1
|
Ameen SSM, Omer KM. Metal-organic framework-based nanozymes for water-soluble antioxidants and Total antioxidant capacity detection: Principles and applications. Food Chem 2025; 479:143876. [PMID: 40147141 DOI: 10.1016/j.foodchem.2025.143876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Nanozymes, engineered catalysts exhibiting catalytic properties, have emerged as key players at the interface of nanotechnology and biology, holding great promise in diverse food applications. Notably, nanoscale metal-organic frameworks (MOFs) have gained widespread recognition as flexible platforms for developing potent nanozymes. This review explores the design, development, and applications of MOF-based nanozymes, with a focus on their potential in detecting antioxidants and total antioxidant capacity (TAC), two critical parameters in the assessment of oxidative stress and related diseases. A comprehensive classification of these MOF-based nanozymes is presented, based on their catalytic activities, and recent advancements in their application to antioxidants and TAC detection are discussed. The review further delves into the challenges faced by MOF nanozymes in these areas, including issues related to stability, reproducibility, and selectivity. By addressing these challenges and proposing potential solutions, the review offers future perspectives on advancing the use of MOF nanozymes in sensing applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 42002, Zakho, Kurdistan region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St. 46002, Sulaymaniyah, Kurdistan region, Iraq.
| |
Collapse
|
2
|
Fu Y, Hou L, Han K, Zhao C, Hu H, Yin S. The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns. Clin Nutr 2025; 48:161-179. [PMID: 40220473 DOI: 10.1016/j.clnu.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Copper plays an important physiological role in the body, with both deficiency and excess potentially impacting overall health. The body maintains a stringent copper metabolism mechanism to oversee absorption, utilization, storage, and elimination. Dietary consumption serves as the principal source of copper. The dietary factors may interfere with the absorption and metabolism of copper, leading to fluctuation of copper levels in the body. However, these dietary factors can also be strategically employed to facilitate the precise regulation of copper. This paper delved into the advancements in research concerning copper in food processing, including dietary sources of copper, the regulatory processes of copper metabolism and health implications of copper. The safety and its underlying mechanisms of excess copper were also highlighted. In particular, the paper examines the influence of dietary factors on the absorption and metabolism of copper, aiming to provide direction for accurate copper regulation and the creation of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Yuhan Fu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lirui Hou
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Kai Han
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Shutao Yin
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
3
|
Yan C, He B, Wang C, Li W, Tao S, Chen J, Wang Y, Yang L, Wu Y, Wu Z, Liu N, Qin Y. Methionine in embryonic development: metabolism, redox homeostasis, epigenetic modification and signaling pathway. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40237424 DOI: 10.1080/10408398.2025.2491638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Methionine, an essential sulfur-containing amino acid, plays a critical role in methyl metabolism, folate metabolism, polyamine synthesis, redox homeostasis maintenance, epigenetic modification and signaling pathway regulation, particularly during embryonic development. Animal and human studies have increasingly documented that methionine deficiency or excess can negatively impact metabolic processes, translation, epigenetics, and signaling pathways, with ultimate detrimental effects on pregnancy outcomes. However, the underlying mechanisms by which methionine precisely regulates epigenetic modifications and affects signaling pathways remain to be elucidated. In this review, we discuss methionine and the metabolism of its metabolites, the influence of folate-mediated carbon metabolism, redox reactions, DNA and RNA methylation, and histone modifications, as well as the mammalian rapamycin complex and silent information regulator 1-MYC signaling pathway. This review also summarizes our present understanding of the contribution of methionine to these processes, and current nutritional and pharmaceutical strategies for the prevention and treatment of developmental defects in embryos.
Collapse
Affiliation(s)
- Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Biyan He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chenjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Wanzhen Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yuquan Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Chen S, Peng W, Yao H, Deng Z, Yue Z, Liu G, Xu J, Lin N, Xu W, Yue J, Zhu G. Reactive Cysteines in Proteins are the Dominant Reductants for Platinum(IV) Prodrug Activation in Live Cells. Angew Chem Int Ed Engl 2025:e202416396. [PMID: 40214085 DOI: 10.1002/anie.202416396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
The intracellular reduction of Pt(IV) prodrugs is crucial for their anticancer efficacy. However, the major components responsible for the reduction of Pt(IV) complexes within live cells remain elusive. Herein, we developed an aminoluciferin-functionalized Pt(IV) complex, Pt-Luc, that can be used as a bioluminescent reporter for real-time monitoring of Pt(IV) reduction in live cancer cells by capturing immediate bioluminescent signals from the released aminoluciferin. Utilizing this powerful reporter, we found that the reduction of Pt(IV) prodrugs in live cancer cells significantly slows down when cysteine levels are reduced, while the levels of glutathione do not impact the reduction rate. Further investigation reveals that reactive cysteines in proteins, rather than small-molecule thiols, play a primary role in reducing the Pt(IV) complex. In vivo studies reveal a substantial 63% decrease in bioluminescence from Pt-Luc in thiol-blocking tumors in mice, reinforcing the pivotal role of reactive cysteines in Pt(IV) reduction. This study provides valuable insights into the activation mechanisms of Pt(IV) prodrugs in live cells and in vivo, enhancing our understanding of prodrug activation beyond buffer systems or fixed cells.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Wang Peng
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zhao Yue
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jiaqian Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Naixin Lin
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Weikang Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| |
Collapse
|
5
|
Abualhasan M, Haider H, Odeh A, Daraghmeh A. Bioactivity of Synthesized Trifluoromethyl Thioxanthone Analogues. Pharmaceuticals (Basel) 2025; 18:561. [PMID: 40283996 PMCID: PMC12030165 DOI: 10.3390/ph18040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The study aims to evaluate the potential of trifluoromethyl thioxanthene derivatives across various biological activities, including antioxidant properties, anti-amylase effects, pancreatic lipase inhibition, anticancer activity, and COX inhibition. This research offers insights into the therapeutic applications of these compounds for managing metabolic disorders and inflammation. Method: Tertiary alcohols were synthesized using Grignard reagents and subsequently combined with L-cysteine, with their structures confirmed via NMR and IR spectroscopy. Results: The results indicated compound 3 exhibited the highest antioxidant potential, with 46.6% at 80 µg/mL in the DPPH assay. Compound 4 showed moderate pancreatic lipase inhibition, exhibiting an IC50 range of 100.6 to 277 µM. Compound 1 revealed potent anticancer activity against HeLa cells, with an IC50 of 87.8 nM. Compound 2 showed a potent antioxidant and anti-amylase activity with IC50 of 1.67 ± 0.5 and 60.2 ± 0.8 µM, respectively. Furthermore, the synthesized compounds 1, 3, and 4 displayed promising COX-2 inhibition with IC50 values ranging from 6.5 to 27.4 nM, suggesting potential anti-inflammatory benefits. Conclusions: This study highlights the significant biological activities of trifluoromethyl thioxanthene derivatives, positioning them as promising candidates for the treatment of cancer, metabolic disorders, and inflammation. These compounds demonstrated noteworthy antioxidant and enzyme inhibition properties, warranting further in vivo studies to confirm their therapeutic efficacy.
Collapse
Affiliation(s)
- Murad Abualhasan
- Faculty of Pharmacy, An-Najah National University, Nablus 00970, Palestine; (H.H.); (A.O.); (A.D.)
| | | | | | | |
Collapse
|
6
|
Swain S, Patra S, Panigrahi S, Biswal A, Mohapatra P, Swain SK. Rhodamine B embedded silver nanogranules for selective sensing of l-cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125722. [PMID: 39832474 DOI: 10.1016/j.saa.2025.125722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Sensing of amino acid serves as the frontier research area for early diagnosis and monitoring various diseases. Among various amino acids, the sensing of L-Cysteine is much important for detection of human diseases like neurotoxic effect and coronary heart disease which arises due to excess of L-Cysteine. To address this, we propose a very simple method of L-Cys sensing via fluorescence "TURN ON" mechanism involving silver centred Rhodamine B nanogranules (AgNPs/RhB) stabilized via electrostatic interaction. The as-synthesized nanocomposite fluorescence probe shows highly selective sensing towards L-Cysteine aided by the preferential formation of stable covalent linkage between AgNPs and thiol group of L-Cys which is supported by FTIR and XPS study. The superior selectivity of L-Cysteine in presence of other amino acids and interactive ions with a limit of detection (LOD) of 1.084 µM and working linear range of 100-2200 µM makes the study a useful addition to the existing literature. The responsiveness of nanogranules to extreme conditions of ionic strength and pH further establishes its stability and suitability for present application. Moreover, the excellent recovery percentages obtained in real human serum samples establishes its effectiveness in diagnostic fields.
Collapse
Affiliation(s)
- Susobhan Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Swikruti Panigrahi
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India.
| |
Collapse
|
7
|
Nguyen MT, Lian A, Guilford FT, Venketaraman V. A Literature Review of Glutathione Therapy in Ameliorating Hepatic Dysfunction in Non-Alcoholic Fatty Liver Disease. Biomedicines 2025; 13:644. [PMID: 40149620 PMCID: PMC11940638 DOI: 10.3390/biomedicines13030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global cause of liver dysfunction. This spectrum of hepatic disorders can progress to severe conditions, such as non-alcoholic steatohepatitis (NASH) and cirrhosis, due to oxidative stress and sustained cellular injury. With limited pharmacological options, glutathione (GSH), a key antioxidant, has shown promising potential in reducing oxidative stress, maintaining redox balance, and improving liver function. This literature review examines studies from 2014-2024 exploring GSH therapy in NAFLD patients. Eligible studies assessed GSH as the primary intervention for NAFLD in human subjects, reporting outcomes such as liver function or oxidative stress markers. Randomized clinical trials (RCTs) were eligible, while combination therapy studies were included if GSH's effect could be isolated. Exclusions applied to non-NAFLD studies, animal/in vitro models, and non-GSH antioxidant interventions. Analysis of three studies (totaling 109 participants) demonstrated consistent improvements in alanine transaminase (ALT) levels and reductions in oxidative stress markers like 8-hydroxy-2-deoxyguanosine (8-OHdG). However, small sample sizes and inconsistent protocols limit generalizability. Further large-scale RCTs are required to confirm GSH's efficacy, determine optimal dosing, and assess long-term effects. This literature review highlights GSH's potential as a novel NAFLD therapeutic strategy while emphasizing the need for further studies to refine its clinical application.
Collapse
Affiliation(s)
- Michelle Thuy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | - Andrew Lian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| |
Collapse
|
8
|
Zhang J, Xu G, Liu S, Yang M. Cadmium alters the cellular metabolome of human ovarian granulosa cells. Toxicol Appl Pharmacol 2025; 495:117187. [PMID: 39638002 DOI: 10.1016/j.taap.2024.117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that has been extensively implicated in disordered folliculogenesis, but the mechanisms underlying the ovarian toxicity of Cd remain to be explored fully. Granulosa cells are key players in ovarian follicular development and are the primary cells affected by Cd exposure-induced damage and dysfunction. In this study, we investigated how various levels of exposure of Cd (3 and 10 μM) to human granulosa cells (KGN cells) impacted the metabolism of the KGN cells utilizing a non-targeted metabolomics methodology. In vitro cell experiments revealed that Cd exposure dose-dependently diminished the viability of KGN cells. Metabolomics analysis revealed the presence of 296 (182 elevated and 114 reduced) and 397 (244 elevated and 153 reduced) differentially expressed metabolites after exposure to 3 and 10 μM, respectively. Cd exposure was found to significantly enrich nucleotide metabolism, sphingolipid metabolism, and ABC transporters in both groups. Although amino acid metabolic pathways exhibited significant enrichment across all groups, only glutathione, cysteine, and methionine metabolism were notably enriched in KGN cells exposed to 3 μM Cd, while glutathione and tryptophan metabolism were significantly enriched in the 10 μM Cd exposure cohort. The outcomes of this study provide mechanistic clues for elucidating Cd's cytotoxic impact on granulosa cells, and deepen our understanding of the ovarian toxicity of Cd.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Key Laboratory of Medical Electrophysiology, Ministry of Education (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Southwest Medical University, Luzhou, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
9
|
Saha C, Ghosh SK, Kumari P, Perla VK, Singh H, Mallick K. Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection. Anal Biochem 2025; 696:115660. [PMID: 39260671 DOI: 10.1016/j.ab.2024.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au-CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5-15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and l-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 μM and 0.96 μAμM⁻1cm⁻2, respectively, for iodide ion, while 0.48 μM and 5.8 μAμM⁻1cm⁻2, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au-CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.
Collapse
Affiliation(s)
- Chandan Saha
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Sarit K Ghosh
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Pooja Kumari
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Venkata K Perla
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
| | - Kaushik Mallick
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
10
|
Dimina LJ, Leray V, Voute M, David J, Blavignac C, Farges MC, Rossary A, Tsikas D, Rémond D, Pickering G, Mariotti F. Dietary Protein in a Challenge Meal Does Not Alleviate Postprandial Impairments in Vascular Endothelial Function in Healthy Older Adults with Cardiometabolic Risk: A Randomized Crossover-Controlled Trial. J Nutr 2024; 154:3664-3680. [PMID: 39424070 DOI: 10.1016/j.tjnut.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Postprandial vascular endothelial dysfunction is an early marker of atherosclerosis. Meal protein has been reported to reduce endothelial dysfunction in adults, and the effect could be mediated by the amino acid content. OBJECTIVES This trial aims to assess the effect of a specifically designed plant-protein blend that contains high leucine, arginine, and cysteine on postprandial endothelial function in the elderly. METHODS In a randomized, double-blind, 3-period crossover (2-wk washout), controlled trial, we compared the vascular effects of 3 high-saturated-fat high-sucrose (HFHS) meals containing either our specific plant-protein blend, or milk protein, or without added protein. The trial was conducted on 29 healthy adults aged >65 y presenting ≥2 cardiometabolic risk factors. Postprandial vascular function was evaluated at fasting, 3 h, and 5 h postprandially, using brachial flow-mediated dilation (FMD), hand microvascular reactivity (using Flowmetry Laser Doppler, FLD), and finger reactive hyperemia index (using Peripheral Arterial Tonometry, RHI). Immune cell count and gene expression in peripheral blood mononuclear cells (PBMCs) were also assessed postprandially. Data were analyzed using mixed linear models with repeated measurements on participants for meal composition and time of sampling. This trial was registered at clinicaltrials.gov as NCT04923555. RESULTS FMD incremental AUC value decreased after meals (time effect P < 0.01), with no significant differences between meals. RHI also decreased with time (P < 0.01). PBMC count and monocyte chemoattractant protein-1 (MCP1), IL-1β, and IL-6 expression increased after meals showing postprandial endothelial activation (P < 0.05). Overall, meal composition had no effect on any of the postprandial changes (Ps>0.10). CONCLUSIONS In healthy adults aged >65 y presenting cardiometabolic risk, adding protein to an HFHS challenge meal does not mitigate postprandial impairments in vascular endothelial function and inflammatory activation. Further studies are needed to explore the potential differences with younger adults.
Collapse
Affiliation(s)
| | - Vincent Leray
- Platform of Clinical Investigation Department, INSERM CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Marion Voute
- Platform of Clinical Investigation Department, INSERM CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémie David
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, Clermont-Ferrand, France
| | | | - Marie-Chantal Farges
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, Clermont-Ferrand, France
| | - Adrien Rossary
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, Clermont-Ferrand, France
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Didier Rémond
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, Clermont-Ferrand, France
| | - Gisèle Pickering
- Platform of Clinical Investigation Department, INSERM CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France; INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France.
| |
Collapse
|
11
|
Zheng C, Chen F, Yang F, Li Z, Yi W, Chen G, Li T, Yu X, Chen X. Myocardial cell mitochondria-targeted mesoporous polydopamine nanoparticles eliminate inflammatory damage in cardiovascular disease. Int J Biol Macromol 2024; 282:137141. [PMID: 39510474 DOI: 10.1016/j.ijbiomac.2024.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excess reactive oxide species (ROS) is a direct factor in myocardial injury death, thus anti-oxidant therapy is a necessary measure to prevent rapid death of cardiomyocyte cell. Cysteine (Cys) is a potent antioxidant but easily become instability because of the hyperactivity. Therefore, in order to protect the the stability of Cys, we according to the mitochondria are the main sites of ROS production, utilized the loading and ROS scavenging capacity of mesoporous polydopamine (mPDA) constructed a nanosystem targeting mitochondria with effectively ROS elimination capability by loading cysteine (Cys-mPDA@TPP). The mesoporous structure of mPDA effectively inhibited the advance reaction and hyperactivity of Cys, thus effectively improving its stability that reached the double-collaborative treatment excess ROS. In particular, Cys-mPDA@TPP achieved directly reacting with ROS in mitochondria under the targeting of triphenylphosphine (TPP), not only enhancing the elimination efficiency of ROS, but also preventing mitochondrial dysfunction of monocyte-macrophage. Furthermore, with double-collaborative ROS elimination, Cys-mPDA@TPP effectively prevent the damage of cardiomyocyte cell through inhibiting macrophage inflammatory response. Therefore, this study provides a new therapeutic strategy for myocardial inflammatory injury.
Collapse
Affiliation(s)
- Chuping Zheng
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fajiang Chen
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fangwen Yang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhan Li
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Yi
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Gengjia Chen
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China.
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, PR China.
| | - Xiyong Yu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
12
|
Jiang L, Gao Y, Han L, Zhang W, Xu X, Chen J, Feng S, Fan P. Engineering Plant Metabolism for Synthesizing Amino Acid Derivatives of Animal Origin Using a Synthetic Modular Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22722-22735. [PMID: 39356107 DOI: 10.1021/acs.jafc.4c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The biosynthesis of amino acid derivatives of animal origin in plants represents a promising frontier in synthetic biology, offering a sustainable and eco-friendly approach to enhancing the nutritional value of plant-based diets. This study leverages the versatile capabilities of Nicotiana benthamiana as a transient expression system to test a synthetic modular framework for the production of creatine, carnosine, and taurine-compounds typically absent in plants but essential for human health. By designing and stacking specialized synthetic modules, we successfully redirected the plant metabolic flux toward the synthesis of these amino acid derivatives of animal origin. Our results revealed the expression of a standalone creatine module resulted in the production of 2.3 μg/g fresh weight of creatine in N. benthamiana leaves. Integrating two modules significantly carnosine yield increased by 3.8-fold and minimized the impact on plant amino acid metabolism compared to individual module application. Unexpectedly, introducing the taurine module caused a feedback-like inhibition of plant cysteine biosynthesis, revealing complex metabolic adjustments that can occur when introducing foreign pathways. Our findings underline the potential for employing plants as biofactories for the sustainable production of essential nutrients of animal origin.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoyan Xu
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Jia Chen
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058 Hangzhou, China
| |
Collapse
|
13
|
Temiz E, Akmese S, Koyuncu I, Barut D. Exploring serum amino acid signatures as potential biomarkers in Hashimoto's thyroiditis patients. Biomed Chromatogr 2024; 38:e5970. [PMID: 39090031 DOI: 10.1002/bmc.5970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disease caused by the immune system attacking healthy tissues. However, the exact pathogenesis of HT remains unclear. Metabolomic analysis was performed to obtain information about the possible pathogenic mechanisms and diagnostic biomarkers of HT. The amino acid profile was analyzed using an LC-MS/MS method using serum samples obtained from 30 patients diagnosed with ultrasonographic imaging and laboratory markers (thyroid stimulating hormone) free thyroxine and thyroid peroxidase) and 30 healthy individuals. There were statistically significant changes in 27 amino acids out of 32 amino acids analyzed (p < 0.05). Based on the receiver operating characteristic curve analysis, the six amino acid (1-methylhistidine, cystine, norvaline, histidine, glutamic acid and leucine) biomarkers showed high sensitivity, specificity (area under the curve > 0.98), positive likelihood ratio and low negative likelihood ratio. Also, according to pathway analysis, degradation of phenylalanine, tyrosine and tryptophan biosynthesis was the highest metabolic pathway according to the impact value (p < 0.001 and impact value = 1.0). We provide serum amino acid profiles of patients with Hashimoto's thyroiditis and identify five potential biomarkers for early diagnosis by clinicians.
Collapse
Affiliation(s)
- Ebru Temiz
- Department of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain, Brussels, Belgium
- Medical Promotion and Marketing Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Sukru Akmese
- Pharmacy Services Program, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine; Science and Technology Application and Research Center, Harran University, Sanliurfa, Turkey
| | - Dursun Barut
- Department of Family Medicine, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
14
|
Yang Y, Zhang S, Peng H, Chen G, Nie Q, Zhang X, Luo W. Effects of long-time and short-time heat stress on the meat quality of geese. Poult Sci 2024; 103:104112. [PMID: 39106699 PMCID: PMC11343063 DOI: 10.1016/j.psj.2024.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/09/2024] Open
Abstract
This investigation sought to reveal the effects of heat stress on the meat quality of geese. Wuzong geese were subjected to heat stress at 35°C for 25 d or 4 h to examine different heat stress time on meat quality. Short-time heat stress reduced muscle drip loss and meat color L* value while increasing pH value and meat color a* and b* values. Long-time heat stress decreased body weight and increased leg muscle pH value and meat color b* value. Amino acid profile of geese breast muscle revealed that both LHS and SHS can induce L-Cystine but reduced L-Cystathionine, which were positive correlated with cooking loss and meat color lightness, respectively. Lipidome analysis indicated that heat stress would alter the synthesis of unsaturated fatty acids, and the difference between LHS and SHS on lipids mainly focused on Hex1Cer and TG. Non-target metabolome analysis indicated effects of heat stress on Glycerolipid metabolism, Arachidonic acid metabolism, and Pyrimidine metabolism. Proteome analysis showed that heat stress mainly affects cellular respiration metabolism and immune response. These findings highlight the diverse effects of heat stress on meat quality, amino acid composition, lipidome, metabolome, and proteome in geese.
Collapse
Affiliation(s)
- Ying Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Haoqi Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Xu S, Li ZL, Li ZM, Liu HL. Mining unique cysteine synthetases and computational study on thoroughly eliminating feedback inhibition through tunnel engineering. Protein Sci 2024; 33:e5160. [PMID: 39275998 PMCID: PMC11400630 DOI: 10.1002/pro.5160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
L-cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O-phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from Acetobacterium sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L-cysteine, exhibiting an IC50 value of merely 1.2 mM. A semi-rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSSA218R was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSSA218R with L-cys was altered, leading to a reduced affinity between L-cysteine and the active pocket. Tunnel analysis revealed that the AsOPSSA218R variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L-cysteine was produced in vitro within 2 h using the AsOPSSA218R variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L-cysteine production.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zong-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Min Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hong-Lai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Wei Z, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, Wu A, He J. Potential Risk of Caffeoylquinic Acids, the Main Polyphenol Components in Coffee, on the Health of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20091-20100. [PMID: 39189965 DOI: 10.1021/acs.jafc.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.
Collapse
Affiliation(s)
- Zixiang Wei
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
17
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
18
|
Chen X, Jin J, Chang R, Yang X, Li N, Zhu X, Ma L, Li Y. Targeting the sulfur-containing amino acid pathway in leukemia. Amino Acids 2024; 56:47. [PMID: 39060524 PMCID: PMC11281984 DOI: 10.1007/s00726-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.
Collapse
Affiliation(s)
- Xiaoyan Chen
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiahui Jin
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Rui Chang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xing Yang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Na Li
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xi Zhu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China
| | - Linlin Ma
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China.
| |
Collapse
|
19
|
Bartho LA, McKeating DR, Walker SP, Nijagal B, MacDonald TM, Pritchard N, Hannan NJ, Perkins AV, Tong S, Kaitu'u-Lino TJ. Plasma metabolites are altered before and after diagnosis of preeclampsia or fetal growth restriction. Sci Rep 2024; 14:15829. [PMID: 38982217 PMCID: PMC11233654 DOI: 10.1038/s41598-024-65947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Metabolomics is the study of small molecules (metabolites), within cells, tissues and biofluids. Maternal metabolites can provide important insight into the health and development of both mother and fetus throughout pregnancy. This study assessed metabolic profiles in the maternal circulation prior to and at the time of diagnosis of preeclampsia and fetal growth restriction. Maternal plasma samples were collected from two independent cohorts: (1) Established disease cohort: 50 participants diagnosed with early-onset preeclampsia (< 34 weeks' gestation), 14 with early-onset fetal growth restriction, and 25 gestation-matched controls. (2) Prospective cohort, collected at 36 weeks' gestation before diagnosis: 17 participants later developed preeclampsia, 49 delivered infants with fetal growth restriction (birthweight < 5th centile), and 72 randomly selected controls. Metabolic evaluation was performed by Metabolomics Australia on the Agilent 6545 QTOF Mass Spectrometer. In the established disease cohort, 77 metabolites were altered in circulation from participants with preeclampsia - increased L-cysteine (3.73-fold), L-cystine (3.28-fold), L-acetylcarnitine (2.57-fold), and carnitine (1.53-fold) (p < 0.05). There were 53 metabolites dysregulated in participants who delivered a fetal growth restriction infant-including increased levulinic acid, citric acid (1.93-fold), and creatine (1.14-fold) (p < 0.05). In the prospective cohort, 30 metabolites were altered in participants who later developed preeclampsia at term - reduced glutaric acid (0.85-fold), porphobilinogen (0.77-fold) and amininohippuric acid (0.82-fold) (p < 0.05) was observed. There were 5 metabolites altered in participants who later delivered a fetal growth restriction infant - including reduced 3-methoxybenzenepropanoic acid (p < 0.05). Downstream pathway analysis revealed aminoacyl-tRNA biosynthesis to be most significantly altered in the established cohort in preeclampsia (13/48 hits, p < 0.001) and fetal growth restriction (7/48 hits, p < 0.001). The predictive cohort showed no significant pathway alterations. This study observed altered metabolites in maternal plasma collected before and after diagnosis of a preeclampsia or fetal growth restriction. While a significant number of metabolites were altered with established disease, few changes were observed in the predictive cohort. Thus, metabolites measured in this study may not be useful as predictors of preeclampsia or fetal growth restriction.
Collapse
Affiliation(s)
- Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia.
| | - Daniel R McKeating
- School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD, 4215, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Brunda Nijagal
- School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD, 4215, Australia
- Metabolomics Australia, Bio21, University of Melbourne, Parkville, VIC, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Natasha Pritchard
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD, 4215, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| |
Collapse
|
20
|
Zhou Z, Li Z, Zhong Y, Xu S, Li Z. Engineering of the Lrp/AsnC-type transcriptional regulator DecR as a genetically encoded biosensor for multilevel optimization of L-cysteine biosynthesis pathway in Escherichia coli. Biotechnol Bioeng 2024; 121:2133-2146. [PMID: 38634289 DOI: 10.1002/bit.28716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
L-cysteine is an important sulfur-containing amino acid being difficult to produce by microbial fermentation. Due to the lack of high-throughput screening methods, existing genetically engineered bacteria have been developed by simply optimizing the expression of L-cysteine-related genes one by one. To overcome this limitation, in this study, a biosensor-based approach for multilevel biosynthetic pathway optimization of L-cysteine from the DecR regulator variant of Escherichia coli was applied. Through protein engineering, we obtained the DecRN29Y/C81E/M90Q/M99E variant-based biosensor with improved specificity and an 8.71-fold increase in dynamic range. Using the developed biosensor, we performed high-throughput screening of the constructed promoter and RBS combination library, and successfully obtained the optimized strain, which resulted in a 6.29-fold increase in L-cysteine production. Molecular dynamics (MD) simulations and electrophoretic mobility shift analysis (EMSA) showed that the N29Y/C81E/M90Q/M99E variant had enhanced induction activity. This enhancement may be due to the increased binding of the variant to DNA in the presence of L-cysteine, which enhances transcriptional activation. Overall, our biosensor-based strategy provides a promising approach for optimizing biosynthetic pathways at multiple levels. The successful implementation of this strategy demonstrates its potential for screening improved recombinant strains.
Collapse
Affiliation(s)
- Zhiyou Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yahui Zhong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuai Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
21
|
Qin Y, Teng Y, Yang Y, Mao Z, Zhao S, Zhang N, Li X, Niu W. Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: Serine acetyltransferase and O-acetylserine sulfhydrylase. Chem Biol Drug Des 2024; 104:e14573. [PMID: 38965664 DOI: 10.1111/cbdd.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Infectious diseases have been jeopardized problem that threaten public health over a long period of time. The growing prevalence of drug-resistant pathogens and infectious cases have led to a decrease in the number of effective antibiotics, which highlights the urgent need for the development of new antibacterial agents. Serine acetyltransferase (SAT), also known as CysE in certain bacterial species, and O-acetylserine sulfhydrylase (OASS), also known as CysK in select bacteria, are indispensable enzymes within the cysteine biosynthesis pathway of various pathogenic microorganisms. These enzymes play a crucial role in the survival of these pathogens, making SAT and OASS promising targets for the development of novel anti-infective agents. In this comprehensive review, we present an introduction to the structure and function of SAT and OASS, along with an overview of existing inhibitors for SAT and OASS as potential antibacterial agents. Our primary focus is on elucidating the inhibitory activities, structure-activity relationships, and mechanisms of action of these inhibitors. Through this exploration, we aim to provide insights into promising strategies and prospects in the development of antibacterial agents that target these essential enzymes.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, China
| | - Yan Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xu Li
- Institute of Chemistry Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Jain SK, Justin Margret J, Abrams SA, Levine SN, Bhusal K. The Impact of Vitamin D and L-Cysteine Co-Supplementation on Upregulating Glutathione and Vitamin D-Metabolizing Genes and in the Treatment of Circulating 25-Hydroxy Vitamin D Deficiency. Nutrients 2024; 16:2004. [PMID: 38999752 PMCID: PMC11243476 DOI: 10.3390/nu16132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Steven A. Abrams
- Department of Pediatrics and Dell Pediatric Research Institute, Dell Medical School at the University of Texas at Austin, Austin, TX 78723, USA;
| | - Steven N. Levine
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| | - Kamal Bhusal
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| |
Collapse
|
23
|
Jiang Y, Glandorff C, Sun M. GSH and Ferroptosis: Side-by-Side Partners in the Fight against Tumors. Antioxidants (Basel) 2024; 13:697. [PMID: 38929136 PMCID: PMC11201279 DOI: 10.3390/antiox13060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione (GSH), a prominent antioxidant in organisms, exhibits diverse biological functions and is crucial in safeguarding cells against oxidative harm and upholding a stable redox milieu. The metabolism of GSH is implicated in numerous diseases, particularly in the progression of malignant tumors. Consequently, therapeutic strategies targeting the regulation of GSH synthesis and metabolism to modulate GSH levels represent a promising avenue for future research. This study aimed to elucidate the intricate relationship between GSH metabolism and ferroptosis, highlighting how modulation of GSH metabolism can impact cellular susceptibility to ferroptosis and consequently influence the development of tumors and other diseases. The paper provides a comprehensive overview of the physiological functions of GSH, including its structural characteristics, physicochemical properties, sources, and metabolic pathways, as well as investigate the molecular mechanisms underlying GSH regulation of ferroptosis and potential therapeutic interventions. Unraveling the biological role of GSH holds promise for individuals afflicted with tumors.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- University Clinic of Hamburg at the HanseMerkur Center of TCM, 20251 Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
24
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024; 16:917-945. [PMID: 38739940 PMCID: PMC11964418 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Mao L, Zhang Y, Zhang H, Liu H, Gao YP. Anti-aggregation colorimetric sensing of cysteine using silver nanoparticles in the presence of Pb 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2378-2385. [PMID: 38572618 DOI: 10.1039/d4ay00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Using silver nitrate as the silver source and sodium borohydride as the reducing agent, we synthesized negatively charged silver nanoparticles (AgNPs). Subsequently, the AgNPs solution was mixed with positively charged lead ions, resulting in AgNPs aggregation via electrostatic interactions. This led to a color change in the solution from yellow to purple and eventually to blue-green. Our study focused on a colorimetric method that exhibited high selectivity and sensitivity in detecting cysteine using AgNPs-Pb2+ as a sensing probe. Upon the introduction of cysteine to the AgNPs-Pb2+ system, the absorbance of AgNPs increased at 396 nm and decreased at 520 nm. The formation of a complex between cysteine and lead ions prevented the aggregation of silver nanoparticles, enabling the colorimetric detection of cysteine. The relationship between the concentration of ΔA396/A520 and cysteine showed linearity within the range of 0.01 to 0.1 μM; the regression equation of the calibration curve is ΔA396/A520 = 9.0005c - 0.0557 (c: μM), with an R2 value of 0.9997. The detection limit was found to be 3.8 nM (S/N = 3). This method demonstrated exceptional selectivity and sensitivity for cysteine and was effectively used for the determination of cysteine in urine. Our findings offer a new perspective for the future advancement of anti-aggregation silver nanocolorimetry.
Collapse
Affiliation(s)
- Lihui Mao
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yi Zhang
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| | - Huan Zhang
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| | - Huili Liu
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| | - Yong-Ping Gao
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| |
Collapse
|
26
|
Jia D, Li Z, Ma H, Ji H, Qi H, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for the Specific Detection of Cysteine to Study the Corresponding Physiological Processes in Cells, Zebrafish, and Arabidopsis thaliana. Anal Chem 2024; 96:6030-6036. [PMID: 38569068 DOI: 10.1021/acs.analchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cysteine (Cys), as one of the biological thiols, is related to many physiological and pathological processes in humans and plants. Therefore, it is necessary to develop a sensitive and selective method for the detection and imaging of Cys in biological organisms. In this work, a novel near-infrared (NIR) fluorescent probe, Probe-Cys, was designed by connecting furancarbonyl, as a new recognition moiety, with Fluorophore-OH via the decomposition of IR-806. The use of the furan moiety is anticipated to produce more effective fluorescence quenching because of the electron-donating ability of the O atom. Probe-Cys has outstanding properties, such as a new recognition group, an emission wavelength in the infrared region at 710 nm, a linear range (0-100 μM), a low detection limit of 0.035 μM, good water solubility, excellent sensitivity, and selectivity without the interference of Hcy, GSH, and HS-. More importantly, Probe-Cys could achieve the detection of endogenous Cys by reacting with the stimulant 1,4-dimercaptothreitol (DTT) and the inhibitor N-ethylmaleimide (NEM) in HepG2 cells and zebrafish. Ultimately, it was successfully applied to obtain images of Arabidopsis thaliana, revealing that the content of Cys in the meristematic zone was higher than that in the elongation zone, which was the first time that the NIR fluorescence probe was used to obtain images of Cys in A. thaliana. The superior properties of the probe exhibit its great potential for use in biosystems to explore the physiological and pathological processes associated with Cys.
Collapse
Affiliation(s)
- Dongli Jia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyu Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyang Ji
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
27
|
Jain SK, Stevens CM, Margret JJ, Levine SN. Alzheimer's Disease: A Review of Pathology, Current Treatments, and the Potential Therapeutic Effect of Decreasing Oxidative Stress by Combined Vitamin D and l-Cysteine Supplementation. Antioxid Redox Signal 2024; 40:663-678. [PMID: 37756366 PMCID: PMC11001507 DOI: 10.1089/ars.2023.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Significance: Excess oxidative stress and neuroinflammation are risk factors in the onset and progression of Alzheimer's disease (AD) and its association with amyloid-β plaque accumulation. Oxidative stress impairs acetylcholine (ACH) and N-methyl-d-aspartate receptor signaling in brain areas that function in memory and learning. Glutathione (GSH) antioxidant depletion positively correlates with the cognitive decline in AD subjects. Treatments that upregulate GSH and ACH levels, which simultaneously decrease oxidative stress and inflammation, may be beneficial for AD. Recent Advances: Some clinical trials have shown a benefit of monotherapy with vitamin D (VD), whose deficiency is linked to AD or with l-cysteine (LC), a precursor of GSH biosynthesis, in reducing mild cognitive impairment. Animal studies have shown a simultaneous decrease in ACH esterase (AChE) and increase in GSH; combined supplementation with VD and LC results in a greater decrease in oxidative stress and inflammation, and increase in GSH levels compared with monotherapy with VD or LC. Therefore, cosupplementation with VD and LC has the potential of increasing GSH, downregulation of oxidative stress, and decreased inflammation and AChE levels. Future Directions: Clinical trials are needed to determine whether safe low-cost dietary supplements, using combined VD+LC, have the potential to alleviate elevated AChE, oxidative stress, and inflammation levels, thereby halting the onset of AD. Goal of Review: The goal of this review is to highlight the pathological hallmarks and current Food and Drug Administration-approved treatments for AD, and discuss the potential therapeutic effect that cosupplementation with VD+LC could manifest by increasing GSH levels in patients. Antioxid. Redox Signal. 40, 663-678.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Christopher M. Stevens
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jeffrey Justin Margret
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Steven N. Levine
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
28
|
Zhang LN, Tan JT, Ng HY, Liao YS, Zhang RQ, Chan KH, Hung IFN, Lam TTY, Cheung KS. Association between Gut Microbiota Composition and Long-Term Vaccine Immunogenicity following Three Doses of CoronaVac. Vaccines (Basel) 2024; 12:365. [PMID: 38675747 PMCID: PMC11055114 DOI: 10.3390/vaccines12040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neutralizing antibody level wanes with time after COVID-19 vaccination. We aimed to study the relationship between baseline gut microbiota and immunogenicity after three doses of CoronaVac. METHODS This was a prospective cohort study recruiting three-dose CoronaVac recipients from two centers in Hong Kong. Blood samples were collected at baseline and one year post-first dose for virus microneutralization (vMN) assays to determine neutralization titers. The primary outcome was high immune response (defined as with vMN titer ≥ 40). Shotgun DNA metagenomic sequencing of baseline fecal samples identified potential bacterial species and metabolic pathways using Linear Discriminant Analysis Effect Size (LEfSe) analysis. Univariate and multivariable logistic regression models were used to identify high response predictors. RESULTS In total, 36 subjects were recruited (median age: 52.7 years [IQR: 47.9-56.4]; male: 14 [38.9%]), and 18 had low immune response at one year post-first dose vaccination. Eubacterium rectale (log10LDA score = 4.15, p = 0.001; relative abundance of 1.4% vs. 0, p = 0.002), Collinsella aerofaciens (log10LDA score = 3.31, p = 0.037; 0.39% vs. 0.18%, p = 0.038), and Streptococcus salivarius (log10LDA score = 2.79, p = 0.021; 0.05% vs. 0.02%, p = 0.022) were enriched in low responders. The aOR of high immune response with E. rectale, C. aerofaciens, and S. salivarius was 0.03 (95% CI: 9.56 × 10-4-0.32), 0.03 (95% CI: 4.47 × 10-4-0.59), and 10.19 (95% CI: 0.81-323.88), respectively. S. salivarius had a positive correlation with pathways enriched in high responders like incomplete reductive TCA cycle (log10LDA score = 2.23). C. aerofaciens similarly correlated with amino acid biosynthesis-related pathways. These pathways all showed anti-inflammation functions. CONCLUSION E. rectale,C. aerofaciens, and S. salivarius correlated with poorer long-term immunogenicity following three doses of CoronaVac.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jing-Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ho-Yu Ng
- School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong
| | - Rui-Qi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwok-Hung Chan
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
29
|
Zhang Q, Chen C, Weng C, Chen J, Peng Z, Lin Q, Li D. Oxidation Analysis of l-Cysteine with a Chiral Sensor Based on Quantum Weak Measurement. Anal Chem 2024; 96:3402-3408. [PMID: 38355418 DOI: 10.1021/acs.analchem.3c04558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
l-Cysteine, distinguished by its possession of reactive sulfhydryl groups within its molecular structure, plays a significant role in both biological systems and the pharmaceutical industry. It stands not only as a natural component integral to the constitution of glutathione but also as the principal precursor for the synthesis of l-cystine through an oxidation reaction. This study endeavors to introduce a novel approach to l-cysteine analysis, capitalizing on its optical activity, whereby an optical rotation detection system grounded in the principles of quantum weak measurement is proffered. The optical rotation angle corresponding to the concentration of chiral solutions can be accurately ascertained through spectral analysis. In practical implementation, a chiral sensing system, boasting a sensitivity of 372 nm/rad, was meticulously constructed, leveraging the concept of weak value amplification. Then, the real-time monitoring of chemical reactions involving l-cysteine and dimethyl sulfoxide was performed. Under the specific experimental conditions outlined in this investigation, it was observed that the oxidation process culminated within approximately 12 h. The application of weak measurement-based chiral sensors holds immense potential, providing robust technical support for real-time monitoring in fields such as chiral analysis and the synthesis of chiral pharmaceutical compounds.
Collapse
Affiliation(s)
- Qihao Zhang
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chaoyi Chen
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chaofan Weng
- Hangzhou National Camera Testing Technology Co., Ltd., Hangzhou 310013, China
| | - Jiali Chen
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhikang Peng
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qiang Lin
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dongmei Li
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
30
|
Mu X, Li MJ, Fu F. Dual-channel luminescent Ir(III) complex for detection of GSH and Hcy/Cys in cells. Biosens Bioelectron 2024; 246:115901. [PMID: 38048719 DOI: 10.1016/j.bios.2023.115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Glutathione (GSH), homocysteine (Hcy) and cysteine (Cys) play important roles in many physiological processes. However, due to their structural and functional similarities, it is still a challenge to develop a probe that can differentiate between GSH and Hcy/Cys simultaneously. In this work, a luminescent probe Ir-NBD was designed and synthesized, which emit weakly due to the presence of photo induced electron transfer (PET) interaction. When it reacted with the three biothiols, NBD dissociated and luminescence of Ir-OH was enhanced in the near-infrared (NIR) region due to the disappearance of the PET effect. On the other hand, the products obtained from the reaction of GSH with NBD were hardly luminescent, but the products from the reaction of Hcy/Cys with NBD could undergo an intramolecular rearrangement, resulting in an enhanced luminescence of the solution in the visible region. Ir-NBD enabled highly selective and sensitive detection of GSH and Cys/Hcy in a relatively short time (15 min). The two luminescent colors were clearly differentiated without spectral interference and the detection limit reached 1.32 μM (GSH), 0.42 μM (Hcy) and 0.51 μM (Cys), respectively. Ir-NBD also had low cytotoxicity, it realized the simultaneous detection of GSH and Hcy/Cys by dual-channel luminescence, and also provided ideas for the design of multifunctional luminescent probes.
Collapse
Affiliation(s)
- Xiangjun Mu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
31
|
Abdi F, Mohammadzadeh M, Abbasalizad-Farhangi M. Dietary amino acid patterns and cardiometabolic risk factors among subjects with obesity; a cross-sectional study. BMC Endocr Disord 2024; 24:21. [PMID: 38355488 PMCID: PMC10865612 DOI: 10.1186/s12902-024-01549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The prevalence of obesity is a growing global public health concern. Certain dietary amino acids have been shown to have a potential therapeutic role in improving metabolic syndrome parameters and body composition in individuals with obesity. However, some amino acids have been linked to an increased risk of cardiometabolic disorders. This cross-sectional study aims to investigate the association between dietary amino acid patterns and cardiometabolic risk factors in individuals with obesity. METHODS This cross-sectional study included 335 participants with obesity (57.9% males and 41.5% females) from Tabriz and Tehran, Iran. The participants were between the ages of 20-50, with a body mass index (BMI) of 30 kg/m2 or higher, and free from certain medical conditions. The study examined participants' general characteristics, conducted anthropometric assessments, dietary assessments, and biochemical assessments. The study also used principal component analysis to identify amino acid intake patterns and determined the association between these patterns and cardiometabolic risk factors in individuals with obesity. RESULTS Upon adjusting for potential confounders, the study found that individuals in the third tertiles of pattern 1 and 2 were more likely to have lower LDL levels (OR = 0.99 and 95% CI (0.98-0.99)) for both. Additionally, a significant decrease in total cholesterol was observed in the third tertiles of pattern 2 in model II (OR = 0.99, 95% CI (0.98-0.99)). These findings suggest a potential cardioprotective effect of these amino acid patterns in managing cardiometabolic risk factors in individuals with obesity. CONCLUSIONS This study found that two identified amino acid patterns were associated with lower serum LDL and total cholesterol levels, while a third pattern was associated with higher serum triglycerides. The specific amino acids contributing to these patterns highlight the importance of targeted dietary interventions in managing cardiometabolic risk factors in individuals with obesity.
Collapse
Affiliation(s)
- Fatemeh Abdi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri, Daneshgah Blv, Tabriz, Iran
| | - Milad Mohammadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Abbasalizad-Farhangi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri, Daneshgah Blv, Tabriz, Iran.
| |
Collapse
|
32
|
Baby SM, May WJ, Young AP, Wilson CG, Getsy PM, Coffee GA, Lewis THJ, Hsieh YH, Bates JN, Lewis SJ. L-cysteine ethylester reverses the adverse effects of morphine on breathing and arterial blood-gas chemistry while minimally affecting antinociception in unanesthetized rats. Biomed Pharmacother 2024; 171:116081. [PMID: 38219385 PMCID: PMC10922989 DOI: 10.1016/j.biopha.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
L-cysteine ethylester (L-CYSee) is a membrane-permeable analogue of L-cysteine with a variety of pharmacological effects. The purpose of this study was to determine the effects of L-CYSee on morphine-induced changes in ventilation, arterial-blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient (i.e., a measure of the index of alveolar gas-exchange), antinociception and sedation in male Sprague Dawley rats. An injection of morphine (10 mg/kg, IV) produced adverse effects on breathing, including sustained decreases in minute ventilation. L-CYSee (500 μmol/kg, IV) given 15 min later immediately reversed the actions of morphine. Another injection of L-CYSee (500 μmol/kg, IV) after 15 min elicited more pronounced excitatory ventilatory responses. L-CYSee (250 or 500 μmol/kg, IV) elicited a rapid and prolonged reversal of the actions of morphine (10 mg/kg, IV) on ABG chemistry (pH, pCO2, pO2, sO2) and A-a gradient. L-serine ethylester (an oxygen atom replaces the sulfur; 500 μmol/kg, IV), was ineffective in all studies. L-CYSee (500 μmol/kg, IV) did not alter morphine (10 mg/kg, IV)-induced sedation, but slightly reduced the overall duration of morphine (5 or 10 mg/kg, IV)-induced analgesia. In summary, L-CYSee rapidly overcame the effects of morphine on breathing and alveolar gas-exchange, while not affecting morphine sedation or early-stage analgesia. The mechanisms by which L-CYSee modulates morphine depression of breathing are unknown, but appear to require thiol-dependent processes.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
33
|
Zeng Q, Araki Y, Noda T. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Rep 2024; 43:113599. [PMID: 38127619 DOI: 10.1016/j.celrep.2023.113599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator that monitors the availability of various amino acids to promote cell growth in Saccharomyces cerevisiae. It is activated via two distinct upstream pathways: the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. This study shows that Ser3 was phosphorylated exclusively in a Pib2-dependent manner. Using Ser3 as an indicator of TORC1 activity, together with the established TORC1 substrate Sch9, we investigated which pathways were employed by individual amino acids. Different amino acids exhibited different dependencies on the Gtr and Pib2 pathways. Cysteine was most dependent on the Pib2 pathway and increased the interaction between TORC1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functions as a sensor for cysteine in TORC1 regulation.
Collapse
Affiliation(s)
- Qingzhong Zeng
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
34
|
Caballero Cerbon DA, Gebhard L, Dokuyucu R, Ertl T, Härtl S, Mazhar A, Weuster-Botz D. Challenges and Advances in the Bioproduction of L-Cysteine. Molecules 2024; 29:486. [PMID: 38257399 PMCID: PMC10821248 DOI: 10.3390/molecules29020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
L-cysteine is a proteogenic amino acid with many applications in the pharmaceutical, food, animal feed, and cosmetic industries. Due to safety and environmental issues in extracting L-cysteine from animal hair and feathers, the fermentative production of L-cysteine offers an attractive alternative using renewable feedstocks. Strategies to improve microbial production hosts like Pantoea ananatis, Corynebacterium glutamicum, Pseudomonas sp., and Escherichia coli are summarized. Concerning the metabolic engineering strategies, the overexpression of feedback inhibition-insensitive L-serine O-acetyltransferase and weakening the degradation of L-cysteine through the removal of L-cysteine desulfhydrases are crucial adjustments. The overexpression of L-cysteine exporters is vital to overcome the toxicity caused by intracellular accumulating L-cysteine. In addition, we compiled the process engineering aspects for the bioproduction of L-cysteine. Utilizing the energy-efficient sulfur assimilation pathway via thiosulfate, fermenting cheap carbon sources, designing scalable, fed-batch processes with individual feedings of carbon and sulfur sources, and implementing efficient purification techniques are essential for the fermentative production of L-cysteine on an industrial scale.
Collapse
Affiliation(s)
- Daniel Alejandro Caballero Cerbon
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| | - Leon Gebhard
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany
| | - Ruveyda Dokuyucu
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Theresa Ertl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Sophia Härtl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Ayesha Mazhar
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| |
Collapse
|
35
|
An S, Lin Y, Ye T, Bai T, He D, Guo L, Qian Z, Li L, Liu H, Wang J. An extra-large Stokes shift near-infrared fluorescent probe for specific detection and imaging of cysteine. Talanta 2024; 267:125247. [PMID: 37769499 DOI: 10.1016/j.talanta.2023.125247] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Cysteine (Cys) plays a crucial role in numerous physiological and pathological processes. Therefore, it is imperative to design a highly selective and sensitive near-infrared (NIR) fluorescent probe to monitor Cys. In this study, we have developed a novel NIR fluorescent probe XA based on Xanthene hybrid tetrahydro-acridine salt dye for specifically tracking of Cys, where a chlorine-substituted tetrahydro-acridine acts as a high Cys-reactive site and water-soluble group. Probe XA exhibits a remarkable "turn-on" NIR emission (830 nm) with an extra-large Stokes shift (305 nm) for monitoring Cys. It also has a high selectivity, rapid response time (6 min) and high sensitivity (LOD as 0.5 μM). We fully characterized and discussed the sensing mechanism of XA toward Cys using HPLC and MS spectrums, as well as quantum theory calculations. Furthermore, the excellent properties of NIR fluorescent detection allow this novel probe to successfully monitor fluctuations of exogenous and endogenous Cys concentration levels in living cells and in vivo.
Collapse
Affiliation(s)
- Shixuan An
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China; College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanfei Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Tianqing Ye
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Tianwen Bai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Danyi He
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhaosheng Qian
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| | - Jianbo Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
36
|
Jiao B, Ouyang Z, Liu Q, Xu T, Wan M, Ma G, Zhou L, Guo J, Wang J, Tang B, Zhao Z, Shen L. Integrated analysis of gut metabolome, microbiome, and brain function reveal the role of gut-brain axis in longevity. Gut Microbes 2024; 16:2331434. [PMID: 38548676 PMCID: PMC10984123 DOI: 10.1080/19490976.2024.2331434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
The role of microbiota-gut-brain axis in modulating longevity remains undetermined. Here, we performed a multiomics analysis of gut metagenomics, gut metabolomics, and brain functional near-infrared spectroscopy (fNIRS) in a cohort of 164 participants, including 83 nonagenarians (NAs) and 81 non-nonagenarians (NNAs) matched with their spouses and offspring. We found that 438 metabolites were significantly different between the two groups; among them, neuroactive compounds and anti-inflammatory substances were enriched in NAs. In addition, increased levels of neuroactive metabolites in NAs were significantly associated with NA-enriched species that had three corresponding biosynthetic potentials: Enterocloster asparagiformis, Hungatella hathewayi and Oxalobacter formigenes. Further analysis showed that the altered gut microbes and metabolites were linked to the enhanced brain connectivity in NAs, including the left dorsolateral prefrontal cortex (DLPFC)-left premotor cortex (PMC), left DLPFC-right primary motor area (M1), and right inferior frontal gyrus (IFG)-right M1. Finally, we found that neuroactive metabolites, altered microbe and enhanced brain connectivity contributed to the cognitive preservation in NAs. Our findings provide a comprehensive understanding of the microbiota-gut-brain axis in a long-lived population and insights into the establishment of a microbiome and metabolite homeostasis that can benefit human longevity and cognition by enhancing functional brain connectivity.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qianqian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangrong Ma
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Zhao
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Dehkordi HT, Ghasemi S. Glutathione Therapy in Diseases: Challenges and Potential Solutions for Therapeutic Advancement. Curr Mol Med 2024; 24:1219-1230. [PMID: 37594114 DOI: 10.2174/1566524023666230818142831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
An endogenous antioxidant, reduced glutathione (GSH), is found at high concentrations in nearly all typical cells. GSH synthesis is a controlled process, and any disruption in the process of GSH synthesis could result in GSH depletion. Cellular oxidative damage results from GSH depletion. Various pathological conditions such as aging, cardiovascular disease (CVD), psychiatric disorders, neurological disorders, liver disorders, and diabetes mellitus are more affected by this stress. There are various reasons for GSH reduction, but replenishing it can help to improve this condition. However, there are challenges in this field. Low bioavailability and poor stability of GSH limit its delivery to tissues, mainly brain tissue. Today, new approaches are used for the optimal amount and efficiency of drugs and alternative substances such as GSH. The use of nano-materials and liposomes are effective methods for improving the treatment effects of GSH. The difficulties of GSH decrease and its connection to the most important associated disorders are reviewed for the first time in this essay. The other major concerns are the molecular mechanisms involved in them; the impact of treatment with replacement GSH; the signaling pathways impacted; and the issues with alternative therapies. The utilization of nano-materials and liposomes as potential new approaches to solving these issues is being considered.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
38
|
Yu N, Wu Z, Wang Y, Zongo AWS, Nie X, Lu Y, Ye Q, Meng X. Formation of adducts during digestion triggered dietary protein for alleviating cytotoxicity of 2-tert-butyl-1,4-benzoquinone. Food Chem Toxicol 2024; 183:114200. [PMID: 38029872 DOI: 10.1016/j.fct.2023.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 μM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zeyi Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yijue Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
39
|
Hipólito A, Mendes C, Martins F, Lemos I, Francisco I, Cunha F, Almodôvar T, Albuquerque C, Gonçalves LG, Bonifácio VDB, Vicente JB, Serpa J. H 2S-Synthesizing Enzymes Are Putative Determinants in Lung Cancer Management toward Personalized Medicine. Antioxidants (Basel) 2023; 13:51. [PMID: 38247476 PMCID: PMC10812562 DOI: 10.3390/antiox13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Lung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (H2S) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. Selenium-chrysin (SeChry) was tested as a therapeutic alternative with the aim of having an effect on cysteine catabolism and showed promising results. NSCLC cell lines presented different cysteine metabolic patterns, with A549 and H292 presenting a higher reliance on cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) to maintain H2S levels, while the PC-9 cell line presented an adaptive behavior based on the use of mercaptopyruvate sulfurtransferase (MST) and cysteine dioxygenase (CDO1), both contributing to the role of cysteine as a pyruvate source. The analyses of human lung tumor samples corroborated this variability in profiles, meaning that the expression of certain genes may be informative in defining prognosis and new targets. Heterogeneity points out individual profiles, and the identification of new targets among metabolic players is a step forward in cancer management toward personalized medicine.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Cindy Mendes
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Inês Francisco
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Fernando Cunha
- Pathology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Teresa Almodôvar
- Pneumology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Luís G. Gonçalves
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Vasco D. B. Bonifácio
- IBB-Institute for Bioengineering and Biosciences, Associate Laboratory i4HB-Institute for Health and Bioeconomy, IST-Lisbon University, 1049-001 Lisbon, Portugal;
- Bioengineering Department, IST-Lisbon University, 1049-001 Lisbon, Portugal
| | - João B. Vicente
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| |
Collapse
|
40
|
Mohamed I, El Raichani N, Otis AS, Lavoie JC. Parenteral Cysteine Supplementation in Preterm Infants: One Size Does Not Fit All. Biomedicines 2023; 12:63. [PMID: 38255171 PMCID: PMC10813382 DOI: 10.3390/biomedicines12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Due to their gastrointestinal immaturity or the severity of their pathology, many neonates require parenteral nutrition (PN). An amino acid (AA) solution is an important part of PN. Cysteine is a key AA for protein and taurine synthesis, as well as for glutathione synthesis, which is a cornerstone of antioxidant defenses. As cysteine could be synthesized from methionine, it is considered a nonessential AA. However, many studies suggest that cysteine is a conditionally essential AA in preterm infants due to limitations in their capacity for cysteine synthesis from methionine and the immaturity of their cellular cysteine uptake. This critical review discusses the endogenous synthesis of cysteine, its main biological functions and whether cysteine is a conditionally essential AA. The clinical evidence evaluating the effectiveness of the current methods of cysteine supplementation, between 1967 and 2023, is then reviewed. The current understanding of cysteine metabolism is applied to explain why these methods were not proven effective. To respond to the urgent need for changing the current methods of parenteral cysteine supplementation, glutathione addition to PN is presented as an innovative alternative with promising results in an animal model. At the end of this review, future directions for research in this field are proposed.
Collapse
Affiliation(s)
- Ibrahim Mohamed
- Department of Pediatrics/Neonatology, CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Department of Nutrition, University of Montreal, Montreal, QC H3T 1J4, Canada;
| | - Nadine El Raichani
- Department of Nutrition, University of Montreal, Montreal, QC H3T 1J4, Canada;
| | - Anne-Sophie Otis
- Pharmacy, CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jean-Claude Lavoie
- Department of Pediatrics/Neonatology, CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Department of Nutrition, University of Montreal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
41
|
Qin P, Ma S, Li C, Di Y, Liu Z, Wang H, Li Y, Jiang S, Yang W, Jiao N. Cysteine Attenuates the Impact of Bisphenol A-Induced Oxidative Damage on Growth Performance and Intestinal Function in Piglets. TOXICS 2023; 11:902. [PMID: 37999554 PMCID: PMC10675709 DOI: 10.3390/toxics11110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol A (BPA), a kind of environmental toxin, widely impacts daily life. Cysteine (Cys) is a nutritionally important amino acid for piglets. However, it remains unclear whether Cys can alleviate BPA-induced oxidative damage in piglets. The aim of the present study was to explore the protective effects of Cys in BPA-challenged piglets. A total of twenty-four piglets were divided into four groups that were further subdivided based on the type of exposure (with or without 0.1% BPA) in a basal or Cys diet for a 28 d feeding trial. The results showed that BPA exposure decreased the piglets' average daily weight gain by 14.9%, and decreased dry matter, crude protein and ether extract digestibility by 3.3%, 4.5% and 2.3%, respectively; these decreases were attenuated by Cys supplementation. Additionally, Cys supplementation restored BPA-induced decreases in superoxide dismutase (SOD) and glutathione (GSH), and increases in malondialdehyde (MDA) levels, in the serum and jejunum (p < 0.05). Moreover, BPA decreased the jejunal mRNA expression of antioxidant genes, which were restored by Cys supplementation (p < 0.05). Cys also restored BPA and increased serum D-lactate levels and diamine oxidase (DAO) activity, and BPA decreased jejunal disaccharidase activity (p < 0.05). Further investigations in this study showed that the protective effects of Cys were associated with restoring intestinal barrier integrity by improving the jejunal morphology and enhancing the mRNA expression of tight junction proteins (p < 0.05). Collectively, the results herein demonstrated that Cys supplementation attenuated the impact of BPA-induced oxidative damage on growth performance, nutrient digestibility and intestinal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Q.); (S.M.); (C.L.); (Y.D.); (Z.L.); (H.W.); (Y.L.); (S.J.); (W.Y.)
| |
Collapse
|
42
|
Abualhasan M, Hawash M, Aqel S, Al-Masri M, Mousa A, Issa L. Biological Evaluation of Xanthene and Thioxanthene Derivatives as Antioxidant, Anticancer, and COX Inhibitors. ACS OMEGA 2023; 8:38597-38606. [PMID: 37867642 PMCID: PMC10586285 DOI: 10.1021/acsomega.3c05695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Xanthene and thioxanthene analogues have been investigated for their potential as anticancer and anti-inflammatory agents. Additionally, cysteine analogues have been found to possess antioxidant, anti-inflammatory, and anticancer activities due to their role in cellular redox balance, scavenging of free radicals, and involvement in nucleophilic reactions and enzyme binding sites. In this study, we synthesized a library of tertiary alcohols derived from xanthene and thioxanthene, and further, some of these compounds were coupled with cysteine. The objective of this research was to explore the potential anticancer, antioxidant, and anti-inflammatory activities of the synthesized compounds. The synthesized compounds were subjected to test for anticancer, antioxidant, and anti-inflammatory activities. Results indicated that compound 3 exhibited excellent inhibition activity (IC50 = 9.6 ± 1.1 nM) against colon cancer cells (Caco-2), while compound 2 showed good inhibition activity (IC50 = 161.3 ± 41 nM) against hepatocellular carcinoma (Hep G2) cells. Compound 4 demonstrated potent antioxidant inhibition activity (IC50 = 15.44 ± 6 nM), and compound 7 exhibited potent anti-inflammatory activity with cyclooxygenase-2 (COX-2) inhibition IC50 (4.37 ± 0.78 nM) and high selectivity for COX-2 (3.83). In conclusion, certain synthesized compounds displayed promising anticancer activity and anti-inflammatory effects. Nevertheless, additional research is necessary to create more analogues, develop a more distinct comprehension of the structure-activity relationship (SAR), and perform in vivo experiments to evaluate the pharmacokinetic and pharmacodynamic characteristics of the compounds under examination. Such research may pave the way for the development of novel therapeutic agents with potential applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Murad Abualhasan
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| | - Mohammed Hawash
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| | - Samah Aqel
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| | - Motasem Al-Masri
- Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box 7, P400 Nablus, Palestine
| | - Ahmed Mousa
- Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box 7, P400 Nablus, Palestine
| | - Linda Issa
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, P400 Nablus, Palestine
| |
Collapse
|
43
|
Gómez CB, Contreras Vargas Y, Serrano Sánchez A, Camacho Castillo LDC, Centurión Pacheco D, Carvajal Aguilera K. [Diet as a source of hydrogen sulfide and its effects on health and disease]. NUTR HOSP 2023; 40:1088-1095. [PMID: 37522463 DOI: 10.20960/nh.04471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Introduction Initially known for its deleterious health effects, hydrogen sulfide (H2S) has recently been recognized as a biologically important gas carrier, like nitric oxide and carbon monoxide. H2S is produced endogenously in mammalian cells by enzymatic and non-enzymatic pathways. When it is produced by the enzymatic pathway, its synthesis is carried out from the amino acid L-cysteine through the transsulfuration pathway. It can also be produced endogenously from exogenous compounds that function as H2S donors as, for example, the naturally occurring organic donors found in some plants. Currently, the role of S2H is well known as brain and cardiac protector, and its research as a therapeutic adjuvant in metabolic diseases such as obesity and type-2 diabetes is becoming increasingly important. The objective of this review is to examine how the contribution of donors and precursors of hydrogen sulfide by the diet impacts health and disease.
Collapse
Affiliation(s)
- Carolina Belem Gómez
- Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría. Departamento de Farmacobiología. Cinvestav-Unidad Coapa
| | | | - Arturo Serrano Sánchez
- Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría. Departamento de Farmacobiología. Cinvestav-Unidad Coapa
| | | | - David Centurión Pacheco
- Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría. Departamento de Farmacobiología. Cinvestav-Unidad Coapa
| | | |
Collapse
|
44
|
Candebat CL, Eddie T, Marc AF, Fernando F, Nankervis L. Exploring the physiological plasticity of giant grouper (Epinephelus lanceolatus) to dietary sulfur amino acids and taurine to measure dietary requirements and essentiality. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:829-851. [PMID: 37507548 PMCID: PMC10581923 DOI: 10.1007/s10695-023-01222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Giant grouper (Epinephelus lanceolatus) is an economically important yet under-researched species, still reliant on 'trash fish' or generic aquafeeds. The transition toward sustainable formulations is contingent on establishing requirements of target species for limiting nutrients, among which the sulfur amino acids (methionine and cysteine) commonly limit fish growth. Further, there remains significant conjecture around the role of the sulfonic acid taurine in marine aquafeed formulation and its relationship to sulfur amino acids. To develop a species-specific feed formulation for giant grouper, dietary methionine was modulated in a dose-response experiment to achieve five graded levels from 9.5 to 21.5 g/kg, including an additional diet with methionine at 18.6 g/kg supplemented with 8 g/kg taurine. The mean (±SD) cysteine level of the diets was 4.5 ± 0.3 g/kg. Each diet was randomly allocated to triplicate tanks of 14 fish (83.9 ± 8.4 g). The best-fit regression for growth showed that the optimal dietary methionine content was 15.8 g/kg and the total sulfur amino acid content was 20.3 g/kg. Inadequate dietary methionine content triggered physiological responses, including hepatic hyperplasia and hypoplasia at 9.5 and 21.5 g/kg, respectively, and high aspartate transaminase levels at 18.9 g/kg. Moreover, inadequate dietary methionine contents resulted in higher densities of mixed goblet cell mucin and reduced absorptive surface area of posterior intestinal villi. Our results suggest that adequate levels of methionine, but not taurine, improved posterior intestinal conditions and liver homeostasis. These findings may aid in formulating aquafeeds to optimize gastrointestinal and liver functions in juvenile giant grouper.
Collapse
Affiliation(s)
- Caroline Lourdes Candebat
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| | - Thibault Eddie
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| | - Adrien Francois Marc
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| | - Fernando Fernando
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Leo Nankervis
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| |
Collapse
|
45
|
Chang Y, Xia Y, Liu X, Yu P, Fan F, Shi Y, Yan S, Yan S. Integrated 16 S rRNA gene sequencing and serum metabolomics approaches to decipher the mechanism of Qingre Lidan decoction in the treatment of cholestatic liver injury. J Pharm Biomed Anal 2023; 234:115535. [PMID: 37390604 DOI: 10.1016/j.jpba.2023.115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Cholestasis is a commonly occurring disorder induced by impaired bile flow, for which there is no effective treatment so far. Qingre Lidan decoction (QRLD) is a clinically used herbal compound for the long-term treatment of bile circulation disorders arising from inflammation and obstruction in the gallbladder and bile ducts. The objective of this study was to investigate the protective effect of QRLD on cholestatic liver injury and its possible mechanism. METHODS α-Naphthyl isothiocyanate (ANIT) was used to induce cholestatic liver injury in rats. Liver histopathology and serum biochemical markers were used to assess QRLD's protective impact. The possible biomarkers and mechanism of the therapeutic benefits of QRLD were investigated using a UHPLC-based Q-Exactive Orbitrap MS / MS untargeted serum metabolomics technique together with 16 S rRNA microbiota profiling. Afterwards, using RT-qPCR as well as Western Blot techniques, the expression of pertinent indicators was determined. RESULTS The intervention effect of QRLD was stronger at medium and high dosages than at low doses, and it dramatically decreased the levels of serum biochemical markers in cholestatic rats reflecting alterations in liver function and relieving ANIT-induced abnormalities in the liver's histopathology. Serum metabolomics showed that QRLD could affect the metabolic profile of cholestatic rats, mainly related to glycerophospholipid metabolism, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism, and histidine metabolic pathway. Additionally, analysis of 16 S rRNA gene sequencing indicated that QRLD could moderate ANIT-induced microbiota disorders, particularly Romboutsia, Bifidobacterium, Fusicatenibacter, Prevotella_9, Prevotellaceae_NK3B31_group and Prevotella_1. Other experimental results showed that QRLD significantly upregulated the mRNA and protein expression of PPARα, CYP7A1 and NTCP in the liver, inhibited the expression of p-IκBα, p-p65 and TNFα while increasing the anti-inflammatory factor IL-10, and downregulated the expression of MDA (a peroxidation product) and D-lactic acid (an intestinal barrier indicator) while increasing the expression of SOD and GSH. CONCLUSIONS QRLD can effectively regulate endogenous metabolites and microbiota disorders in cholestatic rats that are correlated with the attenuation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yang Chang
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Yafei Xia
- Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Xiaojun Liu
- Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Putian Yu
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Furong Fan
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Yangyang Shi
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, JinghaiDistrict, Tianjin 301617, China
| | - Shixin Yan
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Shu Yan
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China; Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China.
| |
Collapse
|
46
|
Şenol O, Sulukan E, Baran A, Bolat İ, Toraman E, Alak G, Yildirim S, Bilgin G, Ceyhun SB. Global warming and nanoplastic toxicity; small temperature increases can make gill and liver toxicity more dramatic, which affects fillet quality caused by polystyrene nanoplastics in the adult zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164682. [PMID: 37301397 DOI: 10.1016/j.scitotenv.2023.164682] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Increasing nanoplastics (NPs) pollution may lead to unknown environmental risks when considered together with climate change, which has the potential to become an increasingly important environmental issue in the coming decades. In this context, the present study aimed to evaluate the stressor modelling of polystyrene nanoplastic (PS-NPs) combined with temperature increase in zebrafish. For this purpose, changes in gill, liver and muscle tissues of zebrafish exposed to PS-NPs (25 ppm) and/or different temperatures (28, 29 and 30 °C) for 96 h under static conditions were evaluated. The results obtained emphasize that exposure to PS-NPs stressors under controlled conditions with temperature increase induces DNA damage through stress-induced responses accompanied by degeneration, necrosis and hyperaemia in zebrafish liver and adhesion of lamellae, desquamation and inflammation in lamellar epithelium in gills. Metabolomic analyses also supported changes indicating protein and lipid oxidation, especially PS-NPs-mediated. These findings will contribute to the literature as key data on the effects of PS-NPs presence on protein/lipid oxidation and fillet quality in muscle tissues.
Collapse
Affiliation(s)
- Onur Şenol
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquaculture Department, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquaculture Department, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey; Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | | | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Aquaculture Department, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
47
|
Wang H, Zhang Y, Dai L, Bo X, Liu X, Zhao X, Yu J, Kwok LY, Bao Q. Metabolomic Differences between Viable but Nonculturable and Recovered Lacticaseibacillus paracasei Zhang. Foods 2023; 12:3472. [PMID: 37761181 PMCID: PMC10527867 DOI: 10.3390/foods12183472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The fermentation process can be affected when the starter culture enters the viable but nonculturable (VBNC) state. Therefore, it is of interest to investigate how VBNC cells change physiologically. Lacticaseibacillus (L.) paracasei Zhang is both a probiotic and a starter strain. This study aimed to investigate the metabolomic differences between VBNC and recovered L. paracasei Zhang cells. First, L. paracasei Zhang was induced to enter the VBNC state by keeping the cells in a liquid de Man-Rogosa-Sharpe (MRS) medium at 4 °C for 220 days. Flow cytometry was used to sort the induced VBNC cells, and three different types of culture media (MRS medium, skim milk with 1% yeast extract, and skim milk) were used for cell resuscitation. Cell growth responses in the three types of recovery media suggested that the liquid MRS medium was the most effective in reversing the VBNC state in L. paracasei Zhang. Metabolomics analysis revealed 25 differential metabolites from five main metabolite classes (amino acid, carbohydrate, lipid, vitamin, and purine and pyrimidine). The levels of L-cysteine, L-alanine, L-lysine, and L-arginine notably increased in the revived cells, while cellulose, alginose, and guanine significantly decreased. This study confirmed that VBNC cells had an altered physiology.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuhong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lixia Dai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyu Bo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiangyun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
48
|
Surendranath M, Ramesan RM, Nair P, Parameswaran R. Design and evaluation of propranolol hydrochloride loaded thiolated Zein/PEO electrospun fibrous matrix for transmucosal drug delivery. J Mater Chem B 2023; 11:7778-7791. [PMID: 37489021 DOI: 10.1039/d3tb01088k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Thiolated polymers have garnered wide attention from researchers on mucoadhesive drug delivery. This work explores the thiolation of zein protein using cysteine amino acid via the EDC crosslinker. The optimization of thiolation and purification have been done and confirmed using Ellman's assay and Raman spectra. The thiolated Zein/PEO polymer blend has been appraised for electrospinning to fabricate fibrous matrices. The extent of thiol modification augmented the mechanical properties and adhesion in rabbit intestinal mucosa. In vitro cytotoxicity evaluations such as direct contact assay, MTT assay, and live dead assay performed in RPMI 2650 cells corroborated the non-cytotoxicity of the fabricated matrices with and without propranolol hydrochloride (PL). Detailed drug release studies were conducted in PBS. Drug release in PBS followed the Korsmeyer Peppas model of release. On treating RPMI 2650 cells with the matrix, F-actin and adherens junctional proteins retained integrity, and consequently, drug permeation would proceed through the transcellular transport mechanism. Transepithelial electrical resistance (TEER) measurement of the RPMI 2650 cell monolayer also supported the transcellular transport mechanism. Ex vivo permeation study through porcine buccal mucosa showed 41.26 ± 0.56% PL permeation within 24 h of study. It validated the competence of the electrospun thiolated Zein/PEO matrix for transmucosal drug delivery.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Rekha M Ramesan
- Division of Biosurface Technology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Prakash Nair
- Department of Neurosurgery Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
49
|
Nguyen M, Le Mignon M, Schnellbächer A, Wehsling M, Braun J, Baumgaertner J, Grabner M, Zimmer A. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Front Bioeng Biotechnol 2023; 11:1230422. [PMID: 37680342 PMCID: PMC10482334 DOI: 10.3389/fbioe.2023.1230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
S-Sulfocysteine (SSC), a bioavailable L-cysteine derivative (Cys), is known to be taken up and metabolized in Chinese hamster ovary (CHO) cells used to produce novel therapeutic biological entities. To gain a deeper mechanistic insight into the SSC biological activity and metabolization, a multi-omics study was performed on industrially relevant CHO-K1 GS cells throughout a fed-batch process, including metabolomic and proteomic profiling combined with multivariate data and pathway analyses. Multi-layered data and enzymatical assays revealed an intracellular SSC/glutathione mixed disulfide formation and glutaredoxin-mediated reduction, releasing Cys and sulfur species. Increased Cys availability was directed towards glutathione and taurine synthesis, while other Cys catabolic pathways were likewise affected, indicating that cells strive to maintain Cys homeostasis and cellular functions.
Collapse
Affiliation(s)
- Melanie Nguyen
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Maria Wehsling
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Julian Braun
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Jens Baumgaertner
- Biomolecule Analytics and Proteomics, Merck KGaA, Darmstadt, Germany
| | | | - Aline Zimmer
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| |
Collapse
|
50
|
Hou Y, Michiels J, Kerschaver CV, Vandaele M, Majdeddin M, Vossen E, Degroote J. The kinetics of glutathione in the gastrointestinal tract of weaned piglets supplemented with different doses of dietary reduced glutathione. Front Vet Sci 2023; 10:1220213. [PMID: 37635757 PMCID: PMC10448897 DOI: 10.3389/fvets.2023.1220213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to investigate the kinetics of dietary GSH in the gastrointestinal tract and the effect of GSH on the intestinal redox status of weaned piglets. Forty-eight piglets with an average age of 26 days and an average body weight of 7.7 kg were used in this study. The piglets were divided into three treatment groups including the control group with a basal diet (CON) and two GSH groups with a basal diet supplemented with 0.1% GSH (LGSH) and 1.0% GSH (HGSH), respectively. The basal diet did not contain any GSH. The experiment lasted for 14 days, with eight animals sampled from each group on d5 and 14. The parts of 0-5%, 5-75%, and 75-100% of the length of the small intestine were assigned to SI1, SI2, and SI3. The results showed that GSH almost completely disappeared from the digesta at SI2. However, no difference in the GSH level in mucosa, liver, and blood erythrocytes was found. The level of cysteine (CYS) in SI1 digesta was significantly higher in HGSH than CON and LGSH on d14, and similar findings were observed for cystine (CYSS) in SI3 digesta on d5. The CYSS level in HGSH was also significantly higher than LGSH in the stomach on d14, while no CYS or CYSS was detected in the stomach for control animals, indicating the breakdown of GSH to CYS already occurred in the stomach. Irrespective of the dietary treatment, the CYS level on d14 and the CYSS level on d5 and 14 were increased when moving more distally into the gastrointestinal tract. Furthermore, the mucosal CYS level was significantly increased at SI1 in the LGSH and HGSH group compared with CON on d5. Glutathione disulfide (GSSG) was recovered in the diets and digesta from the LGSH and HGSH group, which could demonstrate the auto-oxidation of GSH. It is, therefore, concluded that GSH supplementation could not increase the small intestinal mucosal GSH level of weaned piglets, and this could potentially relate to the kinetics of GSH in the digestive tract, where GSH seemed to be prone to the breakdown to CYS and CYSS and the auto-oxidation to GSSG.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen Degroote
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|