1
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
2
|
Meyer-Lindemann U, Moggio A, Dutsch A, Kessler T, Sager HB. The Impact of Exercise on Immunity, Metabolism, and Atherosclerosis. Int J Mol Sci 2023; 24:3394. [PMID: 36834808 PMCID: PMC9967592 DOI: 10.3390/ijms24043394] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical exercise represents an effective preventive and therapeutic strategy beneficially modifying the course of multiple diseases. The protective mechanisms of exercise are manifold; primarily, they are elicited by alterations in metabolic and inflammatory pathways. Exercise intensity and duration strongly influence the provoked response. This narrative review aims to provide comprehensive up-to-date insights into the beneficial effects of physical exercise by illustrating the impact of moderate and vigorous exercise on innate and adaptive immunity. Specifically, we describe qualitative and quantitative changes in different leukocyte subsets while distinguishing between acute and chronic exercise effects. Further, we elaborate on how exercise modifies the progression of atherosclerosis, the leading cause of death worldwide, representing a prime example of a disease triggered by metabolic and inflammatory pathways. Here, we describe how exercise counteracts causal contributors and thereby improves outcomes. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
3
|
Power Guerra N, Leyens K, Müller L, Brauer D, Janowitz D, Schlick S, Pilz K, Grabe HJ, Vollmar B, Kuhla A. The effect of different weight loss strategies to treat non-alcoholic fatty liver disease focusing on fibroblast growth factor 21. Front Nutr 2022; 9:935805. [PMID: 36034917 PMCID: PMC9399780 DOI: 10.3389/fnut.2022.935805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity, often associated with non-alcoholic fatty liver disease (NAFLD), is characterized by an imbalance between energy expenditure and food intake, which is also reflected by desensitization of fibroblast growth factor 21 (FGF21). FGF21 is strongly influenced, among others, by TNFα, which is known to be upregulated in obesity-induced inflammation. Successful long-term treatments of NAFLD might be dietary modification, exercise, or fasting. Materials and methods Whether succeeded NAFLD recovery is linked with improved FGF21 sensitivity and finally reverted FGF21 resistance was the focus of the present study. For this purpose, mice received a high-fat diet (HFD) for 6 months to establish obesity. Afterward, the mice were subjected to three different weight loss interventions, namely, dietary change to low-fat diet (LFD), treadmill training, and/or time-restricted feeding for additional 6 months, whereas one group remained on HFD. Results In addition to the expected decrease in NAFLD activity with dietary change, this was also observed in the HFD group with additional time-restricted feeding. There was also an associated decrease in hepatic TNFα and FGF21 expression and an increase in ß-klotho expression, demonstrated mainly by using principal component analysis. Pearson correlation analysis shows that independent of any intervention, TNFα expression decreased with improved NAFLD recovery. This was accompanied with higher FGF21 sensitivity, as expressed by an increase in β-klotho and FGFR1c expression and concomitantly decreased FGF21 levels. Conclusion In summary, we conclude that successful NAFLD therapy is associated with a reversion of the TNFα-triggered FGF21-resistant state or desensitization.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Katharina Leyens
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Luisa Müller
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Samin Schlick
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Kristin Pilz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Krüger K, Tirekoglou P, Weyh C. Immunological mechanisms of exercise therapy in dyslipidemia. Front Physiol 2022; 13:903713. [PMID: 36003652 PMCID: PMC9393246 DOI: 10.3389/fphys.2022.903713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Numerous studies demonstrated the strong link between dyslipidemia and the cardiovascular risk. Physical activity and exercise represent effective prevention and therapy strategies for dyslipidemia and at the same time counteract numerous comorbidities that often accompany the disease. The physiological mechanisms are manifold, and primary mechanisms might be an increased energy consumption and associated adaptations of the substrate metabolism. Recent studies showed that there are bidirectional interactions between dyslipidemia and the immune system. Thus, abnormal blood lipids may favor pro-inflammatory processes, and at the same time inflammatory processes may also promote dyslipidemia. Physical activity has been shown to affect numerous immunological processes and has primarily anti-inflammatory effects. These are manifested by altered leukocyte subtypes, cytokine patterns, stress protein expression, and by reducing hallmarks of immunosenescence. The aim of this review is to describe the effects of exercise on the treatment dyslipidemia and to discuss possible immunological mechanisms against the background of the current literature.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
5
|
Upadhyay A, Boyle KE, Broderick TL. The Effects of Streptozotocin-Induced Diabetes and Insulin Treatment on Carnitine Biosynthesis and Renal Excretion. Molecules 2021; 26:6872. [PMID: 34833964 PMCID: PMC8620001 DOI: 10.3390/molecules26226872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Carnitine insufficiency is reported in type 1 diabetes mellitus. To determine whether this is accompanied by defects in biosynthesis and/or renal uptake, liver and kidney were obtained from male Sprague-Dawley rats with streptozotocin-induced diabetes. Diabetic rats exhibited the metabolic consequences of type 1 diabetes, including hypoinsulinemia, hyperglycemia, and increased urine output. Systemic hypocarnitinemia, expressed as free carnitine levels, was evident in the plasma, liver, and kidney of diabetic rats. Compared to control rats, the low free carnitine in the plasma of diabetic rats was accompanied by decreased expression of γ-butyrobetaine hydroxylase in liver and kidney, suggesting impaired carnitine biosynthesis. Expression of organic cation transporter-2 in kidney was also reduced, indicating impaired renal reabsorption, and confirmed by the presence of elevated levels of free carnitine in the urine of diabetic rats. Insulin treatment of diabetic rats reversed the plasma hypocarnitinemia, increased the free carnitine content in both kidney and liver, and prevented urinary losses of free carnitine. This was associated with increased expression of γ-butyrobetaine hydroxylase and organic cation transporter-2. The results of our study indicate that type 1 diabetes induced with streptozotocin disrupts carnitine biosynthesis and renal uptake mechanisms, leading to carnitine insufficiency. These aberrations in carnitine homeostasis are prevented with daily insulin treatment.
Collapse
Affiliation(s)
- Aman Upadhyay
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Kate E. Boyle
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Tom L. Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
6
|
Power Guerra N, Parveen A, Bühler D, Brauer DL, Müller L, Pilz K, Witt M, Glass Ä, Bajorat R, Janowitz D, Wolkenhauer O, Vollmar B, Kuhla A. Fibroblast Growth Factor 21 as a Potential Biomarker for Improved Locomotion and Olfaction Detection Ability after Weight Reduction in Obese Mice. Nutrients 2021; 13:nu13092916. [PMID: 34578793 PMCID: PMC8470262 DOI: 10.3390/nu13092916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most challenging diseases of the 21st century and is accompanied by behavioural disorders. Exercise, dietary adjustments, or time-restricted feeding are the only successful long-term treatments to date. Fibroblast growth factor 21 (FGF21) plays a key role in dietary regulation, but FGF21 resistance is prevalent in obesity. The aim of this study was to investigate in obese mice whether weight reduction leads to improved behaviour and whether these behavioural changes are associated with decreased plasma FGF21 levels. After establishing a model for diet-induced obesity, mice were subjected to three different interventions for weight reduction, namely dietary change, treadmill exercise, or time-restricted feeding. In this study, we demonstrated that only the combination of dietary change and treadmill exercise affected all parameters leading to a reduction in weight, fat, and FGF21, as well as less anxious behaviour, higher overall activity, and improved olfactory detection abilities. To investigate the interrelationship between FGF21 and behavioural parameters, feature selection algorithms were applied designating FGF21 and body weight as one of five highly weighted features. In conclusion, we concluded from the complementary methods that FGF21 can be considered as a potential biomarker for improved behaviour in obese mice after weight reduction.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Alisha Parveen
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - David Leon Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Änne Glass
- Institute for Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany;
| | - Rika Bajorat
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Schillingallee 35, 18057 Rostock, Germany;
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
7
|
Effects of Exercise Training on Renal Carnitine Biosynthesis and Uptake in the High-Fat and High-Sugar-Fed Mouse. Molecules 2020; 25:molecules25092100. [PMID: 32365864 PMCID: PMC7248909 DOI: 10.3390/molecules25092100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Diet-induced obesity inhibits hepatic carnitine biosynthesis. Herein, the effects of high-fat (HF) and high-sugar (HFHS) feeding and exercise training (ET) on renal carnitine biosynthesis and uptake were determined. (2) Methods: Male C57BL/6J mice were assigned to the following groups: lean control (standard chow), HFHS diet, and HFHS diet with ET. ET consisted of 150 min of treadmill running per week for 12 weeks. Protein levels of γ-butyrobetaine hydroxylase (γ-BBH) and organic cation transporter-2 (OCTN2) were measured as markers of biosynthesis and uptake, respectively. (3) Results: HFHS feeding induced an obese diabetic state with accompanying hypocarnitinemia, reflected by decreased free carnitine levels in plasma and kidney. This hypocarnitinemia was associated with decreased γ-BBH (~30%) and increased OCTN2 levels (~50%). ET failed to improve the obesity and hyperglycemia, but improved insulin levels and prevented the hypocarnitinemia. ET increased protein levels of γ-BBH, whereas levels of OCTN2 were decreased. Peroxisome proliferator-activated receptor-alpha content was not changed by the HFHS diet or ET. (4) Conclusions: Our results indicate that ET prevents the hypocarnitinemia induced by HFHS feeding by increasing carnitine biosynthesis in kidney. Increased expression of OCTN2 with HFHS feeding suggests that renal uptake was stimulated to prevent carnitine loss.
Collapse
|
8
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
9
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|
10
|
Effect of lifelong carnitine supplementation on plasma and tissue carnitine status, hepatic lipid metabolism and stress signalling pathways and skeletal muscle transcriptome in mice at advanced age. Br J Nutr 2019; 121:1323-1333. [DOI: 10.1017/s0007114519000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractWhile strong evidence from clinical studies suggests beneficial effects of carnitine supplementation on metabolic health, serious safety concerns associated with carnitine supplementation have been raised from studies in mice. Considering that the carnitine doses in these mice studies were up to 100 times higher than those used in clinical studies, the present study aimed to address possible safety concerns associated with long-term supplementation of a carnitine dose used in clinical trials. Two groups of NMRI mice were fed either a control or a carnitine-supplemented diet (1 g/kg diet) from weaning to 19 months of age, and parameters of hepatic lipid metabolism and stress signalling and skeletal muscle gene expression were analysed in the mice at 19 months of age. Concentrations of free carnitine and acetylcarnitine in plasma and tissues were higher in the carnitine than in the control group (P<0·05). Plasma concentrations of free carnitine and acetylcarnitine were higher in mice at adult age (10 and 15 months) than at advanced age (19 months) (P<0·05). Hepatic mRNA and protein levels of genes involved in lipid metabolism and stress signalling and hepatic and plasma lipid concentrations did not differ between the carnitine and the control group. Skeletal muscle transcriptome analysis in 19-month-old mice revealed only a moderate regulation between carnitine and control group. Lifelong carnitine supplementation prevents an age-dependent impairment of plasma carnitine status, but safety concerns associated with long-term supplementation of carnitine at doses used in clinical trials can be considered as unfounded.
Collapse
|
11
|
Ringseis R, Keller J, Eder K. Basic mechanisms of the regulation of L-carnitine status in monogastrics and efficacy of L-carnitine as a feed additive in pigs and poultry. J Anim Physiol Anim Nutr (Berl) 2018; 102:1686-1719. [PMID: 29992642 DOI: 10.1111/jpn.12959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
A great number of studies have investigated the potential of L-carnitine as feed additive to improve performance of different monogastric and ruminant livestock species, with, however, discrepant outcomes. In order to understand the reasons for these discrepant outcomes, it is important to consider the determinants of L-carnitine status and how L-carnitine status is regulated in the animal's body. While it is a long-known fact that L-carnitine is endogenously biosynthesized in certain tissues, it was only recently recognized that critical determinants of L-carnitine status, such as intestinal L-carnitine absorption, tissue L-carnitine uptake, endogenous L-carnitine synthesis and renal L-carnitine reabsorption, are regulated by specific nutrient sensing nuclear receptors. This review aims to give a more in-depth understanding of the basic mechanisms of the regulation of L-carnitine status in monogastrics taking into account the most recent evidence on nutrient sensing nuclear receptors and evaluates the efficacy of L-carnitine as feed additive in monogastric livestock by providing an up-to-date overview about studies with L-carnitine supplementation in pigs and poultry.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Janine Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
12
|
Broderick TL, Cusimano FA, Carlson C, Babu JR. Biosynthesis of the Essential Fatty Acid Oxidation Cofactor Carnitine Is Stimulated in Heart and Liver after a Single Bout of Exercise in Mice. J Nutr Metab 2018; 2018:2785090. [PMID: 30002928 PMCID: PMC5996426 DOI: 10.1155/2018/2785090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
We determined whether one single bout of exercise stimulates carnitine biosynthesis and carnitine uptake in liver and heart. Free carnitine (FC) in plasma was assayed using acetyltransferase and [14C]acetyl-CoA in Swiss Webster mice after 1 hour of moderate-intensity treadmill running or 4 hours and 8 hours into recovery. Liver and heart were removed under the same conditions for measurement of carnitine biosynthesis enzymes (liver butyrobetaine hydroxylase, γ-BBH; heart trimethyllysine dioxygenase, TMLD), organic cation transporter-2 (OCTN2, carnitine transporter), and liver peroxisome proliferator-activated receptor-alpha (PPARα, transcription factor for γ-BBH and OCTN2 synthesis). In exercised mice, FC levels in plasma decreased while heart and liver OCTN2 protein expressed increased, reflecting active uptake of FC. During recovery, the rise in FC to control levels was associated with increased liver γ-BBH expression. Protein expression of PPARα was stimulated in liver after exercise and during recovery. Interestingly, heart TMLD protein was also detected after exercise. Acute exercise stimulates carnitine uptake in liver and heart. The rapid return of FC levels in plasma after exercise indicates carnitine biosynthesis by liver is stimulated to establish carnitine homeostasis. Our results suggest that exercise may benefit patients with carnitine deficiency syndromes.
Collapse
Affiliation(s)
- Tom L. Broderick
- Department of Physiology and Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA
| | - Frank A. Cusimano
- Department of Physiology and Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA
| | - Chelsea Carlson
- Department of Physiology and Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| |
Collapse
|
13
|
Tamura S, Honda K, Morinaga R, Saneyasu T, Kamisoyama H. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice. J Nutr Sci Vitaminol (Tokyo) 2018; 63:405-411. [PMID: 29332902 DOI: 10.3177/jnsv.63.405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.
Collapse
Affiliation(s)
- Shohei Tamura
- Graduate School of Agricultural Science, Kobe University
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University
| | - Ryoji Morinaga
- Graduate School of Agricultural Science, Kobe University
| | | | | |
Collapse
|
14
|
Eder K, Siebers M, Most E, Scheibe S, Weissmann N, Gessner DK. An excess dietary vitamin E concentration does not influence Nrf2 signaling in the liver of rats fed either soybean oil or salmon oil. Nutr Metab (Lond) 2017; 14:71. [PMID: 29176993 PMCID: PMC5693465 DOI: 10.1186/s12986-017-0225-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Reactive oxygen species (ROS) are known to stimulate the activation of nuclear factor-erythroid 2-related factor-2 (Nrf2), the key regulator of the antioxidant and cytoprotective defense system in the body. The hypothesis underlying this study was that high dietary concentrations of vitamin E suppress Nrf2 activation, and thus could weaken the body’s antioxidative and cytoprotective capacity. As the effect of vitamin E on Nrf2 pathway might be influenced by concentrations of fatty acids susceptible to oxidation in the diet, we used also diets containing either soybean oil as a reference oil or salmon oil as a source of oil rich in n-3 polyunsatuated fatty acids. Methods Seventy-two rats were divided into 6 groups of rats which received diets with either 25, 250 or 2500 mg vitamin E/kg, with either soybean oil or salmon oil as dietary fat sources according to a bi-factorial experimental design. Electron spin resonance spectroscopy was used to determine ROS production in the liver. qPCR analysis and western blot were performed to examine the expression of Nrf2 target genes in the liver of rats. Results Rats fed the salmon oil diet with 25 mg vitamin E/kg showed a higher production of ROS in the liver than the 5 other groups of rats which did not differ in ROS production. Relative mRNA concentrations of NFE2L2 (encoding Nrf2), KEAP1 and various Nrf2 target genes, protein concentrations of glutathione peroxidase (GPX), heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1) and activities of the antioxidant enzymes GPX, superoxide dismutase and catalase were not influenced by the dietary vitamin E concentration. The dietary fat had also less effect on Nrf2 target genes and no effect on protein concentrations of GPX, HO-1, NQO1 and activities of antioxidant enzymes. Dietary vitamin E concentration and type of fat moreover had less effect on mRNA concentrations of genes and concentrations of proteins involved in the unfolded protein response, a pathway which is closely linked with activation of Nrf2. Conclusion We conclude that excess dietary concentrations of vitamin E do not suppress Nrf2 signaling, and thus do not weaken the endogenous antioxidant and cytoprotective capacity in the liver of rats.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Marina Siebers
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Susan Scheibe
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-Universität Gießen, Aulweg 130, 35392 Gießen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-Universität Gießen, Aulweg 130, 35392 Gießen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
15
|
Krüger K, Seimetz M, Ringseis R, Wilhelm J, Pichl A, Couturier A, Eder K, Weissmann N, Mooren FC. Exercise training reverses inflammation and muscle wasting after tobacco smoke exposure. Am J Physiol Regul Integr Comp Physiol 2017; 314:R366-R376. [PMID: 29092860 DOI: 10.1152/ajpregu.00316.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term cigarette smoking induces inflammatory processes in the pulmonary system that are suggested to "spill over" into systemic inflammation. Regular exercise has been shown to have anti-inflammatory properties. The aim of the study was to investigate the effects of therapeutic exercise on inflammation and muscle wasting in smoke-exposed mice. C57BL/6J mice ( n = 30) were separated into three groups to receive either 1) no specific treatment (control group), 2) 8-mo exposure to cigarette smoke [smoke-exposed (SE) group], or 3) 8 mo of cigarette smoke combined with exercise training during the last 2 mo (SEex group). The inflammatory status was analyzed by quantifying levels of various plasma proteins using multiplex ELISA and detection of lymphocyte surface markers by flow cytometry. Muscle tissue was analyzed by histological techniques and measurements of RNA/protein expression. SE led to decreased maximal O2 uptake (V̇o2max) and maximal running speed ( Vmax), which was reversed by exercise ( P < 0.05). Expression of ICAM-1, VCAM-1, and CD62L on T cells increased and was reversed by exercise ( P < 0.05). Similarly, SE induced an increase of various inflammatory cytokines, which were downregulated by exercise. In muscle, exercise improved the structure, oxidative capacity, and metabolism by reducing ubiquitin proteasome system activation, stimulating insulin-like growth factor 1 expression, and the SE-induced inhibition of mammalian target of rapamycin signaling pathway ( P < 0.05). Exercise training reverses smoke-induced decline in exercise capacity, systemic inflammation, and muscle wasting by addressing immune-regulating, anabolic, and metabolic pathways.
Collapse
Affiliation(s)
- Karsten Krüger
- Institute of Sports Science, Department Exercise and Health, Leibniz University Hannover , Germany.,Department of Sports Medicine, University of Giessen , Giessen , Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring, Giessen , Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Alexandra Pichl
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Aline Couturier
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring, Giessen , Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring, Giessen , Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Frank C Mooren
- Department of Sports Medicine, University of Giessen , Giessen , Germany.,Klinik Königsfeld, Ennepetal, Germany
| |
Collapse
|
16
|
Broderick T, Cusimano F, Carlson C, Tamura L. Acute Exercise Stimulates Carnitine Biosynthesis and OCTN2 Expression in Mouse Kidney. Kidney Blood Press Res 2017; 42:398-405. [DOI: 10.1159/000478737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
|
17
|
Hoene M, Li J, Li Y, Runge H, Zhao X, Häring HU, Lehmann R, Xu G, Weigert C. Muscle and liver-specific alterations in lipid and acylcarnitine metabolism after a single bout of exercise in mice. Sci Rep 2016; 6:22218. [PMID: 26916151 PMCID: PMC4768182 DOI: 10.1038/srep22218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/04/2016] [Indexed: 12/26/2022] Open
Abstract
Intracellular lipid pools are highly dynamic and tissue-specific. Physical exercise is a strong physiologic modulator of lipid metabolism, but most studies focus on changes induced by long-term training. To assess the acute effects of endurance exercise, mice were subjected to one hour of treadmill running, and (13)C16-palmitate was applied to trace fatty acid incorporation in soleus and gastrocnemius muscle and liver. The amounts of carnitine, FFA, lysophospholipids and diacylglycerol and the post-exercise increase in acetylcarnitine were pronouncedly higher in soleus than in gastrocnemius. In the liver, exercise increased the content of lysophospholipids, plasmalogens and carnitine as well as transcript levels of the carnitine transporter. (13)C16-palmitate was detectable in several lipid and acylcarnitine species, with pronounced levels of tracer-derived palmitoylcarnitine in both muscles and a strikingly high incorporation into triacylglycerol and phosphatidylcholine in the liver. These data illustrate the high lipid storing activity of the liver immediately after exercise whereas in muscle, fatty acids are directed towards oxidation. The observed muscle-specific differences accentuate the need for single-muscle analyses as well as careful consideration of the particular muscle employed when studying lipid metabolism in mice. In addition, our results reveal that lysophospholipids and plasmalogens, potential lipid signalling molecules, are acutely regulated by physical exercise.
Collapse
Affiliation(s)
- Miriam Hoene
- Division of Clinical Chemistry and Pathobiochemistry, Department of Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Jia Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanjie Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heike Runge
- Division of Clinical Chemistry and Pathobiochemistry, Department of Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hans-Ulrich Häring
- Division of Clinical Chemistry and Pathobiochemistry, Department of Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Department of Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD), Tuebingen, Germany
| | - Rainer Lehmann
- Division of Clinical Chemistry and Pathobiochemistry, Department of Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Department of Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD), Tuebingen, Germany
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Cora Weigert
- Division of Clinical Chemistry and Pathobiochemistry, Department of Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Department of Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD), Tuebingen, Germany
| |
Collapse
|
18
|
Gessner DK, Gröne B, Couturier A, Rosenbaum S, Hillen S, Becker S, Erhardt G, Reiner G, Ringseis R, Eder K. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation. PLoS One 2015; 10:e0137684. [PMID: 26351857 PMCID: PMC4564272 DOI: 10.1371/journal.pone.0137684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023] Open
Abstract
Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.
Collapse
Affiliation(s)
- Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32, 35392, Giessen, Germany
| | - Birthe Gröne
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32, 35392, Giessen, Germany
| | - Aline Couturier
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32, 35392, Giessen, Germany
| | - Susann Rosenbaum
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32, 35392, Giessen, Germany
| | - Sonja Hillen
- Department of Veterinary Clinical Sciences, Swine Diseases, Justus-Liebig-Universität Giessen, Frankfurter Strasse 112, 35392, Giessen, Germany
| | - Sabrina Becker
- Department of Veterinary Clinical Sciences, Swine Diseases, Justus-Liebig-Universität Giessen, Frankfurter Strasse 112, 35392, Giessen, Germany
| | - Georg Erhardt
- Institute for Animal Breeding and Genetics, Justus-Liebig-Universität Giessen, Ludwigstrasse 21b, 35390, Giessen, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical Sciences, Swine Diseases, Justus-Liebig-Universität Giessen, Frankfurter Strasse 112, 35392, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32, 35392, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32, 35392, Giessen, Germany
- * E-mail:
| |
Collapse
|
19
|
Piguet AC, Saran U, Simillion C, Keller I, Terracciano L, Reeves HL, Dufour JF. Regular exercise decreases liver tumors development in hepatocyte-specific PTEN-deficient mice independently of steatosis. J Hepatol 2015; 62:1296-303. [PMID: 25623824 DOI: 10.1016/j.jhep.2015.01.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Unhealthy lifestyles predispose people to non-alcoholic steatohepatitis (NASH), which may further result in the development of hepatocellular carcinoma (HCC). Although NASH patients benefit from physical activity, it is unknown whether regular exercise reduces the risk of developing HCC. Therefore, we studied the effect of regular exercise on the development of HCC in male hepatocyte-specific PTEN-deficient mice (AlbCrePten(flox/flox)), which develop steatohepatitis and HCC spontaneously. METHODS Mice were fed a standardized 10% fat diet and were randomly divided into exercise or sedentary groups. The exercise group ran on a motorized treadmill for 60 min/day, 5 days/week during 32 weeks. RESULTS After 32 weeks of regular exercise, 71% of exercised mice developed nodules larger than 15 mm(3)vs. 100% of mice in the sedentary group. The mean number of tumors per liver was reduced by exercise, as well as the total tumoral volume per liver. Exercise did not affect steatosis and had no effect on the non-alcoholic fatty liver disease (NAFLD) Activity Score (NAS). Exercise decreased tumor cell proliferation. Mechanistically, exercise stimulated the phosphorylation of AMPK and its substrate raptor, which decreased the kinase activity of mTOR. CONCLUSIONS These data show a beneficial effect of regular exercise on the development of HCC in an experimental model of NASH and offer a rationale for encouraging predisposed patients to increase their physical activity for the prevention of HCC.
Collapse
Affiliation(s)
- Anne-Christine Piguet
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Uttara Saran
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Cedric Simillion
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Irene Keller
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Helen L Reeves
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK; The Liver Group, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland; University Clinic of Visceral Surgery and Medicine, Inselspital Berne, Berne, Switzerland.
| |
Collapse
|
20
|
Effects of physical activity upon the liver. Eur J Appl Physiol 2014; 115:1-46. [DOI: 10.1007/s00421-014-3031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
|
21
|
Krüger K, Mooren FC, Eder K, Ringseis R. Immune and Inflammatory Signaling Pathways in Exercise and Obesity. Am J Lifestyle Med 2014; 10:268-279. [PMID: 30202282 DOI: 10.1177/1559827614552986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022] Open
Abstract
Over the last decades the combination of both a sedentary lifestyle and excessive food availability has led to a significant increase in the prevalence of obesity, which is increasingly recognized as an important risk factor for type 2 diabetes. Several lines of evidence exist demonstrating that expanded visceral adipose tissue produces several pro-inflammatory mediators that activate signaling pathways that contribute to the development of insulin resistance. Exercise training is an important lifestyle factor that is widely used as a tool for preventing and improving lifestyle-related obesity and insulin resistance. In this regard, exercise training is useful to increase energy expenditure thereby counteracting a positive energy balance. Exercise training is also able to attenuate the activation of several obesity-induced pathways of inflammation and oxidative stress. Thus, a better understanding of the molecular mechanisms and immune pathways in exercise, obesity, and diabetes can be extremely useful to exploit optimized lifestyle strategies to combat the increasing incidence of metabolic diseases.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Sports Medicine (KK, FCM), Justus-Liebig-University Giessen, Giessen, Germany.,Institute of Animal Nutrition and Nutrition Physiology (KE, RR), Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank C Mooren
- Department of Sports Medicine (KK, FCM), Justus-Liebig-University Giessen, Giessen, Germany.,Institute of Animal Nutrition and Nutrition Physiology (KE, RR), Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Eder
- Department of Sports Medicine (KK, FCM), Justus-Liebig-University Giessen, Giessen, Germany.,Institute of Animal Nutrition and Nutrition Physiology (KE, RR), Justus-Liebig-University Giessen, Giessen, Germany
| | - Robert Ringseis
- Department of Sports Medicine (KK, FCM), Justus-Liebig-University Giessen, Giessen, Germany.,Institute of Animal Nutrition and Nutrition Physiology (KE, RR), Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Couturier A, Ringseis R, Most E, Eder K. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats. BMC Pharmacol Toxicol 2014; 15:37. [PMID: 25012467 PMCID: PMC4094635 DOI: 10.1186/2050-6511-15-37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023] Open
Abstract
Background Activation of peroxisome proliferator-activated receptor (PPAR)α and PPARδ causes an elevation of tissue carnitine concentrations through induction of genes involved in carnitine uptake [novel organic cation transporter 2, (OCTN2)], and carnitine biosynthesis [γ-butyrobetaine dioxygenase (BBD), 4-N-trimethyl-aminobutyraldehyde dehydrogenase (TMABA-DH)]. Recent studies showed that administration of the plasma lipid-lowering drug niacin causes activation of PPARα and/or PPARδ in tissues of obese Zucker rats, which have a compromised carnitine status and an impaired fatty acid oxidation capacity. Thus, we hypothesized that niacin administration to obese Zucker rats is also able to improve the diminished carnitine status of obese Zucker rats through PPAR-mediated stimulation of genes involved in carnitine uptake and biosynthesis. Methods To test this hypothesis, we used plasma, muscle and liver samples from a recent experiment with obese Zucker rats, which were fed either a niacin-adequate diet (30 mg niacin/kg diet) or a diet with a pharmacological niacin dose (780 mg niacin/kg diet), and determined concentrations of carnitine in tissues and mRNA and protein levels of genes critical for carnitine homeostasis (OCTN2, BBD, TMABA-DH). Statistical data analysis of all data was done by one-way ANOVA, and Fisher’s multiple range test. Results Rats of the obese niacin group had higher concentrations of total carnitine in plasma, skeletal muscle and liver, higher mRNA and protein levels of OCTN2, BBD, and TMABA-DH in the liver and higher mRNA and protein levels of OCTN2 in skeletal muscle than those of the obese control group (P < 0.05), whereas rats of the obese control group had lower concentrations of total carnitine in plasma and skeletal muscle than lean rats (P < 0.05). Conclusion The results show for the first time that niacin administration stimulates the expression of genes involved in carnitine uptake and biosynthesis and improves the diminished carnitine status of obese Zucker rats. We assume that the induction of genes involved in carnitine uptake and biosynthesis by niacin administration is mediated by PPAR-activation.
Collapse
Affiliation(s)
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany.
| | | | | |
Collapse
|
23
|
Keller J, Ringseis R, Eder K. Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats. BMC Genomics 2014; 15:512. [PMID: 24952657 PMCID: PMC4078242 DOI: 10.1186/1471-2164-15-512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
Background In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis. Results Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P < 0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value < 0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value < 0.05). 14 of these miRNAs showed a log2 ratio ≥ 0.5 and 7 miRNAs showed a log2 ratio ≤ −0.5 (adjusted P-value < 0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P < 0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation. Conclusion The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-512) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Keller
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| | | | | |
Collapse
|
24
|
Samaan MC, Marcinko K, Sikkema S, Fullerton MD, Ziafazeli T, Khan MI, Steinberg GR. Endurance interval training in obese mice reduces muscle inflammation and macrophage content independently of weight loss. Physiol Rep 2014; 2:2/5/e12012. [PMID: 24843075 PMCID: PMC4098740 DOI: 10.14814/phy2.12012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. We hypothesized that exercise training would inhibit skeletal muscle inflammation and alter macrophage infiltration into muscle independently of weight loss. Wild type C57BL/6 male mice were fed a chow diet or a high‐fat diet (HFD, 45% calories fat) for 6 weeks. Then, mice maintained on the HFD either remained sedentary (HFD Sed) or exercised (HFD Ex) on a treadmill for another 6 weeks. The exercise training protocol involved conducting intervals of 2 min in duration followed by 2 min of rest for 60 min thrice weekly. Chow‐fed control mice remained sedentary for the entire 12 weeks. Muscle cytokine and macrophage gene expression analysis were conducted using qRT‐PCR, and muscle macrophage content was also measured using immunohistochemistry. Muscle cytokine protein content was quantified using a cytokine array. The HFD increased adiposity and weight gain compared to chow‐fed controls. HFD Sed and HFD Ex mice had similar body mass as well as total and visceral adiposity. However, despite similar adiposity, exercise reduced inflammation and muscle macrophage infiltration. We conclude that Endurance exercise training modulates the immune‐metabolic crosstalk in obesity independently of weight loss, and may have potential benefits in reducing obesity‐related muscle inflammation. e12012 Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. In this article, we show that endurance interval training inhibited skeletal muscle inflammation and reduced macrophage infiltration into muscle independently of weight loss in mice.
Collapse
Affiliation(s)
- M Constantine Samaan
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Katarina Marcinko
- Department of Medicine, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Sarah Sikkema
- Department of Medicine, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Morgan D Fullerton
- Department of Medicine, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Tahereh Ziafazeli
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Mohammad I Khan
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Gregory R Steinberg
- Department of Medicine, Faculty of Health Sciences, McMaster University, Ontario, Canada
| |
Collapse
|
25
|
Weissmann N, Peters DM, Klöpping C, Krüger K, Pilat C, Katta S, Seimetz M, Ghofrani HA, Schermuly RT, Witzenrath M, Seeger W, Grimminger F, Mooren FC. Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice. Am J Physiol Lung Cell Mol Physiol 2014; 306:L986-95. [PMID: 24705723 DOI: 10.1152/ajplung.00275.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease with a poor prognosis characterized by a vascular remodeling process and an increase in pulmonary vascular resistance. While a variety of reports demonstrated that exercise training exerts beneficial effects on exercise performance and quality of life in PH patients, it is not known how physical exercise affects vascular remodeling processes occurring in hypoxia-induced PH. Therefore, we investigated the effect of individualized exercise training on the development of hypoxia-induced PH in mice. Training effects were compared with pharmacological treatment with the phosphodiesterase 5 inhibitor Sildenafil or a combination of training plus Sildenafil. Trained mice who received Sildenafil showed a significantly improved walking distance (from 88.9 ± 8.1 to 146.4 ± 13.1 m) and maximum oxygen consumption (from 93.3 ± 2.9 to 105.5 ± 2.2% in combination with Sildenafil, to 102.2 ± 3.0% with placebo) compared with sedentary controls. Right ventricular systolic pressure, measured by telemetry, was at the level of healthy normoxic animals, whereas right heart hypertrophy did not benefit from training. Most interestingly, the increase in small pulmonary vessel muscularization was prevented by training. Respective counterregulatory processes were detected for the nitric oxide-soluble guanylate cyclase-phosphodiesterase system. We conclude that individualized daily exercise can prevent vascular remodeling in hypoxia-induced PH.
Collapse
Affiliation(s)
- Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany;
| | - Dorothea M Peters
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Christina Klöpping
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany
| | - Christian Pilat
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany
| | - Susmitha Katta
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Martin Witzenrath
- Division of Infectiology and Pneumology, Charité-Universitätsmedizin Berlin Medical Clinic, Berlin, Germany; and
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany; Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Frank C Mooren
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, Nissim I, Yudkoff M. The molecular and metabolic influence of long term agmatine consumption. J Biol Chem 2014; 289:9710-29. [PMID: 24523404 DOI: 10.1074/jbc.m113.544726] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used (13)C or (15)N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming.
Collapse
|
27
|
Khan M, Couturier A, Kubens JF, Most E, Mooren FC, Krüger K, Ringseis R, Eder K. Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep. Acta Vet Scand 2013; 55:85. [PMID: 24267720 PMCID: PMC4176759 DOI: 10.1186/1751-0147-55-85] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022] Open
Abstract
Background It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk. Results After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P < 0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P < 0.05) or tended to be greater (P < 0.15) in the niacin group than in the control group. Conclusions The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.
Collapse
|
28
|
Krüger K, Gessner DK, Seimetz M, Banisch J, Ringseis R, Eder K, Weissmann N, Mooren FC. Functional and muscular adaptations in an experimental model for isometric strength training in mice. PLoS One 2013; 8:e79069. [PMID: 24236089 PMCID: PMC3827300 DOI: 10.1371/journal.pone.0079069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/27/2013] [Indexed: 01/13/2023] Open
Abstract
Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST) for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT) or a regular endurance training group (ET) groups were used as controls. Performance capacity was determined by maximum holding time (MHT) and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK), succinate dehydrogenase (SDHa), and glucose transporter type 4 (GLUT4) were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO2max, a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Seimetz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardiopulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jasmin Banisch
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardiopulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Frank C. Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Couturier A, Ringseis R, Mooren FC, Krüger K, Most E, Eder K. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle. Nutr Metab (Lond) 2013; 10:48. [PMID: 23842456 PMCID: PMC3717057 DOI: 10.1186/1743-7075-10-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. RESULTS The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). CONCLUSION The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes.
Collapse
Affiliation(s)
- Aline Couturier
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Frank-Christoph Mooren
- Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
30
|
Ringseis R, Rosenbaum S, Gessner DK, Herges L, Kubens JF, Mooren FC, Krüger K, Eder K. Supplementing obese Zucker rats with niacin induces the transition of glycolytic to oxidative skeletal muscle fibers. J Nutr 2013; 143:125-31. [PMID: 23256146 DOI: 10.3945/jn.112.164038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present study, we tested the hypothesis that niacin increases the oxidative capacity of muscle by increasing the oxidative type I muscle fiber content. Twenty-four obese Zucker rats were assigned to 2 groups of 12 rats that were fed either a control diet (O group) or a diet supplemented with 750 mg/kg diet niacin (O+N group) for 4 wk. In addition, one group of lean rats (L group) was included in the experiment and fed the control diet for 4 wk. Plasma and liver concentrations of TG were markedly greater in obese groups than in the L group but markedly lower in the O+N group than in the O group (P < 0.05). Rats of the O+N group had a higher percentage of oxidative type I fibers and higher mRNA levels of genes encoding regulators of muscle fiber composition (Ppard, Ppargc1a, Ppargc1b), angiogenic factors (Vegfa, Vegfb), and genes involved in fatty acid utilization (Cpt1b, Slc25a20, Slc22a4, Slc22a5, Slc27a1) and oxidative phosphorylation (Cox4i1, Cox6a2) and a higher activity of the mitochondrial oxidative enzyme succinate dehydrogenase in muscle than rats of the O and L groups (P < 0.05). These niacin-induced changes in muscle metabolic phenotype are indicative of an increased capacity of muscle for oxidative utilization of fatty acids and are likely mediated by the upregulation of Ppard, Ppargc1a, and Ppargc1b, which are key regulators of muscle fiber composition, mitochondrial biogenesis, angiogenesis, and genes involved in fatty acid catabolism and oxidative phosphorylation. The increased utilization of fatty acids by muscle might contribute to the strong TG-lowering effect of niacin treatment.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen,Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ringseis R, Wen G, Eder K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). PPAR Res 2012; 2012:868317. [PMID: 23150726 PMCID: PMC3486131 DOI: 10.1155/2012/868317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies in rodents convincingly demonstrated that PPARα is a key regulator of genes involved in carnitine homeostasis, which serves as a reasonable explanation for the phenomenon that energy deprivation and fibrate treatment, both of which cause activation of hepatic PPARα, causes a strong increase of hepatic carnitine concentration in rats. The present paper aimed to comprehensively analyse available data from genetic and animal studies with mice, rats, pigs, cows, and laying hens and from human studies in order to compare the regulation of genes involved in carnitine homeostasis by PPARα across different species. Overall, our comparative analysis indicates that the role of PPARα as a regulator of carnitine homeostasis is well conserved across different species. However, despite demonstrating a well-conserved role of PPARα as a key regulator of carnitine homeostasis in general, our comprehensive analysis shows that this assumption particularly applies to the regulation by PPARα of carnitine uptake which is obviously highly conserved across species, whereas regulation by PPARα of carnitine biosynthesis appears less well conserved across species.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
32
|
Elayan H, Milic M, Sun P, Gharaibeh M, Ziegler MG. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice. Cell Mol Neurobiol 2012; 32:871-7. [PMID: 22422105 PMCID: PMC11498512 DOI: 10.1007/s10571-012-9819-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/14/2012] [Indexed: 12/19/2022]
Abstract
Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake.
Collapse
Affiliation(s)
- Hamzeh Elayan
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | - Milos Milic
- University of California, 200 W Arbor, San Diego, CA 92103-8341 USA
| | - Ping Sun
- University of California, 200 W Arbor, San Diego, CA 92103-8341 USA
| | - Munir Gharaibeh
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
33
|
Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 2011; 51:1-18. [PMID: 22134503 DOI: 10.1007/s00394-011-0284-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Although carnitine is best known for its role in the import of long-chain fatty acids (acyl groups) into the mitochondrial matrix for subsequent β-oxidation, carnitine is also necessary for the efflux of acyl groups out of the mitochondria. Since intracellular accumulation of acyl-CoA derivatives has been implicated in the development of insulin resistance, carnitine supplementation has gained attention as a tool for the treatment of insulin resistance. More recent studies even point toward a causative role for carnitine insufficiency in developing insulin resistance during states of chronic metabolic stress, such as obesity, which can be reversed by carnitine supplementation. METHODS The present review provides an overview about data from both animal and human studies reporting effects of either carnitine supplementation or carnitine deficiency on parameters of glucose homeostasis and insulin sensitivity in order to establish the less well-recognized role of carnitine in regulating glucose homeostasis. RESULTS Carnitine supplementation studies in both humans and animals demonstrate an improvement of glucose tolerance, in particular during insulin-resistant states. In contrast, less consistent results are available from animal studies investigating the association between carnitine deficiency and glucose intolerance. The majority of studies dealing with this question could either find no association or even reported that carnitine deficiency lowers blood glucose and improves insulin sensitivity. CONCLUSIONS In view of the abovementioned beneficial effect of carnitine supplementation on glucose tolerance during insulin-resistant states, carnitine supplementation might be an effective tool for improvement of glucose utilization in obese type 2 diabetic patients. However, further studies are necessary to explain the conflicting observations from studies dealing with carnitine deficiency.
Collapse
|