1
|
Liu Y, Wang M, Zhang C. Anti-inflammatory and antioxidant effects of haematococcus carbon dots in ulcerative colitis: A nanoparticle-based approach. J Biomater Appl 2025:8853282251333240. [PMID: 40221894 DOI: 10.1177/08853282251333240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum, classified as a type of inflammatory bowel disease (IBD). This study aimed to evaluate the therapeutic effects of Haematococcus carbon dots (HP-CDs) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. HP-CDs were synthesized from Haematococcus pluvialis (HP) using a hydrothermal method involving Rhodococcus amphitrite. The effects of HP-CDs on DSS-induced ulcerative colitis in mice were evaluated through histological and pathological analyses. Results demonstrated that HP-CDs significantly alleviated colitis, reducing body weight loss, Disease Activity Index (DAI) scores, and colonic atrophy. Moreover, HP-CDs suppressed MPO activity and decreased the expression of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in colonic tissues. These findings indicate that HP-CDs have potential as a novel therapeutic agent for UC.
Collapse
Affiliation(s)
- Yuting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mengqing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chaoyan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Bharti A, Hooda V, Jain U, Chauhan N. Astaxanthin: a nature's versatile compound utilized for diverse applications and its therapeutic effects. 3 Biotech 2025; 15:88. [PMID: 40092449 PMCID: PMC11909355 DOI: 10.1007/s13205-025-04241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Astaxanthin (ASTX), red-colored xanthophyll, also known as the "king of carotenoids" exhibits a strong antioxidant property that can be naturally found in green algae Haematococcus pluvialis, red yeast Phaffia rhodozyma, and various aquatic species including salmon, krill, trout, and fish eggs. Due to their strong antioxidant qualities, ASTX nanoparticles may be crucial in fighting against phytotoxicity caused by heavy metal ions. Similarly, it may also reduce the uptake of heavy metal, i.e. cadmium, and translocation by improving the morpho-physiological profiles of plants. Furthermore, it can also have the ability to scavenge free radicals, therefore, it can protect plants from reactive oxygen species (ROS). Implementing ASTX nanoparticles on crops can also help to achieve higher food production while minimizing toxic effects. Additionally, it can also possess several therapeutic activities including anti-cancerous, anti-diabetic, antioxidant, anti-aging, anti-inflammation, hepatoprotective, and cardiovascular, etc. that can be beneficial to treat various types of diseases in humans and animals. Recently, it has gained more interest in food, agriculture, aquaculture, neutraceuticals, and pharmaceutical industries due to its wide range of applications including food-coloring agents, food supplements, and strong antioxidant property that helps in skin protection, and boosts immune function. However, ASTX possesses poor water solubility and chemical stability so the implementation of ASTX on human health is facing various issues. Therefore, nanoencapsulation of ASTX is very crucial to improve its chemical stability and solubility, ultimately leading to its bioavailability and bioaccessibility. Recently, ASTX has been commercially available with specific dosages in the market mainly in the form of tablets, gels, powders, creams, syrups, etc. The current review mainly highlights the present state of ASTX nanoparticle applications in various fields explaining its natural and synthetic sources, extraction methods, chemical structure, stability, nanoformulations, nano encapsulation, and various commercial aspects.
Collapse
Affiliation(s)
- Anjali Bharti
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Utkarsh Jain
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Nidhi Chauhan
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
3
|
Peng S, Yu L, Jiang M, Cao S, Wang H, Lu X, Tao Y, Zhou J, Sun L, Zuo D. Canthaxanthin ameliorates atopic dermatitis in mice by suppressing Th2 immune response. Int Immunopharmacol 2025; 147:113975. [PMID: 39787760 DOI: 10.1016/j.intimp.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder characterized by intense pruritus and complex immunopathogenic mechanisms. Recent evidence has highlighted the critical link between dysregulated intestinal microecology and altered immune responses in AD progression. As essential components of the intestinal microenvironment, metabolites play pivotal roles in various physiological processes. Through metabolomic profiling in an AD mouse model, we identified a significant reduction in canthaxanthin (CTX), a bacterial-derived metabolite naturally present in many foods, in AD mice compared to healthy controls. To investigate the therapeutic potential of CTX, we established an AD model by repeatedly applying 2,4-dinitrochlorobenzene (DNCB) to the ears and dorsal skin of mice, successfully inducing AD-like symptoms and lesions. Notably, oral administration of CTX significantly attenuated skin inflammation and reduced serum IgE levels in this DNCB-induced AD model. Both in vivo and in vitro studies demonstrated that CTX treatment effectively suppressed Th2 immune responses. Mechanistically, we found that CTX significantly inhibited the activation of the JAK2-STAT6 signaling pathway in Th2-polarized T cells. Our findings not only demonstrate the therapeutic efficacy of CTX in AD but also elucidate its molecular mechanism in modulating T helper cell subset balance. These insights suggest that CTX could serve as a promising therapeutic agent for AD and potentially other Th2 response-mediated immune disorders.
Collapse
Affiliation(s)
- Shuying Peng
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Yu
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Mingxin Jiang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sihang Cao
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hong Wang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yihao Tao
- Veritas Collegiate Academy, 935 23rd St S, Arlington, VA 22202-2422, United States
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ledong Sun
- Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.
| | - Daming Zuo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Deng X, Yang Z, Han M, Ismail N, Esa NM, Razis AFA, Bakar MZA, Chan KW. Comprehensive Insights Into the Combinatorial Uses of Selected Phytochemicals in Colorectal Cancer Prevention and Treatment: Isothiocyanates, Quinones, Carotenoids, and Alkaloids. Phytother Res 2025; 39:413-452. [PMID: 39557422 DOI: 10.1002/ptr.8378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Despite the advancement in cancer diagnosis and treatment, colorectal cancer remains the leading cause of cancer-related death worldwide. Given the high recurrence rate of colorectal cancer even after surgical resection, chemotherapy has been clinically used to improve the treatment outcomes of colorectal cancer. However, chemotherapy is well-known for its toxic side effects. Thus, phytochemicals have been widely studied in recent years as preventive and therapeutic agents for colorectal cancer owing to their relatively low toxicity. Moreover, combinatorial uses of phytochemicals with other natural compounds or with drugs may amplify the positive outcomes of colorectal cancer prevention and treatment by intervening in multiple signaling pathways and targets. This review summarized the combinatorial use of several well-studied groups of phytochemicals, that is, isothiocyanates, quinones, carotenoids, and alkaloids, in the prevention and treatment of colorectal cancer, and suggested it as a potential approach to improve the anticancer efficacy of single compounds and minimize the toxic side effects associated with conventional drugs. Notably, we generalized the in vitro, in vivo, and clinical experiments-based molecular mechanisms whereby the selected phytochemicals in combination with other compounds exerted anti-colorectal cancer effects by inhibiting cancer cell proliferation, cell apoptosis, cell invasion, and tumor growth. Overall, this review provides a reference and new perspective to propel further advancements in research and development of preventative and therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mingzhao Han
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Wang Z, Sun X, Xu X, Zhou D, Wen C. Effect of microencapsulated canthaxanthin and apo-ester on egg yolk color and antioxidant capacity in laying hens. Poult Sci 2024; 103:104302. [PMID: 39306952 PMCID: PMC11447402 DOI: 10.1016/j.psj.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
This study was conducted to evaluate the effects of common canthaxanthin (CC) or microencapsulated canthaxanthin (MC) combined with apo-ester (AE) on productive performance, egg yolk color and antioxidant capacity in laying hens. A total of 270 Hyline Brown laying hens at 56 wk of age were allocated to 3 groups with 6 replicates, and fed a wheat-soybean meal basal diet or the same diet supplemented with CC+AE or MC+AE at 5 mg/kg feed for each supplement. The productive performance was not affected by dietary treatments. The 2 test groups had higher (P < 0.05) yolk color score in fresh eggs than the control group, but the yolk color score of CC+AE group significantly declined (P < 0.05) with time, and a slight decline was also observed in the MC+AE group at 36 d. The MC+AE group had higher (P < 0.05) yolk color score of fried and boiled eggs than the other 2 groups. Higher (P < 0.05) feed canthaxanthin concentration was found in the MC+AE group at the end of experiment, which also had higher yolk canthaxanthin concentration in fresh eggs at 24 and 36 d as well as in fried, boiled and stored (4°C and 25°C) eggs. The 2 test groups had higher (P < 0.05) total antioxidant capacity in serum than the control group, and lower (P < 0.05) MDA content was observed in the MC+AE group. The mRNA level of cluster determinant 36 in jejunum was increased by the 2 test groups, and the same increase was also found in liver only in the MC+AE group. In conclusion, MC was more efficient in promoting yolk color and antioxidant capacity than CC when combined with AE.
Collapse
Affiliation(s)
- Zhaoping Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowei Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinde Xu
- Department of Production and Technology, Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing, 312500, China
| | - Di Zhou
- Department of Production and Technology, Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing, 312500, China
| | - Chao Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Hegazy AA, Abu-Hussien SH, Elsenosy NK, El-Sayed SM, Abo El-Naga MY. Optimization, characterization and biosafety of carotenoids produced from whey using Micrococcus luteus. BMC Biotechnol 2024; 24:74. [PMID: 39375686 PMCID: PMC11459989 DOI: 10.1186/s12896-024-00899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
This study aimed to optimize the production of carotenoid pigments from Micrococcus luteus (ATCC 9341) through the statistical screening of media components and the characterization of antimicrobial, antioxidant, cytogenetic and cytotoxic activities. A BOX-Behnken design was used to assess the effects of whey concentration, inoculum size, pH, temperature, and agitation speed on carotenoid yield. The optimum combination increased production to 2.19 g/L, with a productivity of 0.045 g L-1 h-1 and a productivity yield of 0.644 g/g, as confirmed by an observed carotene production of 2.19 g/L. The final response surface model fitting the data had an R2 of 0.9461. High-performance liquid chromatography (HPLC) analysis identified 12 carotenoid pigment compounds produced by M. luteus. The extracts displayed moderate antimicrobial efficacy against Gram-positive bacteria such as Bacillus cereus (ATCC 11778), Staphylococcus aureus (ATCC 6538), and E. faecalis (ATCC 19433), with inhibition zone diameters (IZD) of 29.0, 14.0, and 37.0 mm, respectively, at 1000 μg/mL. However, its effectiveness against Gram-negative bacteria is limited. In comparison, tetracycline exhibited greater antimicrobial potency. The IC50 value of carotenoids was used to indicate the antioxidant activity. IC50 value from the DPPH assay was 152.80 mg/100mL. An IC50 cytotoxicity value greater than 300 μg/mL was found against normal mouse liver cells, with over 68% cell viability even at 300 μg/mL, indicating low toxicity. Histological structure studies revealed normal myocardial muscle tissue, lung tissue, and kidney tissue sections, whereas liver tissue sections revealed ballooning degeneration of hepatocytes and disorganization of hepatic cords. Cytogenetic parameters revealed that the carotene treatment group had a mitotic index (70%) lower than that of the control but higher than that of the positive control, mitomycin, and did not substantially increase numerical (1.2%) or structural aberrations compared with those of the control, suggesting a lack of genotoxic effects under the experimental conditions. In conclusion, optimized culture conditions enhanced carotenoid yields from M. luteus, and the extracts displayed promising bioactivity as moderate antibiotics against certain gram-positive bacteria and as antioxidants. The high IC50 values demonstrate biosafety. Overall, this bioprocess for enhanced carotenoid production coupled with bioactivity profiling and low cytotoxicity support the application of M. luteus carotenoids.
Collapse
Affiliation(s)
- Aml A Hegazy
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Neima K Elsenosy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Salwa M El-Sayed
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Mohamed Y Abo El-Naga
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| |
Collapse
|
8
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
9
|
Zhang J, Mao Z, Zheng J, Sun C, Xu G. The Effects of Different Doses of Canthaxanthin in the Diet of Laying Hens on Egg Quality, Physical Characteristics, Metabolic Mechanism, and Offspring Health. Int J Mol Sci 2024; 25:7154. [PMID: 39000258 PMCID: PMC11241014 DOI: 10.3390/ijms25137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve the above issues in detail, our study was conducted with a control group (C group), a low-dose canthaxanthin group (L group), and a high-dose canthaxanthin group (H group), each fed for a period of 40 days. Production performance was monitored during the experiment, in which L and H groups showed a significant increase in ADFI. Eggs were collected for quality analysis, revealing no significant differences in qualities except for yolk color (YC). The YC of the C group almost did not change, ranging from 6.08 to 6.20; however, the trend in YC change in other groups showed an initial intense increase, followed by a decrease, and eventually reached dynamic equilibrium. By detecting the content of canthaxanthin in the yolk, the YC change trend was found to be correlated with canthaxanthin levels in the yolk. The content of unsaturated fatty acid increased slightly in L and H groups. Following the incubation period, the physical characteristics and blood biochemical indices of chicks were evaluated. It was observed that the shank color of chicks in the L and H groups was significantly higher than that in the C group at birth. However, by the 35th day, there were no significant differences in shank color among the three groups. Further investigation into the metabolic mechanism involving canthaxanthin revealed that the substance underwent incomplete metabolism upon entering the body, resulting in its accumulation as well as metabolic by-product accumulation in the yolk. In summary, this study highlighted the importance of understanding canthaxanthin's role in production performance, egg quality, and offspring health, providing valuable insights for breeders to optimize feeding strategies.
Collapse
Affiliation(s)
| | | | | | | | - Guiyun Xu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (Z.M.); (J.Z.); (C.S.)
| |
Collapse
|
10
|
Elshafey AE, Khalafalla MM, Zaid AAA, Mohamed RA, Abdel-Rahim MM. Source diversity of Artemia enrichment boosts goldfish (Carassius auratus) performance, β-carotene content, pigmentation, immune-physiological and transcriptomic responses. Sci Rep 2023; 13:21801. [PMID: 38065998 PMCID: PMC10709595 DOI: 10.1038/s41598-023-48621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to assess the impact of spirulina and/or canthaxanthin-enriched Artemia on the goldfish (Carassius auratus) growth, pigmentation, blood analysis, immunity, intestine and liver histomorphology, and expression of somatolactin (SL) and growth hormone (GH) genes. Artemia was enriched with spirulina and/or canthaxanthin for 24 h. Goldfish (N = 225, 1.10 ± 0.02 g) were tested in five experimental treatments, three replicates each: (T1) fish fed a commercial diet; (T2) fish fed a commercial diet and un-enriched Artemia (UEA); (T3) fish fed a commercial diet and spirulina-enriched Artemia (SEA); (T4) fish fed a commercial diet and canthaxanthin-enriched Artemia (CEA); and (T5) fish fed a commercial diet and spirulina and canthaxanthin-enriched Artemia (SCA) for 90 days. The results showed that the use of spirulina and/or canthaxanthin increased performance, β-carotene content and polyunsaturated fatty acids of Artemia. For goldfish, T5 showed the highest growth performance, β-carotene concentration and the lowest chromatic deformity. T5 also showed improved hematology profile, serum biochemical, and immunological parameters. Histomorphology of the intestine revealed an increase in villi length and goblet cells number in the anterior and middle intestine, with normal liver structure in T5. SL and GH gene expression in the liver and brain differed significantly among treatments with a significant increase in enriched Artemia treatments compared to T1 and T2. In conclusion, the use of spirulina and/or canthaxanthin improved performance of Artemia. Feeding goldfish spirulina and/or canthaxanthin-enriched Artemia improved performance, β-carotene content, pigmentation, health status and immune-physiological response.
Collapse
Affiliation(s)
- Ahmed E Elshafey
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Malik M Khalafalla
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Attia A Abou Zaid
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | | |
Collapse
|
11
|
Blanco G, Hornero-Méndez D. Interspecific differences in plasma carotenoid profiles in nestlings of three sympatric vulture species. Curr Zool 2023; 69:658-669. [PMID: 37876644 PMCID: PMC10591145 DOI: 10.1093/cz/zoac090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 10/26/2023] Open
Abstract
Carotenoids are diet-based micronutrients important in health and coloration signaling. Related species with similar diets can differ in the kinds and levels of circulating carotenoids, which suggests specific physiological mechanisms to efficiently utilize these micronutrients, regardless of their availability. We explored whether diet and parental provisioning of unusual sources of carotenoids (fresh vegetal matter and vertebrate feces) can explain the occurrence and concentrations of carotenoids in the cinereous vulture Aegypius monachus, griffon vulture Gyps fulvus, and Egyptian vulture Neophron percnopterus nestlings, even when these pigments appear to not be deposited in their integumentary system. A greater diversity of wild prey in diet could be behind the profile of higher concentrations of carotenoids in the Egyptian vulture, the species with carotenoid-dependent coloration during adulthood, while differences in diet composition between cinereous and griffon vultures do not translate to different carotenoid profiles. The carotenoid profile appears to not be related to the ingestion of unusual matter rich in these compounds, although the infrequent occurrence of lycopene and unidentified γ-carotene-like compounds suggest that these vultures may be exploiting vegetal matter that left no identifiable unconsumed remains in the nest of Egyptian vultures. The consumption of green plant material by griffon vultures does not result in especially high levels of carotenoids when compared to the carotenoids found in cinereous vultures, which do not consume green plant material. Ungulate feces were not provisioned to Egyptian vulture nestlings, despite the fact they contain carotenoids that adults need for appropriate coloration. Overall, this study indicates that diet differences alone appear insufficient to explain contrasting interspecific carotenoid profiles, especially since all types of food consumed are considered to be poor in carotenoids, except vegetable matter. We suggest that nestling Egyptian vultures are comparatively efficient in uptaking carotenoids present in low concentrations in food when these compounds are not deposited in their integument, which suggests allocation to other functions.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Dámaso Hornero-Méndez
- Departament of Food Phytochemistry, Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
12
|
Lösel H, Brockelt J, Gärber F, Teipel J, Kuballa T, Seifert S, Fischer M. Comparative Analysis of LC-ESI-IM-qToF-MS and FT-NIR Spectroscopy Approaches for the Authentication of Organic and Conventional Eggs. Metabolites 2023; 13:882. [PMID: 37623826 PMCID: PMC10456441 DOI: 10.3390/metabo13080882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The importance of animal welfare and the organic production of chicken eggs has increased in the European Union in recent years. Legal regulation for organic husbandry makes the production of organic chicken eggs more expensive compared to conventional husbandry and thus increases the risk of food fraud. Therefore, the aim of this study was to develop a non-targeted lipidomic LC-ESI-IM-qToF-MS method based on 270 egg samples, which achieved a classification accuracy of 96.3%. Subsequently, surrogate minimal depth (SMD) was applied to select important variables identified as carotenoids and lipids based on their MS/MS spectra. The LC-MS results were compared with FT-NIR spectroscopy analysis as a low-resolution screening method and achieved 80.0% accuracy. Here, SMD selected parts of the spectrum which are associated with lipids and proteins. Furthermore, we used SMD for low-level data fusion to analyze relations between the variables of the LC-MS and the FT-NIR spectroscopy datasets. Thereby, lipid-associated bands of the FT-NIR spectrum were related to the identified lipids from the LC-MS analysis, demonstrating that FT-NIR spectroscopy partially provides similar information about the lipidome. In future applications, eggs can therefore be analyzed with FT-NIR spectroscopy to identify conspicuous samples that can subsequently be counter-tested by mass spectrometry.
Collapse
Affiliation(s)
- Henri Lösel
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (J.B.); (F.G.); (S.S.)
| | - Johannes Brockelt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (J.B.); (F.G.); (S.S.)
| | - Florian Gärber
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (J.B.); (F.G.); (S.S.)
| | - Jan Teipel
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany (T.K.)
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany (T.K.)
| | - Stephan Seifert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (J.B.); (F.G.); (S.S.)
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (J.B.); (F.G.); (S.S.)
| |
Collapse
|
13
|
Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J Fungi (Basel) 2023; 9:jof9050578. [PMID: 37233289 DOI: 10.3390/jof9050578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
14
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
15
|
Lioliopoulou S, Papadopoulos GA, Giannenas I, Vasilopoulou K, Squires C, Fortomaris P, Mantzouridou FT. Effects of Dietary Supplementation of Pomegranate Peel with Xylanase on Egg Quality and Antioxidant Parameters in Laying Hens. Antioxidants (Basel) 2023; 12:antiox12010208. [PMID: 36671069 PMCID: PMC9854943 DOI: 10.3390/antiox12010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate contains bioactive compounds in all its parts. In this study, two levels of pomegranate peel byproduct (PPB) with or without the inclusion of xylanase enzyme were used to supplement laying hens' diet, in a 2 × 2 full factorial design. A total of 48 Isa brown laying hens were fed the following experimental diets for 8 weeks: T1 (2.5% PPB); T2 (2.5% PPB and xylanase); T3 (5% PPB); T4 (5% PPB and xylanase). Eggs collected were analyzed for egg quality parameters. Moreover, egg yolks were analyzed for Malondialdehyde content (MDA), fatty acid profile and total phenolic content. The T2 eggs showed enhanced yolk coloration and greater yolk total phenolic content. The T3 and T4 egg yolks showed lower MDA levels compared with T1, T2. Overall, results have shown that (a) xylanase inclusion affected egg yolk coloration and total phenolic content when combined with 2.5% PPB dietary supplementation; (b) dietary supplementation of 5% PPB resulted in eggs with reduced MDA levels.
Collapse
Affiliation(s)
- Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: (S.L.); (G.A.P.)
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: (S.L.); (G.A.P.)
| | - Ilias Giannenas
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Konstantina Vasilopoulou
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Clare Squires
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Fortomaris
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Fani Th. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
16
|
Torpee S, Kantachote D, Sukhoom A, Tantirungkij M. Culture optimization to enhance carotenoid production of a selected purple nonsulfur bacterium and its activity against acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus. Biotechnol Appl Biochem 2022; 69:2422-2436. [PMID: 34841569 DOI: 10.1002/bab.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Purple nonsulfur bacteria (PNSB) were investigated for their carotenoid production and anti-vibrio activity against acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. To test carotenoid production, selected strains were cultivated in basic isolation medium (BIM), glutamate acetate medium, G5 medium and artificial acetic acid wastewater (AAW) medium. From 144 PNSB, Rhodopseudomonas palustris KTSSG46 was selected to produce carotenoids under microaerobic light conditions in BIM. When the culture medium was optimized, strain KTSSG46 grown in BIM modified with l-glutamate at 1 g/L more effectively inhibited AHPND-causing V. parahaemolyticus strains than standard BIM with 1 g/L (NH4 )2 SO4 . BIM was further modified with 1.23 g/L MgSO4 ·7H2 O and carotenoid production increased 40.22%. Carotenoid production at day 2 by strain KTSSG46 grown in BIM modified with l-glutamate at 1 and 1.23 g/L MgSO4 ·7H2 O was the same as production in BIM modified with monosodium glutamate (MSG). Culture supernatants from all BIM formulations showed similar activity against the resistant AHPND strain SR2. Based on high-performance liquid chromatography, carotenoids of strain KTSSG46 might be canthaxanthin. Grown in BIM modified with MSG, strain KTSSG46 could produce inexpensive carotenoids and release anti-vibrio compounds that, applied as shrimp feed additive, would prevent AHPND strains.
Collapse
Affiliation(s)
- Salwa Torpee
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Ampaitip Sukhoom
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Manee Tantirungkij
- Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
17
|
Zhou J, Guo J, Chen Q, Wang B, He X, Zhuge Q, Wang P. Different color regulation mechanism in willow barks determined using integrated metabolomics and transcriptomics analyses. BMC PLANT BIOLOGY 2022; 22:530. [PMID: 36380271 PMCID: PMC9664647 DOI: 10.1186/s12870-022-03909-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/25/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND The rich yellow-orange to vividly deep red bark of willow (Salix spp.) branches have high ornamental and economic value. However, the mechanism underlying the regulation of willow branch color remains unknown. Therefore, we performed metabolomics and transcriptomics analyses of purple, green, and red willow barks to elucidating the mechanisms regulating color development. RESULTS Seven anthocyanins were isolated; pelargonidin, petunidin 3-O-rutinoside, and cyanin chloride were the most abundant in red bark, whereas pelargonin chloride was most abundant in purple bark. The green bark contained the highest level of malvidin; however, the malvidin level was not significantly higher than in the red bark. The purple bark contained the largest amount of canthaxanthin, a carotenoid pigment. The integrated pathways of flavonoid biosynthesis, carotenoid biosynthesis, and porphyrin and chlorophyll metabolism were constructed for the willow barks. Among the three barks, the expression of the structural genes ANS, ANR, and BZ1, which are involved in anthocyanin synthesis, was the highest in red bark, likely causing anthocyanin accumulation. The expression of CrtZ, which participates in the carotenoid pathway, was the highest in purple bark, likely leading to canthaxanthin accumulation. The high expression of DVR, POR, and CRD1 may be associated with green pigment synthesis in the chlorophyll biosynthesis pathway. CONCLUSIONS Purple bark color is co-regulated by anthocyanins and carotenoids, whereas red bark is characterized by anthocyanin accumulation and chlorophyll degradation. The green pigment is regulated by maintaining chlorophyll synthesis. BZ1 and CrtZ are candidate genes regulating anthocyanin and canthaxanthin accumulation in red and purple barks respectively. Collectively, our results may facilitate the genetic breeding and cultivation of colorful willows with improved color and luster.
Collapse
Affiliation(s)
- Jie Zhou
- Jiangsu Academy of Forestry, Nanjing city, China.
| | - Jiahui Guo
- Nanjing Forestry University, Nanjing city, China
| | | | - Baosong Wang
- Jiangsu Academy of Forestry, Nanjing city, China
| | - Xudong He
- Jiangsu Academy of Forestry, Nanjing city, China
| | - Qiang Zhuge
- Nanjing Forestry University, Nanjing city, China
| | - Pu Wang
- Nanjing Forestry University, Nanjing city, China
| |
Collapse
|
18
|
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Mar Drugs 2022; 20:md20080524. [PMID: 36005527 PMCID: PMC9410494 DOI: 10.3390/md20080524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.
Collapse
|
19
|
Tan K, Zhang H, Zheng H. Carotenoid content and composition: A special focus on commercially important fish and shellfish. Crit Rev Food Sci Nutr 2022; 64:544-561. [PMID: 35930379 DOI: 10.1080/10408398.2022.2106937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids are natural pigments that provide many health benefits to living organisms. Although terrestrial plants are the major dietary source of carotenoids for humans, aquatic animals (especially fish and shellfish) are equally important because they are rich in certain important carotenoids lacking in fruits and vegetables. Although extensive research has focused on exploring the carotenoid content and composition in fish and shellfish, this information is poorly organized. This paper reviews the scientific evidence for the carotenoid content and composition in fish and shellfish. It makes serious attempts to summarize the relevant data published on specific research questions in order to improve the understanding of various evidence to clarify the research status of carotenoids in fish and shellfish and defining topics for future studies. From the analysis of published data, it is obvious that most fish and shellfish are rich in complex carotenoids (e.g. astaxanthin, fucoxanthin, fucoxanthinol, lutein). These carotenoids have stronger antioxidant effect, higher efficiency in removing the singlet oxygen and the peroxyl radicals, and have a variety of health benefits. Carotenoid levels in fish and shellfish depend on genotype, climatic conditions of the production area, storage and cooking methods. However, the information of the bioavailability of fish/shellfish carotenoids to human is very limited, which hinders the actual contributions to health. The findings of this study can be used as a guide to select appropriate fish and shellfish as dietary sources of carotenoids, and provide information about potential fish and shellfish species for aquaculture to produce carotenoids to meet part of the growing demand for natural carotenoids.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
20
|
Xylanase Supplementation in Wheat-Based Diets of Laying Hens Affects the Egg Yolk Color, Carotenoid and Fatty Acid Profiles. Foods 2022; 11:foods11152209. [PMID: 35892794 PMCID: PMC9331567 DOI: 10.3390/foods11152209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat is rich in non-starch polysaccharides (NSP) and their degradation in poultry diets is promoted by exogenous carbohydrases. The objective here was to evaluate the effect of adding an intrinsically thermostable xylanase on wheat-based diets for laying hens in yolk color, carotenoid and fatty acid profiles of eggs. A total of 128 laying hens were used for 12 weeks. They were randomly allocated to four dietary treatments with different levels of xylanase: T1: control (no xylanase), T2: 30,000 U/g, T3: 45,000 U/g and T4: 90,000 U/g, with 32 birds, 16 replicates per treatment (2 birds/replicate). At the end of the experimental period, egg yolk color index, redness (a*) and yellowness (b*) of egg yolks were found significantly higher in all the enzyme supplemented diet groups (T2, T3, T4) compared with the control (T1). Canthaxanthin levels were significantly higher in T3 than T1 (p < 0.05). Total n-3, n-6 and total polyunsaturated fatty acids (FAs) were significantly higher in T4 compared with the control (p < 0.01), while the reverse trend was evidenced for monounsaturated FAs. Additionally, total n-3 FAs were higher in the T2 than T1 (p < 0.005). Overall, the results showed that exogenous xylanase enzyme supplementation in wheat-based diets for laying hens contribute to maintaining egg yolk color. Overall, exogenous xylanase enzyme supplemented at all levels in wheat-based laying hens’ diets improved egg yolk color compared to the control diet. The enzyme supplemented at the higher level (90,000 U/g) improved polyunsaturated and reduced monounsaturated egg yolk fatty acid content.
Collapse
|
21
|
Li J, Xian L, Zheng R, Wang Y, Wan X, Liu Y. Canthaxanthin shows anti-liver aging and anti-liver fibrosis effects by down-regulating inflammation and oxidative stress in vivo and in vitro. Int Immunopharmacol 2022; 110:108942. [PMID: 35810489 DOI: 10.1016/j.intimp.2022.108942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
The elderly population is growing rapidly all over the world. The aging population has brought great medical pressure to the society. It is found that aging is one of the pathogenic factors of liver fibrosis and liver cancer. Therefore, it is very important to explore functional foods with anti-aging, anti-fibrosis and anti-liver cancer effect. Therefore, in this work, we studied the potential effects of Canthaxanthin on liver aging, liver fibrosis and liver cancer. Firstly, we established the aging modelof liver cells by using H2O2. On this basis, the anti-aging effect of Canthaxanthin was analyzed, and the results showed that Canthaxanthin could significantly alleviate the aging of liver cells through Sa-β-Gal staining and analysis of the expression of aging related markers. In vivo, aged mice wereused as the animal model for studying the effect of anti-aging of Canthaxanthin. The results showed that Canthaxanthin could significantly alleviate the aging of liver in vivo. Further study show that Canthaxanthin may alleviatethe aging of liver cells by regulating SIRT6; Secondly, we evaluated the effect of Canthaxanthin on liver fibrosis. A model of liver fibrosis was established by CCl4. Masson and Sirius red staining showed that Canthaxanthin could significantly reduce the fibrosis area. Additionally, the level of liver inflammation was also reduced; Thirdly, the effect of Canthaxanthin on hepatoma cells has also been investigated. The resultsshowed that Canthaxanthin could promote the apoptosis of hepatoma cells in vivo and in vitro. To sum up, these results show that canthaxanthin can significantly alleviate liver aging and fibrosis, and Canthaxanthin can also promote the apoptosis of liver cancer cells, indicating that Canthaxanthin can be used as a potential drug or health food for the treatment of liveraging related diseases.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Lei Xian
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Yue Wang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Xiaoqiang Wan
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Ying Liu
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
22
|
Maswanna T, Maneeruttanarungroj C. Identification of major carotenoids from green alga Tetraspora sp. CU2551: partial purification and characterization of lutein, canthaxanthin, neochrome, and β-carotene. World J Microbiol Biotechnol 2022; 38:129. [PMID: 35689122 DOI: 10.1007/s11274-022-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The green algae Tetraspora sp. CU2551 was previously identified as a strain with high potential for biohydrogen production; however, its algal biomass characteristics changed from green to reddish orange within 43 days of biohydrogen production. The crude pigments were extracted, partially purified, and characterized by chemical determination. The present study focused on elucidating the carotenoid composition of the selected green alga Tetraspora sp. CU2551. The pigment extract was partially purified and fractionated using thin layer chromatography, and yielded two major and two minor carotenoid bands. The fractions were confirmed by high-performance liquid chromatography with a diode array detector (HPLC-DAD) before being identified and confirmed using Liquid Chromatograph-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS). The spectral data of these fractions revealed four sub-fractions of interest that were lutein, canthaxanthin, neochrome, and β-carotene, which had percentages in the crude extracts of 30.57%, 25.47%, 7.89%, and 0.71%, respectively. Lutein and canthaxanthin were found to be the major carotenoid pigments present. Our findings in this present study are the first reporting of Tetraspora sp. CU2551 as a potential alternate source for carotenoid pigment production.
Collapse
Affiliation(s)
- Thanaporn Maswanna
- Scientific Instruments Center, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand. .,Bioenergy Research Unit and Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
23
|
Carotenoid binding in Gloeobacteria rhodopsin provides insights into divergent evolution of xanthorhodopsin types. Commun Biol 2022; 5:512. [PMID: 35637261 PMCID: PMC9151804 DOI: 10.1038/s42003-022-03429-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
The position of carotenoid in xanthorhodopsin has been elucidated. However, a challenging expression of this opsin and a complex biosynthesis carotenoid in the laboratory hold back the insightful study of this rhodopsin. Here, we demonstrated co-expression of the xanthorhodopsin type isolated from Gloeobacter violaceus PCC 7421-Gloeobacter rhodopsin (GR) with a biosynthesized keto-carotenoid (canthaxanthin) targeting the carotenoid binding site. Direct mutation-induced changes in carotenoid-rhodopsin interaction revealed three crucial features: (1) carotenoid locked motif (CLM), (2) carotenoid aligned motif (CAM), and color tuning serines (CTS). Our single mutation results at 178 position (G178W) confirmed inhibition of carotenoid binding; however, the mutants showed better stability and proton pumping, which was also observed in the case of carotenoid binding characteristics. These effects demonstrated an adaptation of microbial rhodopsin that diverges from carotenoid harboring, along with expression in the dinoflagellate Pyrocystis lunula rhodopsin and the evolutionary substitution model. The study highlights a critical position of the carotenoid binding site, which significantly allows another protein engineering approach in the microbial rhodopsin family.
Collapse
|
24
|
Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). BIOLOGY 2022; 11:biology11060831. [PMID: 35741352 PMCID: PMC9220024 DOI: 10.3390/biology11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.
Collapse
|
25
|
Evaluation of a novel oleaginous filamentous green alga, Barranca yajiagengensis (Chlorophyta, Chaetophorales) for biomass, lipids and pigments production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Babich O, Sukhikh S, Larina V, Kalashnikova O, Kashirskikh E, Prosekov A, Noskova S, Ivanova S, Fendri I, Smaoui S, Abdelkafi S, Michaud P, Dolganyuk V. Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060780. [PMID: 35336662 PMCID: PMC8949465 DOI: 10.3390/plants11060780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1-2 h at the extraction temperature of 25-40 °C. A 30-50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Egor Kashirskikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
27
|
Grewal J, Woła̧cewicz M, Pyter W, Joshi N, Drewniak L, Pranaw K. Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front Microbiol 2022; 13:832918. [PMID: 35173704 PMCID: PMC8841802 DOI: 10.3389/fmicb.2022.832918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Colors with their attractive appeal have been an integral part of human lives and the easy cascade of chemical catalysis enables fast, bulk production of these synthetic colorants with low costs. However, the resulting hazardous impacts on the environment and human health has stimulated an interest in natural pigments as a safe and ecologically clean alternative. Amidst sources of natural producers, the microbes with their diversity, ease of all-season production and peculiar bioactivities are attractive entities for industrial production of these marketable natural colorants. Further, in line with circular bioeconomy and environmentally clean technologies, the use of agro-industrial wastes as feedstocks for carrying out the microbial transformations paves way for sustainable and cost-effective production of these valuable secondary metabolites with simultaneous waste management. The present review aims to comprehensively cover the current green workflow of microbial colorant production by encompassing the potency of waste feedstocks and fermentation technologies. The commercially important pigments viz. astaxanthin, prodigiosin, canthaxanthin, lycopene, and β-carotene produced by native and engineered bacterial, fungal, or yeast strains have been elaborately discussed with their versatile applications in food, pharmaceuticals, textiles, cosmetics, etc. The limitations and their economic viability to meet the future market demands have been envisaged. The most recent advances in various molecular approaches to develop engineered microbiological systems for enhanced pigment production have been included to provide new perspectives to this burgeoning field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Silva MM, Reboredo FH, Lidon FC. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects. Foods 2022; 11:379. [PMID: 35159529 PMCID: PMC8834239 DOI: 10.3390/foods11030379] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Colour is one of the most relevant organoleptic attributes that directly affects consumers' acceptance and food selection. However, as food colouring pigments are generally unstable and become modified during processing, in order to maintain or restore product colour uniformity, colourants are added to food products around the world. In this context, although they are still widely used, synthetic food colorants, due to their potential hazards, are being replaced by those obtained from natural origins. Indeed, numerous side effects and toxicities, at both the medium and long-terms-namely allergic reactions, and behavioral and neurocognitive effects-have been related to the use of synthetic colourants, whereas their naturally-derived counterparts seem to provide a somewhat high-quality and effective contribution as a health promoter. In order to further understand the implications of the use of synthetic and naturally derived food colourants, this review aims to provide a synoptical approach to the chemical characteristics, properties, uses and side effects on health of those which are currently allowed and applied during food processing.
Collapse
Affiliation(s)
| | - Fernando Henrique Reboredo
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.H.R.); (F.C.L.)
| | - Fernando Cebola Lidon
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.H.R.); (F.C.L.)
| |
Collapse
|
29
|
Castangia I, Manca ML, Razavi SH, Nácher A, Díez-Sales O, Peris JE, Allaw M, Terencio MC, Usach I, Manconi M. Canthaxanthin Biofabrication, Loading in Green Phospholipid Vesicles and Evaluation of In Vitro Protection of Cells and Promotion of Their Monolayer Regeneration. Biomedicines 2022; 10:biomedicines10010157. [PMID: 35052836 PMCID: PMC8773935 DOI: 10.3390/biomedicines10010157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, canthaxanthin was produced by biofermentation from Dietzia natronolimnaea HS-1 (D. natronolimnaea) and was loaded in phospholipid vesicles prepared with natural component using an easy and low dissipative method. Indeed, glycerosomes, hyalurosomes, and glycerohyalurosomes were prepared by direct hydration of both phosphatidylcholine and the biotechnological canthaxanthin, avoiding the use of organic solvents. Vesicles were sized from 63 nm to 87 nm and highly negatively charged. They entrapped a high number of the biomolecules and were stable on storage. Canthaxanthin-loaded vesicles incubated with fibroblasts did not affect their viability, proving to be highly biocompatible and capable of inhibiting the death of fibroblasts stressed with hydrogen peroxide. They reduced the nitric oxide expression in macrophages treated with lipopolysaccharides. Moreover, they favoured the cell migration in an in vitro lesion model. Results confirmed the health-promoting potential of canthaxanthin in skin cells, which is potentiated by its suitable loading in phospholipid vesicles, thus suggesting the possible use of these natural bioformulations in both skin protection and regeneration, thanks to the potent antioxidant, anti-inflammatory and antiageing effects of canthaxanthin.
Collapse
Affiliation(s)
- Ines Castangia
- Department Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
| | - Maria Letizia Manca
- Department Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
- Correspondence: ; Tel.: +39-07-0675-8582
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran;
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, 46100 Valencia, Spain; (A.N.); (O.D.-S.); (J.E.P.); (M.C.T.); (I.U.)
| | - Octavio Díez-Sales
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, 46100 Valencia, Spain; (A.N.); (O.D.-S.); (J.E.P.); (M.C.T.); (I.U.)
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, 46100 Valencia, Spain; (A.N.); (O.D.-S.); (J.E.P.); (M.C.T.); (I.U.)
| | - Mohamad Allaw
- Department Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
| | - Maria Carmen Terencio
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, 46100 Valencia, Spain; (A.N.); (O.D.-S.); (J.E.P.); (M.C.T.); (I.U.)
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, 46100 Valencia, Spain; (A.N.); (O.D.-S.); (J.E.P.); (M.C.T.); (I.U.)
| | - Maria Manconi
- Department Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
| |
Collapse
|
30
|
Bhalothia SK, Mehta JS, Kumar T, Prakash C, Talluri TR, Pal RS, Kumar A. Melatonin and canthaxanthin enhances sperm viability and protect ram spermatozoa from oxidative stress during liquid storage at 4°C. Andrologia 2021; 54:e14304. [PMID: 34773278 DOI: 10.1111/and.14304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Antioxidants are used to minimize oxidative stress during liquid semen storage. The main aim of current study was to elucidate effect of supplementing melatonin and canthaxanthin in Tris-based extender could enhance seminal quality of ram at 4°C up to 72 h. A total of 48 ejaculates were collected from breeding Magra rams (n = 8) and were preliminarily subjected for various macroscopic and microscopic semen evaluation tests. These ejaculates were pooled and divided into three equal aliquots. Two aliquots were diluted (1:10) using extender encompassing final concentration of 1mM melatonin and 25 µM canthaxanthin and stored at 4°C. Third aliquot with extender only was kept as control. Structural and functional seminal changes were observed at different time points of preservation. Results revealed that mean values for progressive sperm motility, viability and total antioxidant capacity were significantly higher (p < 0.05) in melatonin group while hypo-osmotic swelling test was significantly (p < 0.05) higher in canthaxanthin group. Total sperm abnormalities and malondialdehyde levels were significantly (p < 0.05) lower in both treatment groups indicating their antioxidant efficacy in protection of spermatozoa from oxidative stress. Results of study indicated that supplementation of these antioxidants to ram semen could be used to enhance storage life of liquid semen at 4°C up to 72 h.
Collapse
Affiliation(s)
- Shivendra Kumar Bhalothia
- College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Jitendra Singh Mehta
- Department of Veterinary Gynaecology & Obstetrics, College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Tapendra Kumar
- College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Chandan Prakash
- Indian Council of Agricultural Research-Central Sheep & Wool Research Institute, Bikaner, India
| | - Thirumala Rao Talluri
- Indian Council of Agricultural Research-National Research Centre on Equine, Bikaner, India
| | - Rahul Singh Pal
- Department of Animal Nutrition, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Ashok Kumar
- Indian Council of Agricultural Research-Central Sheep & Wool Research Institute, Bikaner, India
| |
Collapse
|
31
|
Naz T, Yang J, Nosheen S, Sun C, Nazir Y, Mohamed H, Fazili ABA, Ullah S, Li S, Yang W, Garre V, Song Y. Genetic Modification of Mucor circinelloides for Canthaxanthin Production by Heterologous Expression of β-carotene Ketolase Gene. Front Nutr 2021; 8:756218. [PMID: 34722614 PMCID: PMC8548569 DOI: 10.3389/fnut.2021.756218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Canthaxanthin is a reddish-orange xanthophyll with strong antioxidant activity and higher bioavailability than carotenes, primarily used in food, cosmetics, aquaculture, and pharmaceutical industries. The spiking market for natural canthaxanthin promoted researchers toward genetic engineering of heterologous hosts for canthaxanthin production. Mucor circinelloides is a dimorphic fungus that produces β-carotene as the major carotenoid and is considered as a model organism for carotenogenic studies. In this study, canthaxanthin-producing M. circinelloides strain was developed by integrating the codon-optimized β-carotene ketolase gene (bkt) of the Haematococcus pluvialis into the genome of the fungus under the control of strong promoter zrt1. First, a basic plasmid was constructed to disrupt crgA gene, a negative regulator of carotene biosynthesis resulted in substantial β-carotene production, which served as the building block for canthaxanthin by further enzymatic reaction of the ketolase enzyme. The genetically engineered strain produced a significant amount (576 ± 28 μg/g) of canthaxanthin, which is the highest amount reported in Mucor to date. Moreover, the cell dry weight of the recombinant strain was also determined, producing up to more than 9.0 g/L, after 96 h. The mRNA expression level of bkt in the overexpressing strain was analyzed by RT-qPCR, which increased by 5.3-, 4.1-, and 3-folds at 24, 48, and 72 h, respectively, compared with the control strain. The canthaxanthin-producing M. circinelloides strain obtained in this study provided a basis for further improving the biotechnological production of canthaxanthin and suggested a useful approach for the construction of more valuable carotenoids, such as astaxanthin.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Caili Sun
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China.,Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Abu Bakr Ahmad Fazili
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China.,University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Victoriano Garre
- Departamento de Genética y Microbiología (Unidad asociada al Instituto de Química Física Rocasolano-Consejo Superior de Investigaciones Científicas (IQFR-CSIC)), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
32
|
Ahirwar A, Meignen G, Jahir Khan M, Sirotiya V, Scarsini M, Roux S, Marchand J, Schoefs B, Vinayak V. "Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review". BIORESOURCE TECHNOLOGY 2021; 340:125707. [PMID: 34371336 DOI: 10.1016/j.biortech.2021.125707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Haematococcus pluvialis is a green alga that can accumulate high astaxanthin content, a commercially demanding market keto food. Due to its high predicted market value of about 3.4 billion USD in 2027, it is essential to increase its production. Therefore, it is crucial to understand the genetic mechanism and gene expressions profile during astaxanthin synthesis. The effect of poly- and mono-chromatic light of different wavelengths and different intensities have shown to influence the gene expression towards astaxanthin production. This includes transcriptomic gene analysis in H. pluvialis underneath different levels of illumination stress. This review has placed the most recent data on the effects of light on bioastaxanthin production in the context of previous studies, which were more focused on the biochemical and physiological sides. Doing so, it contributes to delineate new ways along the biotechnological process with the aim to increase bioastaxanthin production while decreasing production costs.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India; Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molecules Santé, Molecules & Health (EA 2160), Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Gurvan Meignen
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India; Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molecules Santé, Molecules & Health (EA 2160), Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Matteo Scarsini
- Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molecules Santé, Molecules & Health (EA 2160), Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sylvain Roux
- BIO-CONCEPT Scientific, 12 rue de l'Europe, F-14220 Tournebu, France
| | - Justine Marchand
- Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molecules Santé, Molecules & Health (EA 2160), Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molecules Santé, Molecules & Health (EA 2160), Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
33
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Halophilic Carotenoids and Breast Cancer: From Salt Marshes to Biomedicine. Mar Drugs 2021; 19:md19110594. [PMID: 34822465 PMCID: PMC8625793 DOI: 10.3390/md19110594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression. Luminal tumors (ER/PR-positive/HER2-negative) are present in older patients with a better outcome. However, patients with HER2-positive or triple-negative breast cancer (TNBC) (ER/PR/HER2-negative) subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Therefore, new alternative therapies have become an urgent clinical need. In recent years, anticancer agents based on natural products have been receiving huge interest. In particular, carotenoids are natural compounds present in fruits and vegetables, but algae, bacteria, and archaea also produce them. The antioxidant properties of carotenoids have been studied during the last years due to their potential in preventing and treating multiple diseases, including cancer. Although the effect of carotenoids on breast cancer during in vitro and in vivo studies is promising, clinical trials are still inconclusive. The haloarchaeal carotenoid bacterioruberin holds great promise to the future of biomedicine due to its particular structure, and antioxidant activity. However, much work remains to be performed to draw firm conclusions. This review summarizes the current knowledge on pre-clinical and clinical analysis on the use of carotenoids as chemopreventive and chemotherapeutic agents in breast cancer, highlighting the most recent results regarding the use of bacterioruberin from haloarchaea.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence:
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Gloria Peiró
- Department of Pathology, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
34
|
Mussagy CU, Khan S, Kot AM. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit Rev Food Sci Nutr 2021; 62:6932-6946. [PMID: 33798005 DOI: 10.1080/10408398.2021.1908222] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial carotenoids have attracted rising interest from several industries as a sustainable alternative to substitute the synthetic ones. Traditionally, carotenoids available in the market are obtained by the chemical route using nonrenewable sources (petrochemicals), revealing the negative impact on the environment and consumers. The most promising developments in the upstream and downstream processes of microbial carotenoids are reviewed in this work. The use of agro-based raw materials for bioproduction, and alternative solvents such as biosolvents, deep eutectic solvents, and ionic liquids for the recovery/polishing of microbial carotenoids were also reviewed. The principal advances in the field, regarding the biorefinery and circular economy concepts, were also discussed for a better understanding of the current developments. This review provides comprehensive overview of the hot topics in the field besides an exhaustive analysis of the main advantages/drawbacks and opportunities regarding the implementation of microbial carotenoids in the market.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Anna Maria Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Carotenoids produced by the deep-sea bacterium Erythrobacter citreus LAMA 915: detection and proposal of their biosynthetic pathway. Folia Microbiol (Praha) 2021; 66:441-456. [PMID: 33723710 DOI: 10.1007/s12223-021-00858-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Technologies based on synthetic biology to produce bacterial natural carotenoids depend on information regarding their biosynthesis. Although the biosynthetic pathway of common carotenoids is known, there are carotenoids whose pathways are not completely described. This work aimed to mine the genome of the deep-sea bacterium Erythrobacter citreus LAMA 915, an uncommon bacterium that forms yellow colonies under cultivation. This work further explores the potential application of the carotenoids found and low-cost substrates for bacterial growth. A combined approach of genome mining and untargeted metabolomics analysis was applied. The carotenoid erythroxanthin sulfate was detected in E. citreus LAMA 915 cell extract. A proposal for carotenoid biosynthesis by this bacterium is provided, involving the genes crtBIYZWG. These are responsible for the biosynthesis of carotenoids from the zeaxanthin pathway and their 2,2'-hydroxylated derivatives. E. citreus LAMA 915 extracts showed antioxidant and sun protection effects. Based on the high content of proteases and lipases, it was possible to rationally select substrates for bacterial growth, with residual oil from fish processing the best low-cost substrate selected. This work advances in the understanding of carotenoid biosynthesis and provides a genetic basis that can be further explored as a biotechnological route for carotenoid production.
Collapse
|
36
|
Silva TRE, Silva LCF, de Queiroz AC, Alexandre Moreira MS, de Carvalho Fraga CA, de Menezes GCA, Rosa LH, Bicas J, de Oliveira VM, Duarte AWF. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 2021; 41:809-826. [PMID: 33622142 DOI: 10.1080/07388551.2021.1888068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pigments from microorganisms have triggered great interest in the market, mostly by their "natural" appeal, their favorable production conditions, in addition to the potential new chemical structures or naturally overproducing strains. They have been used in: food, feed, dairy, textile, pharmaceutical, and cosmetic industries. The high rate of pigment production in microorganisms recovered from Antarctica in response to selective pressures such as: high UV radiation, low temperatures, and freezing and thawing cycles makes this a unique biome which means that much of its biological heritage cannot be found elsewhere on the planet. This vast arsenal of pigmented molecules has different functions in bacteria and may exhibit different biotechnological activities, such as: extracellular sunscreens, photoprotective function, antimicrobial activity, biodegradability, etc. However, many challenges for the commercial use of these compounds have yet to be overcome, such as: the low stability of natural pigments in cosmetic formulations, the change in color when subjected to pH variations, the low yield and the high costs in their production. This review surveys the different types of natural pigments found in Antarctic bacteria, classifying them according to their chemical structure. Finally, we give an overview of the main pigments that are used commercially today.
Collapse
Affiliation(s)
- Tiago Rodrigues E Silva
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | | | | | | | | | | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Bicas
- Departamento de Ciência de Alimentos, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Valéria Maia de Oliveira
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | |
Collapse
|
37
|
Duskaev GK, Kvan OV, Rakhmatullin SG. Eucalyptus viminalis leaf extract alters the productivity and blood parameters of healthy broiler chickens. Vet World 2021; 13:2673-2680. [PMID: 33487986 PMCID: PMC7811550 DOI: 10.14202/vetworld.2020.2673-2680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim As an alternative to natural and chemically synthesized direct-acting bactericides, there has been an increase in the use of plant extracts, which possess a set of phytochemicals with potential for microbial disease control; this is due to the spectrum of secondary metabolites present in extracts, which include phenolic compounds, quinones, flavonoids, alkaloids, terpenoids, and polyacetylenes. The biologically active substances within plant extracts, which perform protective functions for plant tissues, can have ambiguous effects on the animal body. Therefore, the aim of this study was to assess the ability of gamma-octalactone, isolated from Eucalyptus viminalis extract, to inhibit various LuxI/LuxR quorum-sensing (QS) systems in bacteria, and to evaluate its effect on broiler chickens. Materials and Methods Phytochemical analysis of E. viminalis extract was performed. The ability of gamma-octalactone to inhibit QS was evaluated using four different LuxI/LuxR bacterial test systems. In vivo assessments were performed on one hundred and twenty 7-day-old broiler chickens (Arbor Acres cross), split into four groups of 30 chickens: 1. Control group: Basic diet (BD); 2. experimental Group I: BD + gamma-octalactone at a dosage of 0.05 ml/kg live weight/day; 3. experimental Group II: BD + gamma-octalactone at a dosage of 0.1 ml/kg live weight/day; and 4. experimental Group III: BD + gamma-octalactone at a dosage of 0.2 ml/kg live weight/day. Hematological blood parameters were assessed using an automatic hematological analyzer (URIT-2900 Vet Plus, URIT Medial Electronic Co., China) and an automatic biochemical analyzer (CS-T240, Dirui Industrial Co., Ltd., China). Statistical analyses were performed using SPSS Statistics Version 20 (IBM); averages (M), standard deviations (σ), and standard deviation errors (m) were calculated. Results with p≤0.05 were considered significant. Results Based on the phytochemical analysis results, libraries of compounds with putative QS inhibitory properties were compiled. Gamma-octalactone exhibited a pronounced inhibitory effect on the LuxI/LuxR QS systems, characterized by EC50 values of 0.15-0.4 mM. In the in vivo portion of this study, broiler chicken live weights increased in all experimental groups, with the most significant increase in Group III (14.0%), in relation to the control group. Blood serum from the experimental group chickens had significantly higher levels of triglycerides and uric acid (p≤0.05), in comparison to the control group chickens. With respect to blood serum enzyme activity and antioxidant status indicators, the experimental group chickens had a higher level of gamma-glutamyl transferase, an enzyme associated with amino acid metabolism, than those in the control group; this increase was especially pronounced in Group III, with 37.0% increase (p≤0.05). Superoxide dismutase and catalase levels were higher in the experimental groups than the control group, corresponding to increases of 30.4-56.2% (p≤0.05), 33.3-83.3%, and 27.9-45.5% (p≤0.05) in Groups I, II, and III (p≤0.05), respectively. Morphological blood parameters did not display significant changes due to gamma-octalactone. Conclusion According to the results of this in vivo study in broiler chickens, gamma-octalactone, isolated from E. viminalis leaf extract and supplied at a dosage of 0.2 ml/kg live weight/day, led to an increase in the activity of blood plasma digestive enzymes, increased live weight, and had a positive effect on lipid metabolism and antioxidant status.
Collapse
Affiliation(s)
- G K Duskaev
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| | - O V Kvan
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| | - Sh G Rakhmatullin
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| |
Collapse
|
38
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
39
|
Ji Q, Shi S, Guo S, Zhan Y, Zhang H, Chen Y, An H. Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J 2020; 34:13430-13444. [PMID: 32812278 DOI: 10.1096/fj.202000443rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
Abstract
Transmembrane 16A (TMEM16A), also known as anoctamin 1, is the molecular basis of the calcium-activated chloride channels. TMEM16A is present in interstitial cells of Cajal, which are the pacemaker cells that control smooth muscle contraction. TMEM16A is implicated in gastrointestinal disorders. Activation of TMEM16A is believed to promote the gastrointestinal muscle contraction. Here, we report a highly efficient, nontoxic, and selective activator of TMEM16A, canthaxanthin (CX). The study using molecular docking and site-directed mutation revealed that CX-specific binging site in TMEM16A is K769. CX was also found to promote the contraction of smooth muscle cells in gastrointestinal tract through activation of TMEM16A channels, which provides an excellent basis for development of CX as a chemical tool and potential therapeutic for gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Hailin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
40
|
Rebelo BA, Farrona S, Ventura MR, Abranches R. Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1039. [PMID: 32824217 PMCID: PMC7463686 DOI: 10.3390/plants9081039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023]
Abstract
Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed.
Collapse
Affiliation(s)
- Bárbara A. Rebelo
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway, H19 TK33 Galway, Ireland;
| | - M. Rita Ventura
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| |
Collapse
|
41
|
Chen D, Wu M, Xie S, Li X, Tao Y, Wang X, Huang L, Pan Y, Peng D, Yuan Z. Determination of Tartrazine, Lutein, Capsanthin, Canthaxanthin and β-Carotene in Animal-Derived Foods and Feeds by HPLC Method. J Chromatogr Sci 2019; 57:462-468. [PMID: 30926998 DOI: 10.1093/chromsci/bmz019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 11/12/2022]
Abstract
Pigments are still widely used in food and feed industry and their resides in food might be harmful to human health due to their side effects. A high performance liquid chromatography (HPLC) method for simultaneous determination of pigments including tartrazine, lutein, capsanthin, canthaxanthin and β-carotene in animal-derived foods (including the muscle and liver of swine, the muscle, liver and skin of chicken and duck, and the muscle of fish) and feeds (swine, chicken and duck) was developed. Lutein, capsanthin, canthaxanthin and β-carotene were extracted with acetonitrile-ethyl acetate by ultrasonication, and tartrazine was extracted with water, followed by defatting with n-hexane and clean-up by solid phase extraction on weak anion exchange cartridges. The quantitation of the five pigments was performed by HPLC with ultraviolet and visible spectrophotometer detection. Chromatographic separations were performed on a C8 column with gradient elution. The mean recoveries of analytes ranged from 80.4 to 92.5%. The intra- and the inter-day variabilities were below 15.0%. This HPLC method was suitable for the routine determination of pigment residues in animal-derived foods and feeds.
Collapse
Affiliation(s)
- Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Mengru Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Xueqin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
42
|
|
43
|
Najafi L, Halvaei I, Movahedin M. Canthaxanthin protects human sperm parameters during cryopreservation. Andrologia 2019; 51:e13389. [PMID: 31402476 DOI: 10.1111/and.13389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/16/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
Different antioxidants have been introduced to reduce oxidative stress during the cryopreservation. The main goal of this study was to evaluate the effects of canthaxanthin on human sperm parameters during the freeze-thaw process. This study was performed on 25 normozoospermic semen samples dividing into five groups including 0, 0.1, 1, 10, and 25 µM of canthaxanthin. The prepared spermatozoa were cryopreserved by rapid freezing technique. Sperm motility, viability (eosin-nigrosin), morphology (Papanicolaou), acrosome reaction (double staining), DNA denaturation (acridine orange), chromatin packaging (aniline blue and toluidine blue), and DNA fragmentation (sperm chromatin dispersion test) were evaluated before freezing and after thawing. All sperm parameters after thawing significantly were decreased compared to before freezing. Twenty-five micromolar canthaxanthin could significantly improve the progressive and total motility, viability, normal morphology, chromatin packaging, acrosome integrity and DNA denaturation and fragmentation. Ten micromolar canthaxanthin significantly improved total motility, viability, normal morphology, chromatin packaging, acrosome integrity and DNA denaturation and fragmentation. Whereas, in 1 µM group, there were significant differences only in improvement of acrosome integrity, chromatin packaging (toluidine blue) and DNA denaturation and fragmentation. But, in 0.1 µM group, there were no significant differences in any of measured parameters. It seems that canthaxanthin ameliorates detrimental effects of cryopreservation on human sperm parameters.
Collapse
Affiliation(s)
- Leila Najafi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
44
|
Elia AC, Prearo M, Dörr AJM, Pacini N, Magara G, Brizio P, Gasco L, Abete MC. Effects of astaxanthin and canthaxanthin on oxidative stress biomarkers in rainbow trout. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:760-768. [PMID: 31370749 DOI: 10.1080/15287394.2019.1648346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Farmed trout are commonly fed carotenoid-enriched diets during the finishing period to acquire typical red-to-pink flesh color in salmonid muscle. The aim of this study was to examine the effects of two xanthophylls, astaxanthin (Ax) or canthaxanthin (Cx), administered individually or in combination, on oxidative stress biomarkers in kidney and liver of rainbow trout. Specimens were fed Ax (75 mg/kg) or Cx (25 mg/kg) individually or in combination in the diets for 8 weeks. Changes in concentration of oxidative stress biomarkers, including total glutathione, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, were recorded in Ax- and Cx-dosed trout. These two carotenoids, predominantly Cx, initiated enzymatic responses in rainbow trout. It is noteworthy that lipid peroxidation processes were not apparent in all Ax or Cx-dosed trout. Further, both combined xanthophylls did not exert significant synergistic effects in liver and kidney. Biomarker responses were generally altered in both tissues through the 4 and 8 weeks suggesting that different time-dependent mechanisms led to enhanced antioxidant defense in Ax and/or Cx-fed trout. Data demonstrated that these two xanthophylls did not exert detrimental effects on rainbow trout.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Marino Prearo
- Veterinary Medical Research Institute for Piedmont , Torino , Italy
| | | | - Nicole Pacini
- Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Paola Brizio
- Veterinary Medical Research Institute for Piedmont , Torino , Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino , Grugliasco , Italy
| | | |
Collapse
|
45
|
Newberry C, Lynch K. The role of diet in the development and management of gastroesophageal reflux disease: why we feel the burn. J Thorac Dis 2019; 11:S1594-S1601. [PMID: 31489226 DOI: 10.21037/jtd.2019.06.42] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gastroesophageal reflux disease (GERD) is a common esophageal disorder that is characterized by troublesome symptoms associated with increased esophageal acid exposure. Cornerstones of therapy include acid suppressive agents like proton pump inhibitors (PPI) and lifestyle modifications including dietary therapy, although the latter is not well defined. As concerns regarding long term PPI use continue to be explored, patients and providers are becoming increasingly interested in the role of diet in disease management. The following is a review of dietary therapy for GERD with an emphasis on the effect food components have on pathophysiology and management. Although sequential dietary elimination of food groups is common, literature supports broader manipulation including reduction of overall sugar intake, increase in dietary fiber, and changes in overall eating practices.
Collapse
Affiliation(s)
- Carolyn Newberry
- Division of Gastroenterology, Weill Cornell Medical Center, New York, NY, USA
| | - Kristle Lynch
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
46
|
Bohn T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants (Basel) 2019; 8:E179. [PMID: 31213029 PMCID: PMC6616644 DOI: 10.3390/antiox8060179] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/08/2023] Open
Abstract
Carotenoids include C30, C40 and C50 terpenoid-based molecules, many of which constitute coloured pigments. However, >1100 of these are known to occur in nature and only about a dozen are known to play a role in our daily diet. Carotenoids have received much attention due to their proposed health benefits, including reducing the incidence of chronic diseases, such as cardiovascular disease and diabetes. Many of these diseases are characterized by chronic inflammation co-occurring with oxidative stress, characterized by, for example, enhanced plasma F2-isoprostane concentrations, malondialdehyde, and 8-hydroxyguanosine. Though carotenoids can act as direct antioxidants, quenching, for example, singlet oxygen and peroxide radicals, an important biological function appears to rest also in the activation of the body's own antioxidant defence system, related to superoxide-dismutase, catalase, and glutathione-peroxidase expression, likely due to the interaction with transcription factors, such as nuclear-factor erythroid 2-related factor 2 (Nrf-2). Though mostly based on small-scale and observational studies which do not allow for drawing conclusions regarding causality, several supplementation trials with isolated carotenoids or food items suggest positive health effects. However, negative effects have also been reported, especially regarding beta-carotene for smokers. This review is aimed at summarizing the results from human observational studies/intervention trials targeting carotenoids in relation to chronic diseases characterized by oxidative stress and markers thereof.
Collapse
Affiliation(s)
- Torsten Bohn
- Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.
| |
Collapse
|
47
|
Rauytanapanit M, Janchot K, Kusolkumbot P, Sirisattha S, Waditee-Sirisattha R, Praneenararat T. Nutrient Deprivation-Associated Changes in Green Microalga Coelastrum sp. TISTR 9501RE Enhanced Potent Antioxidant Carotenoids. Mar Drugs 2019; 17:E328. [PMID: 31159386 PMCID: PMC6627699 DOI: 10.3390/md17060328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
The utilization of microalgae as a source of carotenoid productions has gained increasing popularity due to its advantages, such as a relatively fast turnaround time. In this study, a newly discovered Coelastrum sp. TISTR 9501RE was characterized and investigated for its taxonomical identity and carotenoid profile. To the best of our knowledge, this report was the first to fully investigate the carotenoid profiles in a microalga of the genus Coelastrum. Upon use of limited nutrients as a stress condition, the strain was able to produce astaxanthin, canthaxanthin, and lutein, as the major carotenoid components. Additionally, the carotenoid esters were found to be all astaxanthin derivatives, and β-carotene was not significantly present under this stress condition. Importantly, we also demonstrated that this practical stress condition could be combined with simple growing factors, such as ambient sunlight and temperature, to achieve even more focused carotenoid profiles, i.e., increased overall amounts of the aforementioned carotenoids with fewer minor components and chlorophylls. In addition, this green microalga was capable of tolerating a wide range of salinity. Therefore, this study paved the way for more investigations and developments on this fascinating strain, which will be reported in due course.
Collapse
Affiliation(s)
- Monrawat Rauytanapanit
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Kantima Janchot
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Pokchut Kusolkumbot
- Thailand Institute of Scientific and Technological Research (TISTR), Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sophon Sirisattha
- Thailand Institute of Scientific and Technological Research (TISTR), Khlong Luang, Pathum Thani 12120, Thailand.
| | - Rungaroon Waditee-Sirisattha
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
48
|
Cezare-Gomes EA, Mejia-da-Silva LDC, Pérez-Mora LS, Matsudo MC, Ferreira-Camargo LS, Singh AK, de Carvalho JCM. Potential of Microalgae Carotenoids for Industrial Application. Appl Biochem Biotechnol 2019; 188:602-634. [PMID: 30613862 DOI: 10.1007/s12010-018-02945-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Microalgae cultivation, when compared to the growth of higher plants, presents many advantages such as faster growth, higher biomass productivity, and smaller land area requirement for cultivation. For this reason, microalgae are an alternative platform for carotenoid production when compared to the traditional sources. Currently, commercial microalgae production is not well developed but, fortunately, there are several studies aiming to make the large-scale production feasible by, for example, employing different cultivation systems. This review focuses on the main carotenoids from microalgae, comparing them to the traditional sources, as well as a critical analysis about different microalgae cultivation regimes that are currently available and applicable for carotenoid accumulation. Throughout this review paper, we present relevant information about the main commercial microalgae carotenoid producers; the comparison between carotenoid content from food, vegetables, fruits, and microalgae; and the great importance and impact of these molecule applications, such as in food (nutraceuticals and functional foods), cosmetics and pharmaceutical industries, feed (colorants and additives), and healthcare area. Lastly, the different operating systems applied to these photosynthetic cultivations are critically discussed, and conclusions and perspectives are made concerning the best operating system for acquiring high cell densities and, consequently, high carotenoid accumulation.
Collapse
Affiliation(s)
- Eleane A Cezare-Gomes
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Lauris Del Carmen Mejia-da-Silva
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Lina S Pérez-Mora
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Marcelo C Matsudo
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, MG, 37500-903, Brazil
| | - Lívia S Ferreira-Camargo
- Center of Natural and Human Sciences, Federal University of ABC, R. Abolição, s/n° - Vila São Pedro, Santo André, SP, 09210-180, Brazil
| | - Anil Kumar Singh
- Department of Pharmacy, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - João Carlos Monteiro de Carvalho
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
49
|
Alonso-Alvarez C, García-de Blas E, Mateo R. Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges. ACTA ACUST UNITED AC 2018; 221:jeb.185074. [PMID: 30224370 DOI: 10.1242/jeb.185074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Carotenoids give color to conspicuous animal signals that are often the product of sexual selection. Knowledge of the mechanisms involved in carotenoid-based signaling is critical to understanding how these traits evolve. However, these mechanisms remain only partially understood. Carotenoids are usually viewed as scarce dietary antioxidants whose allocation to ornaments may trade off against health. This trade-off would ensure its reliability as a signal of individual quality. In the case of red (keto)carotenoids, the literature suggests that some species may show constraints in their uptake. Canthaxanthin is one of the most common ketocarotenoids in red ornaments of animals. It is often commercially used as a dietary supplement to obtain redder birds (e.g. poultry). We increased the dietary canthaxanthin levels in captive red-legged partridges (Alectoris rufa). This species shows red non-feathered parts mostly pigmented by another common ketocarotenoid: astaxanthin. We studied the impact on the uptake of carotenoids and vitamins and, finally, on coloration. We also tested the potential protective effect of canthaxanthin when exposing birds to a free radical generator (diquat). Canthaxanthin did not apparently protect birds from oxidative stress, but interfered with the absorption of yellow carotenoids (lutein and zeaxanthin). Zeaxanthin is a precursor of astaxanthin in enzymatic pathways, and their levels in tissues and eggs were lower in canthaxanthin-supplied birds. This led to lower astaxanthin levels in ornaments and paler coloration. As far as we know, this is the first report of a carotenoid supplementation decreasing animal coloration. The results have implications for understanding carotenoid-based signaling evolution, but also for improving husbandry/experimental procedures.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales - CSIC, Dpto Ecología Evolutiva, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Esther García-de Blas
- Wildlife Toxicology Group, Instituto de Investigación en Recursos Cinegéticos (IREC, UCLM, CSIC), Ronda de Toledo sn, 13007 Ciudad Real, Spain
| | - Rafael Mateo
- Wildlife Toxicology Group, Instituto de Investigación en Recursos Cinegéticos (IREC, UCLM, CSIC), Ronda de Toledo sn, 13007 Ciudad Real, Spain
| |
Collapse
|
50
|
Asker D. High throughput screening and profiling of high-value carotenoids from a wide diversity of bacteria in surface seawater. Food Chem 2018; 261:103-111. [DOI: 10.1016/j.foodchem.2018.03.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/14/2022]
|