f1, and Cdx2. Lastly, a protein-protein interaction assay revealed that RPL13a is associated with chromatin, suggesting an extra ribosomal function in transcription. In summary, our data demonstrate that RPL13a is essential for the completion of preimplantation embryo development. The mechanistic basis of the absence of RPL13a-mediated embryonic lethality will be addressed in the future through follow-up studies on ribosome biogenesis, global protein synthesis, and identification of RPL13a target genes using chromatin immunoprecipitation and RNA-immunoprecipitation-based sequencing.
Collapse
Affiliation(s)
- Ravinder Kour
- Center for Gene Regulation in Health and Disease, Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Jaehwan Kim
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Antara Roy
- Center for Gene Regulation in Health and Disease, Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and Disease, Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Wang G, Qin M, Zhang B, Yan Y, Yang F, Chen Q, Liu Y, Qiao F, Ni Y. Decreased expression of RPL15 and RPL18 exacerbated the calcification of valve interstitial cells during aortic valve calcification. Cell Biol Int 2023; 47:1749-1759. [PMID: 37431269 DOI: 10.1002/cbin.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease, with an increasing prevalence due to an aging population. The pathobiology of CAVD is a multifaceted and actively regulated process, but the detailed mechanisms have not been elucidated. The present study aims to identify the differentially expressed genes (DEGs) in calcified aortic valve tissues, and to analyze the correlation between DEGs and clinical features in CAVD patients. The DEGs were screened by microarray in normal and CAVD groups (n = 2 for each group), and confirmed by quantitative real-time polymerase chain reaction in normal (n = 12) and calcified aortic valve tissues (n = 34). A total of 1048 DEGs were identified in calcified aortic valve tissues, including 227 upregulated mRNAs and 821 downregulated mRNAs. Based on multiple bioinformatic analyses, three 60S ribosomal subunit components (RPL15, RPL18, and RPL18A), and two 40S ribosomal subunit components (RPS15 and RPS21) were identified as the top 5 hub genes in the protein-protein interaction network of DEGs. The expression of RPL15 and RPL18 was also found significantly decreased in calcified aortic valve tissues (both p < .01), and negatively correlated with the osteogenic differentiation marker OPN in CAVD patients (both p < .01). Moreover, inhibition of RPL15 or RPL18 exacerbated the calcification of valve interstitial cells under osteogenic induction conditions. The present study proved that decreased expression of RPL15 and RPL18 was closely associated with aortic valve calcification, which provided valuable clues to find therapeutic targets for CAVD.
Collapse
Affiliation(s)
- Guokun Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ming Qin
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Boyao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Yan
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Cardiothoracic Surgery, No.903 Hospital of PLA, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Fan Qiao
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yiming Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Loxha L, Ibrahim NK, Stasche AS, Cinar B, Dolgner T, Niessen J, Schreek S, Fehlhaber B, Forster M, Stanulla M, Hinze L. GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells. Int J Mol Sci 2023; 24:13260. [PMID: 37686063 PMCID: PMC10488213 DOI: 10.3390/ijms241713260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.
Collapse
Affiliation(s)
- Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Büsra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany;
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| |
Collapse
|
32
|
Weiland-Bräuer N, Koutsouveli V, Langfeldt D, Schmitz RA. First insights into the Aurelia aurita transcriptome response upon manipulation of its microbiome. Front Microbiol 2023; 14:1183627. [PMID: 37637120 PMCID: PMC10448538 DOI: 10.3389/fmicb.2023.1183627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The associated diverse microbiome contributes to the overall fitness of Aurelia aurita, particularly to asexual reproduction. However, how A. aurita maintains this specific microbiome or reacts to manipulations is unknown. Methods In this report, the response of A. aurita to manipulations of its native microbiome was studied by a transcriptomics approach. Microbiome-manipulated polyps were generated by antibiotic treatment and challenging polyps with a non-native, native, and potentially pathogenic bacterium. Total RNA extraction followed by RNAseq resulted in over 155 million reads used for a de novo assembly. Results The transcriptome analysis showed that the antibiotic-induced change and resulting reduction of the microbiome significantly affected the host transcriptome, e.g., genes involved in processes related to immune response and defense mechanisms were highly upregulated. Similarly, manipulating the microbiome by challenging the polyp with a high load of bacteria (2 × 107 cells/polyp) resulted in induced transcription of apoptosis-, defense-, and immune response genes. A second focus was on host-derived quorum sensing interference as a potential defense strategy. Quorum Quenching (QQ) activities and the respective encoding QQ-ORFs of A. aurita were identified by functional screening a cDNA-based expression library generated in Escherichia coli. Corresponding sequences were identified in the transcriptome assembly. Moreover, gene expression analysis revealed differential expression of QQ genes depending on the treatment, strongly suggesting QQ as an additional defense strategy. Discussion Overall, this study allows first insights into A. aurita's response to manipulating its microbiome, thus paving the way for an in-depth analysis of the basal immune system and additional fundamental defense strategies.
Collapse
Affiliation(s)
| | - Vasiliki Koutsouveli
- GEOMAR Helmholtz Center for Ocean Research Kiel, Düsternbrooker Weg, Kiel, Germany
| | | | - Ruth A. Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
33
|
Chen CH, Huang YM, Grillet L, Hsieh YC, Yang YW, Lo KY. Gallium maltolate shows synergism with cisplatin and activates nucleolar stress and ferroptosis in human breast carcinoma cells. Cell Oncol (Dordr) 2023; 46:1127-1142. [PMID: 37067747 DOI: 10.1007/s13402-023-00804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE Breast cancer is the most common cancer in women. Triple-negative breast cancer (TNBC) is an aggressive disease with poor outcomes. TNBC lacks effective targeted treatments, and the development of drug resistance limits the effectiveness of chemotherapy. It is crucial to identify new drugs that can enhance the efficacy of traditional chemotherapy to reduce drug resistance and side effects. METHODS TNBC cell lines, MDA-MB-231 and Hs 578T, and a normal cell line, MCF-10 A, were included in this study. The cells were treated with gallium maltolate (GaM), and their transcriptome was analyzed. Ferroptosis and nucleolar stress markers were detected by qPCR, western blotting, fluorescence microscopy, and flow cytometry. The impairment of ribosome synthesis was evaluated by northern blotting and sucrose gradients. RESULTS GaM triggered cell death via apoptosis and ferroptosis. In addition, GaM impaired translation and activated nucleolar stress. Cisplatin (DDP) is a chemotherapeutic agent for advanced breast cancer. While single treatment with GaM or DDP at low concentrations did not impact cell growth, co-administration enhanced cell death in TNBC but not in normal breast cells. The enhancement of ferroptosis and nucleolar stress could be observed in TNBC cell lines after co-treatment. CONCLUSIONS These results suggest that GaM synergizes with cisplatin via activation of nucleolar stress and ferroptosis in human breast carcinoma cells. GaM is marginally toxic to normal cells but impairs the growth of TNBC cell lines. Thus, GaM has the potential to be used as a therapeutic agent against TNBC.
Collapse
Affiliation(s)
- Chieh-Hsin Chen
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Yi-Ming Huang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Louis Grillet
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Yu-Chen Hsieh
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist, Taipei City, 100225, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan.
| |
Collapse
|
34
|
Song B, Zhang Y, Xiong G, Luo H, Zhang B, Li Y, Wang Z, Zhou Z, Chang X. Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation. Cell Biol Toxicol 2023; 39:1697-1713. [PMID: 36114956 DOI: 10.1007/s10565-022-09775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Cadmium (Cd) is an extensively existing environmental pollutant that has neurotoxic effects. However, the molecular mechanism of Cd on neuronal maturation is unveiled. Single-cell RNA sequencing (scRNA-seq) has been widely used to uncover cellular heterogeneity and is a powerful tool to reconstruct the developmental trajectory of neurons. In this study, neural stem cells (NSCs) from subventricular zone (SVZ) of newborn mice were treated with CdCl2 for 24 h and differentiated for 7 days to obtain neuronal lineage cells. Then scRNA-seq analysis identified five cell stages with different maturity in neuronal lineage cells. Our findings revealed that Cd altered the trajectory of maturation of neuronal lineage cells by decreasing the number of cells in different stages and hindering their maturation. Cd induced differential transcriptome expression in different cell subpopulations in a stage-specific manner. Specifically, Cd induced oxidative damage and changed the proportion of cell cycle phases in the early stage of neuronal development. Furthermore, the autocrine and paracrine signals of Wnt5a were downregulated in the low mature neurons in response to Cd. Importantly, activation of Wnt5a effectively rescued the number of neurons and promoted their maturation. Taken together, the findings of this study provide new and comprehensive insights into the adverse effect of Cd on neuronal maturation.
Collapse
Affiliation(s)
- Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Nakamura N, Ushida T, Onoda A, Ueda K, Miura R, Suzuki T, Katsuki S, Mizutani H, Yoshida K, Tano S, Iitani Y, Imai K, Hayakawa M, Kajiyama H, Sato Y, Kotani T. Altered offspring neurodevelopment in an L-NAME-induced preeclampsia rat model. Front Pediatr 2023; 11:1168173. [PMID: 37520045 PMCID: PMC10373593 DOI: 10.3389/fped.2023.1168173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction To investigate the mechanism underlying the increased risk of subsequent neurodevelopmental disorders in children born to mothers with preeclampsia, we evaluated the neurodevelopment of offspring of a preeclampsia rat model induced by the administration of N-nitro-L-arginine methyl ester (L-NAME) and identified unique protein signatures in the offspring cerebrospinal fluid. Methods Pregnant rats received an intraperitoneal injection of L-NAME (250 mg/kg/day) during gestational days 15-20 to establish a preeclampsia model. Behavioral experiments (negative geotaxis, open-field, rotarod treadmill, and active avoidance tests), immunohistochemistry [anti-neuronal nuclei (NeuN) staining in the hippocampal dentate gyrus and cerebral cortex on postnatal day 70], and proteome analysis of the cerebrospinal fluid on postnatal day 5 were performed on male offspring. Results Offspring of the preeclampsia dam exhibited increased growth restriction at birth (52.5%), but showed postnatal catch-up growth on postnatal day 14. Several behavioral abnormalities including motor development and vestibular function (negative geotaxis test: p < 0.01) in the neonatal period; motor coordination and learning skills (rotarod treadmill test: p = 0.01); and memory skills (active avoidance test: p < 0.01) in the juvenile period were observed. NeuN-positive cells in preeclampsia rats were significantly reduced in both the hippocampal dentate gyrus and cerebral cortex (p < 0.01, p < 0.01, respectively). Among the 1270 proteins in the cerebrospinal fluid identified using liquid chromatography-tandem mass spectrometry, 32 were differentially expressed. Principal component analysis showed that most cerebrospinal fluid samples achieved clear separation between preeclampsia and control rats. Pathway analysis revealed that differentially expressed proteins were associated with endoplasmic reticulum translocation, Rab proteins, and ribosomal proteins, which are involved in various nervous system disorders including autism spectrum disorders, schizophrenia, and Alzheimer's disease. Conclusion The offspring of the L-NAME-induced preeclampsia model rats exhibited key features of neurodevelopmental abnormalities on behavioral and pathological examinations similar to humans. We found altered cerebrospinal fluid protein profiling in this preeclampsia rat, and the unique protein signatures related to endoplasmic reticulum translocation, Rab proteins, and ribosomal proteins may be associated with subsequent adverse neurodevelopment in the offspring.
Collapse
Affiliation(s)
- Noriyuki Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Obstetrics and Gynecology, Anjo Kosei Hospital, Aichi, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Atsuto Onoda
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Ryosuke Miura
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Satoru Katsuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
36
|
Zhao Y, Li Y, Zhu R, Feng R, Cui H, Yu X, Huang F, Zhang R, Chen X, Li L, Chen Y, Liu Y, Wang J, Du G, Liu Z. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m 6A modification. Signal Transduct Target Ther 2023; 8:224. [PMID: 37264021 DOI: 10.1038/s41392-023-01428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 06/03/2023] Open
Abstract
Increased rates of ribosome biogenesis have been recognized as hallmarks of many cancers and are associated with poor prognosis. Using a CRISPR synergistic activation mediator (SAM) system library targeting 89 ribosomal proteins (RPs) to screen for the most oncogenic functional RPs in human esophageal squamous cell carcinoma (ESCC), we found that high expression of RPS15 correlates with malignant phenotype and poor prognosis of ESCC. Gain and loss of function models revealed that RPS15 promotes ESCC cell metastasis and proliferation, both in vitro and in vivo. Mechanistic investigations demonstrated that RPS15 interacts with the K homology domain of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which recognizes and directly binds the 3'-UTR of MKK6 and MAPK14 mRNA in an m6A-dependent manner, and promotes translation of core p38 MAPK pathway proteins. By combining targeted drug virtual screening and functional assays, we found that folic acid showed a therapeutic effect on ESCC by targeting RPS15, which was augmented by the combination with cisplatin. Inhibition of RPS15 by folic acid, IGF2BP1 ablation, or SB203580 treatment were able to suppress ESCC metastasis and proliferation via the p38 MAPK signaling pathway. Thus, RPS15 promotes ESCC progression via the p38 MAPK pathway and RPS15 inhibitors may serve as potential anti-ESCC drugs.
Collapse
Affiliation(s)
- Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heyang Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xiankai Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yinghui Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jinhua Wang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
37
|
Li G, Li H, Chen Z. Identification of ribosomal protein family as immune-cell-related biomarkers of NAFLD by bioinformatics and experimental analyses. Front Endocrinol (Lausanne) 2023; 14:1161269. [PMID: 37274336 PMCID: PMC10235545 DOI: 10.3389/fendo.2023.1161269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Immune cells play an integral role in the development and progression of non-alcoholic fatty liver disease (NAFLD). This study was to identify immune-cell-related biomarkers for the diagnosis and treatment of NAFLD. METHODS AND FINDINGS First, we introduced human liver transcriptome data from the GEO database (GSE48452 and GSE126848) and performed a weighted gene co-expression network analysis (WGCNA) to screen out the modules related to immune cell infiltration and to identify immune-cell-related differentially expressed genes (ICR-DEGs) associated with NAFLD progression. Further, the protein-protein interaction (PPI) network of ICR-DEGs was established to obtain hub genes and subsequently, the expression trend analysis was conducted to identify immune-cell-related biomarkers of NAFLD. Finally, the mRNA expression of biomarkers was validated in a NAFLD mouse model induced by high-fat diet (HFD) feeding. In total, we identified 66 ICR-DEGs and 13 hub genes associated with NAFLD. Among them, 9 hub genes (CD247, CD74, FCGR2B, IL2RB, INPP5D, MRPL16, RPL35, RPS3A, RPS8) were correlated with the infiltrating immune cells by the Pearson correlation analysis. Subsequently, 4 immune-cell-related biomarkers (RPL35, RPS3A, RPS8, and MRPL16) with the same expression trends in GSE48452 and GSE126848 datasets were identified. These biomarkers were enriched in immune-related pathways and had a good ability to distinguish between NASH and healthy samples. Moreover, we constructed a competing endogenous RNA (ceRNA) network of biomarkers and predicted twenty potential therapeutic drugs targeting RPS3A such as taxifolin and sitagliptin. Finally, experimental validation indicated that the hepatic mRNA expression of Rpl35, Rps3A, and Rps8 was significantly decreased in NAFLD mice. CONCLUSIONS This study identified four ribosomal protein genes (RPL35, RPS3A, RPS8, and MRPL16) as immune-cell-related biomarkers of NAFLD, which may actively participate in the immune processes during NAFLD progression and could serve as potential targets for the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Gerui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Choi I, Jeon Y, Pai HS. Brix protein APPAN plays a role in ribosomal RNA processing in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111721. [PMID: 37146691 DOI: 10.1016/j.plantsci.2023.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Arabidopsis APPAN is a Brix family protein that is homologous to yeast Ssf1/Ssf2 and PPan in higher eukaryotes. A previous study, mostly based on physiological experiments, revealed that APPAN plays an essential role in female gametogenesis in plants. Here, we investigated cellular functions of APPAN, which could be the molecular basis for developmental defects in snail1/appan mutants. Virus-induced gene silencing (VIGS) of APPAN in Arabidopsis resulted in abnormal shoot apices, leading to defective inflorescences and malformed flowers and leaves. APPAN is localized in the nucleolus and co-sedimented mainly with 60S ribosome subunit. RNA gel blot analyses showed overaccumulation of processing intermediates, particularly 35S and P-A3, and the sequences were confirmed by circular RT-PCR. These results suggested that silencing of APPAN causes defective pre-rRNA processing. Metabolic rRNA labeling showed that APPAN depletion mainly reduced 25S rRNA synthesis. Consistently, based on the ribosome profiling, the levels of 60S/80S ribosomes were significantly reduced. Finally, APPAN deficiency caused nucleolar stress with abnormal nucleolar morphology and translocation of nucleolar proteins into the nucleoplasm. Collectively, these results suggest that APPAN plays a crucial role in plant rRNA processing and ribosome biogenesis, and its depletion disrupts plant growth and development.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea.
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea; Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
39
|
Haglund S, Söderman J, Almer S. Differences in Whole-Blood Transcriptional Profiles in Inflammatory Bowel Disease Patients Responding to Vedolizumab Compared with Non-Responders. Int J Mol Sci 2023; 24:ijms24065820. [PMID: 36982892 PMCID: PMC10052064 DOI: 10.3390/ijms24065820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Vedolizumab is efficacious in the treatment of Crohn's disease (CD) and ulcerative colitis (UC). However, a significant proportion of patients present with a non-response. To investigate whether differences in the clinical response to vedolizumab is reflected in changes in gene expression levels in whole blood, samples were collected at baseline before treatment, and at follow-up after 10-12 weeks. Whole genome transcriptional profiles were established by RNA sequencing. Before treatment, no differentially expressed genes were noted between responders (n = 9, UC 4, CD 5) and non-responders (n = 11, UC 3, CD 8). At follow-up, compared with baseline, responders displayed 201 differentially expressed genes, and 51 upregulated (e.g., translation initiation, mitochondrial translation, and peroxisomal membrane protein import) and 221 downregulated (e.g., Toll-like receptor activating cascades, and phagocytosis related) pathways. Twenty-two of the upregulated pathways in responders were instead downregulated in non-responders. The results correspond with a dampening of inflammatory activity in responders. Although considered a gut-specific drug, our study shows a considerable gene regulation in the blood of patients responding to vedolizumab. It also suggests that whole blood is not optimal for identifying predictive pre-treatment biomarkers based on individual genes. However, treatment outcomes may depend on several interacting genes, and our results indicate a possible potential of pathway analysis in predicting response to treatment, which merits further investigation.
Collapse
Affiliation(s)
- Sofie Haglund
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden
| | - Jan Söderman
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden
| | - Sven Almer
- IBD-Unit, Division of Gastroenterology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Medicine, Karolinska Institutet-Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
40
|
Yi Y, Zeng Y, Sam TW, Hamashima K, Tan RJR, Warrier T, Phua JX, Taneja R, Liou YC, Li H, Xu J, Loh YH. Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells. Stem Cell Reports 2023; 18:463-474. [PMID: 36638791 PMCID: PMC9968990 DOI: 10.1016/j.stemcr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.
Collapse
Affiliation(s)
- Yao Yi
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Rachel Jun Rou Tan
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jun Xiang Phua
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Joint Center for Single Cell Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
41
|
Zhang Y, Cai Q, Luo Y, Zhang Y, Li H. Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity. J Pharm Anal 2023; 13:63-72. [PMID: 36820077 PMCID: PMC9937802 DOI: 10.1016/j.jpha.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are abundant, large RNA-protein complexes that are the sites of all protein synthesis in cells. Defects in ribosomal proteins (RPs), including proteoforms arising from genetic variations, alternative splicing of RNA transcripts, post-translational modifications and alterations of protein expression level, have been linked to a diverse range of diseases, including cancer and aging. Comprehensive characterization of ribosomal proteoforms is challenging but important for the discovery of potential disease biomarkers or protein targets. In the present work, using E. coli 70S RPs as an example, we first developed a top-down proteomics approach on a Waters Synapt G2 Si mass spectrometry (MS) system, and then applied it to the HeLa 80S ribosome. The results were complemented by a bottom-up approach. In total, 50 out of 55 RPs were identified using the top-down approach. Among these, more than 30 RPs were found to have their N-terminal methionine removed. Additional modifications such as methylation, acetylation, and hydroxylation were also observed, and the modification sites were identified by bottom-up MS. In a HeLa 80S ribosomal sample, we identified 98 ribosomal proteoforms, among which multiple truncated 80S ribosomal proteoforms were observed, the type of information which is often overlooked by bottom-up experiments. Although their relevance to diseases is not yet known, the integration of top-down and bottom-up proteomics approaches paves the way for the discovery of proteoform-specific disease biomarkers or targets.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qinghua Cai
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Zhang
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Corresponding author. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
42
|
Zhang YD, Shi DD, Zhang S, Wang Z. Sex-specific transcriptional signatures in the medial prefrontal cortex underlying sexually dimorphic behavioural responses to stress in rats. J Psychiatry Neurosci 2023; 48:E61-E73. [PMID: 36796857 PMCID: PMC9943549 DOI: 10.1503/jpn.220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Converging evidence suggests that stress alters behavioural responses in a sex-specific manner; however, the underlying molecular mechanisms of stress remain largely unknown. METHODS We adapted unpredictable maternal separation (UMS) and adult restraint stress (RS) paradigms to mimic stress in rats in early life or adulthood, respectively. The sexual dimorphism of the prefrontal cortex was noted, and we performed RNA sequencing (RNA-Seq) to identify specific genes or pathways responsible for sexually dimorphic responses to stress. We then performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) to verify the results of RNA-Seq. RESULTS Female rats exposed to either UMS or RS showed no negative effects on anxiety-like behaviours, whereas the emotional functions of the PFC were impaired markedly in stressed male rats. Leveraging differentially expressed genes (DEG) analyses, we identified sex-specific transcriptional profiles associated with stress. There were many overlapping DEGs between UMS and RS transcriptional data sets, where 1406 DEGs were associated with both biological sex and stress, while only 117 DEGs were related to stress. Notably, Uba52 and Rpl34-ps1 were the first-ranked hub gene in 1406 and 117 DEGs respectively, and Uba52 was higher than Rp134-ps1, suggesting that stress may have led to a more pronounced effect on the set of 1406 DEGs. Pathway analysis revealed that 1406 DEGs were primarily enriched in ribosomal pathway. These results were confirmed by qRT-PCR. LIMITATIONS Sex-specific transcriptional profiles associated with stress were identified in this study, but more in-depth experiments, such as single-cell sequencing and manipulation of male and female gene networks in vivo, are needed to verify our findings. CONCLUSION Our findings show sex-specific behavioural responses to stress and highlight sexual dimorphism at the transcriptional level, shedding light on developing sex-specific therapeutic strategies for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| | - Dong-Dong Shi
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| | - Sen Zhang
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| | - Zhen Wang
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| |
Collapse
|
43
|
Cerri F, Gentile F, Clarelli F, Santoro S, Falzone YM, Dina G, Romano A, Domi T, Pozzi L, Fazio R, Podini P, Sorosina M, Carrera P, Esposito F, Riva N, Briani C, Cavallaro T, Filippi M, Quattrini A. Clinical and pathological findings in neurolymphomatosis: Preliminary association with gene expression profiles in sural nerves. Front Oncol 2022; 12:974751. [PMID: 36226068 PMCID: PMC9549065 DOI: 10.3389/fonc.2022.974751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.
Collapse
Affiliation(s)
- Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giorgia Dina
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Romano
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Fazio
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Division of Genetics and Cell Biology and Laboratory of Clinical Molecular Biology and Cytogenetics, Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| | - Chiara Briani
- Department of Neuroscience , University of Padova, Padova, Italy
| | - Tiziana Cavallaro
- Department of Neurology, Azienda Ospedaliera Universitaria Integrata, University Hospital G.B. Rossi, Verona, Italy
| | - Massimo Filippi
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| |
Collapse
|
44
|
Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y. Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Mol Med 2022; 28:109. [PMID: 36071402 PMCID: PMC9450376 DOI: 10.1186/s10020-022-00537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting ribosome biogenesis to activate p53 has recently emerged as a therapeutic strategy in human cancer. Among various ribosomal proteins, RPL11 centralizes the nucleolar stress-sensing pathway by binding MDM2, leading to MDM2 inactivation and p53 activation. Therefore, the identification of MDM2-binding RPL11-mimetics would be valuable for anti-cancer therapeutics. METHODS Based on the crystal structure of the interface between RPL11 and MDM2, we have identified 15 potential allosteric modulators of MDM2 through the virtual screening. RESULTS One of these compounds, named S9, directly binds MDM2 and competitively inhibits the interaction between RPL11 and MDM2, leading to p53 stabilization and activation. Moreover, S9 inhibits cancer cell proliferation in vitro and in vivo. Mechanistic study reveals that MDM2 is required for S9-induced G2 cell cycle arrest and apoptosis, whereas p53 contributes to S9-induced apoptosis. CONCLUSIONS Putting together, S9 may serve as a lead compound for the development of an anticancer drug that specifically targets RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jian Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hui Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yanping Zhang
- Department of Radiation and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, USA
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China. .,The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
45
|
Large extracellular vesicles do not mitigate the harmful effect of hyperglycemia on endothelial cell mobility. Eur J Cell Biol 2022; 101:151266. [PMID: 35952497 DOI: 10.1016/j.ejcb.2022.151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles, especially the larger fraction (LEVs - large extracellular vesicles), are believed to be an important means of intercellular communication. Earlier studies on LEVs have shown their healing properties, especially in the vascular cells of diabetic patients. Uptake of LEVs by endothelial cells and internalization of their cargo have also been demonstrated. Endothelial cells change their properties under hyperglycemic conditions (HGC), which reduces their activity and is the cause of endothelial dysfunction. The aim of our study was to investigate how human umbilical vein endothelial cells (HUVECs) change their biological properties: shape, mobility, cell surface stiffness, as well as describe the activation of metabolic pathways after exposure to the harmful effects of HGC and the administration of LEVs released by endothelial cells. We obtained LEVs from HUVEC cultures in HGC and normoglycemia (NGC) using the filtration and ultracentrifugation methods. We assessed the size of LEVs and the presence of biomarkers such as phosphatidylserine, CD63, beta-actin and HSP70. We analyzed the LEVs uptake efficiency by HUVECs, HUVEC shape, actin cytoskeleton remodeling, surface stiffness and finally gene expression by mRNA analysis. Under HGC conditions, HUVECs were larger and had a stiffened surface and a strengthened actin cortex compared to cells under NGC condition. HGC also altered the activation of metabolic pathways, especially those related to intracellular transport, metabolism, and organization of cellular components. The most interesting observation in our study is that LEVs did not restore cell motility disturbed by HGC. Although, LEVs were not able to reverse this deleterious effect of HGC, they activated transcription of genes involved in protein synthesis and vesicle trafficking in HUVECs.
Collapse
|
46
|
Liu Y, Li J, Ou H, Qi D, Hu B, Xu Y, Hu J, Xiong Y, Xia L, Huang JH, Hu X, Wu E. Identification of new aptamer BC-3 targeting RPS7 from rapid screening for bladder carcinoma. Genes Dis 2022. [PMID: 37492709 PMCID: PMC10363591 DOI: 10.1016/j.gendis.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aptamers, short single DNA or RNA oligonucleotides, have shown immense application potential as molecular probes for the early diagnosis and therapy of cancer. However, conventional cell-SELEX technologies for aptamer discovery are time-consuming and laborious. Here we discovered a new aptamer BC-3 by using an improved rapid X-Aptamer selection process for human bladder carcinoma, for which there is no specific molecular probe yet. We show that BC-3 exhibited excellent affinity in bladder cancer cells but not normal cells. We demonstrate that BC-3 displayed high selectivity for tumor cells over their normal counterparts in vitro, in mice, and in patient tumor tissue specimens. Further endocytosis pathway analysis revealed that BC-3 internalized into bladder cancer cells via clathrin-mediated endocytosis. Importantly, we identified ribosomal protein S7 (RPS7) as the binding target of BC-3 via an integrated methodology (mass spectrometry, colocalization assay, and immunoblotting). Together, we report that a novel aptamer BC-3 is discovered for bladder cancer and its properties in the disease are unearthed. Our findings will facilitate the discovery of novel diagnostic and therapeutic strategies for bladder cancer.
Collapse
|
47
|
Pinto D, Calabrese FM, De Angelis M, Celano G, Giuliani G, Rinaldi F. Lichen Planopilaris: The first biopsy layer microbiota inspection. PLoS One 2022; 17:e0269933. [PMID: 35849580 PMCID: PMC9292073 DOI: 10.1371/journal.pone.0269933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Lichen Planopilaris (LPP) is a lymphatic disease affecting the scalp that is characterized by a chronic and destructive inflammation process, named as ‘cicatricial alopecia’ in which the hair follicles are targeted and may involve predominantly lymphocytes or neutrophils. Scalp and biopsy layers have never been used to investigate microbial community composition and its relative taxa abundances in LPP. We sought to examine the significant taxa of this chronic relapsing inflammatory skin disease, together with inspect the existing connections with metabolic pathways featuring this microbial community. We used a multilevel analysis based on 16S rRNA marker sequencing in order to detect OTU abundances in pathologic/healthy samples, real time PCR for measuring the levels of IL-23 interleukin expression and urinary metabolomics to find out volatile organic metabolites (VOMs). By using a linear regression model, we described peculiar taxa that significantly differentiated LPP and healthy samples. We inspected taxa abundances and interleukin mRNA levels and the Microbacteriaceae family resulted negatively correlated with the IL-23 expression. Moreover, starting from 16S taxa abundances, we predicted the metabolic pathways featuring this microbial community. By inspecting microbial composition, sample richness, metabolomics profiles and the relative metabolic pathways in a cohort of LPP and healthy samples we deepened the contribution of significant taxa that are connected to inflammation maintenance and microbiota plasticity in LPP pathology.
Collapse
Affiliation(s)
- Daniela Pinto
- Human Advanced Microbiome Project-HMAP, Milan, Italy
- * E-mail: (DP); (FMC)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
- * E-mail: (DP); (FMC)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
| | | | - Fabio Rinaldi
- Human Advanced Microbiome Project-HMAP, Milan, Italy
| |
Collapse
|
48
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
49
|
Azevedo ALKD, Gomig THB, Giner IS, Batista M, Marchini FK, Lima RS, de Andrade Urban C, Sebastião APM, Cavalli IJ, Ribeiro EMDSF. Comprehensive analysis of the large and small ribosomal proteins in breast cancer: Insights on proteomic and transcriptomic expression patterns, regulation, mutational landscape, and prognostic significance. Comput Biol Chem 2022; 100:107746. [DOI: 10.1016/j.compbiolchem.2022.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
|
50
|
Tseng YT, Sung YC, Liu CY, Lo KY. Translation initiation factor eIF4G1 modulates assembly of the polypeptide exit tunnel region in yeast ribosome biogenesis. J Cell Sci 2022; 135:275526. [PMID: 35615984 DOI: 10.1242/jcs.259540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 01/24/2023] Open
Abstract
eIF4G is an important eukaryotic translation initiation factor. In this study, eIF4G1, one of the eIF4G isoforms, was shown to directly participate in biogenesis of the large (60S) ribosomal subunit in Saccharomyces cerevisiae cells. Mutation of eIF4G1 decreased the amount 60S ribosomal subunits significantly. The C-terminal fragment of eIF4G1 could complement the function in 60S biogenesis. Analyses of its purified complex with mass spectrometry indicated that eIF4G1 associated with the pre-60S form directly. Strong genetic and direct protein-protein interactions were observed between eIF4G1 and Ssf1 protein. Upon deletion of eIF4G1, Ssf1, Rrp15, Rrp14 and Mak16 were abnormally retained on the pre-60S complex. This purturbed the loading of Arx1 and eL31 at the polypeptide exit tunnel (PET) site and the transition to a Nog2 complex. Our data indicate that eIF4G1 is important in facilitating PET maturation and 27S processing correctly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yun-Ting Tseng
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Cheng Sung
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Yu Liu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|