1
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
2
|
Wang X, Wang X, Zhao Y, Qi Z. LY103, a pomalidomide derivative, alleviates taxol resistance in NSCLC via energy metabolism crosstalk and tumor microenvironment intervention. Bioorg Chem 2023; 136:106558. [PMID: 37105001 DOI: 10.1016/j.bioorg.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
In this study, we identified HIF 1α as a potential target for reversing taxol resistance in lung cancer by combining bioinformatics analysis with pharmacological analysis. Furthermore, pomalidomide derivative LY103 was also be synthesized by introducing an isatin analogue into the amino terminal ofpomalidomide, and it has a broad antitumor spectrum and showed excellent activity against A549/Taxol cells (IC50 = 6.33 ± 0.51 μM). The results of molecular docking showed that not only LY103 was inclined to bind to HIF 1α stably, it could also form multiple hydrogen bonds with VAL376, ASP256, ILE454, and GLU455 of HIF 1α even was reduced to LY103-NH2 by nitroreductase, which was further stabilized the complex formed by them, thereby inhibiting the activity of HIF 1α. LY103 was able to significantly induce DNA damage and inhibit angiogenesis. Concurrently, LY103 activated the immune response, reduced the expression of cytokines TNF-α, IL-6, and IL-1β, thus might be inhibit the proliferation and metastasis of tumor cells. Pharmacological analysis proved that LY103 led to cell apoptosis through the mitochondrial pathway, and its combination with taxol significantly promoted this process. In general, the consumption of glutathione, the crosstalk of energy metabolism, and the improvement of the tumor microenvironment caused by LY103 eventually led to the decrease of ABCC1 protein expression and the drug resistance was reversed. The rational design of LY103 provided a basis for the application of nitro compounds in the treatment of hypoxic tumors and the reversal of taxol resistance.
Collapse
Affiliation(s)
- Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xiaohan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
3
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Chen K, Ernst P, Liu XM, Zhou L. Optogenetic Studies of Mitochondria. Methods Mol Biol 2022; 2501:311-324. [PMID: 35857235 DOI: 10.1007/978-1-0716-2329-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While optogenetic approaches have been widely used for remote control of cell membrane excitability and intracellular signaling pathways, their application in mitochondrial study has been limited, largely due to the challenge of effectively and specifically expressing heterologous light-gated rhodopsin channels in the mitochondria. Here, we describe the methods for expressing functional channelrhodopsin 2 (ChR2) proteins in the mitochondrial inner membrane with an unusually long mitochondrial leading sequence and characterizing optogenetic-mediated mitochondrial membrane potential (ΔΨm) depolarization. We then illustrate how this next-generation optogenetic approach can be used to study the effect of ΔΨm on mitochondrial functions such as mitophagy, programed cell death, and preconditioning-mediated cytoprotection. We anticipate that this innovative technology will enable new insights into the mechanisms by which changes in ΔΨm differentially impacts mitochondrial and cellular functions.
Collapse
Affiliation(s)
- Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick Ernst
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Zeng Z, Fang C, Zhang Y, Chen CX, Zhang YF, Zhang K. Mitochondria-Targeted Nanocarriers Promote Highly Efficient Cancer Therapy: A Review. Front Bioeng Biotechnol 2021; 9:784602. [PMID: 34869294 PMCID: PMC8633539 DOI: 10.3389/fbioe.2021.784602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the primary organelles which can produce adenosine triphosphate (ATP). They play vital roles in maintaining normal functions. They also regulated apoptotic pathways of cancer cells. Given that, designing therapeutic agents that precisely target mitochondria is of great importance for cancer treatment. Nanocarriers can combine the mitochondria with other therapeutic modalities in cancer treatment, thus showing great potential to cancer therapy in the past few years. Herein, we summarized lipophilic cation- and peptide-based nanosystems for mitochondria targeting. This review described how mitochondria-targeted nanocarriers promoted highly efficient cancer treatment in photodynamic therapy (PDT), chemotherapy, combined immunotherapy, and sonodynamic therapy (SDT). We further discussed mitochondria-targeted nanocarriers’ major challenges and future prospects in clinical cancer treatment.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Medical Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chao Fang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong-Xian Chen
- Department of Medical Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yi-Feng Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity. Int J Mol Sci 2020; 21:E8684. [PMID: 33217901 PMCID: PMC7698797 DOI: 10.3390/ijms21228684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized "vehicles" capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Ivonne Olmedo
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Jennifer Faúndez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| | - José A. Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| |
Collapse
|
7
|
Trotta F, Avena P, Chimento A, Rago V, De Luca A, Sculco S, Nocito MC, Malivindi R, Fallo F, Pezzani R, Pilon C, Lasorsa FM, Barile SN, Palmieri L, Lerario AM, Pezzi V, Casaburi I, Sirianni R. Statins Reduce Intratumor Cholesterol Affecting Adrenocortical Cancer Growth. Mol Cancer Ther 2020; 19:1909-1921. [PMID: 32546662 DOI: 10.1158/1535-7163.mct-19-1063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
Mitotane causes hypercholesterolemia in patients with adrenocortical carcinoma (ACC). We suppose that cholesterol increases within the tumor and can be used to activate proliferative pathways. In this study, we used statins to decrease intratumor cholesterol and investigated the effects on ACC growth related to estrogen receptor α (ERα) action at the nuclear and mitochondrial levels. We first used microarray to investigate mitotane effect on genes involved in cholesterol homeostasis and evaluated their relationship with patients' survival in ACC TCGA. We then blocked cholesterol synthesis with simvastatin and determined the effects on H295R cell proliferation, estradiol production, and ERα activity in vitro and in xenograft tumors. We found that mitotane increases intratumor cholesterol content and expression of genes involved in cholesterol homeostasis, among them INSIG, whose expression affects patients' survival. Treatment of H295R cells with simvastatin to block cholesterol synthesis decreased cellular cholesterol content, and this affected cell viability. Simvastatin reduced estradiol production and decreased nuclear and mitochondrial ERα function. A mitochondrial target of ERα, the respiratory complex IV (COXIV), was reduced after simvastatin treatment, which profoundly affected mitochondrial respiration activating apoptosis. Additionally, simvastatin reduced tumor volume and weight of grafted H295R cells, intratumor cholesterol content, Ki-67 and ERα, COXIV expression and activity and increase terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Collectively, these data demonstrate that a reduction in intratumor cholesterol content prevents estradiol production and inhibits mitochondrial respiratory chain-inducing apoptosis in ACC cells. Inhibition of mitochondrial respiration by simvastatin represents a novel strategy to counteract ACC growth.
Collapse
Affiliation(s)
- Francesca Trotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sara Sculco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Marta C Nocito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Fallo
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Raffaele Pezzani
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Catia Pilon
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Francesco M Lasorsa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Simona N Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Antonio M Lerario
- Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy.
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
8
|
Jara JA, Rojas D, Castro-Castillo V, Fuentes-Retamal S, Sandoval-Acuña C, Parra E, Pavani M, Maya JD, Ferreira J, Catalán M. Novel benzoate-lipophilic cations selectively induce cell death in human colorectal cancer cell lines. Toxicol In Vitro 2020; 65:104814. [PMID: 32112803 DOI: 10.1016/j.tiv.2020.104814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a critical health issue worldwide. The high rate of liver and lung metastasis associated with CRC creates a significant barrier to effective and efficient therapy. Tumour cells, including CRC cells, have metabolic alterations, such as high levels of glycolytic activity, increased cell proliferation and invasiveness, and chemo- and radio-resistance. However, the abnormally elevated mitochondrial transmembrane potential of these cells also provides an opportunity to develop drugs that selectively target the mitochondrial functions of tumour cells. METHODS In this work, we used a new batch of benzoic acid esters with cytotoxic activities attached to the triphenylphosphonium group as a vehicle to target tumour mitochondria and improve their activity. We evaluated the cytotoxicity, selectivity, and mechanism of action of these derivatives, including the effects on energy stress-induced apoptosis and metabolic behaviour in the human CRC cell lines HCT-15 and COLO-205. RESULTS The benzoic acid derivatives selectively targeted the tumour cells with high potency and efficacy. The derivatives induced the uncoupling of the oxidative phosphorylation system, decreased the transmembrane potential, and reduced ATP levels while increasing AMPK activation, thereby triggering tumour cell apoptosis in both tumour cell lines tested. CONCLUSION The benzoic acid derivatives studied here are promising candidates for assessing in vivo models of CRC, despite the diverse metabolic characteristics of these tumour cells.
Collapse
Affiliation(s)
- José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Diego Rojas
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Vicente Castro-Castillo
- Department of Physical Chemistry and Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Sandoval-Acuña
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eduardo Parra
- School of Medicine, Faculty of Health Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000007, Chile
| | - Mario Pavani
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Jin S, Guo Y, Song D, Zhu Z, Zhang Z, Sun Y, Yang T, Guo Z, Wang X. Targeting Energy Metabolism by a Platinum(IV) Prodrug as an Alternative Pathway for Cancer Suppression. Inorg Chem 2019; 58:6507-6516. [DOI: 10.1021/acs.inorgchem.9b00708] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yuewen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Tao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
10
|
Magherini F, Fiaschi T, Valocchia E, Becatti M, Pratesi A, Marzo T, Massai L, Gabbiani C, Landini I, Nobili S, Mini E, Messori L, Modesti A, Gamberi T. Antiproliferative effects of two gold(I)-N-heterocyclic carbene complexes in A2780 human ovarian cancer cells: a comparative proteomic study. Oncotarget 2018; 9:28042-28068. [PMID: 29963261 PMCID: PMC6021324 DOI: 10.18632/oncotarget.25556] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 05/19/2018] [Indexed: 02/07/2023] Open
Abstract
Au(NHC) and Au(NHC)2, i.e. a monocarbene gold(I) complex and the corresponding bis(carbene) complex, are two structurally related compounds, endowed with cytotoxic properties against several cancer cell lines. Herein, we explore the molecular and cellular mechanisms at the basis of their cytotoxicity in A2780 human ovarian cancer cells. Through a comparative proteomic analysis, we demonstrated that the number of modulated proteins is far larger in Au(NHC)2-treated than in Au(NHC)-treated A2780 cells. Both gold compounds mainly affected proteins belonging to the following functional classes: protein synthesis, metabolism, cytoskeleton and stress response and chaperones. Particularly, Au(NHC)2 gave rise to an evident upregulation of several glycolytic enzymes. Moreover, only Au(NHC)2 triggered a net impairment of respiration and a metabolic shift towards glycolysis, suggesting that mitochondria are relevant cellular targets. We also found that both carbenes, similarly to the gold(I) compound auranofin, caused a strong inhibition of the seleno-enzyme thioredoxin reductase (TrxR). In conclusion, we highlighted that coordination of two carbene ligands to the same gold(I) center greatly enhances the antiproliferative effects of the resulting compound in comparison to the monocarbene derivative. Moreover, TrxR inhibition and metabolic impairment seem to play a major role in the Au(NHC)2 cytotoxicity. Overall, these antiproliferative effects were also confirmed on other two human ovarian cancer cell lines (i.e. SKOV3 and IGROV1).
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisa Valocchia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Pratesi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Tiziano Marzo
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Ida Landini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
11
|
Ovadje P, Ammar S, Guerrero JA, Arnason JT, Pandey S. Dandelion root extract affects colorectal cancer proliferation and survival through the activation of multiple death signalling pathways. Oncotarget 2018; 7:73080-73100. [PMID: 27564258 PMCID: PMC5341965 DOI: 10.18632/oncotarget.11485] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Dandelion extracts have been studied extensively in recent years for its anti-depressant and anti-inflammatory activity. Recent work from our lab, with in-vitro systems, shows the anti-cancer potential of an aqueous dandelion root extract (DRE) in several cancer cell models, with no toxicity to non-cancer cells. In this study, we examined the cancer cell-killing effectiveness of an aqueous DRE in colon cancer cell models. Aqueous DRE induced programmed cell death (PCD) selectively in > 95% of colon cancer cells, irrespective of their p53 status, by 48 hours of treatment. The anti-cancer efficacy of this extract was confirmed in in-vivo studies, as the oral administration of DRE retarded the growth of human colon xenograft models by more than 90%. We found the activation of multiple death pathways in cancer cells by DRE treatment, as revealed by gene expression analyses showing the expression of genes implicated in programmed cell death. Phytochemical analyses of the extract showed complex multi-component composition of the DRE, including some known bioactive phytochemicals such as α-amyrin, β-amyrin, lupeol and taraxasterol. This suggested that this natural extract could engage and effectively target multiple vulnerabilities of cancer cells. Therefore, DRE could be a non-toxic and effective anti-cancer alternative, instrumental for reducing the occurrence of cancer cells drug-resistance.
Collapse
Affiliation(s)
- Pamela Ovadje
- Department of Chemistry & Biochemistry, University of Windsor, Windsor ON, Canada
| | - Saleem Ammar
- Department of Biology, University of Ottawa, Ottawa ON, Canada
| | - Jose-Antonio Guerrero
- Department of Biology, University of Ottawa, Ottawa ON, Canada.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Xalapa, Veracruz, México
| | | | - Siyaram Pandey
- Department of Chemistry & Biochemistry, University of Windsor, Windsor ON, Canada
| |
Collapse
|
12
|
API5 induces cisplatin resistance through FGFR signaling in human cancer cells. Exp Mol Med 2017; 49:e374. [PMID: 28883546 PMCID: PMC5628271 DOI: 10.1038/emm.2017.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
Most tumors frequently undergo initial treatment with a chemotherapeutic agent but ultimately develop resistance, which limits the success of chemotherapies. As cisplatin exerts a high therapeutic effect in a variety of cancer types, it is often used in diverse strategies, such as neoadjuvant, adjuvant and combination chemotherapies. However, cisplatin resistance has often manifested regardless of cancer type, and it represents an unmet clinical need. Since we found that API5 expression was positively correlated with chemotherapy resistance in several specimens from patients with cervical cancer, we decided to investigate whether API5 is involved in the development of resistance after chemotherapy and to explore whether targeting API5 or its downstream effectors can reverse chemo-resistance. For this purpose, cisplatin-resistant cells (CaSki P3 CR) were established using three rounds of in vivo selection with cisplatin in a xenografted mouse. In the CaSki P3 CR cells, we observed that API5 acted as a chemo-resistant factor by rendering cancer cells resistant to cisplatin-induced apoptosis. Mechanistic investigations revealed that API5 mediated chemo-resistance by activating FGFR1 signaling, which led to Bim degradation. Importantly, FGFR1 inhibition using either an siRNA or a specific inhibitor disrupted cisplatin resistance in various types of API5high cancer cells in an in vitro cell culture system as well as in an in vivo xenograft model. Thus, our results demonstrated that API5 promotes chemo-resistance and that targeting either API5 or its downstream FGFR1 effectors can sensitize chemo-refractory cancers.
Collapse
|
13
|
Kao SJ, Lee WJ, Chang JH, Chow JM, Chung CL, Hung WY, Chien MH. Suppression of reactive oxygen species-mediated ERK and JNK activation sensitizes dihydromyricetin-induced mitochondrial apoptosis in human non-small cell lung cancer. ENVIRONMENTAL TOXICOLOGY 2017; 32:1426-1438. [PMID: 27539140 DOI: 10.1002/tox.22336] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and still remains a therapeutic challenge. A strategy for targeting NSCLC is to identify agents that are effective against NSCLC cells while sparing normal cells. Dihydromyricetin (DHM) is the major flavonoid component derived from Ampelopsis grossedentata, which has a long history of use in medicine. Herein, the molecular mechanisms by which DHM exerts its anticancer effects against NSCLC cells were investigated. Results from MTS, colony formation, Western blot, flow cytometric, and JC-1 mitochondrial membrane potential assays revealed that DHM showed a selective cytotoxic effect against NSCLC cells (A549 and H1975), but not against normal lung (WI-38) fibroblasts, by inducing apoptosis. DHM-induced cell apoptosis occurred through Bcl-w suppression-mediated mitochondrial membrane depolarization, caspase-9/-7/-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in A549 and H1975 cells. Moreover, treatment of A549 and H1975 cells with DHM induced increase of intracellular peroxide and sustained activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2, and the reactive oxygen species scavenger, N-acetylcysteine (NAC), reversed DHM-induced ERK and JNK activation. Furthermore, treatment of cells with specific inhibitors of ERK and JNK or NAC significantly promoted the DHM-induced activation of caspase-9/-7/-3 and PARP cleavage and also sensitized the antitumorigenic effect of DHM on NSCLC cells. These findings define and support a novel function of DHM of inducing mitochondrion-derived apoptosis in human NSCLC cells, and a combination of DHM with ERK and JNK inhibitors should be a good strategy for preventing NSCLC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1426-1438, 2017.
Collapse
Affiliation(s)
- Shang-Jyh Kao
- Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Lanatoside C suppressed colorectal cancer cell growth by inducing mitochondrial dysfunction and increased radiation sensitivity by impairing DNA damage repair. Oncotarget 2017; 7:6074-87. [PMID: 26756216 PMCID: PMC4868741 DOI: 10.18632/oncotarget.6832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
Cardiac glycosides are clinically used for cardiac arrhythmias. In this study, we investigated the mechanism responsible for anti-cancer and radiosensitizing effects of lanatoside C in colorectal cancer cells. Lanatoside C-treated cells showed classic patterns of autophagy, which may have been caused by lanatoside C-induced mitochondrial aggregation or degeneration. This mitochondrial dysfunction was due to disruption of K+ homeostasis, possibly through inhibition of Na+/K+-ATPase activity. In addition, lanatoside C sensitized HCT116 cells (but not HT-29 cells) to radiation in vitro. γ-H2AX, a representative marker of DNA damage, were sustained longer after combination of irradiation with lanatoside C, suggesting lanatoside C impaired DNA damage repair processes. Recruitment of 53BP1 to damaged DNA, a critical initiation step for DNA damage repair signaling, was significantly suppressed in lanatoside C-treated HCT116 cells. This may have been due to defects in the RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A that increases 53BP1 recruitment to DNA damage sites. Although lanatoside C alone reduced tumor growth in the mouse xenograft tumor model, combination of lanatoside C and radiation inhibited tumor growth more than single treatments. Thus, lanatoside C could be a potential molecule for anti-cancer drugs and radiosensitizing agents.
Collapse
|
15
|
Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo. Int J Mol Sci 2016; 17:ijms17111927. [PMID: 27869675 PMCID: PMC5133923 DOI: 10.3390/ijms17111927] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE) is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK)-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS) generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK) signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients.
Collapse
|
16
|
Park SY, Park C, Park SH, Hong SH, Kim GY, Hong SH, Choi YH. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human cervical cancer cells via activation of AMP-activated protein kinase. Biosci Trends 2016; 10:467-476. [DOI: 10.5582/bst.2016.01170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Seon Young Park
- Department of Internal Medicine, Dongeui University College of Korean Medicine
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University
| | - Shin-Hyung Park
- Department of Pathology, Dongeui University College of Korean Medicine
| | - Su-Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dongeui University
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Science, Jeju National University
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University
- Anti-Aging Research Center, Dongeui University
| |
Collapse
|
17
|
Abstract
There are many approaches used to control breast cancer, although the most efficient strategy is the reactivation of apoptosis. Since mitochondria play an important role in cellular metabolism and homeostasis, as well as in the regulation of cell death pathways, we focus here on metabolic remodeling and mitochondrial alterations present in breast tumor cells. We review strategies including classes of compounds and delivery systems that target metabolic and specific mitochondrial alterations to kill tumor cells without affecting their normal counterparts. We present here the arguments for the improvement of already existent molecules and the design of novel promising anticancer drug candidates that target breast cancer mitochondria.
Collapse
|
18
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|
19
|
Hsiao PC, Chou YE, Tan P, Lee WJ, Yang SF, Chow JM, Chen HY, Lin CH, Lee LM, Chien MH. Pterostilbene simultaneously induced G0/G1-phase arrest and MAPK-mediated mitochondrial-derived apoptosis in human acute myeloid leukemia cell lines. PLoS One 2014; 9:e105342. [PMID: 25144448 PMCID: PMC4140770 DOI: 10.1371/journal.pone.0105342] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
Background Pterostilbene (PTER) is a dimethylated analog of the phenolic phytoalexin, resveratrol, with higher anticancer activity in various tumors. Herein, the molecular mechanisms by which PTER exerts its anticancer effects against acute myeloid leukemia (AML) cells were investigated. Methodology and Principal Findings Results showed that PTER suppressed cell proliferation in various AML cell lines. PTER-induced G0/G1-phase arrest occurred when expressions of cyclin D3 and cyclin-dependent kinase (CDK)2/6 were inhibited. PTER-induced cell apoptosis occurred through activation of caspases-8-9/-3, and a mitochondrial membrane permeabilization (MMP)-dependent pathway. Moreover, treatment of HL-60 cells with PTER induced sustained activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2, and inhibition of both MAPKs by their specific inhibitors significantly abolished the PTER-induced activation of caspases-8/-9/-3. Of note, PTER-induced cell growth inhibition was only partially reversed by the caspase-3-specific inhibitor, Z-DEVE-FMK, suggesting that this compound may also act through a caspase-independent pathway. Interestingly, we also found that PTER promoted disruption of lysosomal membrane permeabilization (LMP) and release of activated cathepsin B. Conclusion Taken together, our results suggest that PTER induced HL-60 cell death via MAPKs-mediated mitochondria apoptosis pathway and loss of LMP might be another cause for cell apoptosis induced by PTER.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Peng Tan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jyh-Ming Chow
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Yu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MHC); (LML)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MHC); (LML)
| |
Collapse
|
20
|
Casarin E, Dall'Acqua S, Smejkal K, Slapetová T, Innocenti G, Carrara M. Molecular mechanisms of antiproliferative effects induced by Schisandra-derived dibenzocyclooctadiene lignans (+)-deoxyschisandrin and (-)-gomisin N in human tumour cell lines. Fitoterapia 2014; 98:241-7. [PMID: 25110194 DOI: 10.1016/j.fitote.2014.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022]
Abstract
A different behavior of the two dibenzocyclooctadiene lignans (+)-deoxyschisandrin (1) and (-)-gomisin N (2), from Schisandra chinensis fruits, was observed against two human tumour cell lines, (2008 and LoVo). These lignans inhibited cell growth in a dose-dependent manner on both cell lines, but inducing different types of cell death. In particular, (+)-deoxyschisandrin (1) caused apoptosis in colon adenocarcinoma cells (LoVo) but not in ovarian adenocarcinoma cells (2008), while (-)-gomisin N (2) induced apoptosis on both the cell lines used. Mitochondrial-mediated pathway was not involved in apoptotic stimuli. Both compounds caused G2/M phase cell growth arrest correlated with tubulin polymerization.
Collapse
Affiliation(s)
- Elisabetta Casarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy.
| | - Karel Smejkal
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, CZ-612 42 Brno, Czech Republic
| | - Tereza Slapetová
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, CZ-612 42 Brno, Czech Republic
| | - Gabbriella Innocenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
21
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Onishi Y, Ueha T, Kawamoto T, Hara H, Toda M, Harada R, Minoda M, Kurosaka M, Akisue T. Regulation of mitochondrial proliferation by PGC-1α induces cellular apoptosis in musculoskeletal malignancies. Sci Rep 2014; 4:3916. [PMID: 24472748 PMCID: PMC7365312 DOI: 10.1038/srep03916] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022] Open
Abstract
A number of studies have reported that decreased mitochondrial numbers are linked with neoplastic transformation and/or tumor progression, including resistance to apoptosis. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a multi-functional transcriptional coactivator that regulates the activities of multiple nuclear receptors and transcriptional factors involved in mitochondrial biogenesis. In this study, we observed that the number of mitochondria in sarcoma tissues, such as osteosarcoma and malignant fibrous histiocytoma, is significantly lower than that in normal muscle tissue or benign tumors and that increasing the number of mitochondria by PGC-1α overexpression induces mitochondrial apoptosis in human sarcoma cell lines. The findings suggest that decreased mitochondrial numbers may contribute to musculoskeletal tumor progression and that regulation of mitochondrial numbers by PGC-1α could be a potent therapeutic tool for human malignancies.
Collapse
Affiliation(s)
- Yasuo Onishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Ueha
- NeoChemir Inc., Sannomiya Chuo-building 4F, 4-2-20 Gokodori, Chuo-ku, Kobe 651-0087, Japan
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hitomi Hara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mitsunori Toda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Risa Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaya Minoda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Toshihiro Akisue
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
23
|
Angulo-Molina A, Reyes-Leyva J, López-Malo A, Hernández J. The Role of Alpha Tocopheryl Succinate (α-TOS) as a Potential Anticancer Agent. Nutr Cancer 2013; 66:167-76. [DOI: 10.1080/01635581.2014.863367] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Jha MK, Suk K. Pyruvate dehydrogenase kinase as a potential therapeutic target for malignant gliomas. Brain Tumor Res Treat 2013; 1:57-63. [PMID: 24904893 PMCID: PMC4027103 DOI: 10.14791/btrt.2013.1.2.57] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
Metabolic aberrations in the form of altered flux through key metabolic pathways are the major hallmarks of several life-threatening malignancies including malignant gliomas. These adaptations play an important role in the enhancement of the survival and proliferation of gliomas at the expense of the surrounding normal/healthy tissues. Recent studies in the field of neurooncology have directly targeted the altered metabolic pathways of malignant tumor cells for the development of anti-cancer drugs. Aerobic glycolysis due to elevated production of lactate from pyruvate regardless of oxygen availability is a common metabolic alteration in most malignancies. Aerobic glycolysis offers survival advantages in addition to generating substrates such as fatty acids, amino acids and nucleotides required for the rapid proliferation of cells. This review outlines the role of pyruvate dehydrogenase kinase (PDK) in gliomas as an inhibitor of pyruvate dehydrogenase that catalyzes the oxidative decarboxylation of pyruvate. An in-depth investigation on the key metabolic enzyme PDK may provide a novel therapeutic approach for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
25
|
Laothong U, Pinlaor P, Boonsiri P, Pairojkul C, Priprem A, Johns NP, Charoensuk L, Intuyod K, Pinlaor S. Melatonin inhibits cholangiocarcinoma and reduces liver injury in Opisthorchis viverrini-infected and N-nitrosodimethylamine-treated hamsters. J Pineal Res 2013; 55:257-66. [PMID: 23772655 DOI: 10.1111/jpi.12068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
The human liver fluke Opisthorchis viverrini infection and N-nitrosodimethylamine (NDMA) administration induce cholangiocarcinoma (CCA) and liver injury in hamsters. Melatonin protects against liver injury and reduces the alteration of mitochondrial structure, mitochondrial membrane potential, and mitochondrial pro- and anti-apoptotic pathways in various cancer types. To investigate the chemopreventive effect of melatonin on CCA genesis and liver injury, hamsters were treated with a combination of O. viverrini infection and NDMA concurrently administered with melatonin (10 mg/kg and 50 mg/kg) for 120 days. Melatonin treatment at 50 mg/kg caused a significant reduction in liver/body weight ratios and decreased tumor volumes leading to an increase in the survival of animals. In the tumorous tissues, the high-dose melatonin reduced DNA fragmentation and mitochondrial apoptosis by inducing anti-apoptotic protein (Bcl-2) in the mitochondrial fraction and down-regulating cytochrome c, pro-apoptotic protein (Bax), and caspase-3 in tumor cytosol. Moreover, a high-dose melatonin treatment significantly increased mitochondrial antioxidant enzymes and prevented mitochondrial ultrastructure changes in the tumor. Overall, melatonin has potent chemopreventive effects in inhibiting CCA genesis and also reduces liver injury in hamster CCA, which, in part, might involve in the suppression of CCA by reducing tumor mitochondria alteration.
Collapse
Affiliation(s)
- Umawadee Laothong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Verissimo CS, Elands R, Cheng S, Saaltink DJ, ter Horst JP, Alme MN, Pont C, van de Water B, Håvik B, Fitzsimons CP, Vreugdenhil E. Silencing of doublecortin-like (DCL) results in decreased mitochondrial activity and delayed neuroblastoma tumor growth. PLoS One 2013; 8:e75752. [PMID: 24086625 PMCID: PMC3784435 DOI: 10.1371/journal.pone.0075752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy.
Collapse
Affiliation(s)
- Carla S. Verissimo
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail: (CSV); (EV)
| | - Rachel Elands
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Sou Cheng
- Prosensa Therapeutics B.V., Leiden, the Netherlands
| | - Dirk-Jan Saaltink
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith P. ter Horst
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria N. Alme
- Department of Biomedicine, K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Chantal Pont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Bjarte Håvik
- Dr. E. Martens Research Group for Biological Psychiatry, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Carlos P. Fitzsimons
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Erno Vreugdenhil
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Migraine Research Group, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail: (CSV); (EV)
| |
Collapse
|
27
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Olszewska A, Szewczyk A. Mitochondria as a pharmacological target: magnum overview. IUBMB Life 2013; 65:273-81. [PMID: 23441041 DOI: 10.1002/iub.1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022]
Abstract
Mitochondria, responsible for energy metabolism within the cell, act as signaling organelles. Mitochondrial dysfunction may lead to cell death and oxidative stress and may disturb calcium metabolism. Additionally, mitochondria play a pivotal role in cardioprotective phenomena and a variety of neurodegenerative disorders ranging from Parkinson's to Alzheimer's disease. Mitochondrial DNA mutations may lead to impaired respiration. Hence, targeting the mitochondria with drugs offers great potential for new therapeutic approaches. The purpose of this overview is to present the recent state of knowledge concerning the interactions of various substances with mitochondria.
Collapse
Affiliation(s)
- Anna Olszewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
29
|
Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 2013; 1:304-12. [PMID: 24024165 PMCID: PMC3757699 DOI: 10.1016/j.redox.2013.04.005] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.
Collapse
Key Words
- CDNB, 1-chloro-2,4-dinitrobenzene
- Cytochrome b
- ETF, electron transferring flavoprotein
- ETF:QOR, ETF:ubiquinone oxidoreductase
- Eh, redox potential
- Hydrogen peroxide
- IF, flavin site of complex I
- IIF, flavin site of complex II
- IIIQo, quinol oxidation site of complex III
- IQ, quinone-binding site of complex I
- NADH
- OGDH, 2-oxoglutarate dehydrogenase
- PDH, pyruvate dehydrogenase
- Q, ubiquinone
- QH2, ubiquinol
- ROS, reactive oxygen species
- Respiratory complexes
- Superoxide
- Ubiquinone
- mGPDH, mitochondrial glycerol 3-phosphate dehydrogenase
Collapse
Affiliation(s)
- Casey L. Quinlan
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
- Correspondence to: The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel.: +1 415 493 3676.
| | | | - Martin Hey-Mogensen
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Denmark
| | - Adam L. Orr
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Martin D. Brand
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
30
|
Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol 2013; 3:41. [PMID: 23483560 PMCID: PMC3592197 DOI: 10.3389/fonc.2013.00041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is the ultimate step in dozens of lethal apoptotic signal transduction pathways which converge on mitochondria. One of the representative systems proposed to be responsible for the MOMP is the mitochondrial permeability transition pore (MPTP). Although the molecular composition of the MPTP is not clearly understood, the MPTP attracts much interest as a promising target for resolving two conundrums regarding cancer treatment: tumor selectivity and resistance to treatment. The regulation of the MPTP is closely related to metabolic reprogramming in cancer cells including mitochondrial alterations. Restoration of deregulated apoptotic machinery in cancer cells by tumor-specific modulation of the MPTP could therefore be a promising anti-cancer strategy. Currently, a number of MPTP-targeting agents are under pre-clinical and clinical studies. Here, we reviewed the structure and regulation of the MPTP as well as the current status of the development of promising MPTP-targeting drugs.
Collapse
Affiliation(s)
- Dong H Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine Seoul, South Korea
| | | | | | | | | |
Collapse
|
31
|
The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Methods Enzymol 2013; 526:189-217. [PMID: 23791102 DOI: 10.1016/b978-0-12-405883-5.00012-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from each site can be achieved in intact skeletal muscle mitochondria.
Collapse
|
32
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
33
|
Shikonin directly targets mitochondria and causes mitochondrial dysfunction in cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:726025. [PMID: 23118796 PMCID: PMC3478753 DOI: 10.1155/2012/726025] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/07/2012] [Indexed: 01/18/2023]
Abstract
Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca2+ and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.
Collapse
|
34
|
Sai Y, Zou Z, Peng K, Dong Z. The Parkinson's disease-related genes act in mitochondrial homeostasis. Neurosci Biobehav Rev 2012; 36:2034-43. [DOI: 10.1016/j.neubiorev.2012.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/09/2012] [Accepted: 06/12/2012] [Indexed: 11/16/2022]
|
35
|
Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012; 82:1-18. [DOI: 10.1016/j.ejpb.2012.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
|
36
|
Neuzil J, Dong LF, Rohlena J, Truksa J, Ralph SJ. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 2012; 13:199-208. [PMID: 22846431 DOI: 10.1016/j.mito.2012.07.112] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/15/2012] [Accepted: 07/22/2012] [Indexed: 12/13/2022]
Abstract
Mitochondria have emerged as an intriguing target for anti-cancer drugs, inherent to vast majority if not all types of tumours. Drugs that target mitochondria and exert anti-cancer activity have become a focus of recent research due to their great clinical potential (which has not been harnessed thus far). The exceptional potential of mitochondria as a target for anti-cancer agents has been reinforced by the discouraging finding that even tumours of the same type from individual patients differ in a number of mutations. This is consistent with the idea of personalised therapy, an elusive goal at this stage, in line with the notion that tumours are unlikely to be treated by agents that target only a single gene or a single pathway. This endows mitochondria, an invariant target present in all tumours, with an exceptional momentum. This train of thoughts inspired us to define a class of anti-cancer drugs acting by way of mitochondrial 'destabilisation', termed 'mitocans'. In this communication, we define mitocans (many of which have been known for a long time) and classify them into several classes based on their molecular mode of action. We chose the targets that are of major importance from the point of view of their role in mitochondrial destabilisation by small compounds, some of which are now trialled as anti-cancer agents. The classification starts with targets at the surface of mitochondria and ending up with those in the mitochondrial matrix. The purpose of this review is to present in a concise manner the classification of compounds that hold a considerable promise as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Qld, Australia.
| | | | | | | | | |
Collapse
|
37
|
Liu D, Shi P, Yin X, Chen Z, Zhang X. Effect of norcantharidin on the human breast cancer Bcap-37 cells. Connect Tissue Res 2012; 53:508-12. [PMID: 22606958 DOI: 10.3109/03008207.2012.694928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Norcantharidin (NCTD), a chemically modified form of cantharidin, is a potential anticancer drug. In this study, the effects of NCTD on the cellular viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and DNA damage in the human breast cancer cell line Bcap-37 were investigated with confocal and fluorescence microscopy. The cell cycle was further analyzed using the CellQuest software of a Becton-Dickinson FACS flow cytometer. The results indicated that the cellular viability was decreased with the growing concentrations of NCTD and time exposure. Moreover, the fluorescence intensity of ROS was increased, whereas the MMP was decreased in Bcap-37 cells with the growing concentrations of NCTD. NCTD induced a dose-dependent DNA damage and reduced the G1 peak in Bcap-37 cells. The G2/M peak of Bcap-37 was also decreased by the higher concentration of NCTD.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | | | | | | | | |
Collapse
|
38
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Guizzunti G, Batova A, Chantarasriwong O, Dakanali M, Theodorakis EA. Subcellular localization and activity of gambogic acid. Chembiochem 2012; 13:1191-8. [PMID: 22532297 PMCID: PMC3359389 DOI: 10.1002/cbic.201200065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Indexed: 01/28/2023]
Abstract
The natural product gambogic acid (GA) has shown significant potential as an anticancer agent as it is able to induce apoptosis in multiple tumor cell lines, including multidrug-resistant cell lines, as well as displaying antitumor activity in animal models. Despite the fact that GA has entered phase I clinical trials, the primary cellular target and mode of action of this compound remain unclear, although many proteins have been shown to be affected by it. By thorough analysis of several cellular organelles, at both the morphological and functional levels, we demonstrate that the primary effect of GA is at the mitochondria. We found that GA induces mitochondrial damage within minutes of incubation at low-micromolar concentrations. Moreover, a fluorescent derivative of GA was able to localize specifically to the mitochondria and was displaced from these organelles after competition with unlabeled GA. These findings indicate that GA directly targets the mitochondria to induce the intrinsic pathway of apoptosis, and thus represents a new member of the mitocans.
Collapse
Affiliation(s)
- Gianni Guizzunti
- Department of Cell Biology and Infection, Membrane Traffic and Pathogenesis Unit, Pasteur Institute, Paris, France
| | - Ayse Batova
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+) 858-822-0456, Homepage: http://theodorakisgroup.ucsd.edu/
| | - Oraphin Chantarasriwong
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+) 858-822-0456, Homepage: http://theodorakisgroup.ucsd.edu/
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Thungkru, Bangkok 10140, Thailand
| | - Marianna Dakanali
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+) 858-822-0456, Homepage: http://theodorakisgroup.ucsd.edu/
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+) 858-822-0456, Homepage: http://theodorakisgroup.ucsd.edu/
| |
Collapse
|
40
|
Abstract
SIGNIFICANCE Plants produce many small molecules with biomedical potential. Their absorption from foods, metabolism, their effects on physiological and pathological processes, and the mechanisms of action are intensely investigated. Many are known to affect multiple cellular functions. Mitochondria are coming to be recognized as a major target for these compounds, especially redox-active ones, but the mechanisms involved still need clarification. At the same time, frontline research is uncovering the importance of processes involving these organelles for the cell and for an array of physiological and pathological processes. We review the major functions and possible dysfunctions of mitochondria, identify signaling pathways through which plant-derived molecules have an impact, and show how this may be relevant for major pathologies. RECENT ADVANCES Antioxidant, protective effects may arise as a reaction to a low-level pro-oxidant activity, largely taking place at mitochondria. Some plant-derived molecules can activate AMP-dependent kinase, with a consequent upregulation of mitochondrial biogenesis and a potential favorable impact on aging, pathologies like diabetes and neurodegeneration, and on ischemic damage. CRITICAL ISSUES The extrapolation of in vitro results and the verification of paradigms in vivo is a key issue for current research on both plant-derived compounds and mitochondria. The low bioavailability of many of these molecules poses a problem for both the study of their activities and their utilization. FUTURE DIRECTIONS The further clarification of the role of mitochondria in the activities of plant dietary compounds and their metabolites, mitochondrial targeting, the development of analogs and pro-drugs are all topics for promising research.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience, Department of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
41
|
Rohlena J, Dong LF, Ralph SJ, Neuzil J. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 2011; 15:2951-74. [PMID: 21777145 DOI: 10.1089/ars.2011.3990] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Mitochondria are emerging as highly intriguing organelles showing promise but that are yet to be fully exploited as targets for anticancer drugs. RECENT ADVANCES A group of compounds that induce mitochondrial destabilization, thereby affecting the physiology of cancer cells, has been defined and termed 'mitocans.' Based on their mode of action of targeting in and around mitochondria, we have placed these agents into several groups including hexokinase inhibitors, compounds targeting Bcl-2 family proteins, thiol redox inhibitors, VDAC/ANT targeting drugs, electron transport chain-targeting drugs, lipophilic cations targeting the inner membrane, agents affecting the tricarboxylic acid cycle, drugs targeting mtDNA, and agents targeting other presently unknown sites. CRITICAL ISSUES Mitocans have a potential to prove highly efficient in suppressing various malignant diseases in a selective manner. They include compounds that are currently in clinical trial and offer substantial promise to become clinically applied drugs. Here we update and redefine the individual classes of mitocans, providing examples of the various members of these groups with a particular focus on agents targeting the electron transport chain, and indicate their potential application in clinical practice. FUTURE DIRECTIONS Even though reactive oxygen species induction is important for the anticancer activity of many mitocans, the precise sequence of events preceding and following this pivotal event are not yet fully clarified, and warrant further investigation. This is imperative for effective deployment of these compounds in the clinic.
Collapse
Affiliation(s)
- Jakub Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
42
|
Rubbiani R, Can S, Kitanovic I, Alborzinia H, Stefanopoulou M, Kokoschka M, Mönchgesang S, Sheldrick WS, Wölfl S, Ott I. Comparative in vitro evaluation of N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J Med Chem 2011; 54:8646-57. [PMID: 22039997 DOI: 10.1021/jm201220n] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(I) complexes with a 1,3-diethylbenzimidazol-2-ylidene N-heterocyclic carbene (NHC) ligand of the type NHC-Au-L (L=-Cl, -NHC, or -PPh3) were comparatively evaluated as thioredoxin reductase (TrxR) inhibitors and antimitochondrial anticancer agents. Different effects were noted in various biochemical assays (e.g., inhibition of TrxR, cellular and mitochondrial uptake, or effects on mitochondrial membrane potential), and this was related to properties of the complexes such as bond dissociation energies and overall charge. Remarkable antiproliferative effects, a strong induction of apoptosis, and enhancement of reactive oxygen species (ROS) formation as well as other effects on tumor cell metabolism confirmed the promising potential of the complexes as novel anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Riccardo Rubbiani
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rendal C, Kusk KO, Trapp S. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2395-406. [PMID: 21823161 DOI: 10.1002/etc.641] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/03/2011] [Accepted: 07/14/2011] [Indexed: 05/02/2023]
Abstract
It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point.
Collapse
Affiliation(s)
- Cecilie Rendal
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
44
|
Guizzunti G, Theodorakis EA, Yu AL, Zurzolo C, Batova A. Cluvenone induces apoptosis via a direct target in mitochondria: a possible mechanism to circumvent chemo-resistance? Invest New Drugs 2011; 30:1841-8. [PMID: 21898184 DOI: 10.1007/s10637-011-9745-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 01/10/2023]
Abstract
The synthetic caged Garcinia xanthone, cluvenone, has potent and selective cytotoxicity against numerous cancer cell lines including those that are multi-drug resistant. The direct target of this structurally and functionally unique agent is unknown and that of the parent natural product, gambogic acid (GA), presently in clinical trials, is not yet entirely clear. For the first time, using fluorescently labeled GA (GA-Bodipy), we determined that GA-Bodipy localized in mitochondria and was effectively displaced by cluvenone in competition experiments indicating that the direct target of cluvenone resided in mitochondria and was shared by GA. In agreement with these findings, treatment of HeLa cells with cluvenone or GA resulted in disruption of mitochondrial morphology within 4 h. Furthermore, experiments using the potential sensitive JC-1 dye demonstrated that cells treated with 1 μM cluvenone for 1 h had significant loss of MMP compared to control cells. Examination of Cyt c levels in leukemia cells treated with 1 μM cluvenone resulted in a 4-fold increase in levels of both cytosolic and mitochondrial Cyt c. In agreement with Cyt c release, caspase 9 activity was increased 2.6-fold after treatment of cells for 5 h with 1 μM cluvenone. Remarkably, the caspase-9 inhibitor, Z-LEHD-FMK, blocked cluvenone-induced apoptosis in a dose-dependent manner with apoptosis being completely blocked by 10 μM of the inhibitor. In conclusion, cluvenone, an agent with potent cytotoxicity against multi-drug resistant tumor cells, has direct targets in mitochondria thus setting precedence for drug discovery efforts against these targets in the treatment of refractory cancers.
Collapse
Affiliation(s)
- Gianni Guizzunti
- Department of Cell Biology and Infection, Membrane Traffic and Pathogenesis Unit, Pasteur Institute, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 2011; 28:2695-730. [PMID: 21863476 DOI: 10.1007/s11095-011-0566-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022]
Abstract
Succinate:quinone reductase (SQR) of Complex II occupies a unique central point in the mitochondrial respiratory system as a major source of electrons driving reactive oxygen species (ROS) production. It is an ideal pharmaceutical target for modulating ROS levels in normal cells to prevent oxidative stress-induced damage or alternatively,increase ROS in cancer cells, inducing cell death.The value of drugs like diazoxide to prevent ROS production,protecting normal cells, whereas vitamin E analogues promote ROS in cancer cells to kill them is highlighted. As pharmaceuticals these agents may prevent degenerative disease and their modes of action are presently being fully explored. The evidence that SDH/Complex II is tightly coupled to the NADH/NAD+ ratio in all cells,impacted by the available supplies of Krebs cycle intermediates as essential NAD-linked substrates, and the NAD+-dependent regulation of SDH/Complex II are reviewed, as are links to the NAD+-dependent dehydrogenases, Complex I and the E3 dihiydrolipoamide dehydrogenase to produce ROS. This review collates and discusses diverse sources of information relating to ROS production in different biological systems, focussing on evidence for SQR as the main source of ROS production in mitochondria, particularly its relevance to protection from oxidative stress and to the mitochondrial-targeted anti cancer drugs (mitocans) as novel cancer therapies [corrected].
Collapse
|
46
|
Mattarei A, Sassi N, Durante C, Biasutto L, Sandonà G, Marotta E, Garbisa S, Gennaro A, Paradisi C, Zoratti M. Redox Properties and Cytotoxicity of Synthetic Isomeric Mitochondriotropic Derivatives of the Natural Polyphenol Quercetin. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:697-706. [DOI: 10.1016/j.bbabio.2010.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/10/2010] [Accepted: 08/15/2010] [Indexed: 02/07/2023]
|
48
|
Mete E, Gul HI, Cetin-Atalay R, Das U, Sahin E, Gul M, Kazaz C, Dimmock JR. The design and cytotoxic evaluation of some 1-aryl-3-isopropylamino-1-propanone hydrochlorides towards human Huh-7 hepatoma cells. Arch Pharm (Weinheim) 2011; 344:333-9. [PMID: 21319206 PMCID: PMC3319740 DOI: 10.1002/ardp.201000194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/08/2022]
Abstract
A series of 1-aryl-3-isopropylamino-1-propanone hydrochlorides 1 and a related heterocyclic analog 2 as candidate antineoplastic agents were prepared and the rationale for designing these compounds is presented. A specific objective in this study is the discovery of novel compounds possessing growth-inhibiting properties of hepatoma cells. The compounds in series 1 and 2 were prepared and their structures established unequivocally. X-ray crystallography of two representative compounds 1d and 1g were achieved. Over half of the compounds are more potent than 5-fluorouracil which is an established drug used in treating liver cancers. QSAR evaluations and molecular modeling studies were undertaken with a view to detecting some physicochemical parameters which govern cytotoxic potencies. A number of guidelines for amplification of the project have been formulated.
Collapse
Affiliation(s)
- Ebru Mete
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Mitochondria control essential cellular activities including generation of ATP via oxidative phosphorylation. Mitochondrial DNA (mtDNA) mutations in the regulatory D-loop region and somatic mtDNA mutations are common in primary human cancers. The biological impact of a given mutation may vary, depending on the nature of the mutation and the proportion of mutant mtDNAs carried by the cell. Identification of mtDNA mutations in precancerous lesions supports their early contribution to cell transformation and cancer progression. Introduction of mtDNA mutations in transformed cells has been associated with increased ROS production and tumor growth. Studies reveal that increased and altered mtDNA plays a role in the development of cancer but further work is required to establish the functional significance of specific mitochondrial mutations in cancer and disease progression. This review offers some insight into the extent of mtDNA mutations, their functional consequences in tumorigenesis, mitochondrial therapeutics, and future clinical application.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
50
|
Serafim TL, Carvalho FS, Marques MPM, Calheiros R, Silva T, Garrido J, Milhazes N, Borges F, Roleira F, Silva ET, Holy J, Oliveira PJ. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem Res Toxicol 2011; 24:763-74. [PMID: 21504213 DOI: 10.1021/tx200126r] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present work, lipophilic caffeic and ferulic acid derivatives were synthesized, and their cytotoxicity on cultured breast cancer cells was compared. A total of six compounds were initially evaluated: caffeic acid (CA), hexyl caffeate (HC), caffeoylhexylamide (HCA), ferulic acid (FA), hexyl ferulate (HF), and feruloylhexylamide (HFA). Cell proliferation, cell cycle progression, and apoptotic signaling were investigated in three human breast cancer cell lines, including estrogen-sensitive (MCF-7) and insensitive (MDA-MB-231 and HS578T). Furthermore, direct mitochondrial effects of parent and modified compounds were investigated by using isolated liver mitochondria. The results indicated that although the parent compounds presented no cytotoxicity, the new compounds inhibited cell proliferation and induced cell cycle alterations and cell death, with a predominant effect on MCF-7 cells. Interestingly, cell cycle data indicates that effects on nontumor BJ fibroblasts were predominantly cytostatic and not cytotoxic. The parent compounds and derivatives also promoted direct alterations on hepatic mitochondrial bioenergetics, although the most unexpected and never before reported one was that FA induces the mitochondrial permeability transition. The results show that the new caffeic and ferulic acid lipophilic derivatives show increased cytotoxicity toward human breast cancer cell lines, although the magnitude and type of effects appear to be dependent on the cell type. Mitochondrial data had no direct correspondence with effects on intact cells suggesting that this organelle may not be a critical component of the cellular effects observed. The data provide a rational approach to the design of effective cytotoxic lipophilic hydroxycinnamic derivatives that in the future could be profitably applied for chemopreventive and/or chemotherapeutic purposes.
Collapse
Affiliation(s)
- Teresa L Serafim
- CNC, Centre for Neuroscience and Cellular Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|