1
|
Saha N, Samuel M. Dietary xenobiotics and their role in immunomodulation. Food Sci Biotechnol 2025; 34:1805-1817. [PMID: 40196336 PMCID: PMC11972276 DOI: 10.1007/s10068-024-01752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 04/09/2025] Open
Abstract
Within our daily dietary intake, lies an intriguing and frequently overlooked dimension- the realm of dietary xenobiotics. These chemical compounds originate from different food sources like grilled or processed meat (animal-origin), flavonoids, preservatives, beverages(plant-origin) and so on. Numerous studies have explored the oncogenic properties. Additionally, these compounds also result in interrupting the humoral and cellular immune response. This review specifically concentrates on elucidating the regulatory functions of these dietary xenobiotics within the human immune system. While some, like heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs), are predominantly deemed harmful, certain other compounds, such as specific phenolic compounds and nitrates, have exhibited therapeutic benefits. Furthermore, the review notes the immunomodulatory role of two relatively underexplored compounds, acrylamide and maltol. This underscores the necessity to broaden the scope of investigation surrounding these compounds and this review gives a brief overview of these xenobiotics interfering with the immune system. Graphical abstract
Collapse
Affiliation(s)
- Nilanjan Saha
- Department of Forensic Science, National Forensic Sciences University, Tripura Campus, VIP Road, Radhanagar, Agartala, Tripura 799006 India
| | - Monisha Samuel
- Department of Forensic Science, National Forensic Sciences University, Tripura Campus, VIP Road, Radhanagar, Agartala, Tripura 799006 India
| |
Collapse
|
2
|
Joukar S, Rajizadeh MA, Bejeshk MA, Alavi SS, Bagheri F, Rami M, Khoramipour K. ATP releasing channels and the ameliorative effects of high intensity interval training on diabetic heart: a multifaceted analysis. Sci Rep 2024; 14:7113. [PMID: 38532054 DOI: 10.1038/s41598-024-57818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Type 2 diabetes (T2D) can cause severe cardiac complications at functional, histologic and molecular levels. These pathological complications could be mediated by ATP-releasing channels such as Panx1 and ATP receptors, in particular P2X7. The aim of our study was to investigate the effect of high-intensity interval training (HIIT) on T2D-induced cardiac complications at the functional, histopathological and molecular levels, with a particular focus on ATP-releasing channels. 48 male Wistar rats at the age of 8 weeks were randomly allocated into four groups: control (Con), Diabetes (T2D), Training (TR), and Diabetes + Training (T2D + TR). T2D was induced by a high-fat diet plus a low dose (35 mg/kg) of STZ administration. Rats in the TR and T2D + TR groups underwent an 8-weeks training program involving intervals ranging from 80 to 100% of their maximum running speed (Vmax), with 4-10 intervals per session. Protein expression of Interleukin 1β (IL1β), Interleukin 10 (IL-10), Pannexin 1 (Panx1), P2X7R (purinergic P2X receptor 7), NLRP1 (NLR Family Pyrin Domain Containing 1), BAX, and Bcl2 were measured in the heart tissue. Additionally, we assessed heart function, histopathological changes, as well as insulin resistance using the homeostasis model assessment of insulin resistance (HOMA-IR). In contrast to the T2D group, HIIT led to increased protein expression of Bcl2 and IL-10 in the heart. It also resulted in improvements in systolic and diastolic blood pressures, heart rate, ± dp/dt (maximum and minimum changes in left ventricular pressure), while reducing protein expression of IL-1β, Panx1, P2X7R, NLRP1, and BAX levels in the heart. Furthermore, left ventricular diastolic pressure (LVDP) was reduced (P ≤ 0.05). Moreover, heart lesion scores increased with T2D but decreased with HIIT, along with a reduction in fibrosis percentage (P ≤ 0.05). The results of this study suggest that the cardioprotective effects of HIIT on the diabetic heart may be mediated by the modulation of ATP-releasing channels. This modulation may lead to a reduction in inflammation and apoptosis, improve cardiac function, and attenuate cardiac injury and fibrosis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman, Iran
| | - Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Rosa FT, de Souza Fatel EC, Alfieri DF, Flauzino T, Scavuzzi BM, Lozovoy MAB, Iriyoda TMV, Simão ANC, Dichi I. Cranberry juice decreases oxidative stress and improves glucose metabolism in patients with rheumatoid arthritis supplemented with fish oil. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
6
|
Arabzadeh E, Norouzi Kamareh M, Ramirez-Campillo R, Mirnejad R, Masti Y, Shirvani H. Twelve weeks of treadmill exercise training with green tea extract reduces myocardial oxidative stress and alleviates cardiomyocyte apoptosis in aging rat: The emerging role of BNIP3 and HIF-1α/IGFBP3 pathway. J Food Biochem 2022; 46:e14397. [PMID: 36069470 DOI: 10.1111/jfbc.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/28/2022]
Abstract
In this study, we consider the effect of treadmill exercise training, green tea extract, and combination of exercise training with green tea extract, in aging rat cardiac myocytes apoptosis markers (i.e., HIF-1α, BNIP3, Bax, IGFBP3, Bcl-2, caspase-3, MDA, GPx, Bax/Bcl-2 ratio, and hematoxylin and eosin). Twenty-four rats (male, Wistar) were divided into four groups: (I) control (n = 6), (II) green tea extract (n = 6), (III) exercise (n = 6), and (IV) exercise + green tea extract (n = 6). Exercise groups performed 12 weeks of running on a rodent treadmill at 17-27 m.min-1 (60-75% vo2peak) for 5 days per week. Green tea extract involved 300 mg.kg-1 , 5 days per week for 12 weeks. After being euthanized, the blood and heart were collected for glutathione peroxidase (GPx) activity, malondialdehyde (MDA), HIF-1α, BNIP3, insulin-like growth factor-binding protein-3 (IGFBP3), Bax, Bcl-2, caspase-3, Bax/Bcl-2 ratio, and hematoxylin and eosin level measurements. Compared to control, the ANOVA demonstrated significant effects of green tea extract (F = 14.646 to 32.453, p = .009 to .001, η = 0.295 to 0.715) and exercise training (F = 9.213 to 133.828, p = .007 to .001, η = 0.315 to η = 0.870) on HIF-1a, BNIP3, Bax, IGFBP3, Bcl-2, caspase-3, MDA, GPx, and Bax/Bcl-2 ratio. However, the combination of green tea extract and exercise had no effect on the aforementioned apoptosis markers when compared to isolated green tea extract or isolated exercise (F = 0.002 to 4.068, p = .057 to .968, and η = 0.001 to 0.169). PRACTICAL APPLICATIONS: Isolated exercise training and green tea extract may provide a cardioprotective effect on aging-induced apoptosis through the downregulation of HIF-1α, BNIP3, and IGFBP3 in the heart muscle. However, further research is needed to clarify the effects of combining exercise and green tea.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mirzahossein Norouzi Kamareh
- PHD of Exercise Physiology, Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Rodrigo Ramirez-Campillo
- Department of Physical Activity Sciences, Universidad de Los Lagos, Santiago, Chile.,Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Reza Mirnejad
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Masti
- MSc of Cellular Molecular, Department of Biological Sciences, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
García-Díez E, López-Oliva ME, Pérez-Jiménez J, Martín MA, Ramos S. Metabolic regulation of (-)-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food Funct 2022; 13:5602-5615. [PMID: 35502961 DOI: 10.1039/d2fo00182a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake have been suggested to exert healthful effects, although their mechanism of action remains unknown. Heart damage is highly prevalent in metabolic diseases, and the failure of this organ is a major cause of death worldwide. In this study, the modulation of the energy metabolism and insulin signalling by the mentioned compounds in cardiac H9c2 cells was evaluated. Incubation of cells with EC (1-20 μM) and 2,3-dihydroxybenzoic acid (DHBA, 10 μM) reduced glucose uptake, and both compounds decreased lipid accumulation at concentrations higher than 0.5 μM. EC and DHBA also increased the tyrosine phosphorylated and total insulin receptor (IR) levels, and activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway in cardiac H9c2 cells. Interestingly, EC and DHBA did not modify glucose transporters (SGLT-1 and GLUT-1) levels, and increased GLUT-4 values. In addition, EC and DHBA decreased cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) values, and enhanced carnitine palmitoyl transferase 1 (CPT1) and proliferator activated receptor α (PPARα) levels. By using specific inhibitors of AKT and 5'-AMP-activated protein kinase (AMPK), the participation of both proteins in EC- and DHBA-mediated regulation on glucose uptake and lipid accumulation was shown. Taken together, EC and DHBA modulate glucose uptake and lipid accumulation via AKT and AMPK, and reinforce the insulin signalling by activating key proteins of this pathway in H9c2 cells.
Collapse
Affiliation(s)
- Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Angeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Zhang Y, Wang R, Tang X, Wang Y, Guo P, Wang S, Liu J. A Mendelian Randomization Study of the Effect of Tea Intake on Type 2 Diabetes. Front Genet 2022; 13:835917. [PMID: 35422845 PMCID: PMC9001914 DOI: 10.3389/fgene.2022.835917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The association reported between tea intake and type 2 diabetes (T2D) is inconsistent in previous studies and remains controversial. We aimed to explore the causal relationship between tea intake, T2D, and glycemic traits including hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), fasting serum insulin (FSI), and homeostasis model of insulin resistance (HOMA-IR) levels. Methods: A 2-sample Mendelian randomization (MR) was performed using summary statistics from large-scale genome-wide association studies of tea intake from the UK Biobank, T2D from the DIAGRAM consortium, and glycemic traits from the Magic consortium. The findings were verified through sensitivity analyses using various MR methods with different model assumptions and by comprehensively evaluating the influence of pleiotropy effects and outliers. Results: With the use of a two-sample MR with inverse variance-weighted method, the odds ratio per unit SD change of tea intake (SD: 2.85 cups/day) for T2D, HbA1c, FPG, FSI, and HOMA-IR levels was 0.949 (95% CI 0.844-1.067, p = 0.383), 0.994 (95% CI 0.975-1.013, p = 0.554), 0.996 (95% CI 0.978-1.015, p = 0.703), 0.968 (95% CI 0.948-0.986, p = 0.001), and 0.953 (95% CI 0.900-1.009, p = 0.102), respectively. The results were consistent with those of the other six methods that we used with different model assumptions, suggesting that the findings were robust and convincing. We also performed various sensitivity analyses for outlier removal, pleiotropy detection, and leave-one-out analysis. Conclusion: Our MR results did not support the causal effect of tea intake on T2D and crucial glycemic traits. These findings suggest that previous observational studies may have been confounded.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhua Tang
- School of Cyberspace Security, Shandong University of Political Science and Law, Jinan, China
| | - Yanjun Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shukang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Effects of phenolic acids and quercetin-3-O-rutinoside on the bitterness and astringency of green tea infusion. NPJ Sci Food 2022; 6:8. [PMID: 35087059 PMCID: PMC8795203 DOI: 10.1038/s41538-022-00124-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Phenolic acids are important taste components in green tea. The aim of this study was to analyze the taste characteristics of phenolic acids and their influence on the bitterness and astringency of green tea by sensory evaluation and chemical determination. The major tea phenolic acids and quercetin-3-O-rutinoside (Que-rut) were significantly positively correlated with the bitterness (r = 0.757, p < 0.01; r = 0.605, p < 0.05) and astringency (r = 0.870, p < 0.01; r = 0.576, p < 0.05) of green tea infusion. The phenolic acids have a sour and astringent taste, whereas Que-rut has a mild astringent taste. Phenolic acids and Que-rut can increase the bitterness of epigallocatechin gallate (EGCG). However, these components behaved differently for astringency on EGCG. Gallic acid (GA) enhances the astringency throughout all the concentrations in this study. While it seemed to be double effects of caffeic acid (CA), chlorogenic acid (CGA), and Que-rut on that, i.e., the inhibition at lower concentrations (CA: 0–0.2 mM; CGA: 0–0.2 mM; Que-rut: 0–0.05 mM) but enhancement at higher ones. The phenolic acids and Que-rut interacted synergistically with tea infusion and as their concentration increased, the synergistic enhancement of the bitterness and astringency of tea infusion increased. These findings help provide a theoretical basis for improving the taste of middle and green tea.
Collapse
|
10
|
Liu Y, Wei Y, Wu L, Lin X, Sun R, Chen H, Shen S, Deng G. Fructose Induces Insulin Resistance of Gestational Diabetes Mellitus in Mice via the NLRP3 Inflammasome Pathway. Front Nutr 2022; 9:839174. [PMID: 35495917 PMCID: PMC9040551 DOI: 10.3389/fnut.2022.839174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Insulin resistance (IR), which is affected by dietary factors, is the main pathology underlying of gestational diabetes mellitus (GDM). Fructose (Fru), a sugar found in fruits, honey, and food sweeteners, has been reported to induce IR and inflammation. This study explored the effects and mechanisms of Fru on IR of GDM in pregnant and postpartum mice and their offspring. METHODS The 6-week-old female C57BL/6J mice were randomly divided into control (Chow) and fructose (Fru) groups, with the latter receiving 20% (w/v) Fru in drinking water from 2 weeks before pregnancy to the end of pregnancy. The effects of Fru on IR and inflammation were determined using serum parameters, glucose metabolism tests, immunohistochemistry, and western blotting. RESULTS Compared with the Chow group mice, pregnant mice treated with Fru exhibited greater gestational weight gain, higher fasting blood glucose and insulin concentrations, and a higher homeostasis model of assessment (HOMA) for IR index, but a lower HOMA for insulin sensitivity index. Treatment with Fru also increased the concentrations of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL-17, and C-reactive protein in sera and the expression of IL-6, TNF-α, IL-17, and IL-1β mRNA in liver tissues of pregnant mice. Both CD68 and IL-1β positive cell were increased in Fru-treated mice compared with in Chow mice. Fru treatment also promoted IR and inflammation in mice at 4 weeks after delivery and in offspring mice. Mechanistically, Fru promoted the nuclear translocation of nuclear factor-kappa B (NF-κB) p65 to activate the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. CONCLUSIONS Exposure to Fru before and during pregnancy induced IR in pregnant mice, which continued at 4 weeks postpartum and affected the offspring. The effects of Fru may be associated with activation of the NF-κB-NLRP3 pathway.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Lanlan Wu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Xiaoping Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Siwen Shen
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
- *Correspondence: Guifang Deng
| |
Collapse
|
11
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
12
|
Hu S, Chen Y, Zhao S, Sun K, Luo L, Zeng L. Ripened Pu-Erh Tea Improved the Enterohepatic Circulation in a Circadian Rhythm Disorder Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13533-13545. [PMID: 34726418 DOI: 10.1021/acs.jafc.1c05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucolipid metabolism, nitrogen metabolism, and inflammation are closely related to circadian rhythm disorder (CRD). Ripened Pu-erh tea (RPT) shows significant antidyslipidemic, antihyperurecemic, and anti-inflammatory effects. However, it is unclear whether healthy population are affected by CRD and whether long-term consumption of RPT can alleviate it. To investigate this problem, healthy mice were pretreated with RPT (0.25%, w/v) for 60 days and then subjected to CRD for 40 days. Our results indicated that healthy mice showed obesity, and the intestinal and liver inflammation increased after CRD, which were associated with the development of a metabolic disorder syndrome. RPT effectively reversed this trend by increasing the production and excretion rates of bile acid. RPT reshaped the disorder of gut microbiota caused by CRD and promoted the change of archaeal intestinal types from Firmicutes-dominant type to Bacteroidota-dominant type. In addition, by repairing the intestinal barrier function, RPT inhibited the infiltration of harmful microorganisms or metabolites through enterohepatic circulation, thus reducing the risk of chronic liver inflammation. In conclusion, RPT may reduce the risk of CRD-induced obesity in mice by increasing bile acid metabolism. The change of bile acid pool contributes to the reshaping of gut microflora, thus reducing intestinal inflammation and oxidative stress induced by CRD. Therefore, we speculated that the weakening of CRD damage caused by RPT is due to the improvement of bile acid-mediated enterohepatic circulation. It was found that 0.25% RPT (a human equivalent dose of 7 g/60 kg/day) has potential for regulating CRD.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
13
|
Cheng WL, Li SJ, Lee TI, Lee TW, Chung CC, Kao YH, Chen YJ. Sugar Fructose Triggers Gut Dysbiosis and Metabolic Inflammation with Cardiac Arrhythmogenesis. Biomedicines 2021; 9:728. [PMID: 34201938 PMCID: PMC8301417 DOI: 10.3390/biomedicines9070728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fructose is a main dietary sugar involved in the excess sugar intake-mediated progression of cardiovascular diseases and cardiac arrhythmias. Chronic intake of fructose has been the focus on the possible contributor to the metabolic diseases and cardiac inflammation. Recently, the small intestine was identified to be a major organ in fructose metabolism. The overconsumption of fructose induces dysbiosis of the gut microbiota, which, in turn, increases intestinal permeability and activates host inflammation. Endotoxins and metabolites of the gut microbiota, such as lipopolysaccharide, trimethylamine N-oxide, and short-chain fatty acids, also influence the host inflammation and cardiac biofunctions. Thus, high-fructose diets cause heart-gut axis disorders that promote cardiac arrhythmia. Understanding how gut microbiota dysbiosis-mediated inflammation influences the pathogenesis of cardiac arrhythmia may provide mechanisms for cardiac arrhythmogenesis. This narrative review updates our current understanding of the roles of excessive intake of fructose on the heart-gut axis and proposes potential strategies for inflammation-associated cardiac vascular diseases.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (W.-L.C.); (S.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (W.-L.C.); (S.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Cheng-Chih Chung
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yu-Hsun Kao
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
15
|
Romic S, Djordjevic A, Tepavcevic S, Culafic T, Stojiljkovic M, Bursac B, Stanisic J, Kostic M, Gligorovska L, Koricanac G. Effects of a fructose-rich diet and chronic stress on insulin signaling and regulation of glycogen synthase kinase-3 beta and the sodium-potassium pump in the hearts of male rats. Food Funct 2020; 11:1455-1466. [PMID: 31974538 DOI: 10.1039/c9fo02306b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both a diet rich in fructose and chronic stress exposure induce metabolic and cardiovascular disturbances. The aim of this study was to examine the effects of the fructose-rich diet and chronic stress, separately and in combination, on insulin signaling and molecules regulating glycogen synthesis and ion transport in the heart, and to reveal whether these effects coincide with changes in glucocorticoid receptor (GR) activation. Male Wistar rats were subjected to 10% fructose in drinking water and/or to chronic unpredictable stress for 9 weeks. Protein expression and/or phosphorylation of the insulin receptor (IR), protein tyrosine phosphatase 1B, insulin receptor substrate 1 (IRS1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase-3β (GSK-3β) and Na+/K+-ATPase α-subunits in cardiac tissue were analyzed by western blot. GR distribution between cytosolic and nuclear fractions was also analyzed. The fructose-rich diet decreased the level of pERK1/2 (Thr202/Tyr204) and pGSK-3β (Ser9) independently of stress, while chronic stress increased the IRS1 content and prevented the fructose diet-induced decrease of the pAkt (Ser473) level. The fructose-rich diet in combination with chronic stress reduced the protein content of cardiac IR and attenuated IRS1 upregulation. Separate treatments increased the protein content of Na+/K+-ATPase α1- and α2-subunits, while after combined treatment the α2 content was at the control level and the α1 content was lower than the control level. The effect of combined treatment on cardiac IR and α2-subunit expression could be mediated by increased GR nuclear accumulation. Our study provides new insights into the effects of chronic stress and a combination of the fructose diet and chronic stress on the studied molecules in the heart.
Collapse
Affiliation(s)
- Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sanni O, Erukainure OL, Oyebode OA, Islam MS. Fractions from Annona muricata attenuate oxidative stress in pancreatic tissues, inhibits key carbohydrate digesting enzymes and intestinal glucose absorption but enhances muscle glucose uptake. J Food Biochem 2020; 44:e13211. [PMID: 32227510 DOI: 10.1111/jfbc.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 01/18/2023]
Abstract
The ameliorating effect of different fractions of Anonna muricata ethanol leaves extract in oxidative pancreatic injury as well as their antihyperglycemic effect were investigated in vitro and ex vivo. Oxidative pancreatic injury was induced by incubating pancreatic tissue with ferrous sulphate (FeSO4 ). The antioxidative potentials of the fractions together with its ability to inhibit carbohydrate digesting enzymes, intestinal glucose absorption, and its ability to modulate muscle glucose uptake were determined. All the fractions significantly scavenge free radicals in dose-dependent manner and increase significantly increase the catalase and superoxide dimutase level thereby ameliorating lipid peroxidation. All the fractions also inihibited glucose digesting enzymes and absorption in dose-dependent manner. Glucose uptake was enhanced by the fractions in isolated psoas muscle of rats. The ethyl acetate fraction showed more potent amelioration and anti-hyperglycemic potentials among all the fractions. This could be further exploited as therapeutic strategy for the management of postprandial hyperglycemia as well as T2D. PRACTICAL APPLICATIONS: Annona muricata is among the edible fruits in the world with reported nutritional as well as medicinal values. The anticancer activity of the leaves and the fruits have been reported. Its ability to inhibit carbohydrate digesting enzymes and absorption and enhancing muscle glucose uptake as well as protection of pancreatic β-cell from oxidative damage further support its reported antidiabetic properties. A. muricata provided a cheap and alternative source of nutraceuticals, which could be further exploited as therapeutic strategy for the treatment of postprandial hyperglycemia in T2D.
Collapse
Affiliation(s)
- Olakunle Sanni
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Durban, South Africa
| | - Ochuko L Erukainure
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Olajumoke A Oyebode
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Durban, South Africa
| | - Md Shahidul Islam
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
17
|
The Effects and Mechanism of Quercetin Dietary Supplementation in Streptozotocin-Induced Hyperglycemic Arbor Acre Broilers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9585047. [PMID: 32104545 PMCID: PMC7035566 DOI: 10.1155/2020/9585047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/28/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Quercetin, a flavonoid found in fruits and vegetables, is widely distributed as a secondary metabolite in the plant kingdom. Oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). The present study investigated the effects of quercetin dietary supplementation on streptozotocin- (STZ-) induced hyperglycemic Arbor Acre (AA) broilers by determining the levels of fasting blood glucose (FBG), fasting insulin (FINS), biochemical indicators, oxidative stress markers, inflammatory cytokines content, antioxidant enzymes activities in tissues, and mRNA expression of genes relating to the insulin signaling pathway. Three hundred one-day-old healthy AA broilers were randomly assigned into 5 treatments; A, control healthy broilers; B, STZ-induced broilers; C, STZ-induced broiler dietary supplemented with 0.02% quercetin; D, STZ-induced broiler dietary supplemented with 0.04% quercetin; and E, STZ-induced broiler dietary supplemented with 0.06% quercetin. The results showed that quercetin supplementation relieved the side effects of STZ-induced oxidative stress by changing activities of antioxidant enzymes, decreasing malondialdehyde (MDA) and nitric oxide (NO) levels, activating expression of genes relating to PI3K/PKB signaling pathway that modulate glucose metabolism and reduce oxidative damage, thereby decreasing FBG and increasing FINS levels. These findings suggest that quercetin exhibits a protective effect in STZ-induced hyperglycemic AA broilers via decreasing oxidative stress.
Collapse
|
18
|
Meng JM, Cao SY, Wei XL, Gan RY, Wang YF, Cai SX, Xu XY, Zhang PZ, Li HB. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants (Basel) 2019; 8:E170. [PMID: 31185622 PMCID: PMC6617012 DOI: 10.3390/antiox8060170] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus has become a serious and growing public health concern. It has high morbidity and mortality because of its complications, such as diabetic nephropathy, diabetic cardiovascular complication, diabetic neuropathy, diabetic retinopathy, and diabetic hepatopathy. Epidemiological studies revealed that the consumption of tea was inversely associated with the risk of diabetes mellitus and its complications. Experimental studies demonstrated that tea had protective effects against diabetes mellitus and its complications via several possible mechanisms, including enhancing insulin action, ameliorating insulin resistance, activating insulin signaling pathway, protecting islet β-cells, scavenging free radicals, and decreasing inflammation. Moreover, clinical trials also confirmed that tea intervention is effective in patients with diabetes mellitus and its complications. Therefore, in order to highlight the importance of tea in the prevention and management of diabetes mellitus and its complications, this article summarizes and discusses the effects of tea against diabetes mellitus and its complications based on the findings from epidemiological, experimental, and clinical studies, with the special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Shu-Xian Cai
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Yang CS, Zhang J. Studies on the Prevention of Cancer and Cardiometabolic Diseases by Tea: Issues on Mechanisms, Effective Doses, and Toxicities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5446-5456. [PMID: 30541286 DOI: 10.1021/acs.jafc.8b05242] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article presents a brief overview of studies on the prevention of cancer and cardiometabolic diseases by tea. The major focus is on green tea catechins concerning the effective doses used, the mechanisms of action, and possible toxic effects. In cancer prevention by tea, the laboratory results are strong; however, the human data are inconclusive, and the effective doses used in some human trials approached toxic levels. In studies of the alleviation of metabolic syndrome, diabetes, and prevention of cardiovascular diseases, the results from human studies are stronger in individuals who consume 3-4 cups of tea (600-900 mg of catechins) or more per day. The tolerable upper intake level of tea catechins has been set at 300 mg of (-)-epigallocatechin-3-gallate in a bolus dose per day in some European countries. The effects of doses and dosage forms on catechin toxicity, the mechanisms involved, and factors that may affect toxicity are discussed.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854-8020 , United States
| | | |
Collapse
|
20
|
Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:229-245. [PMID: 30668344 DOI: 10.1016/j.phymed.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder associated with persistent increased level of glucose in the blood. According to a report by World Health Organisation (WHO), prevalence of diabetes among adults over 18 years of age had reached to 8.5% in year 2014 which was 4.7% in 1980s. The Prolong increased level of glucose in blood leads to development of microvascular (blindness, nephropathy and neuropathy) and macrovascular (cardiovascular and stroke) degenerative complications because of uncontrolled level of glucose in blood. This also leads to the progression of oxidative stress and affecting metabolic, genetic and haemodynamic system by activation of polyol pathway, protein kinase C pathway, hexosamine pathway and increases advanced glycation end products (AGEs) formation. Diabetes mellitus and its associated complications are one of the major leading causes of mortality worldwide. Various natural products like alkaloids, glycosides, flavonoids, terpenoids and polyphenols are reported for their activity in management of diabetes and its associated diabetic complications. Tannins are systematically studied by many researchers in past few decades for their effect in diabetes and its complications. AIM The present review was designed to compile the data of tannins and their beneficial effects in the management of diabetic complications. METHOD Literature search was performed using various dataset like pubmed, EBSCO, proQuest Scopus and selected websites including the National Institutes of Health (NIH) and the World Health Organization (WHO). RESULTS Globally, more than 400 natural products have been investigated in diabetes and its complications. Tannins are the polyphenolic compounds present in many medicinal plants and various dietary sources like fruits, nuts, grains, spices and beverages. Various reports have shown that compounds like gallic acid, ellagic acid, catechin, epicatechin and procynidins from medicinal plants play major role in controlling progression of diabetes and its related complications by acting on molecular pathways and key targets involved in progression. Many chemists used above mentioned phyto-constituents as a pharmacophore for the developing new chemical entities having higher therapeutic benefits in management of diabetic complications. CONCLUSION This review focuses on the role of various tannins in prevention and management of diabetic complications like diabetic nephropathy, diabetic neuropathy, diabetic retinopathy and diabetic cardiomyopathy. It will help researchers to find some leads for the development of new cost effective therapy using dietary source for the management of diabetic complications.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India.
| |
Collapse
|
21
|
Wang Y, Zhu J, Handberg A, Overvad K, Tjønneland A, Rimm EB, Jensen MK. Association between plasma CD36 levels and incident risk of coronary heart disease among Danish men and women. Atherosclerosis 2018; 277:163-168. [PMID: 30218892 DOI: 10.1016/j.atherosclerosis.2018.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS CD36 is a cholesterol receptor involved in the uptake of oxidized low-density lipoprotein cholesterol and development of atherosclerotic plaques. Cross-sectional studies have shown correlations between plasma CD36 and atherosclerosis but no prospective study has examined the association yet. We prospectively examined the association between plasma CD36 levels and risk of incident coronary heart disease (CHD) in a Danish population. METHODS Plasma CD36 levels were measured in a case-cohort study nested within the Danish population-based cohort, the Diet, Cancer and Health Study. A total of 1963 incident CHD events occurred between baseline (1993-1997) and 2008, and a sub-cohort of 1759 participants were randomly selected as reference. Cox proportional hazard regression models were used to compute the hazard ratio (HR) and corresponding 95% confidence interval (CI). RESULTS After adjusting for CHD risk factors, including history of hypercholesterolemia and diabetes, elevated plasma CD36 levels were not associated with higher CHD risk in the total population, and the HR comparing the highest versus lowest tertile of CD36 levels was 1.02 (95% CI: 0.84-1.23). High CD36 levels were only found to be associated with risk of CHD in combination with prevalent diabetes (HR = 2.83, 95% CI: 1.08-7.45) vs. the joint reference group of lowest CD36 tertile and no diabetes. CONCLUSIONS Plasma CD36 levels were not predictive of CHD risk in the general population.
Collapse
Affiliation(s)
- Yeli Wang
- Health Services and Systems Research, Duke-NUS Medical School, 169857, Singapore
| | - Jingwen Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, 9100, Denmark; Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, 9100, Denmark
| | - Kim Overvad
- Department of Cardiology, Aalborg University Hospital, Aalborg, 9100, Denmark; Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, 8000, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Imran A, Arshad MU, Arshad MS, Imran M, Saeed F, Sohaib M. Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats. Lipids Health Dis 2018; 17:157. [PMID: 30021615 PMCID: PMC6052712 DOI: 10.1186/s12944-018-0808-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently oxidative stress induced maladies have amplified owing to sedentary lifestyle and monotonous diet. Introduction of plant based biomolecules may be a suitable strategy to cope with the lipid peroxidation. In this context, black tea polyphenols (theaflavin & thearubigins) are in fame among the scientific community as cost effective therapeutic agents owing to their safety, economics, structural diversity and ability to modulate various lipid peroxidation responses by halting the expression of different metabolic targets. METHODS The mandate of present investigation was to first time check the synergism among the isolated theaflavins & thearubigins against lipid peroxidative indicators both in vitro and in vivo. Purposely, theaflavins and thearubigins were isolated from black tea through solvent partition methods by using different solvents (Aqueous ethanol, Aqueous methanol & Water) and time intervals (30, 60 & 90 min) and subjected to in vitro characterization through different antioxidant indices to access the in vitro lipid peroxidation shooting effect of these bioactive moieties. Moreover, individual theaflavins contents also estimate through HPLC. For evaluation of in vivo antioxidant effect, renal malfunction was induced through arginine and forty rats were divided in four groups (10 each after power analysis) and 04 types of diets were given i.e. T0 (control diet without supplementation), T1 (Basic experimental Diet+ theaflavins supplementation @ 1 g), T2 (Basic experimental Diet+ Thearubigins supplementation @ 1 g) & T3 (Basic experimental Diet+ Supplementation of theaflavins+ thearubigins @ 0.5 + 0.5 g, respectively) for the period of 56 days. Alongside, a control study was also carried out for comparison by involving normal rats fed on arginine free diet. The body weight, lipid profile, glycemic responses, Renal function test, liver function test, antioxidant indices and hematological parameters were estimated at the termination of study. RESULTS The results indicated that theaflavins and thearubigins isolation was significantly affected by time of extraction and solvent. In this context, aqueous ethanol at 60 min extraction interval caused maximum extraction. Likewise, theaflavins isolate exhibited more antioxidant activity as compared to thearubigins. Moreover, the theaflavins and thearubigins based experimental diets imparted significant reduction in Lipid profile, glucose content, renal function tests and TBARS with enhancement in insulin, HDL and hematological parameters. In this context, theaflavin based diet caused maximum reduction in lipid profile and TBARS better as compared to thearubigins and theaflavins + thearubigins based. However, theaflavin+ thearubigins based diet caused highest glucose, urea & creatinine decline and maximum insulin increase & antioxidant indices as compared to other nutraceuticals. CONCLUSIONS It was deduced that theaflavins & thearubigins have strong antioxidative potential both in in vitro as well as in vivo to tackle the menace associated with lipid peroxidation.
Collapse
Affiliation(s)
- Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040 Pakistan
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040 Pakistan
| | - Muhammad Sajid Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040 Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University Of Lahore-Pakistan, Lahore, Pakistan
| | - Farhan Saeed
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040 Pakistan
| | - Muhammad Sohaib
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| |
Collapse
|
23
|
Fernando WMADB, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention? J Alzheimers Dis 2018; 59:481-501. [PMID: 28582855 DOI: 10.3233/jad-161200] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.
Collapse
Affiliation(s)
- Warnakulasuriya M A D B Fernando
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia
| | - Geeshani Somaratne
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kathryn G Goozee
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Shehan Williams
- Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | - Harjinder Singh
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
24
|
Jing L, Xiao M, Dong H, Lin J, Chen G, Ling W, Chen Y. Serum Carotenoids Are Inversely Associated with RBP4 and Other Inflammatory Markers in Middle-Aged and Elderly Adults. Nutrients 2018; 10:nu10030260. [PMID: 29495330 PMCID: PMC5872678 DOI: 10.3390/nu10030260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Carotenoids may be inversely associated with inflammatory markers (i.e., TNF-α, IL-6, IL-1β). However, data are scarce on retinol binding protein 4 (RBP4) in humans. We examined the associations among serum carotenoids, RBP4 and several inflammatory markers in a Chinese population. (2) Methods: This community-based cross-sectional study included 3031 participants (68% males) aged 40-75 years in Guangzhou, China. Serum concentrations of carotenoids, RBP4, and inflammatory markers were measured. (3) Results: Generally, serum individual and total carotenoids were significantly and inversely associated with retinol-adjusted RBP4, RBP4, hsCRP, MCP1, and TNF-alpha levels. Age- and gender-adjusted partial correlation coefficients between total carotenoids and the above inflammatory markers were -0.129, -0.097, -0.159, -0.079, and -0.014 (all p < 0.01, except for TNF-alpha with p >0.05), respectively. The multivariate-adjusted values of partial correlation coefficients for these inflammation-related markers were -0.098, -0.079, -0.114, -0.090, and -0.079 (all p < 0.01), respectively. Among the individual carotenoids, those with the most predominant association were lutein-zeaxanthin and total carotenoids for retinol-adjusted RBP4 and RBP4, alpha- and beta-carotene for hsCRP, and alpha-carotene for MCP1 and TNF-alpha. No significant associations were observed for IL-6 and IL-1beta. (4) Conclusions: Serum carotenoids were inversely associated with RBP4, hsCRP, MCP1 and TNF-alpha among middle-aged and elderly Chinese adults.
Collapse
Affiliation(s)
- Lipeng Jing
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Mianli Xiao
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hongli Dong
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jiesheng Lin
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Gengdong Chen
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuming Chen
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
25
|
Yang CS, Wang H, Sheridan ZP. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. J Food Drug Anal 2017; 26:1-13. [PMID: 29389543 PMCID: PMC9332647 DOI: 10.1016/j.jfda.2017.10.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tea, a popular beverage made from leaves of the plant Camellia sinensis, has been studied extensively in recent decades for its beneficial health effects in the prevention of obesity, metabolic syndrome, diabetes, cancer, and other diseases. Whereas these beneficial effects have been convincingly demonstrated in most laboratory studies, results from human studies have not been consistent. Some studies demonstrated that weight reduction, alleviation of metabolic syndrome and risk reduction in diabetes were only observed in individuals who consume 3-4 cups of tea (600-900 mg tea catechins) or more daily. This chapter reviews some of these studies, the possible mechanisms of actions of tea constituents, and the challenges in extrapolating laboratory studies to human situations.
Collapse
Affiliation(s)
- Chung Shu Yang
- Corresponding author. Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA. Fax: +1 732 445 0687. E-mail address: (C.S. Yang)
| | | | | |
Collapse
|
26
|
Tian J, Wu X, Zhang M, Zhou Z, Liu Y. Comparative study on the effects of apple peel polyphenols and apple flesh polyphenols on cardiovascular risk factors in mice. Clin Exp Hypertens 2017; 40:65-72. [PMID: 29106302 DOI: 10.1080/10641963.2017.1313851] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Apple consumption has been demonstrated to be associated with reduced risk of cardiovascular disease, and the beneficial effect is probably due to the polyphenols in apple. Here, we for the first time evaluated and compared the in vivo effects of the polyphenolic extracts of apple peels (PAP) and apple fleshes (PAF) on blood pressure, vascular endothelial function, lipid metabolism and insulin resistance. A high-fat and high-fructose (HFHF) diet was used to cause cardiovascular disorders in mice, with blood pressure, serum ET-1, TC, TG, LDL-C, glucose and insulin levels increased, and serum NO and HDL-C levels decreased. Mice administered with 250 mg/kg of PAP and PAF for 28 days showed lower blood pressure, improved endothelial function, ameliorated lipid homeostasis and decreased insulin resistance compared with HFHF-fed mice. Furthermore, PAP exhibited much more potent cardioprotective effects than PAF in mice. Quantification and phenolic profile analysis showed that PAP contained remarkably higher amount of total phenolics and total flavonoids than PAF, and this may be the reason for the relatively stronger efficacy of PAP. This study demonstrates that apple polyphenols possess potential cardioprotective effects, and suggests that apple, especially apple peel, may be excellent source for exploration of preventive agents against cardiovascular disorders.
Collapse
Affiliation(s)
- Jia Tian
- a Department of Cardiology , Zhujiang Hospital of Southern Medical University , Guangzhou , China.,b Intensive Medical Unit, Hainan Provincial People's Hospital , Haikou , China
| | - Xiaoyan Wu
- c Internal Medicine-Cardiovascular Department, Zhujiang Hospital affiliated to Southern Medical University , Guangzhou , China
| | - Moyang Zhang
- d Rheumatism Department , Hainan Provincial People's Hospital , Haikou , China
| | - Zhongyi Zhou
- b Intensive Medical Unit, Hainan Provincial People's Hospital , Haikou , China
| | - Yingfeng Liu
- c Internal Medicine-Cardiovascular Department, Zhujiang Hospital affiliated to Southern Medical University , Guangzhou , China
| |
Collapse
|
27
|
Oliver S, Jofri A, Thomas DS, Vittorio O, Kavallaris M, Boyer C. Tuneable catechin functionalisation of carbohydrate polymers. Carbohydr Polym 2017; 169:480-494. [DOI: 10.1016/j.carbpol.2017.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
|
28
|
Bundalo M, Romic S, Tepavcevic S, Stojiljkovic M, Stankovic A, Zivkovic M, Koricanac G. Fructose-rich diet and insulin action in female rat heart: Estradiol friend or foe? Eur J Pharmacol 2017; 811:141-147. [PMID: 28601616 DOI: 10.1016/j.ejphar.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Increased intake of fructose in humans and laboratory animals is demonstrated to be a risk factor for development of metabolic disorders (insulin resistance, metabolic syndrome, type 2 diabetes) and cardiovascular diseases. On the other hand, estradiol is emphasized as a cardioprotective agent. The main goal of this review is to summarize recent findings on damaging cardiac effects of fructose-rich diet in females, mostly experimental animals, and to evaluate protective capacity of estradiol. Published results of our and other research groups indicate mostly detrimental effects of fructose-rich diet on cardiac insulin signaling molecules, glucose and fatty acid metabolism, nitric oxide production and ion transport, as well as renin-angiotensin system and inflammation. Some of these processes are involved in cardiac insulin signal transmission, others are regulated by insulin or have an influence on insulin action. Administration of estradiol to ovariectomized female rats, exposed to increased intake of fructose, was mostly beneficial to the heart, but sometimes it was ineffective or even detrimental, depending on the particular processes. We believe that these data, carefully translated to human population, could be useful for clinicians dealing with postmenopausal women susceptible to metabolic diseases and hormone replacement therapy.
Collapse
Affiliation(s)
- Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
29
|
Sodium restriction modulates innate immunity and prevents cardiac remodeling in a rat model of metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1568-1574. [DOI: 10.1016/j.bbadis.2017.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
|
30
|
Oliver S, Hook JM, Boyer C. Versatile oligomers and polymers from flavonoids – a new approach to synthesis. Polym Chem 2017. [DOI: 10.1039/c7py00325k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antioxidant oligomers and polymers have been prepared from two flavonoids, catechin and quercetin, using a new facile technique.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| | - James M. Hook
- NMR Facility
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| |
Collapse
|
31
|
Li HL, Li ZJ, Wei ZS, Liu T, Zou XZ, Liao Y, Luo Y. Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers. J Zhejiang Univ Sci B 2016; 16:1019-26. [PMID: 26642185 DOI: 10.1631/jzus.b1500160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study investigates the long-term effects of oral tea polyphenols (TPs) and Lactobacillus brevis M8 (LB) on biochemical parameters, digestive enzymes, and cytokines expression in broilers. In experiment 1, 240 broiler chickens were selected to investigate the effects of 0.06 g/kg body weight (BW) TP and 1.0 ml/kg BW LB on broilers; in experiment 2, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of TP (0.03, 0.06, and 0.09 g/kg BW) combined with 1.0 ml/kg BW LB on broilers; in experiment 3, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of LB (0.5, 1.0, and 1.5 ml/kg BW) combined with 0.06 g/kg BW TP on broilers. The results showed that TP and LB affected serum biochemical parameters, and TP reduced serum cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) abundances in a dosage-dependent manner (P<0.05) on Day 84. Meanwhile, broilers fed a diet supplemented with TP or LB had a lower intestinal lipase activity on Day 84 compared with the control group (P<0.05). Middle and high dosages of TP increased pancreatic lipase and proventriculus pepsin activities (P<0.05). Also middle and high dosages of LB significantly enhanced pancreatic lipase activity (P<0.05), while high LB supplementation inhibited intestinal trypsase (P<0.05) on Day 84. Furthermore, both TP and LB reduced intestinal cytokine expression and nuclear factor-κ B (NF-κB) mRNA level on Days 56 and 84. In conclusion, long-term treatment of TP and LB improved lipid metabolism and digestive enzymes activities, and affected intestinal inflammatory status, which may be associated with the NF-κB signal.
Collapse
Affiliation(s)
- Hua-li Li
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zong-jun Li
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zhong-shan Wei
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Ting Liu
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-zuo Zou
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yong Liao
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yu Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| |
Collapse
|
32
|
Sakai H, Shirakami Y, Shimizu M. Chemoprevention of obesity-related liver carcinogenesis by using pharmaceutical and nutraceutical agents. World J Gastroenterol 2016; 22:394-406. [PMID: 26755885 PMCID: PMC4698502 DOI: 10.3748/wjg.v22.i1.394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity and its related metabolic disorders are serious health problems worldwide, and lead to various health-related complications, including cancer. Among human cancers, hepatocellular carcinoma (HCC) is one of the most common malignancies affected by obesity. Therefore, obesity and its related disorders might be a key target for the prevention of HCC. Recently, new research indicates that the molecular abnormalities associated with obesity, including insulin resistance/hyperinsulinemia, chronic inflammation, adipokine imbalance, and oxidative stress, are possible molecular mechanisms underlying the pathogenesis of obesity-related hepatocarcinogenesis. Green tea catechins and branched-chain amino acids, both of which are classified as nutraceutical agents, have been reported to prevent obesity-related HCC development by improving metabolic abnormalities. The administration of acyclic retinoid, a pharmaceutical agent, reduced the incidence of HCC in obese and diabetic mice, and was also associated with improvements in insulin resistance and chronic inflammation. In this article, we review the detailed molecular mechanisms that link obesity to the development of HCC in obese individuals. We also summarize recent evidence from experimental and clinical studies using either nutraceutical or pharmaceutical agents, and suggest that nutraceutical and pharmaceutical approaches targeting metabolic abnormalities might be a promising strategy to prevent the development of obesity-related HCC.
Collapse
|
33
|
Shirakami Y, Sakai H, Kochi T, Seishima M, Shimizu M. Catechins and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:67-90. [DOI: 10.1007/978-3-319-41342-6_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Oliver S, Thomas DS, Kavallaris M, Vittorio O, Boyer C. Efficient functionalisation of dextran-aldehyde with catechin: potential applications in the treatment of cancer. Polym Chem 2016. [DOI: 10.1039/c6py00228e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dextran aldehyde was functionalised with up to 38 wt% catechin and the resulting conjugate demonstrated cytotoxic efficacy against neuroblastoma cells.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| | - Donald S. Thomas
- Nuclear Magnetic Resonance Facility
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Maria Kavallaris
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Orazio Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| |
Collapse
|
35
|
Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3863726. [PMID: 26788247 PMCID: PMC4691632 DOI: 10.1155/2016/3863726] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia.
Collapse
|
36
|
Yang CS, Zhang J, Zhang L, Huang J, Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 2015; 60:160-74. [PMID: 26577614 DOI: 10.1002/mnfr.201500428] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/09/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022]
Abstract
Tea, a popular beverage made from leaves of the plant Camellia sinensis, has been shown to reduce body weight, alleviate metabolic syndrome, and prevent diabetes and cardiovascular diseases in animal models and humans. Such beneficial effects have generally been observed in most human studies when the level of tea consumption was three to four cups (600-900 mg tea catechins) or more per day. Green tea is more effective than black tea. In spite of numerous studies, the fundamental mechanisms for these actions still remain unclear. From a review of the literature, we propose that the two major mechanisms are: (i) decreasing absorption of lipids and proteins by tea constituents in the intestine, thus reducing calorie intake; and (ii) activating AMP-activated protein kinase by tea polyphenols that are bioavailable in the liver, skeletal muscle, and adipose tissues. The relative importance of these two mechanisms depends on the types of tea and diet consumed by individuals. The activated AMP-activated protein kinase would decrease gluconeogenesis and fatty acid synthesis and increase catabolism, leading to body weight reduction and metabolic syndrome alleviation. Other mechanisms and the health relevance of these beneficial effects of tea consumption remain to be further investigated.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, P. R. China
| | - Jinsong Zhang
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, P. R. China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, P. R. China
| | - Le Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, P. R. China
| | - Jinbao Huang
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, P. R. China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, P. R. China
| | - Yijun Wang
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, P. R. China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, P. R. China
| |
Collapse
|
37
|
Zabetian-Targhi F, Mahmoudi MJ, Rezaei N, Mahmoudi M. Retinol binding protein 4 in relation to diet, inflammation, immunity, and cardiovascular diseases. Adv Nutr 2015; 6:748-62. [PMID: 26567199 PMCID: PMC4642414 DOI: 10.3945/an.115.008292] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine.
Collapse
Affiliation(s)
- Fateme Zabetian-Targhi
- Department of Cellular Molecular Nutrition, School of Nutritional Sciences and Dietetics and
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran;,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; and,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mahmoudi
- Department of Cellular Molecular Nutrition, School of Nutritional Sciences and Dietetics and
| |
Collapse
|
38
|
Hallmann J, Kolossa S, Gedrich K, Celis-Morales C, Forster H, O'Donovan CB, Woolhead C, Macready AL, Fallaize R, Marsaux CFM, Lambrinou CP, Mavrogianni C, Moschonis G, Navas-Carretero S, San-Cristobal R, Godlewska M, Surwiłło A, Mathers JC, Gibney ER, Brennan L, Walsh MC, Lovegrove JA, Saris WHM, Manios Y, Martinez JA, Traczyk I, Gibney MJ, Daniel H. Predicting fatty acid profiles in blood based on food intake and the FADS1 rs174546 SNP. Mol Nutr Food Res 2015; 59:2565-73. [DOI: 10.1002/mnfr.201500414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/30/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jacqueline Hallmann
- ZIEL Research Center of Nutrition and Food Sciences; Biochemistry Unit; Technische Universität München; München Germany
| | - Silvia Kolossa
- ZIEL Research Center of Nutrition and Food Sciences; Biochemistry Unit; Technische Universität München; München Germany
| | - Kurt Gedrich
- ZIEL Research Center of Nutrition and Food Sciences; Biochemistry Unit; Technische Universität München; München Germany
| | - Carlos Celis-Morales
- Human Nutrition Research Centre; Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Hannah Forster
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Clare B. O'Donovan
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Clara Woolhead
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Anna L. Macready
- Hugh Sinclair Unit of Human Nutrition, Institute for Cardiovascular and Metabolic Research; University of Reading; Reading UK
| | - Rosalind Fallaize
- Hugh Sinclair Unit of Human Nutrition, Institute for Cardiovascular and Metabolic Research; University of Reading; Reading UK
| | - Cyril F. M. Marsaux
- Department of Human Biology; NUTRIM; School for Nutrition and Translational Research in Metabolism; Maastricht University Medical Centre; Maastricht The Netherlands
| | | | | | - George Moschonis
- Department of Nutrition and Dietetics; Harokopio University; Athens Greece
| | - Santiago Navas-Carretero
- Department of Nutrition; Food Science and Physiology; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III; University of Navarra; Spain
| | - Rodrigo San-Cristobal
- Department of Nutrition; Food Science and Physiology; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III; University of Navarra; Spain
| | | | | | - John C. Mathers
- Human Nutrition Research Centre; Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Eileen R. Gibney
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Marianne C. Walsh
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Institute for Cardiovascular and Metabolic Research; University of Reading; Reading UK
| | - Wim H. M. Saris
- Department of Human Biology; NUTRIM; School for Nutrition and Translational Research in Metabolism; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Yannis Manios
- Department of Nutrition and Dietetics; Harokopio University; Athens Greece
| | - Jose Alfredo Martinez
- Department of Nutrition; Food Science and Physiology; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III; University of Navarra; Spain
| | - Iwona Traczyk
- National Food & Nutrition Institute (IZZ); Warsaw Poland
| | - Michael J. Gibney
- UCD Institute of Food and Health; University College Dublin; Belfield Dublin 4 Republic of Ireland
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences; Biochemistry Unit; Technische Universität München; München Germany
| | | |
Collapse
|
39
|
Novotny JA, Baer DJ, Khoo C, Gebauer SK, Charron CS. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J Nutr 2015; 145:1185-93. [PMID: 25904733 DOI: 10.3945/jn.114.203190] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/17/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cardiometabolic risk is the risk of cardiovascular disease (CVD), diabetes, or stroke, which are leading causes of mortality and morbidity worldwide. OBJECTIVE The objective of this study was to determine the potential of low-calorie cranberry juice (LCCJ) to lower cardiometabolic risk. METHODS A double-blind, placebo-controlled, parallel-arm study was conducted with controlled diets. Thirty women and 26 men (mean baseline characteristics: 50 y; weight, 79 kg; body mass index, 28 kg/m(2)) completed an 8-wk intervention with LCCJ or a flavor/color/energy-matched placebo beverage. Twice daily volunteers consumed 240 mL of LCCJ or the placebo beverage, containing 173 or 62 mg of phenolic compounds and 6.5 or 7.5 g of total sugar per 240-mL serving, respectively. RESULTS Fasting serum triglycerides (TGs) were lower after consuming LCCJ and demonstrated a treatment × baseline interaction such that the participants with higher baseline TG concentrations were more likely to experience a larger treatment effect (1.15 ± 0.04 mmol/L vs. 1.25 ± 0.04 mmol/L, respectively; P = 0.027). Serum C-reactive protein (CRP) was lower for individuals consuming LCCJ than for individuals consuming the placebo beverage [ln transformed values of 0.522 ± 0.115 ln(mg/L) vs. 0.997 ± 0.120 ln(mg/L), P = 0.0054, respectively, and equivalent to 1.69 mg/L vs. 2.71 mg/L back-transformed]. LCCJ lowered diastolic blood pressure (BP) compared with the placebo beverage (69.2 ± 0.8 mm Hg for LCCJ vs. 71.6 ± 0.8 mm Hg for placebo; P = 0.048). Fasting plasma glucose was lower (P = 0.03) in the LCCJ group (5.32 ± 0.03 mmol/L) than in the placebo group (5.42 ± 0.03 mmol/L), and LCCJ had a beneficial effect on homeostasis model assessment of insulin resistance for participants with high baseline values (P = 0.035). CONCLUSION LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684.
Collapse
Affiliation(s)
- Janet A Novotny
- Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD; and
| | - David J Baer
- Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD; and
| | - Christina Khoo
- Ocean Spray Cranberries, Inc., Lakeville-Middleborough, MA
| | - Sarah K Gebauer
- Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD; and
| | - Craig S Charron
- Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD; and
| |
Collapse
|
40
|
Gatineau E, Savary-Auzeloux I, Migné C, Polakof S, Dardevet D, Mosoni L. Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis. J Nutr 2015; 145:923-30. [PMID: 25809681 DOI: 10.3945/jn.114.205583] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/20/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). OBJECTIVES Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. METHODS For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. RESULTS Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. CONCLUSIONS High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather than by changes in plasma IGF-I, inflammation, and/or oxidative stress.
Collapse
Affiliation(s)
- Eva Gatineau
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Isabelle Savary-Auzeloux
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Carole Migné
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Sergio Polakof
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Dominique Dardevet
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Laurent Mosoni
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| |
Collapse
|
41
|
Li JM, Ge CX, Xu MX, Wang W, Yu R, Fan CY, Kong LD. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Mol Nutr Food Res 2014; 59:189-202. [PMID: 25303559 DOI: 10.1002/mnfr.201400307] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Wei Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Chen-Yu Fan
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| |
Collapse
|
42
|
Martín MÁ, Cordero-Herrera I, Bravo L, Ramos S, Goya L. Cocoa flavanols show beneficial effects in cultured pancreatic beta cells and liver cells to prevent the onset of type 2 diabetes. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Shirakami Y, Shimizu M, Kubota M, Araki H, Tanaka T, Moriwaki H, Seishima M. Chemoprevention of colorectal cancer by targeting obesity-related metabolic abnormalities. World J Gastroenterol 2014; 20:8939-8946. [PMID: 25083066 PMCID: PMC4112888 DOI: 10.3748/wjg.v20.i27.8939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/20/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Obesity and its related metabolic disorders, including insulin resistance and chronic inflammation, increase the risk of colorectal cancer (CRC). This observation suggests that the metabolic abnormalities associated with obesity can be effective targets for preventing the development of CRC in obese individuals. In recent years, many studies using obese and diabetic animal models have been conducted to investigate the chemoprevention of CRC using pharmaceutical or nutritional interventions. Pitavastatin, a medicine used to treat hyperlipidemia, prevents the development of obesity-related colorectal carcinogenesis by attenuating chronic inflammation. Anti-hypertensive medicines, such as captopril and telmisartan, also suppress the formation of colonic preneoplastic lesions in obese and diabetic mice. In addition, several phytochemicals, including green tea catechins, have been reported to improve metabolic disorders and prevent the development of various cancers, including CRC. Moreover, the administration of branched-chain amino acids, which improves protein malnutrition and prevents the progression of hepatic failure, is effective for suppressing obesity-related colon carcinogenesis, which is thought to be associated with improvements in insulin resistance. In the present article, we summarize the detailed relationship between metabolic abnormalities and the development of CRC. This review also outlines recent evidence, in particular drawing from basic and clinical examinations using either pharmaceutical or nutritional intervention that suggests that targeting metabolic alterations may be an effective strategy for preventing the development of CRC in obese individuals.
Collapse
|
44
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2014; 66:815-68. [PMID: 24958636 PMCID: PMC4081729 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
45
|
Yang CS, Chen G, Wu Q. Recent scientific studies of a traditional chinese medicine, tea, on prevention of chronic diseases. J Tradit Complement Med 2014; 4:17-23. [PMID: 24872929 PMCID: PMC4032838 DOI: 10.4103/2225-4110.124326] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Green tea (綠茶 Lǜ Chá), made from the leaves of the plant Camellia sinensis, has traditionally been used as a medicine in China for thousands of years. According to the classical work of Li Shizhen (李時珍 Lǐ Shí Zhēn) of the Ming Dynasty, “tea is cold and lowers the fire.” Since fire (inflammation) causes many diseases, could tea be effective in the prevention of many diseases? The possible prevention of chronic diseases such as cancer, metabolic syndrome, obesity, diabetes, and cardiovascular diseases has been studied with contemporary scientific methods, and the results are promising. The molecular mechanisms underlining these observations will be discussed in this presentation. One of the reasons for the failure to demonstrate a disease-preventive effect of tea in some epidemiological studies is the lower quantities of tea consumption in humans. Can we increase the quantity of tea consumption to harness its health benefits without causing gastrointestinal irritation? This is a topic for further research.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Gang Chen
- Department of Chemical Biology, Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
46
|
Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D, Spizzirri UG, Puoci F, Picci N. Polyphenol Conjugates and Human Health: A Perspective Review. Crit Rev Food Sci Nutr 2014; 56:326-37. [DOI: 10.1080/10408398.2012.752342] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Romić S, Tepavčević S, Žakula Z, Milosavljević T, Kostić M, Petković M, Korićanac G. Gender differences in the expression and cellular localization of lipin 1 in the hearts of fructose-fed rats. Lipids 2014; 49:655-63. [PMID: 24788483 DOI: 10.1007/s11745-014-3909-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/14/2014] [Indexed: 01/15/2023]
Abstract
To give new insight to alterations of cardiac lipid metabolism accompanied by a fructose-rich diet (FRD), rats of both sexes were exposed to 10 % fructose in drinking water during 9 weeks. The protein level and subcellular localization of the main regulators of cardiac lipid metabolism, such as lipin 1, peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), carnitine palmitoyltransferase I (CPTI), and CD36 were studied. Caloric intake in fructose-fed rats (FFR) of both sexes was increased. Circulating triacylglyceroles (TAG) and non-esterified fatty acids were increased in male FFR, while females increased visceral adiposity and blood TAG. Total expression of lipin 1 in cardiac cell lysate and its cytosolic and microsomal level were increased in the hearts of male FFR. PPARα and PGC-1α content were decreased in the nuclear extract. In addition, cardiac deposition of TAG in male FFR was elevated, as well as inhibitory phosphorylation of insulin receptor substrate 1 (IRS-1). In contrast, in female FFR, lipin 1 level was increased in nuclear extract only, while overall CPTI expression and phosphorylation of IRS-1 at serine 307 were decreased. The results of our study suggest that fructose diet causes gender-dependent alterations in cardiac lipid metabolism. Potentially detrimental effects of FRD seem to be limited to male rats. Most of the observed changes might be a consequence of elevated expression and altered localization of lipin 1. Increased inhibitory phosphorylation of IRS-1 is possible link between cardiac lipid metabolism and insulin resistance in FFR.
Collapse
Affiliation(s)
- Snježana Romić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
48
|
Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem Toxicol 2013; 64:10-9. [PMID: 24262486 DOI: 10.1016/j.fct.2013.11.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022]
Abstract
Insulin resistance is the primary characteristic of type 2 diabetes. Cocoa and its main flavanol, (-)-epicatechin (EC), display some antidiabetic effects, but the mechanisms for their preventive activities related to glucose metabolism and insulin signalling in the liver remain largely unknown. In the present work, the preventive effect of EC and a cocoa polyphenolic extract (CPE) on insulin signalling and on both glucose production and uptake are studied in insulin-responsive human HepG2 cells treated with high glucose. Pre-treatment of cells with EC or CPE reverted decreased tyrosine-phosphorylated and total levels of IR, IRS-1 and -2 triggered by high glucose. EC and CPE pre-treatment also prevented the inactivation of the PI3K/AKT pathway and AMPK, as well as the diminution of GLUT-2 levels induced by high glucose. Furthermore, pre-treatment of cells with EC and CPE avoided the increase in PEPCK levels and the diminished glucose uptake provoked by high glucose, returning enhanced levels of glucose production and decreased glycogen content to control values. These findings suggest that EC and CPE improved insulin sensitivity of HepG2 treated with high glucose, preventing or delaying a potential hepatic dysfunction through the attenuation of the insulin signalling blockade and the modulation of glucose uptake and production.
Collapse
|
49
|
Geetha R, Yogalakshmi B, Sreeja S, Bhavani K, Anuradha CV. Troxerutin suppresses lipid abnormalities in the heart of high-fat–high-fructose diet-fed mice. Mol Cell Biochem 2013; 387:123-34. [DOI: 10.1007/s11010-013-1877-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 12/28/2022]
|
50
|
Tang W, Li S, Liu Y, Huang MT, Ho CT. Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|