1
|
Shen R, Xia P, Guo Y, Ji P, Yuan X, Wang L, Shuang S, Zhou L, Tong R, Zhang L, Liu D, Wang D. Effects of polystyrene microparticles exposures on spermatogenic cell differentiation and reproductive endpoints in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126200. [PMID: 40185193 DOI: 10.1016/j.envpol.2025.126200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The widespread distribution of microplastics in the environment has raised concerns about their potential implications for human health. Microplastics accumulate in animals and humans, but the risks associated with these pollutants are not fully understood. This study aimed to investigate the effects of polystyrene microplastics on the male reproductive system. The 0.1 μm polystyrene (PS) could accumulate in the testicular tissue and spermatogonia GC-1, while 1 μm PS was not easy to enter and accumulate in the testicular tissue and cells. Mice continuously exposed for 3-months to 0.1 μm PS demonstrated lower fertility and inhibited spermatogonium differentiation compared to control mice. The 0.1 μm PS were dispersed throughout the seminiferous tubule of the testis. Metabolic reprogramming was found to be involved in these processes. Histone methylation and autophagy-related pathways showed significant differences following PS treatment in testis tissue and GC-1 cells. Our findings suggest that chronic exposure to 0.1 μm PS inhibited spermatogenic cell differentiation and impaired fertility in male mice. We propose that abnormal epigenetic modifications in 0.1 μm PS exposed mice contributed to the dysregulation of glycolytic enzymes, and that the impaired autophagic pathway exacerbated the accumulation of glycolytic enzymes further. Glycolysis plays a critical role in the regulation of spermatogenic cell differentiation, and its regulation partially alleviated the impairments associated with PS exposure. In conclusion, our findings suggest that chronic exposure to nanoplastics PS inhibited spermatogenic cell differentiation and impaired fertility in male mice via disrupted epigenetic modification and metabolic dysregulation.
Collapse
Affiliation(s)
- Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Si Shuang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Liwei Zhou
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Ruizhi Tong
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lijuan Zhang
- Medical Experimental Center, Lanzhou University, Gansu, 730000, China
| | - Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
2
|
Aoki H, Tomita H, Hara A, Kunisada T. Conditional heterozygous loss of kit receptor tyrosine kinase in neural crest cell lineage is associated with midline cleft lip and bifid nose deformity. J Oral Biosci 2025; 67:100572. [PMID: 39426597 DOI: 10.1016/j.job.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The receptor tyrosine kinase Kit is expressed in cells derived from the trunk neural crest (NC), such as melanocytes; however, its role in cranial NC cell development is not fully understood. METHODS We investigated the effects of the heterozygous loss of Kit in NC cells during embryonic development by mating Kit2lox/+ mice with Wnt1-Cre mice to produce Wnt1-Cre; Kit2lox/+ embryos. In addition, Wnt1-Cre mice were mated with Rosa26R-yellow fluorescent protein (YFP) mice to visualize the tissue regions expressing Cre recombinase. Histological studies of the craniofacial regions of these mice were performed using samples from embryonic day (E) 12.5 and postnatal day (P) 1. Cellular apoptosis and proliferation were both analyzed through the immunostaining of tissue sections collected on E13.5 and E14.5 using anti-cleaved caspase 3 (CC3) to detect apoptosis and anti-Ki67 to detect proliferation. Cells from YFP-positive tissue regions of the facial areas of Wnt1-Cre; Kit+/+; Rosa26R-YFP embryos and Wnt1-Cre; Kit2lox/+; Rosa26R-YFP embryos collected on E12.5 and E15.5 were cultured and evaluated for cell proliferation. RESULTS Compared with control littermates, Wnt1-Cre; Kit2lox/+ embryos exhibited midline cleft lip and bifid nose deformities. Substantial early (P1) postnatal lethality was observed in Wnt1-Cre; Kit2lox/+ mice, with none surviving to 3 weeks of age. YFP-positive cells from the maxillary regions of Wnt1-Cre; Kit2lox/+; Rosa26R-YFP embryos exhibited defective cell growth and self-renewal in vitro. CONCLUSION Conditional heterozygous loss of Kit in Wnt1-Cre; Kit2lox/+ embryos is associated with craniofacial dysplasia and exhibit defective NC development in vitro and in vivo.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan.
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
3
|
Song Z, Gong B, Qu T, Chen Y, Zhao G, Jin Y, Zhao Q. Anlotinib destabilizes PAX3-FOXO1 to induce rhabdomyosarcoma cell death via upregulating NEK2. Biomed Pharmacother 2024; 177:117126. [PMID: 38996706 DOI: 10.1016/j.biopha.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.
Collapse
Affiliation(s)
- Zian Song
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Baocheng Gong
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tongyuan Qu
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yankun Chen
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guangzong Zhao
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yan Jin
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Qiang Zhao
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
4
|
Nikmahzar A, Koruji M, Jahanshahi M, Khadivi F, Shabani M, Dehghani S, Forouzesh M, Jabari A, Feizollahi N, Salem M, Ghanami Gashti N, Abbasi Y, Abbasi M. Differentiation of human primary testicular cells in the presence of SCF using the organoid culture system. Artif Organs 2023; 47:1818-1830. [PMID: 37698035 DOI: 10.1111/aor.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Development of organoids using human primary testicular cells has remained a challenge due to the complexity of the mammalian testicular cytoarchitecture and culture methods. In this study, we generated testicular organoids derived from human primary testicular cells. Then, we evaluated the effect of stem cell factor (SCF) on cell differentiation and apoptosis in the testicular organoid model. METHODS The testicular cells were harvested from the three brain-dead donors. Human spermatogonial stem cells (SSCs) were characterized using immunocytochemistry (ICC), RT-PCR and flow cytometry. Testicular organoids were generated from primary testicular cells by hanging drop culture method and were cultured in three groups: control group, experimental group 1 (treated FSH and retinoic acid (RA)), and experimental group 2 (treated FSH, RA and SCF), for five weeks. We assessed the expression of SCP3 (Synaptonemal Complex Protein 3) as a meiotic gene, PRM2 (Protamine 2) as a post-meiotic marker and apoptotic genes of Bax (BCL2-Associated X Protein) and Bcl-2 (B-cell lymphoma 2), respectively by using RT-qPCR. In addition, we identified the expression of PRM2 by immunohistochemistry (IHC). RESULTS Relative expression of SCP3, PRM2 and Bcl-2 were highest in group 2 after five weeks of culture. In contrast, BAX expression level was lower in experimental group 2 in comparison with other groups. IHC analyses indicated the highest expression of PRM2 as a postmeiotic marker in group 2 in comparison to 2D culture and control groups but not find significant differences between experimental group 1 and experimental group 2 groups. Morphological evaluations revealed that organoids are compact spherical structures and in the peripheral region composed of uncharacterized elongated fibroblast-like cells. CONCLUSION Our findings revealed that the testicular organoid culture system promote the spermatogonial stem cell (SSC) differentiation, especially in presence of SCF. Developed organoids are capable of recapitulating many important properties of a stem cell niche.
Collapse
Affiliation(s)
- Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Center & Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Shabani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Dehghani
- Organ Procurement Unit, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Ayob Jabari
- Department of Anatomy, Zahedan Medical University of Science, Zahedan, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Abbasi
- Program in Neuroscience, Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Cao Y, Rische CH, Bochner BS, O’Sullivan JA. Interactions between Siglec-8 and endogenous sialylated cis ligands restrain cell death induction in human eosinophils and mast cells. Front Immunol 2023; 14:1283370. [PMID: 37928558 PMCID: PMC10623328 DOI: 10.3389/fimmu.2023.1283370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a sialoside-binding receptor expressed by eosinophils and mast cells that exhibits priming status- and cell type-dependent inhibitory activity. On eosinophils that have been primed with IL-5, GM-CSF, or IL-33, antibody ligation of Siglec-8 induces cell death through a pathway involving the β2 integrin-dependent generation of reactive oxygen species (ROS) via NADPH oxidase. In contrast, Siglec-8 engagement on mast cells inhibits cellular activation and mediator release but reportedly does not impact cell viability. The differences in responses between cytokine-primed and unprimed eosinophils, and between eosinophils and mast cells, to Siglec-8 ligation are not understood. We previously found that Siglec-8 binds to sialylated ligands present on the surface of the same cell (so-called cis ligands), preventing Siglec-8 ligand binding in trans. However, the functional relevance of these cis ligands has not been elucidated. We therefore explored the potential influence of cis ligands of Siglec-8 on both eosinophils and mast cells. De-sialylation using exogenous sialidase profoundly altered the consequences of Siglec-8 antibody engagement on both cell types, eliminating the need for cytokine priming of eosinophils to facilitate cell death and enabling Siglec-8-dependent mast cell death without impacting anti-Siglec-8 antibody binding. The cell death process licensed by de-sialylation resembled that characterized in IL-5-primed eosinophils, including CD11b upregulation, ROS production, and the activities of Syk, PI3K, and PLC. These results implicate cis ligands in restraining Siglec-8 function on eosinophils and mast cells and reveal a promising approach to the selective depletion of mast cells in patients with mast cell-mediated diseases.
Collapse
Affiliation(s)
- Yun Cao
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Clayton H. Rische
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF. Long-Term Wi-Fi Exposure From Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird’s Nest Supplementation. Front Physiol 2022; 13:828578. [PMID: 35360230 PMCID: PMC8963498 DOI: 10.3389/fphys.2022.828578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Children are vulnerable to the radiofrequency radiation (RFR) emitted by Wi-Fi devices. Nevertheless, the severity of the Wi-Fi effect on their reproductive development has been sparsely available. Therefore, this study was conducted to evaluate the Wi-Fi exposure on spermatogonia proliferation in the testis. This study also incorporated an approach to attenuate the effect of Wi-Fi by giving concurrent edible bird’s nest (EBN) supplementation. It was predicted that Wi-Fi exposure reduces spermatogonia proliferation while EBN supplementation protects against it. A total of 30 (N = 30) 3-week-old Sprague Dawley weanlings were divided equally into five groups; Control, Control EBN, Wi-Fi, Sham Wi-Fi, and Wi-Fi + EBN. 2.45 GHz Wi-Fi exposure and 250 mg/kg EBN supplementation were conducted for 14 weeks. Findings showed that the Wi-Fi group had decreased in spermatogonia mitosis status. However, the mRNA and protein expression of c-Kit-SCF showed no significant decrease. Instead, the reproductive hormone showed a reduction in FSH and LH serum levels. Of these, LH serum level was decreased significantly in the Wi-Fi group. Otherwise, supplementing the Wi-Fi + EBN group with 250 mg/kg EBN resulted in a significant increase in spermatogonia mitotic status. Even though EBN supplementation improved c-Kit-SCF mRNA and protein expression, the effects were insignificant. The improvement of spermatogonia mitosis appeared to be associated with a significant increase in blood FSH levels following EBN supplementation. In conclusion, the long-term Wi-Fi exposure from pre-pubertal to adult age reduces spermatogonia proliferation in the testis. On the other hand, EBN supplementation protects spermatogonia proliferation against Wi-Fi exposure.
Collapse
Affiliation(s)
| | - Khairul Osman
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
- *Correspondence: Siti Fatimah Ibrahim,
| |
Collapse
|
7
|
Alvarado D, Maurer M, Gedrich R, Seibel SB, Murphy MB, Crew L, Goldstein J, Crocker A, Vitale LA, Morani PA, Thomas LJ, Hawthorne TR, Keler T, Young D, Crowley E, Kankam M, Heath‐Chiozzi M. Anti-KIT monoclonal antibody CDX-0159 induces profound and durable mast cell suppression in a healthy volunteer study. Allergy 2022; 77:2393-2403. [PMID: 35184297 PMCID: PMC9544977 DOI: 10.1111/all.15262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Background Mast cells (MC) are powerful inflammatory immune sentinel cells that drive numerous allergic, inflammatory, and pruritic disorders when activated. MC‐targeted therapies are approved in several disorders, yet many patients have limited benefit suggesting the need for approaches that more broadly inhibit MC activity. MCs require the KIT receptor and its ligand stem cell factor (SCF) for differentiation, maturation, and survival. Here we describe CDX‐0159, an anti‐KIT monoclonal antibody that potently suppresses MCs in human healthy volunteers. Methods CDX‐0159‐mediated KIT inhibition was tested in vitro using KIT‐expressing immortalized cells and primary human mast cells. CDX‐0159 safety and pharmacokinetics were evaluated in a 13‐week good laboratory practice (GLP)‐compliant cynomolgus macaque study. A single ascending dose (0.3, 1, 3, and 9 mg/kg), double‐blinded placebo‐controlled phase 1a human healthy volunteer study (n = 32) was conducted to evaluate the safety, pharmacokinetics, and pharmacodynamics of CDX‐0159. Results CDX‐0159 inhibits SCF‐dependent KIT activation in vitro. Fc modifications in CDX‐0159 led to elimination of effector function and reduced serum clearance. In cynomolgus macaques, multiple high doses were safely administered without a significant impact on hematology, a potential concern for KIT inhibitors. A single dose of CDX‐0159 in healthy human subjects was generally well tolerated and demonstrated long antibody exposure. Importantly, CDX‐0159 led to dose‐dependent, profound suppression of plasma tryptase, a MC‐specific protease associated with tissue MC burden, indicative of systemic MC suppression or ablation. Conclusion CDX‐0159 administration leads to systemic mast cell ablation and may represent a safe and novel approach to treat mast cell‐driven disorders.
Collapse
Affiliation(s)
| | - Marcus Maurer
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité ‐ Universtätsmedizin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | | | | | | | - Linda Crew
- Celldex Therapeutics Hampton New Jersey USA
| | | | | | | | | | | | | | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas Overland Park Kansas USA
| | | |
Collapse
|
8
|
Xu DF, Liu PP, Fan L, Xie Q, Zhang ZQ, Wang LQ, Wu QF, Tan J. GnRH antagonist weakens endometrial stromal cells growth ability by decreasing c-kit receptor expression. Reprod Biol Endocrinol 2022; 20:29. [PMID: 35120552 PMCID: PMC8815158 DOI: 10.1186/s12958-021-00886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several surveys have reported that patients treated with gonadotropin-releasing hormone antagonist (GnRH-ant) protocol showed a significantly lower rate of implantation and clinical pregnancy compared to GnRH agonist (GnRH-a) protocol during in vitro fertilization-fresh embryo transfer. Subsequent studies imputed this poor outcome to the negative effects of GnRH-ant on endometrial receptive. However, the mechanisms were not fully understood. METHODS The clinical data of 2815 patients undergoing fresh embryo transfer in our center were analyzed. Human endometrial stromal cells (ESCs) from healthy women undergoing elective pregnancy termination of a normal pregnancy at 8-10 weeks gestation were treated with GnRH-analogs or imatinib (c-kit receptor inhibitor). CCK8 and Flow cytometry were used to investigated the growth ability of ESCs. Immunofluorescence staining and western blot was used to detected the target proteins. RESULTS The clinical data showed that the endometrial thickness on HCG Day were significantly lower in GnRH-ant group. Although no difference of embryo quality in these two groups, GnRH-ant group showed remarkably decreased rate of HCG positive, embryo implantation and pregnancy. Moreover, GnRH-ant significantly reduced the proliferation and induced the apoptosis of ESCs. Furthermore, the expression and activation of c-kit receptor, which played pivotal roles during embryo implantation, were observably decreased by GnRH-ant. Inhibiting the activation of c-kit by imatinib remarkably suppressed the proliferation and promoted the apoptosis of ESCs. Additionally, the phosphorylation of AKT and expression of Cyclin D1, which were closely related with cellular growth, were distinctly lessened after treating with imatinib. CONCLUSIONS In summary, our study showed that GnRH-ant weakened the activization of c-kit receptor by decreasing its expression, causing the impaired growth ability of ESCs. Our findings provided a new insight into the effects of GnRH-ant on endometrium.
Collapse
Affiliation(s)
- Ding-Fei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, P. R. China
| | - Pei-Pei Liu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, P. R. China
| | - Lu Fan
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, P. R. China
| | - Qi Xie
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Zhi-Qin Zhang
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, P. R. China
| | - Li-Qun Wang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China.
- Department of Reproductive Health, Maternal and Child Health Hospital of Nanchang University, Jiangxi maternal and child health hospital, Nanchang, Jiangxi, 330006, P. R. China.
| | - Qiong-Fang Wu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China.
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, P. R. China.
| | - Jun Tan
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China.
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, P. R. China.
| |
Collapse
|
9
|
Annese T, Tamma R, Bozza M, Zito A, Ribatti D. Autocrine/Paracrine Loop Between SCF +/c-Kit + Mast Cells Promotes Cutaneous Melanoma Progression. Front Immunol 2022; 13:794974. [PMID: 35140718 PMCID: PMC8818866 DOI: 10.3389/fimmu.2022.794974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
c-Kit, or mast/stem cell growth factor receptor Kit, is a tyrosine kinase receptor structurally analogous to the colony-stimulating factor-1 (CSF-1) and platelet-derived growth factor (PDGF) CSF-1/PDGF receptor Tyr-subfamily. It binds the cytokine KITLG/SCF to regulate cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and it plays an essential role in melanogenesis. SCF and c-Kit are biologically active as membrane-bound and soluble forms. They can be expressed by tumor cells and cells of the microenvironment playing a crucial role in tumor development, progression, and relapses. To date, few investigations have concerned the role of SCF+/c-Kit+ mast cells in normal, premalignant, and malignant skin lesions that resemble steps of malignant melanoma progression. In this study, by immunolabeling reactions, we demonstrated that in melanoma lesions, SCF and c-Kit were expressed in mast cells and released by themselves, suggesting an autocrine/paracrine loop might be implicated in regulatory mechanisms of neoangiogenesis and tumor progression in human melanoma.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Mariella Bozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
10
|
Efficacy of resveratrol in male urogenital tract dysfunctions: an evaluation of pre-clinical data. Nutr Res Rev 2021; 36:86-97. [PMID: 34776039 DOI: 10.1017/s0954422421000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resveratrol is a polyphenol found naturally in fruits and plants. Recently, studies in humans and animal models have suggested beneficial properties of this polyphenol, such as improvements to metabolic and lipid profiles, along with antioxidant, anti-inflammatory and anti-proliferative effects. In the urogenital tract (UGT), resveratrol has also been tested clinically and experimentally as a therapeutic drug in several diseases; however, the translational efficacy of resveratrol, especially in UGT, is still a matter of debate. In the present review, we address the pre-clinical efficacy of resveratrol in UGT-related dysfunctions, focusing on lower urinary tract symptoms, non-cancerous prostatic disease (benign prostatic hyperplasia and prostatitis) and erectile dysfunction. In vitro studies indicate that resveratrol reduces inflammatory markers and oxidative stress, and improves endothelial function in UGT organs and cells isolated from humans and animals. Despite displaying low oral bioavailability, in vivo administration of resveratrol largely improves erectile dysfunction, benign prostatic hyperplasia, prostatitis and voiding impairments, as evidenced in different animal models. Resveratrol also acts as a microbiota modulator, which may explain some of its beneficial effects in vivo. In contrast to the large amount of pre-clinical data, there are insufficient clinical trials to establish resveratrol treatment efficacy in human UGT-related diseases. In summary, we provide an overview of the in vivo and in vitro efficacy of resveratrol in animal and human UGT dysfunctions, which may support future clinical trials.
Collapse
|
11
|
Pathania S, Pentikäinen OT, Singh PK. A holistic view on c-Kit in cancer: Structure, signaling, pathophysiology and its inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1876:188631. [PMID: 34606974 DOI: 10.1016/j.bbcan.2021.188631] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Receptor tyrosine kinases play an important role in many cellular processes, and their dysregulation leads to diseases, most importantly cancer. One such receptor tyrosine kinase is c-Kit, a type-III receptor tyrosine kinase, which is involved in various intracellular signaling pathways. The role of different mutant isoforms of c-Kit has been established in several types of cancers. Accordingly, promising c-Kit inhibition results have been reported for the treatment of different cancers (e.g., gastrointestinal stromal tumors, melanoma, acute myeloid leukemia, and other tumors). Therefore, lots of effort has been put to target c-Kit for the treatment of cancer. Here, we provide a comprehensive compilation to provide an insight into c-Kit inhibitor discovery. This compilation provides key information regarding the structure, signaling pathways related to c-Kit, and, more importantly, pharmacophores, binding modes, and SAR analysis for almost all small-molecule heterocycles reported for their c-Kit inhibitory activity. This work could be used as a guide in understanding the basic requirements for targeting c-Kit, and how the selectivity and efficacy of the molecules have been achieved till today.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road, Moga 142001, Punjab, India
| | - Olli T Pentikäinen
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
12
|
Foster BM, Langsten KL, Mansour A, Shi L, Kerr BA. Tissue distribution of stem cell factor in adults. Exp Mol Pathol 2021; 122:104678. [PMID: 34450114 PMCID: PMC8516741 DOI: 10.1016/j.yexmp.2021.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kendall L Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Ammar Mansour
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
13
|
Abdel-Magid AF. The Potential of c-KIT Kinase inhibitors in Cancer Treatment. ACS Med Chem Lett 2021; 12:1191-1192. [PMID: 34413937 DOI: 10.1021/acsmedchemlett.1c00332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ahmed F. Abdel-Magid
- Therachem Research Medilab, LLC. 100 Jade Park, Chelsea, Alabama 35043, United States
| |
Collapse
|
14
|
Tao K, Sun Y, Chao Y, Xing L, Leng L, Zhou D, Zhu W, Fan L. β-estradiol promotes the growth of primary human fetal spermatogonial stem cells via the induction of stem cell factor in Sertoli cells. J Assist Reprod Genet 2021; 38:2481-2490. [PMID: 34050447 DOI: 10.1007/s10815-021-02240-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mammalian spermatogenesis is responsible for male fertility and is supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs). Sertoli cells provide a supportive microenvironment for SSCs, in part by the production of stem cell factor (SCF), which is a potent regulator of spermatogonia proliferation and survival. METHODS We investigated the novel role of β-estradiol in modulating the proliferation and apoptosis of fetal SSCs via the regulation of SCF secretion in Sertoli cells isolated from human fetal testes. The proliferation of SSCs in the co-culture system was determined by colony formation and BrdU incorporation assays. TUNEL assay was used to measure SSC apoptosis in co-culture in response to treatment with control, β-estradiol, or the combination of β-estradiol and the estrogen receptor inhibitor ICI 182780. RESULTS In the system with purified human fetal Sertoli cells (MIS+/c-Kit-/AP-), β-estradiol upregulated the production of SCF in a dose- and time-dependent manner. In the co-culture system of primary human fetal SSCs (c-Kit+/SSEA-4+/Oct-4+/AP+) and Sertoli cells (MIS+), β-estradiol markedly increased the proliferation of SSCs. Moreover, SSC apoptosis was significantly inhibited by β-estradiol and was completely reversed by the combination of β-estradiol and ICI 182780. CONCLUSION Here we report, for the first time, that β-estradiol can induce the increase of SCF expression in human fetal Sertoli cells and regulates the growth and survival of human fetal SSCs. These novel findings provide new perspectives on the current understanding of the role of estrogen in human spermatogenesis.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Yuanchi Chao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Liu Xing
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Lizhi Leng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Dai Zhou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Wenbing Zhu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.
| |
Collapse
|
15
|
Integrated analysis of miRNA and mRNA transcriptomic reveals antler growth regulatory network. Mol Genet Genomics 2021; 296:689-703. [PMID: 33770271 DOI: 10.1007/s00438-021-01776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
The growth of antler is driven by endochondral ossification in the growth center of the apical region. Antler grows faster than cancer tissues, but it can be stably regulated and regenerated periodically. To elucidate the molecular mechanisms of how antler grows rapidly without carcinogenesis, in this study, we used RNA-seq technology to evaluate the changes of miRNA and mRNA profiles in antler at four different developmental stages, including 15, 60, 90, and 110 days. We identified a total of 55004 unigenes and 246 miRNAs of which, 10182, 13258, 10740 differentially expressed (DE) unigenes and 35, 53, 27 DE miRNAs were identified in 60-day vs. 15-day, 90-day vs. 60-day, and 110-day vs. 90-day. GO and KEGG pathway analysis indicated that DE unigenes and DE miRNA were mainly associated with chondrogenesis, osteogenesis and inhibition of oncogenesis, that were closely related to antler growth. The interaction networks of mRNA-mRNA and miRNA-mRNA related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler were constructed. The results indicated that mRNAs (COL2A1, SOX9, WWP2, FGFR1, SPARC, LOX, etc.) and miRNAs (miR-145, miR-199a-3p, miR-140, miR-199a-5p, etc.) might have key roles in chondrogenesis and osteogenesis of antler. As well as mRNA (TP53, Tpm3 and ATP1A1, etc.) and miRNA (miR-106a, miR-145, miR-1260b and miR-2898, etc.) might play important roles in inhibiting the carcinogenesis of antler. In summary, we constructed the mRNA-mRNA and miRNA-mRNA regulatory networks related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler, and identified key candidate mRNAs and miRNAs among them. Further developments and validations may provide a reference for in-depth analysis of the molecular mechanism of antler growth without carcinogenesis.
Collapse
|
16
|
Silva AMS, Socorro S, Hurtado de Llera A, Vaz CV, Correia S, Maia CJ. Overexpression of regucalcin mitigates the ageing-related changes in oxidative stress and sperm quality. Theriogenology 2020; 157:472-482. [PMID: 32898822 DOI: 10.1016/j.theriogenology.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/31/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022]
Abstract
Age-related changes, namely the increase in oxidative stress (OS) with the consequent sperm damage, result in decreased male fertility. Regucalcin (RGN) is a Ca2+-binding protein that has been shown to have beneficial effects on spermatogenesis by suppressing OS and chemical/radiation-induced damage. This work aims to evaluate whether RGN overexpression reduces the ageing-associated decline of male reproductive function. Sperm and testicular function analysis were performed in young-adult and senescent transgenic rats overexpressing RGN (Tg-RGN) comparatively with their wild-type (Wt) littermates. The gonadosomatic index (GI), tubular differentiation index and the expression levels of RGN and other proliferation regulators were evaluated. Moreover, the sperm parameters, OS analysis and immunolocalization of RGN were assessed, as well as morphometric evaluation of epididymal tubules. Both GI and sperm counts were reduced in the senescent Wt rats, but maintained in the Tg-RGN. Also, the levels of stem cell factor (SCF), c-Kit, and Akt were maintained in the testis of aged Tg-RGN rats, suggesting that the normal spermatogenic output was preserved over time in these animals, an effect not observed in Wt. Senescent Tg-RGN rats also presented lower sperm lipid peroxidation and total oxidant status relative to the Wt. Furthermore, aged Tg-RGN rats displayed higher sperm viability, higher frequency of sperm with normal morphology, and reduced incidence of head and neck/midpiece defects when compared with Wt, which may be a consequence of the lower OS levels found in the sperm of these animals. Interestingly, RGN expression increased with ageing in sperm, being mainly localized in the acrosome. Altogether, these findings indicate that the modulation of RGN levels may alleviate the age-related decline in sperm quality and testicular function.
Collapse
Affiliation(s)
- Ana M S Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Hurtado de Llera
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Centro de Investigaciones Científicas y Tecnologicas de Extremadura (CICYTEX), Ctra. A-V Km, 372 06187, Guadajira, Badajoz, Spain
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sara Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Cláudio J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
17
|
Heidary Z, Zaki-Dizaji M, Saliminejad K, Edalatkhah H, Khorram Khorshid HR. MiR-4485-3p expression reduced in spermatozoa of men with idiopathic asthenozoospermia. Andrologia 2020; 52:e13539. [PMID: 32030798 DOI: 10.1111/and.13539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Asthenozoospermia (AZS), which characterised by reduced forward sperm motility, is a common cause of male infertility. Recently, mitochondrial dysfunction reported in AZS men came to attention for finding the molecular aetiology of AZS. Mitochondria-related microRNAs (miRNAs) are the most important regulators of mitochondrial function through post-transcriptionally modulation of gene expression. Therefore, this study aims to evaluate the expression of four recently reported mitochondrial-related miRNAs (miR-4485-3p/4484/4461 and 4463) in the sperm sample of asthenozoospermic men. RNA was extracted from spermatozoa of 74 volunteers (39 patients with idiopathic AZS and 35 controls with normal fertility), and relative gene expression analysis was performed by quantitative PCR. We used SNORD48 as a normaliser gene, and quantification was calculated by 2-ΔΔCt method. The expression of miR-4484 and miR-4461 was not detected in the spermatozoa of cases and controls. However, miR-4485-3p (p = .006) was significantly downregulated in the AZS men compared with the controls, but the miR-4463 expression was not significantly different between the two groups (p = .5). Bioinformatic analysis identified three target genes for miR-4485-3p (DNAH1, KIT and PARK7) that are related to male infertility. In conclusion, the downregulation of miR-4485-3p was associated with idiopathic AZS, which could be a molecular link between mitochondrial dysfunction and AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
18
|
Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 2019; 23:3392-3406. [PMID: 29898407 PMCID: PMC6075738 DOI: 10.1016/j.celrep.2018.05.039] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas.
Collapse
|
19
|
Ergün S, Altay DU, Güneş S, Büyükalpelli R, Karahan SC, Tomak L, Abur Ü. Tr-KIT/c-KIT ratio in renal cell carcinoma. Mol Biol Rep 2019; 46:5287-5294. [DOI: 10.1007/s11033-019-04985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
|
20
|
Altered hormonal milieu and dysregulated protein expression can cause spermatogenic arrest in ectopic xenografted immature rat testis. Sci Rep 2019; 9:4036. [PMID: 30858478 PMCID: PMC6411886 DOI: 10.1038/s41598-019-40662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 01/15/2023] Open
Abstract
Testis tissue xenografting complemented with cryopreservation is a feasible technique for fertility preservation in children with malignancy receiving gonadotoxic therapy and for endangered species with high neonatal mortality rate. However, xenografted testis of human and most endangered species are known to undergo spermatogenic arrest. In this study, we xenografted immature rat testis onto immunodeficient male mice to investigate the plausible underlying causes of spermatogenic arrest. Histological analysis of xenografted testes collected 8-wk post-grafting showed incomplete spermatogenesis with pachytene-stage spermatocytes as the most advanced germ cells. Although the levels of serum luteinizing hormone and testosterone were normal in recipient mice, those of follicle stimulating hormone (FSH) were significantly high, and specific receptors of FSH were absent in the xenografts. The xenografts demonstrated dysregulated expression of Sertoli cell-transcriptional regulators (WT1 and SOX9) and secretory proteins (SCF and GDNF). In conclusion, results from our study suggested that an altered hormonal milieu in recipients and dysregulated protein expression in xenografts could be a potential cause of spermatogenic arrest in xenografted immature rat testis. Further stereological analysis of xenografts can demonstrate precise cellular composition of xenografts to decipher interactions between germ and somatic cells to better understand spermatogenic arrest in xenografted testis.
Collapse
|
21
|
Torshizi Esfahani A, Seyedna SY, Nazemalhosseini Mojarad E, Majd A, Asadzadeh Aghdaei H. MSI-L/EMAST is a predictive biomarker for metastasis in colorectal cancer patients. J Cell Physiol 2018; 234:13128-13136. [PMID: 30549036 DOI: 10.1002/jcp.27983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) is a prognostic marker in colorectal cancer (CRC). The biological significance of MSI-low (MSI-L) phenotype and its differences with microsatellite stable (MSS) phenotype remains unclear. The aim of this study is indicating the role of mononucleotide repeat in identifying MSI-L and revealing the association of MSI-L with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and oncologic outcome in CRC patients. METHODS MSI and EMAST status were analyzed using three quasimonomorphic panel (BAT-25, BAT-26, and NR-27) and five tetranucleotide repeats (D20S82, D20S85, D9S242, D8S321, and MYCL1), respectively, by capillary electrophoresis method without the need to fluorescent primers. The associations of MSI status with clinicopathological features, EMAST status, metastasis, and overall survival (OS) were investigated. RESULTS Among 159 CRC patient 22.0% were MSI-H, 40.3% were MSS, 37.7% were MSI-L, and 41.5% showed EMAST + phenotype. MSI-L were associated with advanced stages, EMAST+ tumors and worse OS ( p ≤ 0.001). Metastasis was relatively common in MSI-L/EMAST + CRCs and BAT-25 were the most unstable marker in these tumors. CONCLUSIONS MSI-L tumors have different clinicopathological features from MSS and MSI-H tumors. The MSI-L phenotype is a worse prognostic biomarker in CRC and when accompanied by EMAST could be a predictor for metastasis.
Collapse
Affiliation(s)
- Amir Torshizi Esfahani
- Department of Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Seyed Yoosef Seyedna
- Department of Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Department of Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Majd
- Department of Molecular Medicine, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Cardoso HJ, Figueira MI, Socorro S. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer. J Cell Commun Signal 2017; 11:297-307. [PMID: 28656507 PMCID: PMC5704042 DOI: 10.1007/s12079-017-0399-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
The stem cell factor (SCF) is a cytokine that specifically binds the tyrosine kinase receptor c-KIT. The SCF/c-KIT interaction leads to receptor dimerization, activation of kinase activity and initiation of several signal transduction pathways that control cell proliferation, apoptosis, differentiation and migration in several tissues. The activity of SCF/c-KIT system is linked with the phosphatidylinositol 3-kinase (PI3-K), the Src, the Janus kinase/signal transducers and activators of transcription (JAK/STAT), the phospholipase-C (PLC-γ) and the mitogen-activated protein kinase (MAPK) pathways. Moreover, it has been reported that cancer cases display an overactivation of c-KIT due to the presence of gain-of-function mutations or receptor overexpression, which renders c-KIT a tempting target for cancer treatment. In the case of male cancers the most documented activated pathways are the PI3-K and Src, both enhancing abnormal cell proliferation. It is also known that the Src activity in prostate cancer cases depends on the presence of tr-KIT, the cytoplasmic truncated variant of c-KIT that is specifically expressed in tumour tissues and, thus, a very interesting target for drug development. The present review provides an overview of the signalling pathways activated by SCF/c-KIT and discusses the potential application of c-KIT inhibitors for treatment of testicular and prostatic cancers.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
23
|
Aoki H, Hara A, Kunisada T. Induced haploinsufficiency of Kit receptor tyrosine kinase impairs brain development. JCI Insight 2017; 2:94385. [PMID: 28978807 DOI: 10.1172/jci.insight.94385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Kit receptor tyrosine kinase is highly expressed in the developing mammalian brain, yet little is known about its contribution to neural cell development and function. Here we introduced a brain-specific conditional Kit loss-of-function mutation in mice and observed severe hypoplasia of the central nervous system. This was accompanied by an increase in apoptotic cell death in the early embryonic brain and the gradual loss of the self-renewal capacity of neuronal stem/precursor cells. A single copy of the brain-specific conditional Kit loss-of-function allele resulted in the observed phenotype, including impaired in vitro differentiation of neural cells from Kit-haploinsufficient embryonic stem (ES) cells. Our findings demonstrate that Kit signaling is required for the early development of neural cells. This potentially novel Kit-haploinsufficient lethal phenotype may represent an embryonic lethal phenomenon previously unobserved because of its dominantly acting nature.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development and
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | |
Collapse
|
24
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us? Cancer Lett 2017; 405:10-21. [DOI: 10.1016/j.canlet.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
|
25
|
He Y, Zeng HZ, Yu Y, Zhang JS, Duan X, Zeng XN, Gong FT, Liu Q, Yang B. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:120-124. [PMID: 28704753 DOI: 10.1016/j.etap.2017.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
AIM We investigated whether prostate fibrosis was associated with urinary dysfunction in chronic prostatitis (CP) and whether resveratrol improved urinary dysfunction and the underlying molecular mechanism. METHODS Rat model of CP was established via subcutaneous injections of DPT vaccine and subsequently treated with resveratrol. Bladder pressure and volume tests investigated the effect of resveratrol on urinary dysfunction in CP rats. Western blotting and immunohistochemical staining examined the expression level of C-kit/SCF and TGF-β/Wnt/β-catenin. RESULTS Compared to the control group, the maximum capacity of the bladder, residual urine volume and maximum voiding pressure, the activity of C-kit/SCF and TGF-β/Wnt/β-catenin pathways were increased significantly in the CP group. Resveratrol treatment significantly improved these factors. CONCLUSION CP induced significantly prostate fibrosis, which exhibits a close relationship with urinary dysfunction. Resveratrol improved fibrosis, which may be associated with the suppression of C-kit/SCF and TGF-β/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui-Zhi Zeng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yang Yu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia-Shu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xingping Duan
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xiao-Na Zeng
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Feng-Tao Gong
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| | - Bo Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
26
|
He Y, Zeng H, Yu Y, Zhang J, Zeng X, Gong F, Liu Q, Yang B. Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression. DNA Cell Biol 2017; 36:709-714. [PMID: 28604067 DOI: 10.1089/dna.2017.3741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.
Collapse
Affiliation(s)
- Yi He
- 1 Department of Urology, The Second Affiliated Hospital of Dalian Medical University , Dalian, China
| | - Huizhi Zeng
- 2 Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University , Dalian, China
| | - Yang Yu
- 1 Department of Urology, The Second Affiliated Hospital of Dalian Medical University , Dalian, China
| | - Jiashu Zhang
- 3 College of Pharmacy, Dalian Medical University , Dalian, China
| | - Xiaona Zeng
- 3 College of Pharmacy, Dalian Medical University , Dalian, China
| | - Fengtao Gong
- 3 College of Pharmacy, Dalian Medical University , Dalian, China
| | - Qi Liu
- 3 College of Pharmacy, Dalian Medical University , Dalian, China
| | - Bo Yang
- 1 Department of Urology, The Second Affiliated Hospital of Dalian Medical University , Dalian, China
| |
Collapse
|
27
|
Hashemnia SMR, Atari-Hajipirloo S, Roshan- Milani S, Valizadeh N, Mahabadi S, Kheradmand F. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.9.577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
28
|
Figueira MI, Correia S, Vaz CV, Cardoso HJ, Gomes IM, Marques R, Maia CJ, Socorro S. Estrogens down-regulate the stem cell factor (SCF)/c-KIT system in prostate cells: Evidence of antiproliferative and proapoptotic effects. Biochem Pharmacol 2016; 99:73-87. [PMID: 26592659 DOI: 10.1016/j.bcp.2015.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
The development of prostate cancer (PCa) is intimately associated with the hormonal environment, and the sex steroids estrogens have been implicated in prostate malignancy. However, if some studies identified estrogens as causative agents of PCa, others indicated that these steroids have a protective role counteracting prostate overgrowth. The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF), have been associated with the control of cell proliferation/apoptosis and prostate carcinogenesis, and studies show that estrogens regulate their expression in different tissues, though, in the case of prostate this remains unknown. The present study aims to evaluate the role of 17β-estradiol (E2) in regulating the expression of SCF/c-KIT in human prostate cell lines and rat prostate, and to investigate the consequent effects on prostate cell proliferation and apoptosis. qPCR, Western Blot, and immuno(cito)histochemistry analysis showed that E2-treatment decreased the expression of SCF and c-KIT both in human prostate cells and rat prostate. Furthermore, the diminished expression of SCF/c-KIT was underpinned by the diminished prostate weight and reduced proliferation index. On the other hand, the results of TUNEL labelling, the increased activity of caspase-3, and the augmented expression of caspase-8 and Fas system in the prostate of E2-treated animals indicated augmented apoptosis in response to E2. The obtained results demonstrated that E2 down-regulated the expression of SCF/c-KIT system in prostate cells, which was associated with antiproliferative and proapoptotic effects. Moreover, these findings support the protective role of estrogens in PCa and open new perspectives on the application of estrogen-based therapies.
Collapse
Affiliation(s)
- Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Correia
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Inês M Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ricardo Marques
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Vaz CV, Marques R, Maia CJ, Socorro S. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin. Transl Res 2015; 166:693-705. [PMID: 26397424 DOI: 10.1016/j.trsl.2015.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022]
Abstract
Regucalcin (RGN) is a calcium (Ca(2+))-binding protein that displays a characteristic downregulated expression with aging in several tissues. Besides its role in regulating intracellular Ca(2+) homeostasis, RGN has been associated with the control of oxidative stress, cell proliferation, and apoptosis. Thus, the diminished expression of RGN with aging may contribute to the age-associated deterioration of cell function. In the present study, we hypothesized that the maintenance of high expression levels of RGN may prevent age-related alterations in the processes mentioned previously. First, we confirmed that RGN expression is significantly diminished in the prostate of 8-, 9-, 12-, and 24-months wild-type rats. Then, the effect of aging on lipid peroxidation, antioxidant defenses, cell proliferation, and apoptosis in the prostate of wild-type controls and transgenic rats overexpressing RGN (Tg-RGN) was investigated. The activity of glutathione and the antioxidant capacity were increased in Tg-RGN rats in response to the age-associated increase in thiobarbituric acid reactive substances levels, an effect not seen in wild type. Overexpression of RGN also counteracted the effect of aging increasing prostate cell proliferation. In contrast to wild-type animals, the prostate weight of Tg-RGN did not change with aging and was underpinned by the diminished expression of stem cell factor and c-kit, and increased expression of p53. In addition, aged Tg-RGN animals displayed increased expression (activity) of apoptosis regulators, therefore not showing the age-induced resistance to apoptosis observed in wild type. Altogether, these findings indicate the protective role of RGN against the development of age-related pathologies, such as, for example, prostate cancer.
Collapse
Affiliation(s)
- Cátia V Vaz
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ricardo Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
30
|
Affiliation(s)
- Yatrik M Shah
- Department of Molecular & Integrative Physiology, and Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Cardoso HJ, Vaz CV, Correia S, Figueira MI, Marques R, Maia CJ, Socorro S. Paradoxical and contradictory effects of imatinib in two cell line models of hormone-refractory prostate cancer. Prostate 2015; 75:923-935. [PMID: 25786656 DOI: 10.1002/pros.22976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/13/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Imatinib mesylate is a chemotherapeutic drug that inhibits the tyrosine kinase activity of c-KIT and has been successfully used to treat leukemias and some solid tumors. However, its application for treatment of hormone-refractory prostate cancer (HRPC) has shown modest effectiveness and did not follow the outcomes in cultured cells or animal models. Moreover, the molecular pathways by which imatinib induces cytotoxicity in prostate cancer cells are poorly characterized. METHODS Two cell line models of HRPC (DU145 and PC3) were exposed to 20 μM of imatinib for 6-72 hr. MTS assay was used to assess cell viability during the course of experiment. Gene expression analysis of c-KIT, cell-cycle and apoptosis regulators, and angiogenic factors was determined by means of real-time PCR, western blot, and/or immunocytochemistry. The enzymatic activity of the apoptosis effector, caspase-3, was determined by a colorimetric assay. RESULTS Imatinib significantly decreased the viability of DU145 cells but paradoxically augmented the viability of PC3 cells. DU145 cells displayed diminished expression of anti-apoptotic Bcl-2 protein and augmented levels of caspase-8 and -9, as well as, increased enzymatic activity of caspase-3 in response to imatinib. No differences existed on the expression levels of apoptosis-related proteins in PC3 cells treated with imatinib, though the activity of caspase-3 was decreased. The mRNA levels of angiogenic factor VEGF were decreased in DU145-treated cells, whereas an opposite effect was seen in PC3. In addition, it was shown that DU145 and PC3 cells present a differential expression of c-KIT protein variants. CONCLUSION DU145 and PC3 cells displayed a contradictory behavior in response to imatinib, which was underpinned by a distinct expression pattern (or activity) of target regulators of cell-cycle, apoptosis, and angiogenesis. The paradoxical effect of imatinib in PC3 cells may be related with the differential expression of c-KIT protein variants. Moreover, the present findings helped to understand the discrepancies in the efficacy of imatinib as therapeutic option in HRPC.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|