1
|
Zhong L, Hodgson JM, Lewis JR, Blekkenhorst LC, Bondonno NP, Sim M, Woodman RJ, Bondonno CP. Nitrate and nitrite food composition database: an update and extensive deep dive. Am J Clin Nutr 2025; 121:1124-1136. [PMID: 40318878 DOI: 10.1016/j.ajcnut.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Growing evidence suggests that health outcomes of dietary nitrate and nitrite intake are food source dependent. Robust evaluations in dietary studies necessitate a comprehensive and current food composition database of nitrate/nitrite content, along with variation based on country or region of origin, calendar year, growing season, and cooking method. OBJECTIVES The objectives of this study were to update the previous animal- and plant-based food nitrate/nitrite databases and investigate effects of cooking methods, seasonal and geographic variations, and longitudinal changes on nitrate and nitrite content to guide application of the database in observational and clinical studies. METHODS Food nitrate/nitrite composition data was acquired from an extensive worldwide data collation. The animal- and plant-based food nitrate/nitrite databases were combined and substantially expanded. An in-depth data stratification and comparison were performed to explore retention factors of nitrate/nitrite, seasonal differences in vegetable nitrate, geographic variations, and the temporal change in food nitrate/nitrite content over 30 years. RESULTS The aggregated database has >150,000 nitrate and nitrite values for 823 foods, being 5+ times their original size. Nitrite content in plant foods is presented for the first time, being ≤12.27 mg/kg of fresh weight. Retention factors of 55.00 (39.59-65.56) % (median (interquartile range)) and 279.53 (179.53-386.89) % are now suggested for boiled and fried plant foods, respectively, with a factor of 1.0 for other cooking methods. Significant seasonal variations in plant nitrate and geographic differences in both plant- and animal-based foods are identified, whereas several leafy vegetables show declining nitrate content over 30 years, and longitudinal changes in nitrate and nitrite in animal foods are minor. An objective language-model-assisted data extraction pipeline was established that accommodates regional differences in nitrate/nitrite data reporting. CONCLUSIONS The newly developed database and automated nitrate/nitrite calculator will facilitate future nutritional health studies to estimate dietary nitrate/nitrite exposure more accurately and efficiently and determine the resulting health implications.
Collapse
Affiliation(s)
- Liezhou Zhong
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Medical School, University of Western Australia, Royal Perth Hospital Unit, Perth, Western Australia, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Medical School, University of Western Australia, Royal Perth Hospital Unit, Perth, Western Australia, Australia; Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Medical School, University of Western Australia, Royal Perth Hospital Unit, Perth, Western Australia, Australia
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Danish Cancer Institute, Copenhagen, Denmark
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Medical School, University of Western Australia, Royal Perth Hospital Unit, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
d’Unienville NMA, Coates AM, Hill AM, Nelson MJ, Croft K, Yandell C, Buckley JD. Polyphenol-Rich Snack Consumption during Endurance Exercise Training Improves Nitric Oxide Bioavailability but does not Improve Exercise Performance in Male Cyclists: A Randomised Controlled Trial. Curr Dev Nutr 2025; 9:106006. [PMID: 40321836 PMCID: PMC12049943 DOI: 10.1016/j.cdnut.2025.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 05/08/2025] Open
Abstract
Background Antioxidants and nitric oxide (NO) precursors may improve endurance exercise performance by reducing oxidative stress and increasing NO production. Almonds, dried grapes, and cranberries (AGC) are good sources of antioxidants and NO precursors. Objectives To determine whether AGC consumption improved physiological responses and endurance cycling time-trial performance in response to training. Methods After 1 wk of light training (LT), 96 male recreationally trained cyclists consumed 125 g of AGC or control (CON: isocaloric oat bar) daily during 2 wk of heavy training (HT) and a 2-wk taper (T). At the end of LT, HT, and T, endurance exercise performance (5-min cycling time-trial; 5CTT), NO bioavailability (plasma and urine nitrate and nitrite), oxidative stress [plasma F2-isoprostanes (F2-Isop)], muscle damage (creatine kinase) and subjective measures of wellbeing were assessed, as well as physiological responses during exercise at 70% maximal aerobic power output. Results Compared to LT, 5CTT performance was impaired at HT (d = -0.27, P = 0.01) and improved at T (d = 0.79, P < 0.001), with no difference between treatments (P > 0.81). Compared with CON, during submaximal exercise at 70%, maximal aerobic power output AGC demonstrated higher oxygen consumption (HT: d = 0.46; T: d = 0.38, P < 0.001) and lower respiratory exchange ratio (HT: d = -0.61; T: d = -0.23, P < 0.032). At HT, urine F2-Isop was higher compared with LT (d = 0.21, P = 0.036), but plasma F2-Isop was lower (d = -0.22, P = 0.008), with no difference between treatments. At HT, AGC had higher subjective energy concentrations (d = 0.21, P = 0.02) and urinary nitrite (d = 0.23, P = 0.03) compared with CON and higher creatine kinase (d = 0.24, P = 0.02) and less fatigue (d = -0.20; P = 0.05) at T. Conclusions Although not beneficial for 5CTT performance or exercise efficiency, AGC increases fat oxidation during exercise, NO bioavailability, and subjective energy concentrations, which may confer benefits for health and wellbeing.This trial was registered at www.anzctr.org.au as ACTRN12618000360213.
Collapse
Affiliation(s)
- Noah Marc Adrian d’Unienville
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Kevin Croft
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth, Australia
| | - Catherine Yandell
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Rajendra A, Bondonno NP, Murray K, Zhong L, Rainey-Smith SR, Gardener SL, Blekkenhorst LC, Doré V, Villemagne VL, Laws SM, Brown BM, Taddei K, Masters CL, Rowe CC, Martins RN, Hodgson JM, Bondonno CP. Baseline habitual dietary nitrate intake and Alzheimer's Disease related neuroimaging biomarkers in the Australian Imaging, Biomarkers and Lifestyle study of ageing. J Prev Alzheimers Dis 2025:100161. [PMID: 40221237 DOI: 10.1016/j.tjpad.2025.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/27/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Dietary nitrate, as a nitric oxide (NO) precursor, may support brain health and protect against dementia. OBJECTIVE Our primary aim was to investigate whether dietary nitrate is associated with neuroimaging markers of brain health linked with Alzheimer's disease (AD). PARTICIPANTS Study participants were cognitively unimpaired individuals from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) who had β-amyloid positron emission tomography (PET) scans (n = 554) and magnetic resonance imaging (MRI) scans (n = 335) and had completed a Food Frequency Questionnaire at baseline. METHODS Source-specific nitrate intakes were estimated using comprehensive nitrate food composition databases. Rates of cerebral β-amyloid (Aβ) deposition, measured using PET, and rates of brain atrophy, measured using MRI, were assessed between baseline and 126-months follow-up, at intervals of 18 months. Multivariable-adjusted linear mixed effect models were used to examine associations between baseline source-specific nitrate intake and rates of (i) cerebral Aβ deposition and (ii) brain atrophy, over the 126 months of follow-up. Analyses were carried out following stratification of the sample by established dementia Alzheimer's disease (AD) risk factors including sex and presence or absence of the apolipoprotein E (APOE) ε4 allele. RESULTS In women carriers of the APOE ε4 allele, higher plant sourced nitrate intake (median intake 121 mg/day), was associated with a slower rate of cerebral Aβ deposition [β: 4.47 versus 8.99 Centiloid (CL) /18 months, p < 0.05] and right hippocampal atrophy [-0.01 versus -0.03 mm3 /18 months, p < 0.01], after multivariable adjustments. Moderate intake showed protective associations in men carriers and in both men and women non-carriers of APOE ε4. CONCLUSIONS Associations were observed between plant-derived nitrate intake and cerebral Aβ deposition, particularly in high-risk populations (women and APOE ε4 carriers). Associations were also observed for brain volume atrophy, however these exhibited subgroup variability without clear patterns relative to sex and APOE ε4 allele carriage. These findings suggest a potential link between plant-sourced nitrate and AD related neuroimaging markers of brain health improved brain health, but further validation in larger studies is required.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; The Danish Cancer Institute, Copenhagen, Denmark
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Liezhou Zhong
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; For a full list of the AIBL Research Group see aibl.org.au
| | - Vincent Doré
- Australian E-Health Research Centre, CSIRO, 351 Royal Parade, Parkville, Victoria, Australia; Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, Australia; Department of Psychiatry, University of Pittsburgh, Thomas Detre Hall, 3811 O'Hara Street, Pittsburgh, PA, USA; Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, Australia; Collaborative Genomics and Translation Group, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, Australia; Curtin Medical School, Curtin University, Kent Street, Bentley, Western Australia, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia; Collaborative Genomics and Translation Group, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, Australia; The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Mazahery H, Black LJ, Daly A, Banjac M, Bondonno CP, Zhong L, Blekkenhorst LC, Hodgson JM, Dunlop E. Higher dietary nitrate intake is associated with lower likelihood of first clinical diagnosis of central nervous system demyelination in Australian women. Mult Scler Relat Disord 2025; 96:106376. [PMID: 40068474 DOI: 10.1016/j.msard.2025.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Dietary nitrate is a precursor to nitric oxide, for which plausible mechanisms exist for both beneficial and detrimental influences in first clinical diagnosis of central nervous system demyelination (FCD), a common precursor to the diagnosis of multiple sclerosis (MS). Whether dietary nitrate has any role in FCD onset is unclear. We tested associations between nitrate intake from food sources (plant, vegetable, animal, processed meat, and unprocessed meat) and likelihood of FCD. We used data from the Ausimmune Study (264 cases, 474 controls) and logistic regression with full propensity score matching. In females, higher nitrate intake from plant-based foods (odds ratio [OR] per 60 mg/day = 0.50; 95 % confidence interval [CI] 0.31, 0.81; p = <0.01) and vegetables (OR per 60 mg/day = 0.39; 95 % CI 0.22, 0.70; p = <0.01), but not other sources, was statistically significantly associated with lower likelihood of FCD. In males, no associations were found between any source of nitrate intake and likelihood of FCD. Our results support further research to explore a possible beneficial role for plant-derived nitrate in people at higher risk of MS.
Collapse
Affiliation(s)
- Hajar Mazahery
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Lucinda J Black
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.
| | - Alison Daly
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Maja Banjac
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Eleanor Dunlop
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
5
|
Wen J, Syed B, Abed I, Manguerra D, Shehabat M, Razick DI, Nadora D, Nadora D, Akhtar M, Pai D. Improved Effect of Spinach Extract on Physical Performance: A Systematic Review of Randomized Controlled Trials. Cureus 2025; 17:e77840. [PMID: 39991395 PMCID: PMC11845096 DOI: 10.7759/cureus.77840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Nitric oxide is a key regulator of many systems in the human body and has become a popular supplement for sports, given its potential to increase health and physical performance. Spinach extract contains a rich amount of nitrates, and we aim to examine the effects of its supplementation on physical performance, body composition, and safety profile. A systematic review following the guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was performed in PubMed, Embase, and Cochrane Library for randomized controlled trials (RCTs) reporting on physical performance parameters after spinach extract supplementation. Study variables extracted included author, publication date, study year, number of patients, male/female ratio, mean age, mean follow-up, dose regimen, pre- and post-intervention patient-reported outcomes, and complications. Four RCTs (three red spinach, one green spinach), with 94 patients (45.7% male, 54.3% female), mean age of 29.4 years (20.5 to 58.9) and mean follow-up time of 43.8 days (7 to 84). Dosages ranged from 1 to 2 g. Spinach extract demonstrated significant improvements in most physical performance parameters, mixed results on body composition, and no complications were reported. Spinach extract demonstrates promising improvements in physical performance and safety profile as an ergogenic aid. However, more research is required to determine optimal dosing regimens and their effects in different patient populations.
Collapse
Affiliation(s)
- Jimmy Wen
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Burhaan Syed
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Ihab Abed
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Dave Manguerra
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Mouhamad Shehabat
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Daniel I Razick
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Denise Nadora
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Dawnica Nadora
- Dermatology, California Northstate University College of Medicine, Elk Grove, USA
| | - Muzammil Akhtar
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - David Pai
- Nephrology, California Northstate University College of Medicine, Elk Grove, USA
| |
Collapse
|
6
|
Zhu J, Lu Y, He Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr Rev Food Sci Food Saf 2024; 23:e70000. [PMID: 39217507 DOI: 10.1111/1541-4337.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Collapse
Affiliation(s)
- Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Rajendra A, Bondonno NP, Zhong L, Radavelli-Bagatini S, Murray K, Rainey-Smith SR, Gardener SL, Blekkenhorst LC, Magliano DJ, Shaw JE, Daly RM, Anstey KJ, Lewis JR, Hodgson JM, Bondonno CP. Plant but not animal sourced nitrate intake is associated with lower dementia-related mortality in the Australian Diabetes, Obesity, and Lifestyle Study. Front Nutr 2024; 11:1327042. [PMID: 39234294 PMCID: PMC11371772 DOI: 10.3389/fnut.2024.1327042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/04/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Dietary nitrate is potentially beneficial for cardiovascular, cerebrovascular, and nervous systems due to its role as a nitric oxide (NO) precursor. Increased nitrate intake improves cardiovascular health and therefore could protect against dementia, given the cardiovascular-dementia link. Objective To investigate the association between source-dependent nitrate intake and dementia-related mortality. As individuals with diabetes are at higher risk of dementia, a secondary aim was to investigate if the associations between nitrate and dementia varied by diabetes mellitus (DM) and pre-diabetes status. Methods This study involved 9,149 participants aged ≥25 years from the well-characterised Australian Diabetes, Obesity, and Lifestyle (AusDiab) Study followed over a period of 17 years. Intakes of plant-sourced, vegetable-sourced, naturally occurring animal-sourced nitrate, and processed meat (where nitrate is an allowed additive)-sourced nitrate were assessed from a 74-item food frequency questionnaire completed by participants at baseline and nitrate databases were used to estimate nitrate from these different dietary sources. Associations between source-dependent nitrate intake and dementia-related mortality were assessed using multivariable-adjusted Cox proportional hazards models adjusted for demographics, lifestyle, and dietary factors. Results Over 17 years of follow-up, 93 (1.0%) dementia-related deaths occurred of 1,237 (13.5%) total deaths. In multivariable-adjusted models, participants with the highest intakes of plant-sourced nitrate (median intake 98 mg/day) had a 57% lower risk of dementia-related mortality [HR (95% CI): 0.43 (0.22, 0.87)] compared to participants with lowest intakes of plant-sourced nitrate (median intake 35 mg/day). A 66% lower risk was also seen for higher intakes of vegetable-sourced nitrate [HR (95% CI): 0.34 (0.17, 0.66)]. No association was observed for animal-sourced nitrate, but the risk was two times higher amongst those who consumed the most processed meat-sourced nitrate intake [HR (95%): 2.10 (1.07, 4.12)]. The highest intake of vegetable-sourced nitrate was associated with a lower risk of dementia-related mortality for those with and without DM and pre-diabetes. Conclusion Encouraging the intake of nitrate-rich vegetables, such as green leafy vegetables and beetroot, may lower the risk of dementia-related mortality, particularly in individuals with (pre-) diabetes who are at a higher dementia risk.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Nicola P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Simone Radavelli-Bagatini
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Perth, WA, Australia
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Perth, WA, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Dianna J Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Clinical Diabetes and Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan E Shaw
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Kaarin J Anstey
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
- UNSW Ageing Futures Institute, Kensington, NSW, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
8
|
Kobayashi H, Tanizawa Y, Sakamoto M, Ohkuma M, Tohno M. Lacrimispora brassicae sp. nov. isolated from fermented cabbage, and proposal of Clostridium indicum Gundawar et al. 2019 and Clostridium methoxybenzovorans Mechichi et al. 1999 as heterotypic synonyms of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Lacrimispora indolis (McClung and McCoy 1957) Haas and Blanchard 2020, respectively. Int J Syst Evol Microbiol 2024; 74:006456. [PMID: 39016536 PMCID: PMC11316579 DOI: 10.1099/ijsem.0.006456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6T, was isolated from fermented cabbage. Strain YZC6T grew at 10-37 °C, pH 5.5-8.5, and with up to 2 % (w/v) NaCl. The major cellular fatty acids were C16 : 0 and C18 : 1 cis 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6T belonged to the genus Lacrimispora and was closely related to Lacrimispora aerotolerans DSM 5434T (98.3 % sequence similarity), Lacrimispora saccharolytica WM1T (98.1 %), and Lacrimispora algidixylanolytica SPL73T (98.1 %). The average nucleotide identity based on blast (below 87.8 %) and digital DNA-DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6T could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel Lacrimispora species, Lacrimispora brassicae sp. nov., was proposed, with YZC6T as the type strain (=MAFF 212518T=JCM 32810T=DSM 112100T). This study also proposed Clostridium indicum Gundawar et al. 2019 as a later heterotypic synonym of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Clostridium methoxybenzovorans Mechichi et al. 1999 as a later heterotypic synonym of Lacrimispora indolis (McClung and McCpy 1957) Haas and Blanchard 2020.
Collapse
Affiliation(s)
- Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masanori Tohno
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
- Innovative Animal Production System, University of Tsukuba, 305-8571 Tsukuba, Japan
| |
Collapse
|
9
|
Ottaviani JI, Sagi-Kiss V, Schroeter H, Kuhnle GGC. Reliance on self-reports and estimated food composition data in nutrition research introduces significant bias that can only be addressed with biomarkers. eLife 2024; 13:RP92941. [PMID: 38896457 PMCID: PMC11186626 DOI: 10.7554/elife.92941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (-)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.
Collapse
|
10
|
Liu Y, Lawler T, Liu Z, Thuruthumaly C, Vajaranant T, Wallace R, Tinker L, Nalbandyan M, Mares J. Low Macular Pigment Optical Density Is Associated with Manifest Primary Open-Angle Glaucoma in Older Women. Curr Dev Nutr 2024; 8:103789. [PMID: 38974349 PMCID: PMC11225677 DOI: 10.1016/j.cdnut.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Background Lower density of carotenoids lutein and zeaxanthin (L/Z) in the macula (i.e., macular pigment) has been linked to greater risk for age-related eye disease. Objectives We evaluated whether macular pigment optical density (MPOD) was associated with manifest primary open-angle glaucoma (POAG) among older women in the Carotenoids in Age-Related Eye Disease Study 2 (CAREDS2). Methods MPOD was measured with customized heterochromatic flicker photometry in women who attended CAREDS2 (2016-2019) and CAREDS1 (2001-2004) study visits. Manifest POAG at CAREDS2 was assessed using visual fields, disc photos, optical coherence tomography, and medical records. Age-adjusted linear and logistic regression models were used to investigate the cross-sectional association between POAG and MPOD at CAREDS2, and MPOD measured 15 years earlier at CAREDS1. Results Among 426 CAREDS2 participants (mean age: 80 y; range: 69-98 y), 26 eyes with manifest POAG from 26 participants were identified. Glaucomatous eyes had 25% lower MPOD compared to nonglaucomatous eyes [mean (SE): 0.40 (0.05) compared with 0.53 (0.01)] optical density units (ODU), respectively (P = 0.01). Compared with MPOD quartile 1, odds for POAG were lower for women in quartiles 2-4 (P-trend = 0.01). After excluding eyes with age-related macular degeneration, associations were similar but not statistically significant (P-trend = 0.16). Results were similar for MPOD measured at CAREDS1. Conclusions Our results add to growing evidence that low MPOD may be a novel glaucoma risk factor and support further studies to assess the utility of dietary interventions for glaucoma prevention.
Collapse
Affiliation(s)
- Yao Liu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas Lawler
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Zhe Liu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Thasarat Vajaranant
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, United States
| | - Robert Wallace
- Department of Epidemiology, University of Iowa, Iowa City, IA, United States
| | - Lesley Tinker
- Department of Cancer Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marine Nalbandyan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie Mares
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Oue A, Iimura Y, Miyakoshi Y, Ota M. Effect of Acute Dietary Nitrate Supplementation on the Changes in Calf Venous Volume during Postural Change and Skeletal Muscle Pump Activity in Healthy Young Adults. Nutrients 2024; 16:1621. [PMID: 38892555 PMCID: PMC11174609 DOI: 10.3390/nu16111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary nitrate (NO3-) supplementation is known to enhance nitric oxide (NO) activity and acts as a vasodilator. In this randomized crossover study, we investigated the effect of inorganic NO3- supplementation on the changes in calf venous volume during postural change and subsequent skeletal muscle pump activity. Fifteen healthy young adults were assigned to receive beetroot juice (BRJ) or a NO3--depleted control beverage (prune juice: CON). Two hours after beverage consumption, the changes in the right calf volume during postural change from supine to upright and a subsequent right tiptoe maneuver were measured using venous occlusion plethysmography. The increase in calf volume from the supine to upright position (total venous volume [VV]) and the decrease in calf volume during the right tiptoe maneuver (venous ejection volume [Ve]) were calculated. Plasma NO3- concentration was higher in the BRJ group than in the CON group 2 h after beverage intake (p < 0.05). However, VV and Ve did not differ between CON and BRJ. These results suggest that acute intake of BRJ may enhance NO activity via the NO3- → nitrite → NO pathway but does not change calf venous pooling due to a postural change or the calf venous return due to skeletal muscle pump activity in healthy young adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Health and Sports Sciences, Toyo University, 1-7-11, Akabanedai, Kita-ku, Tokyo 115-8650, Japan; (Y.I.); (Y.M.); (M.O.)
| | | | | | | |
Collapse
|
12
|
Fejes R, Lutnik M, Weisshaar S, Pilat N, Wagner KH, Stüger HP, Peake JM, Woodman RJ, Croft KD, Bondonno CP, Hodgson JM, Wolzt M, Neubauer O. Increased nitrate intake from beetroot juice over 4 weeks affects nitrate metabolism, but not vascular function or blood pressure in older adults with hypertension. Food Funct 2024; 15:4065-4078. [PMID: 38546454 PMCID: PMC11034575 DOI: 10.1039/d3fo03749e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
The decline in vascular function and increase in blood pressure with aging contribute to an increased cardiovascular disease risk. In this randomized placebo-controlled crossover study, we evaluated whether previously reported cardiovascular benefits of plant-derived inorganic nitrate via nitric oxide (NO) translate into improved vascular function and blood pressure-lowering in 15 men and women (age range: 56-71 years) with treated hypertension. We investigated the effects of a single ∼400 mg-dose at 3 hours post-ingestion (3H POST) and the daily consumption of 2 × ∼400 mg of nitrate through nitrate-rich compared with nitrate-depleted (placebo) beetroot juice over 4 weeks (4WK POST). Measurements included nitrate and nitrite in plasma and saliva; endothelial-dependent and -independent forearm blood flow (FBF) responses to acetylcholine (FBFACh) and glyceryltrinitrate (FBFGTN); and clinic-, home- and 24-hour ambulatory blood pressure. Compared to placebo, plasma and salivary nitrate and nitrite increased at 3H and 4WK POST following nitrate treatment (P < 0.01), suggesting a functioning nitrate-nitrite-NO pathway in the participants of this study. There were no differences between treatments in FBFACh and FBFGTN-area under the curve (AUC) ratios [AUC ratios after (3H POST, 4WK POST) compared with before (PRE) the intervention], or 24-hour ambulatory blood pressure or home blood pressure measures (P > 0.05). These findings do not support the hypothesis that an increased intake of dietary nitrate exerts sustained beneficial effects on FBF or blood pressure in hypertensive older adults, providing important information on the efficacy of nitrate-based interventions for healthy vascular aging. This study was registered under ClinicialTrials.gov (NCT04584372).
Collapse
Affiliation(s)
- Rebeka Fejes
- Department of Nutritional Sciences, Research Platform Active Ageing, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Martin Lutnik
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Weisshaar
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Research Platform Active Ageing, University of Vienna, Vienna, Austria.
| | - Hans-Peter Stüger
- Division Integrative Risk Assessment, Data and Statistics, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Jonathan M Peake
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Kevin D Croft
- Medical School, University of Western Australia, Royal Perth Hospital Unit, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Michael Wolzt
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Neubauer
- Department of Nutritional Sciences, Research Platform Active Ageing, University of Vienna, Vienna, Austria.
- Centre for Health Sciences and Medicine, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
13
|
Goh CE, Bohn B, Genkinger JM, Molinsky R, Roy S, Paster BJ, Chen CY, Yuzefpolskaya M, Colombo PC, Rosenbaum M, Knight R, Desvarieux M, Papapanou PN, Jacobs DR, Demmer RT. Dietary nitrate intake and net nitrite-generating capacity of the oral microbiome interact to enhance cardiometabolic health: Results from the Oral Infections Glucose Intolerance and Insulin Resistance Study (ORIGINS). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.10.24305636. [PMID: 38645157 PMCID: PMC11030477 DOI: 10.1101/2024.04.10.24305636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background We investigated the association between dietary nitrate intake and early clinical cardiometabolic risk biomarkers, and explored whether the oral microbiome modifies the association between dietary nitrate intake and cardiometabolic biomarkers. Methods Cross-sectional data from 668 (mean [SD] age 31 [9] years, 73% women) participants was analyzed. Dietary nitrate intakes and alternative healthy eating index (AHEI) scores were calculated from food frequency questionnaire responses and a validated US food database. Subgingival 16S rRNA microbial genes (Illumina, MiSeq) were sequenced, and PICRUSt2 estimated metagenomic content. The Microbiome Induced Nitric oxide Enrichment Score (MINES) was calculated as a microbial gene abundance ratio representing enhanced net capacity for NO generation. Cardiometabolic risk biomarkers included systolic and diastolic blood pressure, HbA1c, glucose, insulin, and insulin resistance (HOMA-IR), and were regressed on nitrate intake tertiles in adjusted multivariable linear models. Results Mean nitrate intake was 190[171] mg/day. Higher nitrate intake was associated with lower insulin, and HOMA-IR but particularly among participants with low abundance of oral nitrite enriching bacteria. For example, among participants with a low MINES, mean insulin[95%CI] levels in high vs. low dietary nitrate consumers were 5.8[5.3,6.5] vs. 6.8[6.2,7.5] (p=0.004) while respective insulin levels were 6.0[5.4,6.6] vs. 5.9[5.3,6.5] (p=0.76) among partcipants with high MINES (interaction p=0.02). Conclusion Higher dietary nitrate intake was only associated with lower insulin and insulin resistance among individuals with reduced capacity for oral microbe-induced nitrite enrichment. These findings have implications for future precision medicine-oriented approaches that might consider assessing the oral microbiome prior to enrollment into dietary interventions or making dietary recommendations.
Collapse
Affiliation(s)
- Charlene E Goh
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jeanine M Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rebecca Molinsky
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Sumith Roy
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bruce J Paster
- The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Ching-Yuan Chen
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Melana Yuzefpolskaya
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Paolo C Colombo
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Rob Knight
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Moïse Desvarieux
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- INSERM UMR 1153, Centre de Recherche Epidemiologie et Statistique Paris Sorbonne Cité (CRESS), METHODS Core, Paris, France
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, College of Medicine and Science
| |
Collapse
|
14
|
Chai X, Liu L, Chen F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front Cardiovasc Med 2024; 11:1337281. [PMID: 38638884 PMCID: PMC11024454 DOI: 10.3389/fcvm.2024.1337281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.
Collapse
Affiliation(s)
- Xiaofen Chai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
15
|
Erichsen DW, Pokharel P, Kyrø C, Schullehner J, Zhong L, Bondonno CP, Dalgaard F, Fjeldstad Hendriksen P, Sigsgaard T, Hodgson JM, Olsen A, Tjønneland A, Bondonno NP. Source-specific nitrate and nitrite intakes and associations with sociodemographic factors in the Danish Diet Cancer and Health cohort. Front Nutr 2024; 11:1326991. [PMID: 38476601 PMCID: PMC10927827 DOI: 10.3389/fnut.2024.1326991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Background The dietary source and intake levels of nitrate and nitrite may govern its deleterious versus beneficial effects on human health. Existing evidence on detailed source-specific intake is limited. The objectives of this study were to assess nitrate and nitrite intakes from different dietary sources (plant-based foods, animal-based foods, and water), characterize the background diets of participants with low and high intakes, and investigate how sociodemographic and lifestyle factors associate with intake levels. Methods In the Danish Diet, Cancer and Health Cohort, sociodemographic and lifestyle information was obtained from participants at enrolment (1993-1997). Source-dependent nitrate and nitrite intakes were calculated using comprehensive food composition databases, with tap water nitrate intakes estimated via the national drinking water quality monitoring database linked with participants' residential addresses from 1978 to 2016. Underlying dietary patterns were examined using radar plots comparing high to low consumers while sociodemographic predictors of source-dependent nitrate intakes were investigated using linear regression models. Results In a Danish cohort of 55,754 participants aged 50-65 at enrolment, the median [IQR] intakes of dietary nitrate and nitrite were 58.13 [44.27-74.90] mg/d and 1.79 [1.43-2.21] mg/d, respectively. Plant-based foods accounted for ~76% of nitrate intake, animal-based foods ~10%, and water ~5%. Nitrite intake was sourced roughly equally from plants and animals. Higher plant-sourced nitrate intake was associated with healthier lifestyles, better dietary patterns, more physical activity, higher education, lower age and lower BMI. Females and participants who had never smoked also had significantly higher plant-sourced nitrate intakes. Higher water-sourced nitrate intake was linked to sociodemographic risk factors (smoking, obesity, lower education). Patterns for animal-sourced nitrate were less clear. Conclusion Participants with higher plant-sourced nitrate intakes tend to be healthier while participants with higher water-sourced nitrate intakes tended to be unhealthier than their low consuming counterparts. Future research in this cohort should account for the sociodemographic and dietary predictors of source-specific nitrate intake we have identified.
Collapse
Affiliation(s)
| | - Pratik Pokharel
- Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | | | - Jörg Schullehner
- Department of Groundwater and Quaternary Geology Mapping, Geological Survey of Denmark and Greenland, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Catherine P. Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev and Gentofte University Hospital, Copenhagen, Denmark
| | | | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | - Jonathan M. Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Anja Olsen
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anne Tjønneland
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicola P. Bondonno
- Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
16
|
Pinaffi-Langley ACDC, Dajani RM, Prater MC, Nguyen HVM, Vrancken K, Hays FA, Hord NG. Dietary Nitrate from Plant Foods: A Conditionally Essential Nutrient for Cardiovascular Health. Adv Nutr 2024; 15:100158. [PMID: 38008359 PMCID: PMC10776916 DOI: 10.1016/j.advnut.2023.100158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Under specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks. We have surveyed the literature and summarized epidemiological evidence regarding the effect of dietary nitrate on cardiovascular disease and risk factors. Meta-analyses and population-based observational studies have consistently demonstrated an inverse association of dietary nitrate with blood pressure and cardiovascular disease outcomes. Considering the available evidence, we suggest 2 different approaches to providing dietary guidance on nitrate from plant-based dietary sources as a nutrient: the Dietary Reference Intakes developed by the National Academies of Sciences, Engineering, and Medicine, and the dietary guidelines evaluated by the Academy of Nutrition and Dietetics. Ultimately, this proposal underscores the need for food-based dietary guidelines to capture the complex and context-dependent relationships between nutrients, particularly dietary nitrate, and health.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rosa M Dajani
- Nutrition and Food Services, San Francisco Health, University of California, San Francisco, CA, United States
| | - M Catherine Prater
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA, United States
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Franklin A Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Norman G Hord
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
17
|
Cato LE, McKay AKA, L’Heureux JE, Vanhatalo A, Jones AM, Askew CD, Slater GJ, Burke LM. Low Carbohydrate, High Fat Diet Alters the Oral Microbiome without Negating the Nitrite Response to Beetroot Juice Supplementation. Nutrients 2023; 15:5123. [PMID: 38140382 PMCID: PMC10745889 DOI: 10.3390/nu15245123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A low carbohydrate, high fat (LCHF) diet in athletes increases fat oxidation but impairs sports performance, potentially due to impaired exercise economy. Dietary nitrate supplementation can improve exercise economy via an increase in nitric oxide production, which is initiated by the reduction of nitrate to nitrite within the oral cavity. This reaction is dependent on the presence of nitrate-reducing oral bacteria, which can potentially be altered by dietary changes, including a LCHF diet. This study explored the effect of a LCHF diet on the oral microbiome and subsequent changes to plasma nitrite concentration following nitrate supplementation. Following five days of LCHF or high carbohydrate (HCHO) control dietary intervention, highly trained male race walkers consumed 140 mL beetroot juice containing 8.4 mmol nitrate; they then provided (a) blood samples for plasma nitrate and nitrite analysis and (b) saliva samples for 16S rRNA sequencing of the oral microbiome. The LCHF diet (n = 13) reduced oral bacterial diversity and changed the relative abundance of the genera Neisseria (+10%), Fusobacteria (+3%), Prevotella (-9%), and Veillonella (-4%), with no significant changes observed following the HCHO diet (n = 11). Following beetroot juice ingestion, plasma nitrite concentrations were higher for the LCHF diet compared to the HCHO diet (p = 0.04). However, the absence of an interaction with the trial (pre-post) (p = 0.71) suggests that this difference was not due to the dietary intervention. In summary, we found an increase in plasma nitrate and nitrite concentrations in response to nitrate supplementation independent of diet. This suggests the oral microbiome is adaptive to dietary changes and can maintain a nitrate reduction capacity despite a decrease in bacterial diversity following the LCHF diet.
Collapse
Affiliation(s)
- Louise E. Cato
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Alannah K. A. McKay
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.K.A.M.); (L.M.B.)
| | - Joanna E. L’Heureux
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Anni Vanhatalo
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Andrew M. Jones
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Christopher D. Askew
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Gary J. Slater
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Louise M. Burke
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.K.A.M.); (L.M.B.)
| |
Collapse
|
18
|
de Crom TOE, Blekkenhorst L, Vernooij MW, Ikram MK, Voortman T, Ikram MA. Dietary nitrate intake in relation to the risk of dementia and imaging markers of vascular brain health: a population-based study. Am J Clin Nutr 2023; 118:352-359. [PMID: 37536866 DOI: 10.1016/j.ajcnut.2023.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Nitric oxide is a free radical that can be produced from dietary nitrate and positively affects cardiovascular health. With cardiovascular health playing an important role in the etiology of dementia, we hypothesized a link between dietary nitrate intake and the risk of dementia. OBJECTIVES This study aimed to find the association of total, vegetable, and nonvegetable dietary nitrate intake with the risk of dementia and imaging markers of vascular brain health, such as total brain volume, global cerebral perfusion, white matter hyperintensity volume, microbleeds, and lacunar infarcts. METHODS Between 1990 and 2009, dietary intake was assessed using food-frequency questionnaires in 9543 dementia-free participants (mean age, 64 y; 58% female) from the prospective population-based Rotterdam Study. Participants were followed up for incidence dementia until January 2020. We used Cox models to determine the association between dietary nitrate intake and incident dementia. Using linear mixed models and logistic regression models, we assessed the association of dietary nitrate intake with changes in imaging markers across 3 consecutive examination rounds (mean interval between images 4.6 y). RESULTS Participants median dietary nitrate consumption was 85 mg/d (interquartile range, 55 mg/d), derived on average for 81% from vegetable sources. During a mean follow-up of 14.5 y, 1472 participants developed dementia. A higher intake of total and vegetable dietary nitrate was associated with a lower risk of dementia per 50-mg/d increase [hazard ratio (HR): 0.92; 95% confidence interval (CI): 0.87, 0.98; and HR: 0.92; 95% CI: 0.86, 0.97, respectively] but not with changes in neuroimaging markers. No association between nonvegetable dietary nitrate intake and the risk of dementia (HR: 1.15; 95% CI: 0.64, 2.07) or changes in neuroimaging markers were observed. CONCLUSIONS A higher dietary nitrate intake from vegetable sources was associated with a lower risk of dementia. We found no evidence that this association was driven by vascular brain health.
Collapse
Affiliation(s)
- Tosca O E de Crom
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lauren Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
19
|
Rajendra A, Bondonno NP, Murray K, Zhong L, Rainey-Smith SR, Gardener SL, Blekkenhorst LC, Ames D, Maruff P, Martins RN, Hodgson JM, Bondonno CP. Habitual dietary nitrate intake and cognition in the Australian Imaging, Biomarkers and Lifestyle Study of ageing: A prospective cohort study. Clin Nutr 2023; 42:1251-1259. [PMID: 37331149 DOI: 10.1016/j.clnu.2023.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/09/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS Dietary nitrate improves cardiovascular health via a nitric oxide (NO) pathway. NO is key to both cardiovascular and brain health. There is also a strong association between vascular risk factors and brain health. Dietary nitrate intake could therefore be associated with better cognitive function and reduced risk of cognitive decline. This is yet to be investigated. The aim of this study was to investigate the association between habitual intake of dietary nitrate from sources where nitrate is naturally present, and cognitive function, and cognitive decline, in the presence or absence of the apolipoprotein E (APOE) ε4 allele. METHODS The study included 1254 older adult participants of the Australian Imaging, Biomarkers and Lifestyle Study of Ageing who were cognitively normal at baseline. Plant-derived, vegetable-derived, animal derived nitrate (not including meat where nitrate is an allowed additive), and total nitrate intakes were calculated from baseline food frequency questionnaires using comprehensive nitrate databases. Cognition was assessed at baseline and every 18 months over a follow-up period of 126 months using a comprehensive neuropsychological test battery. Multivariable-adjusted linear mixed effect models were used to examine the association between baseline nitrate intake and cognition over the 126 months (median [IQR] follow-up time of 36 [18-72] months), stratified by APOE ε4 carrier status. RESULTS In non APOE ε4 carriers, for every 60 mg/day higher intake of plant-derived nitrate at baseline there was an associated higher language score [β (95% CI): 0.10 (0.01, 0.19)] over 126 months, after multivariable adjustments. In APOE ε4 carriers, there was an associated better episodic recall memory [0.24 (0.08, 0.41)] and recognition memory [0.15 (0.01, 0.30)] scores. Similar associations were seen for the intakes of vegetable-derived and total nitrate. Additionally, in APOE ε4 carriers, for every 6 mg/day higher intake of animal-derived nitrate (excluding meat with nitrate as an allowed additive) at baseline there was an associated higher executive function score [β (95% CI): 1.41 (0.42, 2.39)]. We did not find any evidence of an association between dietary nitrate intake and rate of cognitive decline. CONCLUSION Our results suggest that habitual intake of dietary nitrate from sources where nitrate is naturally present impacts cognitive performance in an APOE genotype contingent manner. Further work is needed to validate our findings and understand potential mechanisms underlying the observed effects.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Liezhou Zhong
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia; Cogstate Ltd, Melbourne, Victoria, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia.
| |
Collapse
|
20
|
Bondonno CP, Zhong L, Bondonno NP, Sim M, Blekkenhorst LC, Liu A, Rajendra A, Pokharel P, Erichsen DW, Neubauer O, Croft KD, Hodgson JM. Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Zhang H, Qin L. Positive feedback loop between dietary nitrate intake and oral health. Nutr Res 2023; 115:1-12. [PMID: 37207592 DOI: 10.1016/j.nutres.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Nitrate was once thought to be an inert end-product of endothelial-derived nitric oxide (NO) heme oxidation; however, this view has been radically revised over the past few decades. Following the clarification of the nitrate-nitrite-NO pathway, accumulated evidence has shown that nitrate derived from the diet is a supplementary source of endogenous NO generation, playing important roles in a variety of pathological and physiological conditions. However, the beneficial effects of nitrate are closely related with oral health, and oral dysfunction has an adverse effect on nitrate metabolism and further impacts overall systemic health. Moreover, an interesting positive feedback loop has been identified between dietary nitrate intake and oral health. Dietary nitrate's beneficial effect on oral health may further improve its bioavailability and promote overall systemic well-being. This review aims to provide a detailed description of the functions of dietary nitrate, with an emphasis on the key role oral health plays in nitrate bioavailability. This review also provides recommendations for a new paradigm that includes nitrate therapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
McMahon NF, Brooker PG, Kadach S, Pavey TG, Leveritt MD. Estimating nitrate intake in the Australian diet: Design and validation of a food frequency questionnaire. J Hum Nutr Diet 2023; 36:169-180. [PMID: 35692098 PMCID: PMC10084179 DOI: 10.1111/jhn.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dietary nitrates may play a role in mediating several key physiological processes impacting health and/or exercise performance. However, current methods for assessing dietary nitrate (NO3 - ) consumption are inadequate. The present study aimed to examine the dietary nitrate intake in a sample of 50 healthy adults, as well as test the validity of a purposefully developed food frequency questionnaire (FFQ). METHODS Dietary nitrate intake was estimated over a week using (i) three 24-h dietary recalls; (ii) a short-term (7-day) FFQ; and (iii) a biomarker (urinary nitrate), in conjunction with a nitrate reference database. RESULTS Daily dietary nitrate intake estimates were 130.94 mg (average of three 24-h recalls) and 180.62 mg (FFQ). The mean urinary NO3 - excretion was 1974.79 µmol day-1 (or 917.9 µmol L-1 ). Despite the difference between the two dietary assessment methods, there was a moderate positive correlation (r = 0.736, ρ < 0.001) between the two tools. There was also a positive correlation between urinary NO3 - and 24-h recall data (r = 0.632, ρ < 0.001), as well as between urinary NO3 - and FFQ (r = 0.579, ρ < 0.001). CONCLUSIONS The ability to accurately estimate nitrate intakes depends on having suitable reference methods to estimate the concentrations of nitrate in the food supply, coupled with valid and reliable dietary assessment tools. Based on the findings from the present study, at an individual level, dietary recalls or records may be more accurate in estimating intakes of NO3 - . However, given the lower cost and time needed for administration relative to recalls, the FFQ has merit for estimating NO3 - intakes in health interventions, dietary surveys and surveillance programs.
Collapse
Affiliation(s)
- Nicholas F. McMahon
- School of Human Movement and Nutrition SciencesUniversity of QueenslandSt LuciaQLDAustralia
| | - Paige G. Brooker
- School of Human Movement and Nutrition SciencesUniversity of QueenslandSt LuciaQLDAustralia
| | - Stefan Kadach
- School of Sport and Health Sciences, College of Life and Environmental Sciences, St Luke's CampusUniversity of ExeterExeterUK
| | - Toby G. Pavey
- School of Exercise and Nutrition SciencesQueensland University of TechnologyKelvin GroveQLDAustralia
| | - Michael D. Leveritt
- School of Human Movement and Nutrition SciencesUniversity of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
23
|
Ottaviani JI, Schroeter H, Kuhnle GGC. Measuring the intake of dietary bioactives: Pitfalls and how to avoid them. Mol Aspects Med 2023; 89:101139. [PMID: 36031430 DOI: 10.1016/j.mam.2022.101139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Bioactives are food constituents that, while not essential to human life, can affect health. Thus, there is increased interest in developing dietary recommendations for bioactives. Such recommendations require detailed information about the long-term association between habitual intake and health at population scale, and these can only be provided by large-scale observational studies. Nutritional epidemiology relies on the accurate estimation of intake, but currently used methods, commonly based on a 2-step process involving self-reports and food composition tables, are fraught with significant challenges and are unable to estimate the systemic presence of bioactives. Intake assessments based on nutritional biomarkers can provide an advanced alternative, but there are a number of pitfalls that need to be addressed in order to obtain reliable data on intake. Using flavan-3-ols as a case study, we highlight here key challenges and how they may be avoided. Taken together, we believe that the approaches outlined in this review can be applied to a wide range of food constituents, and doing so will improve assessments of the dietary intake of bioactives.
Collapse
Affiliation(s)
| | | | - Gunter G C Kuhnle
- Department of Food & Nutritional Sciences, University of Reading, Reading RG56 6DX, UK.
| |
Collapse
|
24
|
Rajendra A, Bondonno NP, Rainey-Smith SR, Gardener SL, Hodgson JM, Bondonno CP. Potential role of dietary nitrate in relation to cardiovascular and cerebrovascular health, cognition, cognitive decline and dementia: a review. Food Funct 2022; 13:12572-12589. [PMID: 36377891 DOI: 10.1039/d2fo02427f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is currently no effective treatment for dementia, of which Alzheimer's disease (AD) is the most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link between cardiovascular disease risk factors and dementia, together with the important role of NO in vascular health and cognition, it is important to determine whether dietary nitrate could also improve cognitive function, markers of brain health, and lower risk of dementia. This review presents an overview of NO's role in the cardiovascular, cerebrovascular, and central nervous systems; an overview of the available evidence that nitrate, through effects on NO, improves cardiovascular health; and evaluates the current evidence regarding dietary nitrate's potential role in cerebrovascular health, cognitive function, and brain health assessed via biomarkers.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Raubenheimer K, Liu AH, Koch H, Bosio E, Bondonno NP, Matthews V, Sim M, Blekkenhorst L, Woodman RJ, Murray K, Croft K, Neubauer O, Hodgson JM, Bondonno CP. Increased nitrate intake from beetroot juice does not alter soluble cellular adhesion molecules and circulating inflammatory cytokines in individuals with treated hypertension: a randomised, controlled trial. Food Funct 2022; 13:12353-12362. [PMID: 36367386 DOI: 10.1039/d2fo02403a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Dietary nitrate, found predominantly in green leafy vegetables and other vegetables such as radish, celery, and beetroot, has been shown to beneficially modulate inflammatory processes and immune cell function in animals and healthy individuals. The impact of increased nitrate intake on soluble inflammatory mediators in individuals with hypertension is unclear. We assessed whether the daily consumption of dietary nitrate via beetroot juice for 1-week lowered levels of circulating inflammatory markers in men and women with treated hypertension. Twenty-seven male and female participants were recruited to a randomized, placebo-controlled, double-blind crossover trial. The effects of 1-week intake of nitrate-rich beetroot juice versus 1-week intake of nitrate-depleted beetroot juice (placebo) were investigated. Plasma concentrations of circulating soluble adhesion molecules (ICAM-1, VCAM-1, CD62E, CD62P), inflammatory cytokines (IL-1β, IL-6, IL-10, IL-12p70, TNF-α) and chemokines (IL-8, MCP-1) were measured by multiplex flow cytometric bead array in samples collected on day 7 of each intervention period. Other outcomes included alterations in nitrate metabolism assessed by measuring nitrate and nitrite concentrations in plasma, saliva, and urine. One week of beetroot juice did not alter levels of the soluble adhesion markers or cytokines assessed. A 7-fold increase in salivary nitrite, an 8-fold increase in salivary nitrate, a 3-fold increase in plasma nitrate and nitrite, and a 4-fold increase in urinary nitrate and nitrite compared to the placebo was observed (p < 0.001 for all comparisons). Increasing dietary nitrate consumption over 7 days is not effective in reducing soluble inflammatory mediators in individuals with treated hypertension. This trial was registered at anzctr.org.au as ACTRN 12613000116729.
Collapse
Affiliation(s)
- Kyle Raubenheimer
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Alex H Liu
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Henrietta Koch
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Erika Bosio
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Vance Matthews
- Dobney Hypertension Centre, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Lauren Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA, Australia
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Australia
| | - Kevin Croft
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Oliver Neubauer
- Centre for Health Sciences and Medicine, Danube University Krems, Krems, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Effect of Acute Dietary Nitrate Supplementation on the Venous Vascular Response to Static Exercise in Healthy Young Adults. Nutrients 2022; 14:nu14214464. [PMID: 36364727 PMCID: PMC9659063 DOI: 10.3390/nu14214464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to test the hypothesis that acute intake of inorganic nitrate (NO3−) via supplementation would attenuate the venoconstriction and pressor response to exercise. Sixteen healthy young adults were assigned in a randomized crossover design to receive beetroot juice (BRJ) or an NO3−-depleted control beverage (prune juice: CON). Two hours after consuming the allocated beverage, participants rested in the supine position. Following the baseline period of 4 min, static handgrip exercise of the left hand was performed at 30% of the maximal voluntary contraction for 2 min. Mean arterial pressure (MAP) and heart rate (HR) were measured. Changes in venous volume in the right forearm and right calf were also measured using venous occlusion plethysmography while cuffs on the upper arm and thigh were inflated constantly to 30−40 mmHg. The plasma NO3− concentration was elevated with BRJ intake (p < 0.05). Exercise increased MAP and HR and decreased venous volume in the forearm and calf, but there were no differences between CON and BRJ. Thus, these findings suggest that acute BRJ intake does not alter the sympathetic venoconstriction in the non-exercising limbs and MAP response to exercise in healthy young adults, despite the enhanced activity of nitric oxide.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
- Correspondence: ; Tel.: +81-276-82-9145; Fax: +81-276-82-9033
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| |
Collapse
|
27
|
McMahon NF, Brooker PG, Pavey TG, Leveritt MD. Nitrate, nitrite and nitrosamines in the global food supply. Crit Rev Food Sci Nutr 2022; 64:2673-2694. [PMID: 36168920 DOI: 10.1080/10408398.2022.2124949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inorganic nitrate provided by either nitrate salts or food supplements may improve cardiometabolic health. However, current methods to assess dietary nitrate, nitrite and nitrosamine consumption are inadequate. The purpose of this study was to develop a reference database to estimate the levels of nitrate, nitrite and nitrosamines in the global food supply. A systematic literature search was undertaken; of the 5,747 articles screened, 448 met the inclusion criteria. The final database included data for 1,980 food and beverages from 65 different countries. There were 5,105 unique records for nitrate, 2,707 for nitrite, and 954 for nitrosamine. For ease of use, data were sorted into 12 categories; regarding nitrate and nitrite concentrations in food and beverages, 'vegetables and herbs' were most reported in the literature (n = 3,268 and n = 1,200, respectively). For nitrosamines, 'protein foods of animal origin' were most reported (n = 398 records). This database will allow researchers and practitioners to confidently estimate dietary intake of nitrate, nitrite and nitrosamines. When paired with health data, our database can be used to investigate associations between nitrate intake and health outcomes, and/or exercise performance and could support the development of key dietary nitrate intake guidelines.
Collapse
Affiliation(s)
- Nicholas F McMahon
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paige G Brooker
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Toby G Pavey
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Michael D Leveritt
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
28
|
Affiliation(s)
- Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
29
|
Comparison of Five Oxidative Stress Biomarkers in Vegans and Omnivores from Germany and Finland. Nutrients 2022; 14:nu14142918. [PMID: 35889875 PMCID: PMC9323774 DOI: 10.3390/nu14142918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
When the amount of reactive oxygen species produced by human metabolism cannot be balanced by antioxidants, this phenomenon is commonly referred to as oxidative stress. It is hypothesised that diets with high amounts of plant food products may have a beneficial impact on oxidative stress status. However, few studies have examined whether a vegan diet is associated with lower oxidative stress compared to an omnivorous diet. The present cross-sectional study aimed to compare the levels of five oxidative stress biomarkers in vegans and omnivores. Data of 36 vegans and 36 omnivores from Germany and of 21 vegans and 18 omnivores from Finland were analysed. HPLC coupled with mass spectrometry or fluorescence detection and ELISA methods were used to measure the oxidative stress biomarkers malondialdehyde (MDA), protein carbonyls and 3-nitrotyrosine in plasma and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α) in 24 h urine. Analyses of variance and covariance, considering potential confounders, were used. Vegans and omnivores showed no differences in MDA and protein carbonyl concentrations. In Finnish but not in German vegans, the concentrations of 3-nitrotyrosine were lower compared to those in omnivores (p = 0.047). In Germany, vegans showed lower excretion levels of 8-iso-PGF2α than omnivores (p = 0.002) and with a trend also of 8-OHdG (p = 0.05). The sensitivity analysis suggests lower 8-iso-PGF2α excretion levels in women compared to men, independently of the dietary group. The present study contributes to expanding our knowledge of the relationship between diet and oxidative stress and showed that 3-nitrotyrosine, 8-OHdG and 8-iso-PGF2α tended to be lower in vegans. Furthermore, studies are recommended to validate the present findings.
Collapse
|
30
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Acute dietary nitrate supplementation does not change venous volume and compliance in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2022; 323:R331-R339. [PMID: 35816716 DOI: 10.1152/ajpregu.00083.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this randomized single-blind, placebo-controlled, crossover study, we investigated the influence of inorganic nitrate (NO3-) supplementation on venous volume and compliance in the resting forearm and calf. Twenty healthy young adults were assigned to receive an NO3--rich beverage (beetroot juice [BRJ]: 140 mL; ~8 mmol NO3-) or an NO3¯-depleted control beverage (prune juice [CON]: 166 mL; < 0.01 mmol NO3-). Two hours after consuming the allocated beverage, each participant rested in the supine position for 20 min. Cuffs were then placed around the right upper arm and right thigh, inflated to 60 mmHg for 8 min, and then decreased to 0 mmHg at a rate of 1 mmHg/s. During inflation and deflation of cuff pressure, changes in venous volume in the forearm and calf were measured by venous occlusion plethysmography. Venous compliance was calculated as the numerical derivative of the cuff pressure‒venous volume curve in the limbs. The plasma NO3- concentration was elevated by intake of BRJ (before, 15.5 ± 5.8 µM; after, 572.0 ± 116.1 µM, P < 0.05) but not by CON (before, 14.8 ± 7.2 µM; after, 15.3 ± 7.4 µM, P > 0.05). On the other hand, there was no significant difference in venous volume or compliance in the forearm or calf between BRJ and CON. These findings suggest that although acute inorganic NO3- supplementation may enhance the activity of nitric oxide (NO) via NO3- → nitrite → NO pathway, it does not influence venous volume or compliance in the limbs in healthy young adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
31
|
Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study. Nutrients 2022; 14:nu14122490. [PMID: 35745220 PMCID: PMC9228179 DOI: 10.3390/nu14122490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Previous studies suggest that nitric oxide is involved in the regulation of the intraocular pressure (IOP) and in the pathophysiology of open-angle glaucoma (OAG). However, prospective studies investigating the association between dietary nitrate intake, a source of nitric oxide, and incident (i)OAG risk are limited. We aimed to determine the association between dietary nitrate intake and iOAG, and to evaluate the association between dietary nitrate intake and IOP. From 1991 onwards, participants were followed each five years for iOAG in the Rotterdam Study. A total of 173 participants developed iOAG during follow-up. Cases and controls were matched on age (mean ± standard deviation: 65.7 ± 6.9) and sex (%female: 53.2) in a case:control ratio of 1:5. After adjustment for potential confounders, total dietary nitrate intake was associated with a lower iOAG risk (odds ratio (OR) with corresponding 95% confidence interval (95% CI): 0.95 (0.91-0.98) for each 10 mg/day higher intake). Both nitrate intake from vegetables (OR (95% CI): 0.95 (0.91-0.98) for each 10 mg/day higher intake) and nitrate intake from non-vegetable food sources (OR (95% CI): 0.63 (0.41-0.96) for each 10 mg/day higher intake) were associated with a lower iOAG risk. Dietary nitrate intake was not associated with IOP. In conclusion, dietary nitrate intake was associated with a reduced risk of iOAG. IOP-independent mechanisms may underlie the association with OAG.
Collapse
|
32
|
A food composition database for assessing nitrate intake from plant-based foods. Food Chem 2022; 394:133411. [DOI: 10.1016/j.foodchem.2022.133411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
|
33
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
34
|
Kotopoulou S, Zampelas A, Magriplis E. Dietary nitrate and nitrite and human health: a narrative review by intake source. Nutr Rev 2021; 80:762-773. [PMID: 34919725 DOI: 10.1093/nutrit/nuab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitrate and nitrite are plant nutrients that, although ubiquitous in plant foods, are highly controversial substances in human nutrition because they are also used as additives in processed foods and may be found as contaminants in drinking water. The aim for this narrative review is to provide a thorough insight into the current literature on the relationship between dietary nitrate and nitrite and the health risks and benefits by source of intake. The results highlight beneficial effects of nitrate and nitrite consumption from plant origin on cardiovascular disease and, to date, no positive correlation has been reported with cancer. On the contrary, high intake of these compounds from processed animal-based foods is related to an increased risk of gastro-intestinal cancer. Nitrate in drinking water also raises some concern, because it appears to be related to adverse health effects. The up-to-date debate on the role of nitrate and nitrite in human nutrition seems to be justified and more research is required to verify safe consumption.
Collapse
Affiliation(s)
- Sotiria Kotopoulou
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| | - Antonis Zampelas
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| | - Emmanuella Magriplis
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| |
Collapse
|
35
|
Cheng CJ, Kuo YT, Chen JW, Wei GJ, Lin YJ. Probabilistic risk and benefit assessment of nitrates and nitrites by integrating total diet study-based exogenous dietary exposure with endogenous nitrite formation using toxicokinetic modeling. ENVIRONMENT INTERNATIONAL 2021; 157:106807. [PMID: 34418847 DOI: 10.1016/j.envint.2021.106807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The impacts of dietary nitrates and nitrites on human health have been a controversial topic for many years. However, the risk and benefit assessment of nitrates and nitrites is complicated by the large variation in nitrate and nitrite intake among people and the endogenous nitrite formation in the body. This study conducted a probabilistic risk-benefit assessment of dietary nitrates and nitrites based on internal dose by integrating exogenous and endogenous exposures with human trial data on cardiovascular benefits. A total diet study was carried out to quantify the age-specific dietary intakes of nitrates and nitrites. A previously well-validated human toxicokinetic model was used to predict internal doses for different age groups. In addition, the integrated approach was applied to different populations from different countries/regions based on reported exposure estimates to conduct a comprehensive risk-benefit assessment of dietary nitrates and nitrites. The results demonstrated that vegetable consumption was the main contributor to the internal nitrate and nitrite levels in all age groups. Exposure to nitrates and nitrites exceeding acceptable daily intakes in a variety of foods showed cardiovascular benefits. The probabilistic risk assessment showed that the exposure to nitrates and nitrites did not pose an appreciable health and safety risk. Therefore, the present results suggest that dietary nitrates and nitrites have clear cardiovascular benefits that may outweigh potential risks. Our analysis contributes significantly to addressing the controversy regarding risks and benefits from dietary nitrates and nitrites, and our approach could be applied to other dietary constituents with the potential for both risks and benefits.
Collapse
Affiliation(s)
- Cheng-Jih Cheng
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan
| | - Yuh-Ting Kuo
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan
| | - Jein-Wen Chen
- Department of Food and Beverage Management, Cheng Shiu University, Kaohsiung 833, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Guor-Jien Wei
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan; Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
36
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
37
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
38
|
In Situ Monitoring of Nitrate Content in Leafy Vegetables Using Attenuated Total Reflectance − Fourier-Transform Mid-infrared Spectroscopy Coupled with Machine Learning Algorithm. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02048-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Morselli F, Faconti L, Mills CE, Morant S, Chowienczyk PJ, Yeung JA, Cavarape A, Cruickshank JK, Webb AJ. Dietary nitrate prevents progression of carotid subclinical atherosclerosis through blood pressure-independent mechanisms in patients with or at risk of type 2 diabetes mellitus. Br J Clin Pharmacol 2021; 87:4726-4736. [PMID: 33982797 DOI: 10.1111/bcp.14897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/01/2022] Open
Abstract
AIMS To test if 6 months' intervention with dietary nitrate and spironolactone could affect carotid subclinical atherosclerosis and stiffness, respectively, vs. placebo/doxazosin, to control for blood pressure (BP). METHODS A subgroup of participants in our double-blind, randomized-controlled, factorial VaSera trial had carotid imaging. Patients with hypertension and with/at risk of type 2 diabetes were randomized to active nitrate-containing beetroot juice or placebo nitrate-depleted juice, and spironolactone or doxazosin. Vascular ultrasound for carotid diameter (CD, mm) and intima-media thickness (CIMT, mm) was performed at baseline, 3- and 6-months. Carotid local stiffness (CS, m/s) was estimated from aortic pulse pressure (Arteriograph) and carotid lumen area. Data were analysed by modified intention to treat and using mixed-model effect, adjusted for confounders. RESULTS In total, 93 subjects had a baseline evaluation and 86% had follow-up data. No statistical interactions occurred between the juice and drug arms and BP was similar between the juices and between the drugs. Nitrate-containing vs. placebo juice significantly lowered CIMT (-0.06 [95% confidence interval -0.12, -0.01], P = .034), an overall difference of ~8% relative to baseline; but had no effect on CD or CS. Doxazosin appeared to reduce CS from baseline (-0.34 [-0.62, -0.06]) however, no difference was detected vs. spironolactone (-0.15 [-0.46, 0.16]). No differences were detected between spironolactone or doxazosin on CIMT and CD. CONCLUSIONS Our results show that 6 months' intervention with dietary nitrate influences vascular remodelling, but not carotid stiffness or diameter. Neither spironolactone nor doxazosin had a BP-independent effect on carotid structure and function.
Collapse
Affiliation(s)
- Franca Morselli
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, UK.,Dipartimento di Area Medica, Clinica Medica, Universita' degli Studi di Udine, Udine, Italy.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Luca Faconti
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, UK.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charlotte E Mills
- King's College London, Department of Nutritional Sciences, School of Life Course Sciences, London, UK.,Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven Morant
- Medicines Monitoring Unit (MEMO), University of Dundee, UK
| | - Philip J Chowienczyk
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, UK.,King's College London, Department of Nutritional Sciences, School of Life Course Sciences, London, UK.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joshua Au Yeung
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, UK.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alessandro Cavarape
- Dipartimento di Area Medica, Clinica Medica, Universita' degli Studi di Udine, Udine, Italy
| | - J Kennedy Cruickshank
- King's College London, Department of Nutritional Sciences, School of Life Course Sciences, London, UK.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew J Webb
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, UK.,Biomedical Research Centre, Clinical Research Facility, 4th Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
40
|
Sim M, Blekkenhorst LC, Bondonno NP, Radavelli-Bagatini S, Peeling P, Bondonno CP, Magliano DJ, Shaw JE, Woodman R, Murray K, Lewis JR, Daly RM, Hodgson JM. Dietary Nitrate Intake Is Positively Associated with Muscle Function in Men and Women Independent of Physical Activity Levels. J Nutr 2021; 151:1222-1230. [PMID: 33760920 DOI: 10.1093/jn/nxaa415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nitrate supplements can improve vascular and muscle function. Whether higher habitual dietary nitrate is associated with better muscle function remains underexplored. OBJECTIVE The aim was to examine whether habitual dietary nitrate intake is associated with better muscle function in a prospective cohort of men and women, and whether the relation was dependent on levels of physical activity. METHODS The sample (n = 3759) was drawn from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab) (56% female; mean ± SD baseline age: 48.6 ± 11.1 y). Habitual dietary intake was assessed over 12 y by obtaining an average [of at least 2 time points, e.g., baseline (2000/2001) and 2004/2005 and/or 2011/2012] from a food-frequency questionnaire. Nitrate intake was calculated from a validated nitrate database and other published literature. Muscle function was quantified by knee extension strength (KES) and the 8-ft-timed-up-and-go (8ft-TUG) test performed in 2011/2012. Physical activity was assessed by questionnaire. Generalized linear models and logistic regression were used to analyze the data. RESULTS Median (IQR) total nitrate intake was 65 (52-83) mg/d, with ∼81% derived from vegetables. Individuals in the highest tertile of nitrate intake (median intake: 91 mg/d) had 2.6 kg stronger KES (11%) and 0.24 s faster 8ft-TUG (4%) compared with individuals in the lowest tertile of nitrate intake (median intake: 47 mg/d; both P < 0.05). Similarly, individuals in the highest tertile of nitrate intake had lower odds for weak KES (adjusted OR: 0.69; 95% CI: 0.47, 0.73) and slow 8ft-TUG (adjusted OR: 0.63; 95% CI: 0.50, 0.78) compared with those in the lowest tertile. Physical activity did not influence the relationship between nitrate intake and muscle function (KES; P-interaction = 0.86; 8ft-TUG; P-interaction = 0.99). CONCLUSIONS Higher habitual dietary nitrate intake, predominantly from vegetables, could be an effective way to promote lower-limb muscle strength and physical function in men and women.
Collapse
Affiliation(s)
- Marc Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, Western Australia, Australia
| | - Lauren C Blekkenhorst
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, Western Australia, Australia
| | - Nicola P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Biomedical Sciences, The University Western Australia, Perth, Western Australia, Australia
| | - Simone Radavelli-Bagatini
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science), The University Western Australia, Perth, Western Australia, Australia.,Western Australian Institute of Sport, Mt Claremont, Western Australia, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, Western Australia, Australia
| | - Dianna J Magliano
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash University, School of Public Health and Preventive Medicine, Melbourne, Victoria, Australia
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash University, School of Public Health and Preventive Medicine, Melbourne, Victoria, Australia
| | - Richard Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Kevin Murray
- School of Population and Global Health, The University Western Australia, Perth, Western Australia, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, Western Australia, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Vegetable nitrate intake, blood pressure and incident cardiovascular disease: Danish Diet, Cancer, and Health Study. Eur J Epidemiol 2021; 36:813-825. [PMID: 33884541 PMCID: PMC8416839 DOI: 10.1007/s10654-021-00747-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
Whether the vascular effects of inorganic nitrate, observed in clinical trials, translate to a reduction in cardiovascular disease (CVD) with habitual dietary nitrate intake in prospective studies warrants investigation. We aimed to determine if vegetable nitrate, the major dietary nitrate source, is associated with lower blood pressure (BP) and lower risk of incident CVD. Among 53,150 participants of the Danish Diet, Cancer, and Health Study, without CVD at baseline, vegetable nitrate intake was assessed using a comprehensive vegetable nitrate database. Hazard ratios (HRs) were calculated using restricted cubic splines based on multivariable-adjusted Cox proportional hazards models. During 23 years of follow-up, 14,088 cases of incident CVD were recorded. Participants in the highest vegetable nitrate intake quintile (median, 141 mg/day) had 2.58 mmHg lower baseline systolic BP (95%CI − 3.12, − 2.05) and 1.38 mmHg lower diastolic BP (95%CI − 1.66, − 1.10), compared with participants in the lowest quintile. Vegetable nitrate intake was inversely associated with CVD plateauing at moderate intakes (~ 60 mg/day); this appeared to be mediated by systolic BP (21.9%). Compared to participants in the lowest intake quintile (median, 23 mg/day), a moderate vegetable nitrate intake (median, 59 mg/day) was associated with 15% lower risk of CVD [HR (95% CI) 0.85 (0.82, 0.89)]. Moderate vegetable nitrate intake was associated with 12%, 15%, 17% and 26% lower risk of ischemic heart disease, heart failure, ischemic stroke and peripheral artery disease hospitalizations respectively. Consumption of at least ~ 60 mg/day of vegetable nitrate (~ 1 cup of green leafy vegetables) may mitigate risk of CVD.
Collapse
|
42
|
Tacey A, Hayes A, Zulli A, Levinger I. Osteocalcin and vascular function: is there a cross-talk? Mol Metab 2021; 49:101205. [PMID: 33684607 PMCID: PMC8027272 DOI: 10.1016/j.molmet.2021.101205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Background The bone-derived protein osteocalcin (OC), in its undercarboxylated (ucOC) form, has a beneficial effect on energy metabolism and may be a future therapeutic target for metabolic diseases. Increasing evidence suggests a link between ucOC and cardiovascular disease (CVD) development; however, the exact relationship is conflicting and unclear. Scope of review The aim of this review was to summarise the current research examining the interaction between OC and vascular dysfunction, the initiating stage in the development of atherosclerosis and CVD. Major conclusions In humans, the association between OC and vascular function is inconsistent. Several studies report that total OC (tOC) is associated with adverse function or beneficial function, whereas others report that tOC and ucOC has no effect on vascular function. The conflicting data are likely due to several methodological inconsistencies, in particular the lack of studies reporting circulating ucOC levels. In animal models, the direct administration of ucOC to isolated blood vessels ex vivo produced minimal changes in endothelial function, but importantly, no adverse responses. Finally, in human endothelial and vascular smooth muscle cells, ucOC treatment did not influence classical markers of cellular function, including endothelin-1, vascular adhesion molecule-1 and monocyte chemoattractant protein-1 after exposure to high glucose and inflammatory conditions. The lack of adverse effects in ex vivo and in vitro studies suggests that ucOC may be targeted as a future therapeutic for metabolic diseases, without the risk of detrimental effects in the vasculature. However, further studies are needed to confirm these findings and to investigate whether there is a direct beneficial influence of ucOC. ucOC is implicated in the regulation of glucose homeostasis; but its role in the vasculature has been minimally reported. Studies which examine the association between ucOC and vascular function in humans often report inconsistent outcomes. In addition, ex vivo and in vitro studies have reported that ucOC likely does not directly regulate endothelial function. ucOC may be targeted as a therapeutic treatment for metabolic diseases without a risk of adverse effects in the vasculature.
Collapse
Affiliation(s)
- Alexander Tacey
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia.
| |
Collapse
|
43
|
Lewis JR, Voortman T, Ioannidis JP. Evaluating and Strengthening the Evidence for Nutritional Bone Research: Ready to Break New Ground? J Bone Miner Res 2021; 36:219-226. [PMID: 33503301 DOI: 10.1002/jbmr.4236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 01/19/2023]
Abstract
A healthy diet is essential to attain genetically determined peak bone mass and maintain optimal skeletal health across the adult lifespan. Despite the importance of nutrition for bone health, many of the nutritional requirements of the skeleton across the lifespan remain underexplored, poorly understood, or controversial. With increasingly aging populations, combined with rapidly changing diets and lifestyles globally, one anticipates large increases in the prevalence of osteoporosis and incidence of osteoporotic fractures. Robust, transparent, and reproducible nutrition research is a cornerstone for developing reliable public health recommendations to prevent osteoporosis and osteoporotic fractures. However, nutrition research is often criticized or ignored by healthcare professionals due to the overemphasis of weak science, conflicting, confusing or implausible findings, industry interests, common misconceptions, and strong opinions. Conversely, spurious research findings are often overemphasized or misconstrued by the media or prominent figures especially via social media, potentially leading to confusion and a lack of trust by the general public. Recently, reforms of the broader discipline of nutrition science have been suggested and promoted, leading to new tools and recommendations to attempt to address these issues. In this perspective, we provide a brief overview of what has been achieved in the field on nutrition and bone health, focusing on osteoporosis and osteoporotic fractures. We discuss what we view as some of the challenges, including inherent difficulties in assessing diet and its change, disentangling complex interactions between dietary components and between diet and other factors, selection of bone-related outcomes for nutrition studies, obtaining evidence with more unbiased designs, and perhaps most importantly, ensuring the trust of the public and healthcare professionals. This perspective also provides specific recommendations and highlights new developments and future opportunities for scientists studying nutrition and bone health. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, The University of Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - John Pa Ioannidis
- Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, CA, USA.,Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.,Department of Statistics, Stanford University, Stanford, CA, USA.,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
| |
Collapse
|
44
|
Tacey A, Sim M, Smith C, Woessner MN, Byrnes E, Lewis JR, Brennan-Speranza T, Hodgson JM, Blekkenhorst LC, Levinger I. Association between Circulating Osteocalcin and Cardiometabolic Risk Factors following a 4-Week Leafy Green Vitamin K-Rich Diet. ANNALS OF NUTRITION AND METABOLISM 2020; 76:361-367. [DOI: 10.1159/000511660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Evidence suggests that lower serum undercarboxylated osteocalcin (ucOC) may be negatively associated with cardiometabolic health. We investigated whether individuals with a suppression of ucOC following an increase in dietary vitamin K1 exhibit a relative worsening of cardiometabolic risk factors. <b><i>Materials and Methods:</i></b> Men (<i>n</i> = 20) and women (<i>n</i> = 10) aged 62 ± 10 years participated in a randomized, controlled, crossover study. The primary analysis involved using data obtained from participants following a high vitamin K1 diet (HK; 4-week intervention of increased leafy green vegetable intake). High and low responders were defined based on the median percent reduction (30%) in ucOC following the HK diet. Blood pressure (resting and 24 h), arterial stiffness, plasma glucose, lipid concentrations, and serum OC forms were assessed. <b><i>Results:</i></b> Following the HK diet, ucOC and ucOC/tOC were suppressed more (<i>p</i> < 0.01) in high responders (41 and 29%) versus low responders (12 and 10%). The reduction in ucOC and ucOC/tOC was not associated with changes in blood pressure, arterial stiffness, plasma glucose, or lipid concentrations in the high responders (<i>p</i> > 0.05). <b><i>Discussion/Conclusion:</i></b> Suppression of ucOC via consumption of leafy green vegetables has no negative effects on cardiometabolic health, perhaps, in part, because of cross-talk mechanisms.
Collapse
|
45
|
Martín León V, Luzardo OP. Evaluation of nitrate contents in regulated and non-regulated leafy vegetables of high consumption in the Canary Islands, Spain: Risk assessment. Food Chem Toxicol 2020; 146:111812. [PMID: 33058989 DOI: 10.1016/j.fct.2020.111812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
The nitrate content of the most consumed green leafy vegetables in the European Region of the Canary Islands was determined. The sampling included chard and watercress, which are not regulated but highly consumed in this region. The levels of nitrates in organic vegetables were significantly higher than those of conventional cultivation. However, no seasonal differences were observed, and overall nitrate levels were lower than those reported in other studies. Median nitrate levels in the analyzed vegetables were: lettuce (3 varieties) = 573.7 mg/kg; ready-to-eat salad mixes = 595.0 mg/kg; spinach = 1044.2 mg/kg; arugula = 3144.2 mg/kg; watercress = 450.5 mg/kg; and chard = 1788.4 mg/kg. In general, the nitrate levels of watercress and chard were significantly higher than those of regulated vegetables with similar culinary uses. The average per capita daily intake of nitrates through regulated vegetables was 17.5-32.5% of acceptable daily intake (ADI). On the contrary, the consumption of unregulated vegetables in this archipelago represents a similar, or even higher, percentage of ADI (23.6-44.3%). We, therefore, consider that the establishment of maximum limits of nitrate by the EU regulatory authorities would be appropriate for chard and watercress and similar to those set for spinach.
Collapse
Affiliation(s)
- Verónica Martín León
- Public Health Laboratory of Las Palmas, Canary Health Service, Las Palmas de Gran Canaria, 35004, Spain
| | - Octavio P Luzardo
- Public Health Laboratory of Las Palmas, Canary Health Service, Las Palmas de Gran Canaria, 35004, Spain; Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain.
| |
Collapse
|
46
|
Oue A, Iimura Y, Maeda K, Yoshizaki T. Association between vegetable consumption and calf venous compliance in healthy young adults. J Physiol Anthropol 2020; 39:18. [PMID: 32787933 PMCID: PMC7425150 DOI: 10.1186/s40101-020-00231-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Venous compliance decreases with aging and/or physical inactivity, which is thought to be involved partly in the pathogenesis of cardiovascular disease such as hypertension. This suggests that it is important to maintain high venous compliance from a young age in order to prevent cardiovascular disease. Both nutrient and exercise could play an important role in the improvement and maintenance of vascular health. Indeed, habitual endurance exercise is known to improve the venous compliance, although little is known about the effect of diet on venous compliance. Considering that higher consumption of vegetables could contribute to the arterial vascular health and the decreased blood pressure, it is hypothesized that venous compliance may be greater as vegetable intake is higher. Thus, the purpose of this study was to clarify the association between vegetable intake and venous compliance in healthy young adults. METHODS Dietary intake was assessed in 94 subjects (male: n = 44, female: n = 50) using a self-administered diet history questionnaire (DHQ). Intakes of nutrients and food groups that were obtained from the DHQ were adjusted according to total energy intake using the residual method. Based on the adjusted intake of food groups, total vegetable intake was calculated as the sum of green/yellow and white vegetables consumed. Calf volume was measured using venous occlusion plethysmography with a cuff deflation protocol. Calf venous compliance was calculated as the numerical derivative of the cuff pressure-calf volume curve. In addition, circulatory responses (heart rate and systolic and diastolic blood pressure) at resting and maximal oxygen uptake were assessed in all subjects. RESULTS Mean value of total vegetables intake was 162.2 ± 98.2 g/day. Simple linear regression analysis showed that greater venous compliance was significantly associated with higher total vegetable consumption (r = 0.260, P = 0.011) and green/yellow vegetable intake (r = 0.351, P = 0.001) but not white vegetable intake (r = 0.013, P = 0.902). These significant associations did not change in the multivariate linear regression models which were adjusted by sex and maximal oxygen uptake. CONCLUSION These findings suggest that higher consumption of vegetables, especially of the green/yellow vegetables, may be associated with greater venous compliance in young healthy adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Kotose Maeda
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Takahiro Yoshizaki
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| |
Collapse
|
47
|
Sim M, Lewis JR, Prince RL, Levinger I, Brennan-Speranza TC, Palmer C, Bondonno CP, Bondonno NP, Devine A, Ward NC, Byrnes E, Schultz CJ, Woodman R, Croft K, Hodgson JM, Blekkenhorst LC. The effects of vitamin K-rich green leafy vegetables on bone metabolism: A 4-week randomised controlled trial in middle-aged and older individuals. Bone Rep 2020; 12:100274. [PMID: 32455149 PMCID: PMC7235933 DOI: 10.1016/j.bonr.2020.100274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
Background High vegetable intake is associated with beneficial effects on bone. However, the mechanisms remain uncertain. Green leafy vegetables are a rich source of vitamin K1, which is known to have large effects on osteoblasts and osteocalcin (OC) metabolism. Objective To examine the effects of consumption of two to three extra serves of green leafy vegetables daily on bone metabolism. Methods Thirty individuals (mean age 61.8 ± 9.9 years, 67% male) completed three experimental phases in a randomised controlled crossover design, each lasting four weeks, with a washout period of four weeks between phases (clinical trial registration: ACTRN12615000194561). The three experimental phases were: (i) increased dietary vitamin K1 by consuming green leafy vegetables (H-K; ~200 g/d containing 164.3 [99.5-384.7] μg/d of vitamin K1); (ii) low vitamin K1 by consuming vitamin K1-poor vegetables (L-K; ~200 g/d containing 9.4 [7.7-11.6] μg/d of vitamin K1); and (iii) control (CON) where participants consumed an energy-matched non-vegetable control. OC forms, total OC (tOC), carboxylated OC (cOC) and undercarboxylated OC (ucOC), were measured in serum pre- and post-intervention for each experimental phase using a sandwich-electrochemiluminescence immunoassay. Results Pre-intervention tOC, ucOC and ucOC:tOC levels were similar between phases (P > .05). Following H-K, but not L-K, tOC, ucOC and ucOC:tOC levels were significantly lower compared to pre-intervention levels (P ≤ .001) and compared to CON (~14%, 31% and 19%, respectively, all P < .05), while cOC remained unchanged. Conclusions In middle-aged healthy men and women, an easily achieved increase in dietary intake of vitamin K1-rich green leafy vegetables substantially reduces serum tOC and ucOC suggesting increased entry of OC into bone matrix, where it may improve the material property of bone. In conjunction with previous epidemiological and randomised controlled trial data, these findings suggest that interventions to increase vegetable intake over extended periods should include bone end points including fracture risk.
Collapse
Key Words
- Ageing
- BMD, bone mineral density
- Bone
- CON, control
- CTX, collagen type I C-terminal cross-linked telopeptide
- FFQ, food frequency questionnaire
- GCMS, gas-chromatography mass spectrometry
- H-K, experimental phase with high vitamin K1 intake
- L-K, experimental phase with low vitamin K1 intake
- METs, metabolic equivalents
- MK, menaquinones
- Nutrition
- OC, osteocalcin
- Osteocalcin
- P1NP, N-terminal propeptide of type I collagen
- PK, phylloquinone
- RCT, randomised controlled trial
- USDA, United States Department of Agriculture
- VIABP, Vegetable intake and blood pressure study
- VKDP, vitamin K dependant proteins
- Vitamin K
- cOC, carboxylated osteocalcin
- tOC, total osteocalcin
- ucOC, undercarboxylated osteocalcin
- ucOC:tOC, fraction of undercarboxylated osteocalcin
Collapse
Affiliation(s)
- Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Richard L Prince
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, Sir Charles Gardner Unit, The University Western Australia, Perth, WA, Australia
| | - Itamar Levinger
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Tara C Brennan-Speranza
- Department of Physiology, Bosch Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Claire Palmer
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Science, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Nicola P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia.,School of Public Health & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elizabeth Byrnes
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Carl J Schultz
- Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia.,Department of Cardiology, Royal Perth Hospital, WA, Australia
| | - Richard Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA, Australia
| | - Kevin Croft
- School of Biomedical Science, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Lauren C Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| |
Collapse
|
48
|
Lin YJ, Cheng CJ, Chen JW, Lin Z. Incorporating Exogenous and Endogenous Exposures into Dietary Risk Assessment of Nitrates and Nitrites in Vegetables: A Probabilistic Integrated Toxicokinetic Modeling Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1079-1090. [PMID: 31885263 DOI: 10.1021/acs.jafc.9b06720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to estimate the dietary risk of nitrates and nitrites in vegetables based on internal dose in a probabilistic manner by integrating exogenous exposure based on measured concentrations in vegetables with endogenous exposure using a toxicokinetic (TK) model. We optimized and validated a previous TK model and incorporated Monte Carlo simulations to account for variability across different age populations for predicting internal dose. High levels of nitrates were detected in leafy vegetables (from 545 ± 274 to 1641 ± 873 mg/kg). Nitrite contents of vegetables were generally low (from 1.26 ± 1.40 to 8.20 ± 14.1 mg/kg). The dietary risk was found to be different based on internal versus external dose, suggesting that it is critical to include endogenous nitrite formation into risk assessment. Nitrate and nitrite exposure from vegetables is unlikely to result in appreciable risks for most populations but may be a potential risk for preschoolers.
Collapse
Affiliation(s)
- Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment , National Yang-Ming University , Taipei 11221 , Taiwan
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , 1800 Denison Avenue, P200 Mosier Hall , Manhattan , Kansas 66506 , United States
| | - Cheng-Jih Cheng
- Institute of Food Safety and Health Risk Assessment , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Jein-Wen Chen
- Super Micro Mass Research & Technology Center , Cheng Shiu University , Kaohsiung 83347 , Taiwan
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , 1800 Denison Avenue, P200 Mosier Hall , Manhattan , Kansas 66506 , United States
| |
Collapse
|
49
|
Shannon OM, Grisotto G, Babateen A, McGrattan A, Brandt K, Mathers JC, Siervo M. Knowledge and beliefs about dietary inorganic nitrate among UK-based nutrition professionals: Development and application of the KINDS online questionnaire. BMJ Open 2019; 9:e030719. [PMID: 31676652 PMCID: PMC6830619 DOI: 10.1136/bmjopen-2019-030719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To examine knowledge and beliefs about the biological roles of dietary inorganic nitrate in UK-based nutrition professionals, and to explore potential differences by participants' education level. SETTING An online questionnaire was administered to UK-based nutrition professionals, exploring knowledge and/or beliefs across five areas: (1) health and performance effects of nitrate; (2) current and recommended intake values for nitrate; (3) dietary sources of nitrate; (4) methods of evaluating nitrate intake and (5) nitrate metabolism. PARTICIPANTS One hundred and twenty-five nutrition professionals. PRIMARY OUTCOME Knowledge and beliefs about inorganic nitrate. RESULTS Most nutrition professionals taking part in the survey had previously heard of inorganic nitrate (71%) and perceived it to be primarily beneficial (51%). The majority believed that nitrate consumption can improve sports performance (59%) and reduce blood pressure (54%), but were unsure about effects on cognitive function (71%), kidney function (80%) and cancer risk (70%). Knowledge of dietary sources of nitrate and factors affecting its content in food were generally good (41%-79% of participants providing correct answers). However, most participants were unsure of the average population intake (65%) and the acceptable daily intake (64%) of nitrate. Most participants (65%) recognised at least one compound (ie, nitric oxide or nitrosamines) that is derived from dietary nitrate in the body. Knowledge of nitrate, quantified by a 23-point index created by summing correct responses, was greater in individuals with a PhD (p=0.01; median (IQR)=13 (9-17)) and tended to be better in respondents with a masters degree (p=0.054; 13 (8-15)) compared with undergraduate-level qualifications (10 (2-14)). CONCLUSIONS UK-based nutrition professionals demonstrated mixed knowledge about the physiology of dietary nitrate, which was better in participants with higher education. More efficient dissemination of current knowledge about inorganic nitrate and its effects on health to nutrition professionals will support them to make more informed recommendations about consumption of this compound.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Giorgia Grisotto
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Abrar Babateen
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea McGrattan
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsten Brandt
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, The University of Nottingham Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
50
|
d'Unienville NMA, Hill AM, Coates AM, Yandell C, Nelson MJ, Buckley JD. Effects of almond, dried grape and dried cranberry consumption on endurance exercise performance, recovery and psychomotor speed: protocol of a randomised controlled trial. BMJ Open Sport Exerc Med 2019; 5:e000560. [PMID: 31548903 PMCID: PMC6733316 DOI: 10.1136/bmjsem-2019-000560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 01/17/2023] Open
Abstract
Background Foods rich in nutrients, such as nitrate, nitrite, L-arginine and polyphenols, can promote the synthesis of nitric oxide (NO), which may induce ergogenic effects on endurance exercise performance. Thus, consuming foods rich in these components, such as almonds, dried grapes and dried cranberries (AGC), may improve athletic performance. Additionally, the antioxidant properties of these foods may reduce oxidative damage induced by intense exercise, thus improving recovery and reducing fatigue from strenuous physical training. Improvements in NO synthesis may also promote cerebral blood flow, which may improve cognitive function. Methods and analysis Ninety-six trained male cyclists or triathletes will be randomised to consume ~2550 kJ of either a mixture of AGC or a comparator snack food (oat bar) for 4 weeks during an overreaching endurance training protocol comprised of a 2-week heavy training phase, followed by a 2-week taper. The primary outcome is endurance exercise performance (5 min time-trial performance) and secondary outcomes include markers of NO synthesis (plasma and urinary nitrites and nitrates), muscle damage (serum creatine kinase and lactate dehydrogenase), oxidative stress (F2-isoprostanes), endurance exercise function (exercise efficiency, submaximal oxygen consumption and substrate utilisation), markers of internal training load (subjective well-being, rating of perceived exertion, maximal rate of heart rate increase and peak heart rate) and psychomotor speed (choice reaction time). Conclusion This study will evaluate whether consuming AGC improves endurance exercise performance, recovery and psychomotor speed across an endurance training programme, and evaluate the mechanisms responsible for any improvement. Trial registration number ACTRN12618000360213.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Hill
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Coates
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Catherine Yandell
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Maximillian J Nelson
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Jonathan D Buckley
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|