1
|
Madsen MA, Považan M, Wiggermann V, Lundell H, Blinkenberg M, Romme Christensen J, Sellebjerg F, Siebner HR. Association of Cortical Lesions With Regional Glutamate, GABA, N-Acetylaspartate, and Myoinositol Levels in Patients With Multiple Sclerosis. Neurology 2024; 103:e209543. [PMID: 38870443 PMCID: PMC11244746 DOI: 10.1212/wnl.0000000000209543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cortical lesions contribute to disability in multiple sclerosis (MS), but their impact on regional neurotransmitter levels remains to be clarified. We tested the hypothesis that cortical lesions are associated with regional glutamate and gamma-aminobutyric acid (GABA) concentrations within the affected cortical region. METHODS In this cross-sectional study, we used structural 7T MRI to segment cortical lesions and 7T proton MR-spectroscopy of the bilateral sensorimotor hand areas to quantify regional GABA, glutamate, N-acetylaspartate, and myoinositol concentrations in patients with MS (inclusion criteria: diagnosis of relapsing-remitting [RR] or secondary progressive MS [SPMS]; age 18-80 years) and age and sex-matched healthy controls. Data were collected at a single center between August 2018 and September 2020. Linear mixed-effects models were used to test for associations between metabolite concentrations and cortical lesion volumes within the same MR-spectroscopy voxel. RESULTS Forty-seven patients with MS (34 RRMS, 13 SPMS; 45.1 ± 12.5 years; 31 women) and 23 healthy controls (44.4 ± 13 years, 15 women) were studied. In patients, higher regional glutamate and lower regional GABA concentrations were associated with larger cortical lesion volume within the MR-spectroscopy voxel [glutamate: 0.61 (95% CI 0.19-1.03) log(mm3), p = 0.005, GABA: -0.71 (-1.24 to -0.18) log(mm3), p = 0.01]. In addition, lower N-acetylaspartate levels [-0.37 (-0.67 to -0.07) log(mm3), p = 0.016] and higher myoinositol levels [0.48 (0.03-0.93) log(mm3), p = 0.037] were associated with a larger regional cortical lesion volume. Furthermore, glutamate concentrations were reduced in patients with SPMS compared with healthy participants [-0.75 (-1.3 to -0.19) mM, p = 0.005] and patients with RRMS [-0.55 (-1.07 to -0.02) mM, p = 0.04]. N-acetylaspartate levels were lower in both patients with RRMS [-0.81 (-1.39 to -0.24) mM, p = 0.003] and SPMS [-1.31 (-2.07 to -0.54) mM, p < 0.001] when compared with healthy controls. Creatine-normalized N-acetylaspartate levels were associated with performance in the 9-hole peg test of the contralateral hand [-0.004 (-0.007 to -0.002) log(s), p = 0.002], and reduced mean creatine-normalized glutamate was associated with increased Expanded Disability Status Scale (R = -0.39, p = 0.02). DISCUSSION Cortical lesions are associated with local increases in glutamate and a reduction in GABA concentration within the lesional or perilesional tissue. Further studies are needed to investigate the causal relationship between cortical lesions and changes in neurotransmitter concentrations.
Collapse
Affiliation(s)
- Mads A Madsen
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michal Považan
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Vanessa Wiggermann
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Lundell
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten Blinkenberg
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jeppe Romme Christensen
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Finn Sellebjerg
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hartwig R Siebner
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Althobity AA, Khan N, Sandrock CJ, Woodruff TM, Cowin GJ, Brereton IM, Kurniawan ND. Multiparametric magnetic resonance imaging for detection of pathological changes in the central nervous system of a mouse model of multiple sclerosis in vivo. NMR IN BIOMEDICINE 2023; 36:e4964. [PMID: 37122101 PMCID: PMC10909458 DOI: 10.1002/nbm.4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease involving demyelination and axonal damage in the central nervous system (CNS). In this study, we investigated pathological changes in the lumbar spinal cord of C57BL/6 mice induced with progressive experimental autoimmune encephalomyelitis (EAE) disease using 9.4-T magnetic resonance imaging (MRI). Multiparametric MRI measurements including MR spectroscopy, diffusion tensor imaging (DTI) and volumetric analyses were applied to detect metabolic changes in the CNS of EAE mice. Compared with healthy mice, EAE mice showed a significant reduction in N-acetyl aspartate and increases in choline, glycine, taurine and lactate. DTI revealed a significant reduction in fractional anisotropy and axial diffusivity and an increase in radial diffusivity in the lumbar spinal cord white matter (WM), while in the grey matter (GM), fractional anisotropy increased. High-resolution structural imaging also revealed lumbar spinal cord WM hypertrophy and GM atrophy. Importantly, these MRI changes were strongly correlated with EAE disease scoring and pathological changes in the lumbar (L2-L6), particularly WM demyelination lesions and aggregation of immune cells (microglia/macrophages and astrocytes) in this region. This study identified changes in MRI biomarker signatures that can be useful for evaluating the efficacy of novel drugs using EAE models in vivo.
Collapse
Affiliation(s)
- Abdullah A. Althobity
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
- Al Azhar HospitalRiyadhSaudi Arabia
- Society of Artificial Intelligence in HealthcareRiyadhSaudi Arabia
- Department of Radiological Sciences and Medical Imaging, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Cheyenne J. Sandrock
- Faculty of Medicine, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Trent M. Woodruff
- Faculty of Medicine, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Gary J. Cowin
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
- NCRIS Australian National Imaging FacilityThe University of QueenslandBrisbaneAustralia
| | - Ian M. Brereton
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
- NCRIS Australian National Imaging FacilityThe University of QueenslandBrisbaneAustralia
| | | |
Collapse
|
3
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
4
|
Gogishvili A, Farrher E, Doppler CEJ, Seger A, Sommerauer M, Shah NJ. Quantification of the neurochemical profile of the human putamen using STEAM MRS in a cohort of elderly subjects at 3 T and 7 T: Ruminations on the correction strategy for the tissue voxel composition. PLoS One 2023; 18:e0286633. [PMID: 37267283 DOI: 10.1371/journal.pone.0286633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
The aim of this work is to quantify the metabolic profile of the human putamen in vivo in a cohort of elderly subjects using single-voxel proton magnetic resonance spectroscopy. To obtain metabolite concentrations specific to the putamen, we investigated a correction method previously proposed to account for the tissue composition of the volume of interest. We compared the method with the conventional approach, which a priori assumes equal metabolite concentrations in GM and WM. Finally, we compared the concentrations acquired at 3 Tesla (T) and 7 T MRI scanners. Spectra were acquired from 15 subjects (age: 67.7 ± 8.3 years) at 3 T and 7 T, using an ultra-short echo time, stimulated echo acquisition mode sequence. To robustly estimate the WM-to-GM metabolite concentration ratio, five additional subjects were measured for whom the MRS voxel was deliberately shifted from the putamen in order to increase the covered amount of surrounding WM. The concentration and WM-to-GM concentration ratio for 16 metabolites were reliably estimated. These ratios ranged from ~0.3 for γ-aminobutyric acid to ~4 for N-acetylaspartylglutamate. The investigated correction method led to significant changes in concentrations compared to the conventional method, provided that the ratio significantly differed from unity. Finally, we demonstrated that differences in tissue voxel composition cannot fully account for the observed concentration difference between field strengths. We provide not only a fully comprehensive quantification of the neurochemical profile of the putamen in elderly subjects, but also a quantification of the WM-to-GM concentration ratio. This knowledge may serve as a basis for future studies with varying tissue voxel composition, either due to tissue atrophy, inconsistent voxel positioning or simply when pooling data from different voxel locations.
Collapse
Affiliation(s)
- Ana Gogishvili
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Engineering Physics Department, Georgian Technical University, Tbilisi, Georgia
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Christopher E J Doppler
- Cognitive Neuroscience, Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aline Seger
- Cognitive Neuroscience, Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Sommerauer
- Cognitive Neuroscience, Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Swanberg KM, Prinsen H, DeStefano K, Bailey M, Kurada AV, Pitt D, Fulbright RK, Juchem C. In vivo evidence of differential frontal cortex metabolic abnormalities in progressive and relapsing-remitting multiple sclerosis. NMR IN BIOMEDICINE 2021; 34:e4590. [PMID: 34318959 DOI: 10.1002/nbm.4590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Kelley M Swanberg
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, New York
| | - Hetty Prinsen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Katherine DeStefano
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Mary Bailey
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Abhinav V Kurada
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, New York
| | - David Pitt
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert K Fulbright
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, New York
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Department of Radiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
6
|
Tackley G, Kong Y, Minne R, Messina S, Winkler A, Cavey A, Everett R, DeLuca GC, Weir A, Craner M, Tracey I, Palace J, Stagg CJ, Emir U. An In-vivo 1H-MRS short-echo time technique at 7T: Quantification of metabolites in chronic multiple sclerosis and neuromyelitis optica brain lesions and normal appearing brain tissue. Neuroimage 2021; 238:118225. [PMID: 34062267 PMCID: PMC7611458 DOI: 10.1016/j.neuroimage.2021.118225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/09/2021] [Accepted: 05/29/2021] [Indexed: 11/05/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for the non-invasive quantification of neurochemicals and has the potential to differentiate between the pathologically distinct diseases, multiple sclerosis (MS) and AQP4Ab-positive neuromyelitis optica spectrum disorder (AQP4Ab-NMOSD). In this study we characterised the metabolite profiles of brain lesions in 11 MS and 4 AQP4Ab-NMOSD patients using an optimised MRS methodology at ultra-high field strength (7T) incorporating correction for T2 water relaxation differences between lesioned and normal tissue. MS metabolite results were in keeping with the existing literature: total N-acetylaspartate (NAA) was lower in lesions compared to normal appearing brain white matter (NAWM) with reciprocal findings for myo-Inositol. An unexpected subtlety revealed by our technique was that total NAA differences were likely driven by NAA-glutamate (NAAG), a ubiquitous CNS molecule with functions quite distinct from NAA though commonly quantified together with NAA in MRS studies as total NAA. Surprisingly, AQP4Ab-NMOSD showed no significant differences for total NAA, NAA, NAAG or myo-Inositol between lesion and NAWM sites, nor were there any differences between MS and AQP4Ab-NMOSD for a priori hypotheses. Post-hoc testing revealed a significant correlation between NAWM Ins:NAA and disability (as measured by EDSS) for disease groups combined, driven by the AP4Ab-NMOSD group. Utilising an optimised MRS methodology, our study highlights some under-explored subtleties in MRS profiles, such as the absence of myo-Inositol concentration differences in AQP4Ab-NMOSD brain lesions versus NAWM and the potential influence of NAAG differences between lesions and normal appearing white matter in MS.
Collapse
Affiliation(s)
- George Tackley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, CF24 4HQ, United Kingdom.
| | - Yazhuo Kong
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; CAS Key Laboratory of Behavioural Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rachel Minne
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, (765) 494-1419, United States
| | - Silvia Messina
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Anderson Winkler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ana Cavey
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Rosie Everett
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Gabriele C DeLuca
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Andrew Weir
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Matthew Craner
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Jacqueline Palace
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, United Kingdom
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, (765) 494-1419, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Near J, Harris AD, Juchem C, Kreis R, Marjańska M, Öz G, Slotboom J, Wilson M, Gasparovic C. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4257. [PMID: 32084297 PMCID: PMC7442593 DOI: 10.1002/nbm.4257] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 05/05/2023]
Abstract
Once an MRS dataset has been acquired, several important steps must be taken to obtain the desired metabolite concentration measures. First, the data must be preprocessed to prepare them for analysis. Next, the intensity of the metabolite signal(s) of interest must be estimated. Finally, the measured metabolite signal intensities must be converted into scaled concentration units employing a quantitative reference signal to allow meaningful interpretation. In this paper, we review these three main steps in the post-acquisition workflow of a single-voxel MRS experiment (preprocessing, analysis and quantification) and provide recommendations for best practices at each step.
Collapse
Affiliation(s)
- Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Hotchkiss Brain Institute, Calgary, Canada
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York NY, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University Bern, Switzerland
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis MN, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis MN, USA
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, England
| | | |
Collapse
|
8
|
Solanky BS, John NA, DeAngelis F, Stutters J, Prados F, Schneider T, Parker RA, Weir CJ, Monteverdi A, Plantone D, Doshi A, MacManus D, Marshall I, Barkhof F, Gandini Wheeler-Kingshott CAM, Chataway J. NAA is a Marker of Disability in Secondary-Progressive MS: A Proton MR Spectroscopic Imaging Study. AJNR Am J Neuroradiol 2020; 41:2209-2218. [PMID: 33154071 DOI: 10.3174/ajnr.a6809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The secondary progressive phase of multiple sclerosis is characterised by disability progression due to processes that lead to neurodegeneration. Surrogate markers such as those derived from MRI are beneficial in understanding the pathophysiology that drives disease progression and its relationship to clinical disability. We undertook a 1H-MRS imaging study in a large secondary progressive MS (SPMS) cohort, to examine whether metabolic markers of brain injury are associated with measures of disability, both physical and cognitive. MATERIALS AND METHODS A cross-sectional analysis of individuals with secondary-progressive MS was performed in 119 participants. They underwent 1H-MR spectroscopy to obtain estimated concentrations and ratios to total Cr for total NAA, mIns, Glx, and total Cho in normal-appearing WM and GM. Clinical outcome measures chosen were the following: Paced Auditory Serial Addition Test, Symbol Digit Modalities Test, Nine-Hole Peg Test, Timed 25-foot Walk Test, and the Expanded Disability Status Scale. The relationship between these neurometabolites and clinical disability measures was initially examined using Spearman rank correlations. Significant associations were then further analyzed in multiple regression models adjusting for age, sex, disease duration, T2 lesion load, normalized brain volume, and occurrence of relapses in 2 years preceding study entry. RESULTS Significant associations, which were then confirmed by multiple linear regression, were found in normal-appearing WM for total NAA (tNAA)/total Cr (tCr) and the Nine-Hole Peg Test (ρ = 0.23; 95% CI, 0.06-0.40); tNAA and tNAA/tCr and the Paced Auditory Serial Addition Test (ρ = 0.21; 95% CI, 0.03-0.38) (ρ = 0.19; 95% CI, 0.01-0.36); mIns/tCr and the Paced Auditory Serial Addition Test, (ρ = -0.23; 95% CI, -0.39 to -0.05); and in GM for tCho and the Paced Auditory Serial Addition Test (ρ = -0.24; 95% CI, -0.40 to -0.06). No other GM or normal-appearing WM relationships were found with any metabolite, with associations found during initial correlation testing losing significance after multiple linear regression analysis. CONCLUSIONS This study suggests that metabolic markers of neuroaxonal integrity and astrogliosis in normal-appearing WM and membrane turnover in GM may act as markers of disability in secondary-progressive MS.
Collapse
Affiliation(s)
- B S Solanky
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - N A John
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - F DeAngelis
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - J Stutters
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - F Prados
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
- Centre for Medical Image Computing (F.P., F.B.), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Universitat Oberta de Catalunya (F.P.), Barcelona, Spain
| | | | - R A Parker
- Edinburgh Clinical Trials Unit (R.A.P., C.J.W.), Usher Institute
| | - C J Weir
- Edinburgh Clinical Trials Unit (R.A.P., C.J.W.), Usher Institute
| | - A Monteverdi
- Department of Brain and Behavioural Sciences (A.M., C.A.M.G.W.-K.), University of Pavia, Pavia, Italy
| | - D Plantone
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - A Doshi
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - D MacManus
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
| | - I Marshall
- Centre for Clinical Brain Sciences (I.M.), University of Edinburgh, Edinburgh, UK
| | - F Barkhof
- Centre for Medical Image Computing (F.P., F.B.), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, London, UK
- Department of Radiology and Nuclear Medicine (F.B., J.C.), MS Center Amsterdam, Amsterdam, the Netherlands
| | - C A M Gandini Wheeler-Kingshott
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
- Brain MRI 3T Research Center (C.A.M.G.W.-K.), Scientific Institute for Research, Hospitalization and Healthcare Mondino National Neurological Institute Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences (A.M., C.A.M.G.W.-K.), University of Pavia, Pavia, Italy
| | - J Chataway
- From the Department of Neuroinflammation (B.S.S., N.A.J., F.D., J.S., F.P., D.P., A.D., D.M., C.A.M.G.W.-K., J.C.), Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology
- Department of Radiology and Nuclear Medicine (F.B., J.C.), MS Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Kirov II, Tal A. Potential clinical impact of multiparametric quantitative MR spectroscopy in neurological disorders: A review and analysis. Magn Reson Med 2020; 83:22-44. [PMID: 31393032 PMCID: PMC6814297 DOI: 10.1002/mrm.27912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Unlike conventional MR spectroscopy (MRS), which only measures metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T1 ) and transverse (T2 ) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B1+ ). To test whether knowledge of these additional parameters can improve the clinical utility of brain MRS, we compare the conventional and multiparametric approaches in terms of expected classification accuracy in differentiating controls from patients with neurological disorders. THEORY AND METHODS A literature review was conducted to compile metabolic concentrations and relaxation times in a wide range of neuropathologies and regions of interest. Simulations were performed to construct receiver operating characteristic curves and compute the associated areas (area under the curve) to examine the sensitivity and specificity of MRS for detecting each pathology in each region. Classification accuracy was assessed using metabolite concentrations corrected using population-averages for T1 , T2 , and B1+ (conventional MRS); using metabolite concentrations corrected using per-subject values (multiparametric MRS); and using an optimal linear multiparametric estimator comprised of the metabolites' concentrations and relaxation constants (multiparametric MRS). Additional simulations were conducted to find the minimal intra-subject precision needed for each parameter. RESULTS Compared with conventional MRS, multiparametric approaches yielded area under the curve improvements for almost all neuropathologies and regions of interest. The median area under the curve increased by 0.14 over the entire dataset, and by 0.24 over the 10 instances with the largest individual increases. CONCLUSIONS Multiparametric MRS can substantially improve the clinical utility of MRS in diagnosing and assessing brain pathology, motivating the design and use of novel multiparametric sequences.
Collapse
Affiliation(s)
- Ivan I. Kirov
- Center for Advanced Imaging Innovation and Research (CAIR), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Department of Radiology, 660 1 Avenue, New York, NY 10016, United States of America
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| |
Collapse
|
10
|
Swanberg KM, Landheer K, Pitt D, Juchem C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker. Front Neurol 2019; 10:1173. [PMID: 31803127 PMCID: PMC6876616 DOI: 10.3389/fneur.2019.01173] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) offers a growing variety of methods for querying potential diagnostic biomarkers of multiple sclerosis in living central nervous system tissue. For the past three decades, 1H-MRS has enabled the acquisition of a rich dataset suggestive of numerous metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord of individuals with multiple sclerosis, but this body of information is not free of seeming internal contradiction. The use of 1H-MRS signals as diagnostic biomarkers depends on reproducible and generalizable sensitivity and specificity to disease state that can be confounded by a multitude of influences, including experiment group classification and demographics; acquisition sequence; spectral quality and quantifiability; the contribution of macromolecules and lipids to the spectroscopic baseline; spectral quantification pipeline; voxel tissue and lesion composition; T1 and T2 relaxation; B1 field characteristics; and other features of study design, spectral acquisition and processing, and metabolite quantification about which the experimenter may possess imperfect or incomplete information. The direct comparison of 1H-MRS data from individuals with and without multiple sclerosis poses a special challenge in this regard, as several lines of evidence suggest that experimental cohorts may differ significantly in some of these parameters. We review the existing findings of in vivo1H-MRS on central nervous system metabolic abnormalities in multiple sclerosis and its subtypes within the context of study design, spectral acquisition and processing, and metabolite quantification and offer an outlook on technical considerations, including the growing use of machine learning, by future investigations into diagnostic biomarkers of multiple sclerosis measurable by 1H-MRS.
Collapse
Affiliation(s)
- Kelley M Swanberg
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - Karl Landheer
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - David Pitt
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States.,Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
11
|
MacMillan EL, Schubert JJ, Vavasour IM, Tam R, Rauscher A, Taylor C, White R, Garren H, Clayton D, Levesque V, Li DK, Kolind SH, Traboulsee AL. Magnetic resonance spectroscopy evidence for declining gliosis in MS patients treated with ocrelizumab versus interferon beta-1a. Mult Scler J Exp Transl Clin 2019; 5:2055217319879952. [PMID: 31662881 PMCID: PMC6796216 DOI: 10.1177/2055217319879952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Magnetic resonance spectroscopy quantitatively monitors biomarkers of
neuron-myelin coupling (N-acetylaspartate (NAA)), and inflammation (total
creatine (tCr), total choline (tCho), myo-inositol (mI)) in the brain. Objective This study aims to investigate how ocrelizumab and interferon beta-1a
differentially affects imaging biomarkers of neuronal-myelin coupling and
inflammation in patients with relapsing multiple sclerosis (MS). Methods Forty patients with relapsing MS randomized to either treatment were scanned
at 3T at baseline and weeks 24, 48, and 96 follow-up. Twenty-four healthy
controls were scanned at weeks 0, 48, and 96. NAA, tCr, tCho, mI, and
NAA/tCr were measured in a single large supra-ventricular voxel. Results There was a time × treatment interaction in NAA/tCr
(p = 0.04), primarily driven by opposing tCr trends between
treatment groups after 48 weeks of treatment. Patients treated with
ocrelizumab showed a possible decline in mI after week 48 week, and stable
tCr and tCho levels. Conversely, the interferon beta-1a treated group showed
possible increases in mI, tCr, and tCho over 96 weeks. Conclusions Results from this exploratory study suggest that over 2 years, ocrelizumab
reduces gliosis compared with interferon beta-1a, demonstrated by declining
ml, and stable tCr and tCho. Ocrelizumab may improve the physiologic milieu
by decreasing neurotoxic factors that are generated by inflammatory
processes.
Collapse
Affiliation(s)
| | | | | | - Roger Tam
- Department of Medicine, University of British Columbia
| | | | | | - Rick White
- Statistics, University of British Columbia
| | | | | | | | - David Kb Li
- Department of Radiology, University of British Columbia
| | | | | |
Collapse
|
12
|
Chronic inflammation in multiple sclerosis - seeing what was always there. Nat Rev Neurol 2019; 15:582-593. [PMID: 31420598 DOI: 10.1038/s41582-019-0240-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Activation of innate immune cells and other compartmentalized inflammatory cells in the brains and spinal cords of people with relapsing-remitting multiple sclerosis (MS) and progressive MS has been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood-brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods can also be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations made with the use of these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.
Collapse
|
13
|
Gohmann R, Blume C, Zvyagintsev M, Mainz V, Clusmann H, Wiesmann M, Brockmann M, Mueller C. Cervical spondylotic myelopathy: Changes of fractional anisotropy in the spinal cord and magnetic resonance spectroscopy of the primary motor cortex in relation to clinical symptoms and their duration. Eur J Radiol 2019; 116:55-60. [DOI: 10.1016/j.ejrad.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
|
14
|
Wagoner AL, Olson JD, Westwood BM, Fortunato JE, Diz DI, Shaltout HA. Children with orthostatic intolerance exhibit elevated markers of inflammation in the dorsal medulla. Am J Physiol Heart Circ Physiol 2019; 317:H323-H329. [PMID: 31225987 DOI: 10.1152/ajpheart.00680.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Children with orthostatic intolerance (OI) have exaggerated decreases in heart rate variability (HRV) and suppression of baroreflex sensitivity (BRS) with standing. Accompanying brain transmitter and metabolite profiles are unknown. In this study, we used proton (1H) magnetic resonance spectroscopy (1H-MRS) to quantify markers of neuronal and glial integrity in a pilot study of children with OI compared with asymptomatic controls. Eighteen participants ages 10-18 yr were evaluated for blood pressure, heart rate (HR), and calculated indexes of autonomic function in supine and upright positions and, within an average of 2 wk, underwent 1H-MRS scans of dorsal medulla on a clinical 3T magnet while supine. As a result, of the 18 participants, 11 tested positive for OI and 7 did not. OI subjects exhibited higher HR and lower HRV and high-frequency α-index (HFα), an index of parasympathetic vagal tone, during standing compared with non-OI. HRV, sequence all (Seq All), high- and low-frequency (HFα and LFα) estimates of the spontaneous BRS decreased significantly, while BP variabilty increased significantly during standing only in subjects with OI. OI subjects had higher myoinositol (mIns) and total choline (tCho), markers of glial inflammation. Upright HFα and Seq All inversely correlated to supine tCho and mIns, respectively, independent of age and sex. In conclusions, in this pilot study, children with OI exhibit higher mIns and tCho in the dorsal medulla while supine that may reflect the well-established impairment in regulation of the autonomic nervous system upon standing. Neuroinflammation as an underlying cause or consequence of autonomic dysfunction is an intriguing possibility requiring further study.NEW & NOTEWORTHY (1H) magnetic resonance spectroscopy detected elevated markers of neuroinflammation in the dorsal medulla in children with impaired autonomic responses to head upright tilt. This first report of altered brain metabolites in this population provides a basis for future clinical studies using this methodology to aide in understanding complex autonomic disease states.
Collapse
Affiliation(s)
- Ashley L Wagoner
- Neuroscience Graduate Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem, North Carolina.,Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John D Olson
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian M Westwood
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John E Fortunato
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Division of Pediatric Gastroenterology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Debra I Diz
- Neuroscience Graduate Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem, North Carolina.,Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hossam A Shaltout
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria, Egypt
| |
Collapse
|
15
|
Petracca M, Margoni M, Bommarito G, Inglese M. Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques. Neurol Ther 2018; 7:265-285. [PMID: 29956263 PMCID: PMC6283788 DOI: 10.1007/s40120-018-0103-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Margoni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiple Sclerosis Centre, Department of Neurosciences DNS, University Hospital, University of Padua, Padua, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy.
- Departments of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Bigger BW, Begley DJ, Virgintino D, Pshezhetsky AV. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab 2018; 125:322-331. [PMID: 30145178 DOI: 10.1016/j.ymgme.2018.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis (MPS) disorders are caused by deficiencies in lysosomal enzymes, leading to impaired glycosaminoglycan (GAG) degradation. The resulting GAG accumulation in cells and connective tissues ultimately results in widespread tissue and organ dysfunction. The seven MPS types currently described are heterogeneous and progressive disorders, with somatic and neurological manifestations depending on the type of accumulating GAG. Heparan sulfate (HS) is one of the GAGs stored in patients with MPS I, II, and VII and the main GAG stored in patients with MPS III. These disorders are associated with significant central nervous system (CNS) abnormalities that can manifest as impaired cognition, hyperactive and/or aggressive behavior, epilepsy, hydrocephalus, and sleeping problems. This review discusses the anatomical and pathophysiological CNS changes accompanying HS accumulation as well as the mechanisms believed to cause CNS abnormalities in MPS patients. The content of this review is based on presentations and discussions on these topics during a meeting on the brain in MPS attended by an international group of MPS experts.
Collapse
Affiliation(s)
- Brian W Bigger
- Stem Cell & Neurotherapies Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - David J Begley
- Drug Delivery Group, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, Bari University School of Medicine, Bari, Italy
| | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry, CHU Sainte-Justine, Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Zhao X, Han Q, Gang X, Wang G. Altered brain metabolites in patients with diabetes mellitus and related complications - evidence from 1H MRS study. Biosci Rep 2018; 38:BSR20180660. [PMID: 30104398 PMCID: PMC6127672 DOI: 10.1042/bsr20180660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, diabetes mellitus (DM) has been acknowledged as an important factor for brain disorders. Significant alterations in brain metabolism have been demonstrated during the development of DM and its complications. Magnetic resonance spectroscopy (MRS), a cutting-edge technique used in biochemical analyses, non-invasively provides insights into altered brain metabolite levels in vivo This review aims to discuss current MRS data describing brain metabolite levels in DM patients with or without complications. Cerebral metabolites including N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (mI), glutamate, and glutamine were significantly altered in DM patients, suggesting that energy metabolism, neurotransmission, and lipid membrane metabolism might be disturbed during the progression of DM. Changes in brain metabolites may be non-invasive biomarkers for DM and DM-related complications. Different brain regions presented distinct metabolic signatures, indicating region-specific diabetic brain damages. In addition to serving as biomarkers, MRS data on brain metabolites can also shed light on diabetic treatment monitoring. For example, exercise may restore altered brain metabolite levels and has beneficial effects on cognition in DM patients. Future studies should validate the above findings in larger populations and uncover the mechanisms of DM-induced brain damages.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
18
|
Basha MAA, Bessar MA, Ahmed AF, Elfiki IM, Elkhatib THM, Mohamed AME. Does MR spectroscopy of normal-appearing cervical spinal cord in patients with multiple sclerosis have diagnostic value in assessing disease progression? A prospective comparative analysis. Clin Radiol 2018; 73:835.e1-835.e9. [PMID: 29853303 DOI: 10.1016/j.crad.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
Abstract
AIM To clarify the role of magnetic resonance spectroscopy (MRS) in examining the normal-appearing cervical spinal cord of patients with multiple sclerosis (MS) to detect metabolite abnormalities in this disease and to assess its progression. MATERIAL AND METHODS Thirty-six patients with MS and 30 healthy controls were enrolled. Each patient was submitted to MRS performed using a 1.5 T magnetic resonance imaging (MRI) scanner. The spectra of total N-acetyl-aspartate (tNAA), choline (Cho), creatine (Cr), and myoinositol (M-Ins), as well as the metabolite ratios of tNAA/Cr, tNAA/Cho, Cho/Cr, and M-Ins/Cr of the two groups were measured and compared. The correlations between the metabolite concentrations, disease duration, and clinical disability (expanded disability status scale, EDSS) were further explored. RESULTS Significantly lower tNAA and higher M-Ins were observed in MS patients than in health controls. The tNAA/Cr and tNAA/Cho ratios were significantly lower in MS patients than in healthy controls. In MS patients, the EDSS was correlated with the tNAA/Cr ratio. The spinal cord cross-sectional area was significantly smaller in MS patients than in healthy controls. CONCLUSION Reduced tNAA and increased M-Ins are important, sensitive indices for differentiating between MS patients and healthy controls. In MS patients, before lesions appear, MRS of the spinal cord may provide crucial information for assessing disease progression.
Collapse
Affiliation(s)
- M A A Basha
- Department of Diagnostic Radiology, Zagazig University, Egypt.
| | - M A Bessar
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | - A F Ahmed
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | - I M Elfiki
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | | | - A M E Mohamed
- Department of Ophthalmology, Zagazig University, Egypt
| |
Collapse
|
19
|
Kocevar G, Stamile C, Hannoun S, Roch JA, Durand-Dubief F, Vukusic S, Cotton F, Sappey-Marinier D. Weekly follow up of acute lesions in three early multiple sclerosis patients using MR spectroscopy and diffusion. J Neuroradiol 2017; 45:108-113. [PMID: 29032126 DOI: 10.1016/j.neurad.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 01/06/2017] [Accepted: 06/24/2017] [Indexed: 11/19/2022]
Abstract
OBJECT Pathophysiological mechanisms underlying multiple sclerosis (MS) lesion formation, including inflammation, demyelination/remyelination and axonal damage, and their temporal evolution are still not clearly understood. To this end, three acute white matter lesions were monitored using a weekly multimodal magnetic resonance (MR) protocol. MATERIALS AND METHODS Three untreated patients with early relapsing-remitting MS and one healthy control subject were followed weekly for two months. MR protocol included conventional MR imaging (MRI), diffusion tensor imaging (DTI), and localized MR spectroscopy (MRS), performed on the largest gadolinium-enhancing lesion, selected at the first exam. RESULTS Mean diffusivity increased and fractional anisotropy decreased in lesions compared to healthy control. Cho/Cr ratios remained elevated in lesions throughout the follow-up. In contrast, temporal profiles of mI/Cr ratios varied between patients' lesions. For patient 1, mI/Cr ratios were already elevated at the beginning of the follow-up. Patients 2 and 3 ratios increase was delayed by two and five weeks. Blood-brain barrier (BBB) recovery occurred after three weeks. CONCLUSION This multimodal MR follow-up highlighted the complementary role of DTI and MRS in identifying temporal relationships between BBB disruption, inflammation, and demyelination. Diffusion metrics showed high sensitivity to detect inflammatory processes. The different temporal profiles of mI suggested a potential better specificity to monitor pathological mechanisms occurring after lesion formation, such as glial proliferation and remyelination.
Collapse
Affiliation(s)
- Gabriel Kocevar
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France
| | - Claudio Stamile
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon
| | - Jean-Amédée Roch
- Service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
| | - Françoise Durand-Dubief
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; Service de neurologie A, hôpital neurologique de Lyon, hospices civils de Lyon, 69677 Lyon, France
| | - Sandra Vukusic
- Service de neurologie A, hôpital neurologique de Lyon, hospices civils de Lyon, 69677 Lyon, France
| | - François Cotton
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; Service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
| | - Dominique Sappey-Marinier
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; CERMEP, Imagerie-du-Vivant, université de Lyon, 69677 Lyon, France.
| |
Collapse
|
20
|
Duan Y, Liu Z, Liu Y, Huang J, Ren Z, Sun Z, Chen H, Dong H, Ye J, Li K. Metabolic changes in normal-appearing white matter in patients with neuromyelitis optica and multiple sclerosis: a comparative magnetic resonance spectroscopy study. Acta Radiol 2017; 58:1132-1137. [PMID: 28173728 DOI: 10.1177/0284185116683575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Previous studies with a small sample size have not reported metabolic changes in neuromyelitis optica (NMO). Metabolic changes, such as decreased N-acetylaspartate (NAA), are well-established in patients with multiple sclerosis (MS). It remains unknown whether different patterns of metabolic changes occur in NMO and MS. Purpose To investigate the metabolic changes in normal-appearing white matter (NAWM) in NMO, compared with MS patients and healthy controls (HC), and correlate these changes with clinical disability. Material and Methods We recruited 27 patients with NMO, 24 patients with MS, and 24 HC. Each participant underwent chemical shift imaging with a 1H-MR spectroscopy operating in a 1.5 T magnetic resonance imaging (MRI) scanner. The absolute concentrations of NAA, choline (Cho), creatine (Cr) as well as the metabolite ratios of NAA/Cr, Cho/Cr, and NAA/Cho were measured and compared among the groups. The correlations between the metabolic concentrations, disease duration, and clinical disability (Expanded Disability Status Scale, EDSS) were further explored. Results Compared with HC, a mild increase of Cho without significant NAA changes was observed in NMO patients, while both a significant reduction of NAA and an increase of Cho were observed in MS patients. The absolute concentration of NAA and NAA/Cho ratio were significantly decreased in MS patients in a direct comparison with NMO patients. In MS patients, the EDSS was correlated with the NAA/Cr and Cho/Cr ratios. Conclusion A reduction of NAA was not observed in NMO, implying axonal or neuronal damage may be absent in NAWM for NMO, which is different from MS. A mild increase in Cho was observed in NAWM of NMO patients, suggesting that subtle metabolic changes occur in NMO.
Collapse
Affiliation(s)
- Yunyun Duan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Zheng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Jing Huang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Zhuoqiong Ren
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Zheng Sun
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Jing Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| |
Collapse
|
21
|
Guo F, Yue H, Wang L, Ding C, Wu L, Wu Y, Gao F, Qin G. Vitamin D supplement ameliorates hippocampal metabolism in diabetic rats. Biochem Biophys Res Commun 2017; 490:239-246. [DOI: 10.1016/j.bbrc.2017.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 01/03/2023]
|
22
|
|
23
|
Arrubla J, Farrher E, Strippelmann J, Tse DHY, Grinberg F, Shah NJ, Neuner I. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res 2017; 95:1796-1808. [PMID: 28117486 DOI: 10.1002/jnr.24010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain and has a central role in both intrinsic and stimulus-induced activity. We conducted a study in a cohort of healthy, male volunteers in which glutamate levels were measured in the posterior cingulate cortex (PCC) using 1H magnetic resonance spectroscopy at 3T. The advantages of simultaneous electroencephalography and magnetic resonance imaging (EEG-MRI) were exploited and the subjects were measured in the same session and under the same physiological conditions. Diffusion tensor imaging (DTI), functional MRI (fMRI) and EEG were measured in order to investigate the functional and microstructural correlates of glutamate. The concentration of glutamate (institute units) was calculated and those values were tested for correlation with the metrics of resting state fMRI, DTI, and EEG electrical sources. Our results showed that the concentration of glutamate in the PCC had a significant negative correlation with the tissue mean diffusivity in the same area. The analysis of resting state networks did not show any relationship between the concentration of glutamate and the intrinsic activity of the resting state networks. The concentration of glutamate showed a positive correlation with the electrical generators of α-1 frequency and a negative correlation with the generators of α-2 and β-1 electrical generators. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge Arrubla
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Strippelmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Desmond H Y Tse
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Farida Grinberg
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 11, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Zhao X, Xu M, Jorgenson K, Kong J. Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: A systematic review. NEUROIMAGE-CLINICAL 2016; 13:33-38. [PMID: 27920977 PMCID: PMC5126149 DOI: 10.1016/j.nicl.2016.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022]
Abstract
Background Low back pain is a highly prevalent health problem around the world, affecting 50% to 85% of people at some point in life. The purpose of this systematic review is to summarize the previous proton magnetic resonance spectroscopy studies on brain chemical changes in patients with chronic low back pain (CLBP). Methods We identified relevant studies from a literature search of PubMed and EMBASE from 1980 to March 2016. Data extraction was performed on the subjects' characteristics, MRS methods, spectral analyses, cerebral metabolites and perceptual measurements. Results The review identified 9 studies that met the inclusion criteria, comprised of data on 135 CLBP subjects and 137 healthy controls. Seven of these studies reported statistically different neurochemical alterations in patients with CLBP. The results showed that compared to controls, CLBP patients showed reductions of 1) N-acetyl-aspartate (NAA) in the dorsolateral prefrontal cortex (DLPFC), right primary motor cortex, left somatosensory cortex (SSC), left anterior insula and anterior cingulate cortex (ACC); 2) glutamate in the ACC; 3) myo-inositol in the ACC and thalamus; 4) choline in the right SSC; and 5) glucose in the DLPFC. Conclusion This review provides evidence for alterations in the biochemical profile of the brain in patients with CLBP, which suggests that biochemical changes may play a significant role in the development and pathophysiology of CLBP and shed light on the development of new treatments for CLBP. Neurochemical changes in patients with chronic low back pain were detected by MRS. Biochemical alterations may correlate with pathophysiology of CLBP. Decrease of N-acetyl-aspartate was main metabolic changes in patients with CLBP. Future studies need to emphasize therapeutic response in patients with CLBP.
Collapse
Affiliation(s)
- Xianjing Zhao
- The First Clinical Medical College, Zhejiang Chinese Medical University, China; Department of Radiology, The 1st Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Maosheng Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, China; Department of Radiology, The 1st Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
25
|
Fonseca R, Carvalho RA, Lemos C, Sequeira AC, Pita IR, Carvalho F, Silva CD, Prediger RDS, Jarak I, Cunha RA, Fontes Ribeiro CA, Köfalvi A, Pereira FC. Methamphetamine Induces Anhedonic-Like Behavior and Impairs Frontal Cortical Energetics in Mice. CNS Neurosci Ther 2016; 23:119-126. [PMID: 27762079 DOI: 10.1111/cns.12649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. AIMS Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. RESULTS Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. CONCLUSIONS We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice.
Collapse
Affiliation(s)
- Raquel Fonseca
- Laboratory of Pharmacology and Experimental Therapeutics/Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui A Carvalho
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana C Sequeira
- Laboratory of Pharmacology and Experimental Therapeutics/Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês R Pita
- Laboratory of Pharmacology and Experimental Therapeutics/Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fábio Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos D Silva
- Laboratory of Pharmacology and Experimental Therapeutics/Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis, Brazil
| | - Ivana Jarak
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos A Fontes Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics/Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Attila Köfalvi
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics/Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Obert D, Helms G, Sättler MB, Jung K, Kretzschmar B, Bähr M, Dechent P, Diem R, Hein K. Brain Metabolite Changes in Patients with Relapsing-Remitting and Secondary Progressive Multiple Sclerosis: A Two-Year Follow-Up Study. PLoS One 2016; 11:e0162583. [PMID: 27636543 PMCID: PMC5026363 DOI: 10.1371/journal.pone.0162583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/25/2016] [Indexed: 01/26/2023] Open
Abstract
Magnetic resonance spectroscopy (MRS) provides the unique ability to monitor several disease-related pathological processes via their characteristic metabolic markers in vivo. In the present study metabolic compositions were assessed every six months over the period of two years in 36 patients with Multiple Sclerosis (MS) including 21 relapsing-remitting (RR), 15 secondary progressive (SP) patients and 12 normal subjects. The concentrations of the main MRS-detectable metabolites N-acetylaspartate and N-acetylaspartylglutamate (tNAA), creatine and phosphocreatine (tCr), choline containing compounds (Cho), myo-Inositol (Ins), glutamine and glutamate (Glx) and their ratios were calculated in the normal appearing white matter (NAWM) and in selected non-enhancing white matter (WM) lesions. Association between metabolic concentrations in the NAWM and disability were investigated. Concentration of tNAA, a marker for neuroaxonal integrity, did not show any difference between the investigated groups. However, the patients with SPMS showed significant reduction of tNAA in the NAWM over the investigation period of two years indicating diffuse neuroaxonal loss during the disease course. Furthermore, we found a significant increase of Ins, Ins/tCr and Ins/tNAA in WM lesions independently from the course of the disease suggesting ongoing astrogliosis in silent-appearing WM lesions. Analyzing correlations between MRS metabolites in the NAWM and patients clinical status we found the positive correlation of Ins/tNAA with disability in patients with RRMS. In SPMS positive correlation of Cho with disability was found.
Collapse
Affiliation(s)
- Dorothea Obert
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gunther Helms
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Muriel B. Sättler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Jung
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Benedikt Kretzschmar
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany
| | - Katharina Hein
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
27
|
Choi IY, Lee P, Hughes AJ, Denney DR, Lynch SG. Longitudinal changes of cerebral glutathione (GSH) levels associated with the clinical course of disease progression in patients with secondary progressive multiple sclerosis. Mult Scler 2016; 23:956-962. [PMID: 27620894 DOI: 10.1177/1352458516669441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Increased oxidative stress leads to loss of glutathione (GSH). We have reported lower cerebral GSH in patients with secondary progressive multiple sclerosis (SPMS), indicating the involvement of oxidative stress in multiple sclerosis (MS) pathophysiology. OBJECTIVE This study expanded upon our earlier work by examining longitudinal changes in cerebral GSH in patients with SPMS in relation to their clinical status. METHODS A total of 13 patients with SPMS (Expanded Disability Status Scale (EDSS) = 4.0-6.5; MS duration = 21.2 ± 8.7 years) and 12 controls were studied over 3-5 years. GSH mapping was acquired from frontal and parietal regions using a multiple quantum chemical shift imaging technique at 3 T. Clinical assessments of the patient's disability included EDSS, gait, motor strength, ataxia, tremor, brainstem function and vision changes. RESULTS Brain GSH concentrations in patients were lower than those in controls for both baseline and 3- to 5-year follow-ups. Longitudinal GSH changes of patients were associated with their neurologist's blinded appraisal of their clinical progression. Patients judged to have worsening clinical status had significantly greater declines in frontal GSH concentrations than those with stable clinical status. CONCLUSION GSH provides a distinct measure associated with the disease progression in SPMS, possibly due to its dynamic alignment with pathogenic processes of MS related to oxidative stress.
Collapse
Affiliation(s)
- In-Young Choi
- Hoglund Brain Imaging Center and Departments of Molecular & Integrative Physiology and Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Phil Lee
- Hoglund Brain Imaging Center and Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abbey J Hughes
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Douglas R Denney
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Sharon G Lynch
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
28
|
Yetkin MF, Mirza M, Dönmez H. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis. Medicine (Baltimore) 2016; 95:e4782. [PMID: 27603381 PMCID: PMC5023904 DOI: 10.1097/md.0000000000004782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS.
Collapse
Affiliation(s)
- Mehmet Fatih Yetkin
- Department of Neurology, Faculty of Medicine, Erciyes University
- Correspondence: Mehmet Fatih Yetkin, Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey (e-mail: )
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University
| | - Halil Dönmez
- Department of Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Khan O, Seraji-Bozorgzad N, Bao F, Razmjou S, Caon C, Santiago C, Latif Z, Aronov R, Zak I, Ashtamker N, Kolodny S, Ford C, Sidi Y. The Relationship Between Brain MR Spectroscopy and Disability in Multiple Sclerosis: 20-Year Data from the U.S. Glatiramer Acetate Extension Study. J Neuroimaging 2016; 27:97-106. [PMID: 27214389 PMCID: PMC5248608 DOI: 10.1111/jon.12358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/06/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Conventional MRI techniques do not necessarily provide information about multiple sclerosis (MS) disease pathology or progression. Nonconventional MRI techniques, including proton magnetic resonance spectroscopy (1H‐MRS), are increasingly used to improve the qualitative and quantitative specificity of MR images. This study explores potential correlations between MRI measures of disease and disability progression as measured by the Expanded Disability Status Scale (EDSS), Functional Systems (FS), and ambulation index scores in a unique cohort of MS patients treated with glatiramer acetate that has been closely monitored for over 20 years. METHODS This was a multicenter, open‐label, cross‐sectional MRI substudy among participants in the GA‐9004 open‐label extension of the 36‐month, double‐blind GA‐9001 study, timed to coincide with the prospectively planned 20‐year clinical exam. RESULTS Of 64 patients who participated in the MRI substudy, results are presented for the 39 patients (61%) who had a 1H‐MRS assessment at 20 years of treatment. Both total N‐acetylaspartate relative to total creatinine (tNAA/tCr) concentration ratio and T1 lesion volume were found to be robustly associated with disability levels with different statistical approaches. Gray matter (GM) volume was found to be a more consistent parameter than white matter (WM) volume for disability allocation. The elastic net algorithm showed a trade‐off between WM and GM volumes for disability estimation when different disability definitions were used. CONCLUSIONS Among patients with MS receiving long‐term glatiramer acetate therapy, consistent effects on disability levels indicated by EDSS and pyramidal FS score thresholds were found for tNAA/tCr concentration ratio and T1 lesion volume.
Collapse
Affiliation(s)
- Omar Khan
- Multiple Sclerosis Center, Wayne State University School of Medicine, Detroit, MI.,The Sastry Foundation Advanced Imaging Laboratory, Wayne State University School of Medicine, Detroit, MI
| | | | - Fen Bao
- The Sastry Foundation Advanced Imaging Laboratory, Wayne State University School of Medicine, Detroit, MI
| | - Sara Razmjou
- Multiple Sclerosis Center, Wayne State University School of Medicine, Detroit, MI
| | - Christina Caon
- Multiple Sclerosis Center, Wayne State University School of Medicine, Detroit, MI
| | - Carla Santiago
- Multiple Sclerosis Center, Wayne State University School of Medicine, Detroit, MI
| | - Zahid Latif
- Department of Diagnostic Radiology, Wayne State University School of Medicine, Detroit, MI
| | - Rimma Aronov
- Department of Diagnostic Radiology, Wayne State University School of Medicine, Detroit, MI
| | - Imad Zak
- Department of Diagnostic Radiology, Wayne State University School of Medicine, Detroit, MI
| | | | - Scott Kolodny
- Multiple Sclerosis Center, Wayne State University School of Medicine, Detroit, MI.,Teva Pharmaceutical Industries, Cleveland, OH
| | - Corey Ford
- University of New Mexico School of Medicine, Albuquerque, NM
| | - Yulia Sidi
- Teva Pharmaceutical Industries, Netanya, Israel
| |
Collapse
|
30
|
Donadieu M, Le Fur Y, Lecocq A, Maudsley AA, Gherib S, Soulier E, Confort-Gouny S, Pariollaud F, Ranjeva MP, Pelletier J, Guye M, Zaaraoui W, Audoin B, Ranjeva JP. Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: Proof of concept in multiple sclerosis. J Magn Reson Imaging 2016; 44:411-9. [PMID: 26756662 DOI: 10.1002/jmri.25139] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To detect local metabolic abnormalities over the complete human brain in multiple sclerosis (MS) patients, we used optimized fast volumic echo planar spectroscopic imaging (3D-EPSI). MATERIALS AND METHODS Weighted mean combination of two 3D-EPSI covering the whole brain acquired at 3T in AC-PC and AC-PC+15° axial planes was performed to obtain high-quality metabolite maps for five metabolites: N-acetyl aspartate (NAA), glutamate+glutamine (Glx), choline (Cho), myo-inositol (m-Ins), and creatine+phosphocreatine (tCr). After spatial normalization, maps from 19 patients suffering from relapsing-remitting MS were compared to 19 matched controls using statistical mapping analyses to determine the topography of metabolic abnormalities. Probabilistic white matter (WM) T2 lesion maps and gray matter (GM) atrophy maps were also generated. RESULTS Two-group analysis of variance (ANOVA) (SPM8, P < 0.005, false discovery rate [FDR]-corrected P < 0.05 at the cluster level with age and sex as confounding covariates) comparing patients and controls matched for age and sex showed clusters of abnormal metabolite levels with 1) decreased NAA (around -15%) and Glx (around 20%) predominantly in GM within prefrontal cortices, motor cortices, bilateral thalami, and mesial temporal cortices in line with neuronal/neuro-astrocytic dysfunction; 2) increased m-Ins (around + 20%) inside WM T2 lesions and in the normal-appearing WM of temporal-occipital lobes, suggesting glial activation. CONCLUSION We demonstrate the ability to noninvasively map over the complete brain-from vertex to cerebellum-with a validated sequence, the metabolic abnormalities associated with MS, for characterizing the topography of pathological processes affecting widespread areas of WM and GM and its functional impact. J. Magn. Reson. Imaging 2016;44:411-419.
Collapse
Affiliation(s)
- Maxime Donadieu
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Yann Le Fur
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Angèle Lecocq
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Andrew A Maudsley
- Miller School of Medicine, University of Miami, Department of Radiology, Miami, Florida, USA
| | - Soraya Gherib
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Elisabeth Soulier
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Fanelly Pariollaud
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Marie-Pierre Ranjeva
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Jean Pelletier
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Maxime Guye
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Bertrand Audoin
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France
| |
Collapse
|
31
|
Landim RCG, Edden RAE, Foerster B, Li LM, Covolan RJM, Castellano G. Investigation of NAA and NAAG dynamics underlying visual stimulation using MEGA-PRESS in a functional MRS experiment. Magn Reson Imaging 2015; 34:239-45. [PMID: 26656908 DOI: 10.1016/j.mri.2015.10.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/09/2015] [Accepted: 10/17/2015] [Indexed: 11/26/2022]
Abstract
N-acetyl-aspartate (NAA) is responsible for the majority of the most prominent peak in (1)H-MR spectra, and has been used as diagnostic marker for several pathologies. However, ~10% of this peak can be attributed to N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide whose release may be triggered by intense neuronal activation. Separate measurement of NAA and NAAG using MRS is difficult due to large superposition of their spectra. Specifically, in functional MRS (fMRS) experiments, most work has evaluated the sum NAA+NAAG, which does not appear to change during experiments. The aim of this work was to design and perform an fMRS experiment using visual stimulation and a spectral editing sequence, MEGA-PRESS, to further evaluate the individual dynamics of NAA and NAAG during brain activation. The functional paradigm used consisted of three blocks, starting with a rest (baseline) block of 320 s, followed by a stimulus block (640 s) and a rest block (640 s). Twenty healthy subjects participated in this study. On average, subjects followed a pattern of NAA decrease and NAAG increase during stimulation, with a tendency to return to basal levels at the end of the paradigm, with a peak NAA decrease of -(21±19)% and a peak NAAG increase of (64±62)% (Wilcoxon test, p<0.05). These results may relate to: 1) the only known NAAG synthesis pathway is from NAA and glutamate; 2) a relationship between NAAG and the BOLD response.
Collapse
Affiliation(s)
- Ricardo C G Landim
- Neurophysics Group, Cosmic Rays and Chronology Department, Institute of Physics Gleb Wataghin, University of Campinas - UNICAMP, Brazil; CInAPCe Program (Cooperação Interinstitucional de Apoio a Pesquisas sobre o Cérebro), São Paulo State, Brazil
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, United States; F. M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, UK
| | - Bernd Foerster
- Philips Medical Systems, São Paulo, Brazil; CInAPCe Program (Cooperação Interinstitucional de Apoio a Pesquisas sobre o Cérebro), São Paulo State, Brazil
| | - Li Min Li
- Neurology Department, Faculty of Medical Sciences, UNICAMP, Brazil; CInAPCe Program (Cooperação Interinstitucional de Apoio a Pesquisas sobre o Cérebro), São Paulo State, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN-CEPID-FAPESP), Campinas, SP, Brazil
| | - Roberto J M Covolan
- Neurophysics Group, Cosmic Rays and Chronology Department, Institute of Physics Gleb Wataghin, University of Campinas - UNICAMP, Brazil; CInAPCe Program (Cooperação Interinstitucional de Apoio a Pesquisas sobre o Cérebro), São Paulo State, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN-CEPID-FAPESP), Campinas, SP, Brazil
| | - Gabriela Castellano
- Neurophysics Group, Cosmic Rays and Chronology Department, Institute of Physics Gleb Wataghin, University of Campinas - UNICAMP, Brazil; CInAPCe Program (Cooperação Interinstitucional de Apoio a Pesquisas sobre o Cérebro), São Paulo State, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN-CEPID-FAPESP), Campinas, SP, Brazil.
| |
Collapse
|
32
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
33
|
Wang Y, Xu XY, Feng CH, Li YL, Ge X, Zong GL, Wang YB, Feng B, Zhang P. Patients with type 2 diabetes exhibit cognitive impairment with changes of metabolite concentration in the left hippocampus. Metab Brain Dis 2015; 30:1027-34. [PMID: 25875132 PMCID: PMC4491369 DOI: 10.1007/s11011-015-9670-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction. Previous studies have reported the relationship between cerebral metabolite changes and glucose levels. However, the specific aspects of cognition that are affected by metabolic changes in T2DM- related cognitive impairment remain undetermined. In this study, 188 T2DM patients and 266 controls were recruited. Proton magnetic resonance spectra with a single voxel stimulated echo acquisition mode (STEAM) were acquired from the left hippocampus and the frontal lobe. Presence of T2DM negatively affected the scores of Mini-Mental State Examination (MMSE), sub-tests (i.e., attention and language) of MMSE, Montreal Cognitive Assessment (MoCA) according to the Beijing version, and sub-tests (i.e., visuospatial/executive reasoning, attention, and language) of MoCA, rather than the Wechsler Memory Scale - Revised in China (WMS-RC), and all memory sub-tests contained with the MMSE and MoCA frameworks. T2DM positively affected creatine and myoinositol peak areas from the left hippocampus, rather than metabolites in the left frontal lobe. Negative correlations were shown between the left hippocampal myoinositol levels and language scores, and between the left hippocampal creatine levels and visuospatial/executive scores in T2DM. These findings suggest that T2DM may be an independent risk factor for cognitive impairment. Further, the cognitive domains of visuospatial /executive reasoning, attention and language may be predominantly impaired in the early phases of T2DM-related cognitive impairment. In addition, left hippocampal myoinositol and creatine concentrations were associated with cognitive impairment in patients with T2DM.
Collapse
Affiliation(s)
- Yue Wang
- />Department of Neurology, East Hospital, Tongji University, Shanghai, China
| | - Xiao-yun Xu
- />Department of Neurology, Pudong New Area Zhoupu Hospital, Shanghai, China
| | - Chun-hua Feng
- />Department of Neurology, East Hospital, Tongji University, Shanghai, China
| | - Yuan-ling Li
- />Department of Neurology, East Hospital, Tongji University, Shanghai, China
| | - Xia Ge
- />Department of Neurology, East Hospital, Tongji University, Shanghai, China
| | - Gen-lin Zong
- />Department of Radiology, East Hospital, Tongji University, Shanghai, China
| | - Yi-bin Wang
- />Department of Radiology, East Hospital, Tongji University, Shanghai, China
| | - Bo Feng
- />Department of Endocrinology, East Hospital, Tongji University, Shanghai, China
| | - Peng Zhang
- />Shanghai Pudong New Area Center for Disease Control & Prevention, Shanghai, China
| |
Collapse
|
34
|
Matthews PM, Datta G. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin Drug Discov 2015; 10:557-70. [PMID: 25843125 DOI: 10.1517/17460441.2015.1032240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Therapies acting on glial cells are being explored for new drug development for multiple sclerosis. Molecular imaging using positron-emission tomography (PET) could address relevant questions in early phase clinical trials. AREAS COVERED In this article, the authors critically review human PET methods that can be applied in specialised centres for imaging activated microglia and astrocytes and myelin. EXPERT OPINION Strengths of PET lie in the molecular selectivity, sensitivity and potential for absolute quantitation. Even now, translocator protein PET radioligands could be used in exploratory studies for interventions targeting brain microglial activation. The clinical and neuropathological meaningfulness of signal from PET radioligands reporting on astrocyte activation through cellular expression of either monoamine oxidase B or the I2-imidazoline receptor or metabolism of [(11)C]acetate can now explored. [(11)C] N-methyl-4,4'-diaminostilbene, a PET marker for myelin, could soon enter first human trials. However, use of any of these PET glial markers demands a well-focused hypothesis and a commitment to validation in the context of use. Enhanced access to these radioligands, standardisation of analyses and lowering the costs of using them are needed if their full promise is to be realised.
Collapse
Affiliation(s)
- Paul M Matthews
- Imperial College London, Division of Brain Sciences, Department of Medicine , E515, Burlington Danes Building, Du Cane Road, W12 0NN London , UK +44 02075942612 ; +44 02075946548 ;
| | | |
Collapse
|
35
|
Wiebenga OT, Klauser AM, Schoonheim MM, Nagtegaal GJA, Steenwijk MD, van Rossum JA, Polman CH, Barkhof F, Pouwels PJW, Geurts JJG. Enhanced axonal metabolism during early natalizumab treatment in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 2015; 36:1116-23. [PMID: 25742985 DOI: 10.3174/ajnr.a4252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/19/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE The considerable clinical effect of natalizumab in patients with relapsing-remitting multiple sclerosis might be explained by its possible beneficial effect on axonal functioning. In this longitudinal study, the effect of natalizumab on absolute concentrations of total N-acetylaspartate, a marker for neuronal integrity, and other brain metabolites is investigated in patients with relapsing-remitting multiple sclerosis by using MR spectroscopic imaging. MATERIALS AND METHODS In this explorative observational study, 25 patients with relapsing-remitting multiple sclerosis initiating natalizumab treatment were included and scanned every 6 months for 18 months. Additionally 18 matched patients with relapsing-remitting multiple sclerosis continuing treatment with interferon-β or glatiramer acetate were included along with 12 healthy controls. Imaging included short TE 2D-MR spectroscopic imaging with absolute metabolite quantification of total N-acetylaspartate, creatine and phosphocreatine, choline-containing compounds, myo-inositol, and glutamate. Concentrations were determined for lesional white matter, normal-appearing white matter, and gray matter. RESULTS At baseline in both patient groups, lower concentrations of total N-acetylaspartate and creatine and phosphocreatine were found in lesional white matter compared with normal-appearing white matter and additionally lower glutamate in lesional white matter of patients receiving natalizumab. In those patients, a significant yearly metabolite increase was found for lesional white matter total N-acetylaspartate (7%, P < .001), creatine and phosphocreatine (6%, P = .042), and glutamate (10%, P = .028), while lesion volumes did not change. In patients receiving interferon-β/glatiramer acetate, no significant change was measured in lesional white matter for any metabolite, while whole-brain normalized lesion volumes increased. CONCLUSIONS Patients treated with natalizumab showed an increase in total N-acetylaspartate, creatine and phosphocreatine, and glutamate in lesional white matter. These increasing metabolite concentrations might be a sign of enhanced axonal metabolism.
Collapse
Affiliation(s)
- O T Wiebenga
- From the Departments of Radiology and Nuclear Medicine (O.T.W., G.J.A.N., M.D.S., F.B.) Anatomy and Neurosciences (O.T.W., A.M.K., M.M.S., G.J.A.N., J.J.G.G.)
| | - A M Klauser
- Anatomy and Neurosciences (O.T.W., A.M.K., M.M.S., G.J.A.N., J.J.G.G.)
| | - M M Schoonheim
- Anatomy and Neurosciences (O.T.W., A.M.K., M.M.S., G.J.A.N., J.J.G.G.)
| | - G J A Nagtegaal
- From the Departments of Radiology and Nuclear Medicine (O.T.W., G.J.A.N., M.D.S., F.B.) Anatomy and Neurosciences (O.T.W., A.M.K., M.M.S., G.J.A.N., J.J.G.G.)
| | - M D Steenwijk
- From the Departments of Radiology and Nuclear Medicine (O.T.W., G.J.A.N., M.D.S., F.B.)
| | | | | | - F Barkhof
- From the Departments of Radiology and Nuclear Medicine (O.T.W., G.J.A.N., M.D.S., F.B.)
| | - P J W Pouwels
- Physics and Medical Technology (P.J.W.P.), Neuroscience Campus Amsterdam and VU University Medical Center, Amsterdam, the Netherlands
| | - J J G Geurts
- Anatomy and Neurosciences (O.T.W., A.M.K., M.M.S., G.J.A.N., J.J.G.G.)
| |
Collapse
|
36
|
Krauspe BM, Dreher W, Beyer C, Baumgartner W, Denecke B, Janssen K, Langhans CD, Clarner T, Kipp M. Short-term cuprizone feeding verifies N-acetylaspartate quantification as a marker of neurodegeneration. J Mol Neurosci 2014; 55:733-48. [PMID: 25189319 DOI: 10.1007/s12031-014-0412-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is a quantitative MR imaging technique often used to complement conventional MR imaging with specific metabolic information. A key metabolite is the amino acid derivative N-Acetylaspartate (NAA) which is an accepted marker to measure the extent of neurodegeneration in multiple sclerosis (MS) patients. NAA is catabolized by the enzyme aspartoacylase (ASPA) which is predominantly expressed in oligodendrocytes. Since the formation of MS lesions is paralleled by oligodendrocyte loss, NAA might accumulate in the brain, and therefore, the extent of neurodegeneration might be underestimated. In the present study, we used the well-characterized cuprizone model. There, the loss of oligodendrocytes is paralleled by a reduction in ASPA expression and activity as demonstrated by genome-wide gene expression analysis and enzymatic activity assays. Notably, brain levels of NAA were not increased as determined by gas chromatography-mass spectrometry and 1H-MRS. These important findings underpin the reliability of NAA quantification as a valid marker for the paraclinical determination of the extent of neurodegeneration, even under conditions of oligodendrocyte loss in which impaired metabolization of NAA is expected. Future studies have to reveal whether other enzymes are able to metabolize NAA or whether an excess of NAA is cleared by other mechanisms rather than enzymatic metabolism.
Collapse
Affiliation(s)
- Barbara Maria Krauspe
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ciccarelli O, Barkhof F, Bodini B, Stefano ND, Golay X, Nicolay K, Pelletier D, Pouwels PJW, Smith SA, Wheeler-Kingshott CAM, Stankoff B, Yousry T, Miller DH. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 2014; 13:807-22. [DOI: 10.1016/s1474-4422(14)70101-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Abstract
A plethora of magnetic resonance (MR) techniques developed in the last two decades provide unique and noninvasive measurement capabilities for studies of basic brain function and brain diseases in humans. Animal model experiments have been an indispensible part of this development. MR imaging and spectroscopy measurements have been employed in animal models, either by themselves or in combination with complementary and often invasive techniques, to enlighten us about the information content of such MR methods and/or verify observations made in the human brain. They have also been employed, with or independently of human efforts, to examine mechanisms underlying pathological developments in the brain, exploiting the wealth of animal models available for such studies. In this endeavor, the desire to push for ever-higher spatial and/or spectral resolution, better signal-to-noise ratio, and unique image contrast has inevitably led to the introduction of increasingly higher magnetic fields. As a result, today, animal model studies are starting to be conducted at magnetic fields ranging from ~ 11 to 17 Tesla, significantly enhancing the armamentarium of tools available for the probing brain function and brain pathologies.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
39
|
Deelchand DK, Adanyeguh IM, Emir UE, Nguyen TM, Valabregue R, Henry PG, Mochel F, Öz G. Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn Reson Med 2014; 73:1718-25. [PMID: 24948590 DOI: 10.1002/mrm.25295] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine whether neurochemical concentrations obtained at two MRI sites using clinical 3T scanners can be pooled when a highly optimized, nonvendor short-echo, single-voxel proton MRS pulse sequence is used in conjunction with identical calibration and quantification procedures. METHODS A modified semi-LASER sequence (TE = 28 ms) was used to acquire spectra from two brain regions (cerebellar vermis and pons) on two Siemens 3T scanners using the same B0 and B1 calibration protocols from two different cohorts of healthy volunteers (N = 24-33 per site) matched for age and body mass index. Spectra were quantified with LCModel using water scaling. RESULTS The spectral quality was very consistent between the two sites and allowed reliable quantification of at least 13 metabolites in the vermis and pons compared with 3-5 metabolites in prior multisite magnetic resonance spectroscopy trials using vendor-provided sequences. The neurochemical profiles were nearly identical at the two sites and showed the feasibility to detect interindividual differences in the healthy brain. CONCLUSION Highly reproducible neurochemical profiles can be obtained on different clinical 3T scanners at different sites, provided that the same, optimized acquisition and analysis techniques are used. This will allow pooling of multisite data in clinical studies, which is particularly critical for rare neurological diseases.
Collapse
Affiliation(s)
- Dinesh K Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tong J, Geng H, Zhang Z, Zhu X, Meng Q, Sun X, Zhang M, Qian R, Sun L, Liang Q. Brain metabolite alterations demonstrated by proton magnetic resonance spectroscopy in diabetic patients with retinopathy. Magn Reson Imaging 2014; 32:1037-42. [PMID: 24985566 DOI: 10.1016/j.mri.2014.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/06/2023]
Abstract
Due to the homology between retinal and cerebral microvasculatures, retinopathy is a putative indicator of cerebrovascular dysfunction. This study aimed to detect metabolite changes of brain tissue in type 2 diabetes mellitus (T2DM) patients with diabetic retinopathy (DR) using proton magnetic resonance spectroscopy ((1)H-MRS). Twenty-nine T2DM patients with DR (DR group), thirty T2DM patients without DR (DM group) and thirty normal controls (NC group) were involved in this study. Single-voxel (1)H-MRS (TR: 2000ms, TE: 30ms) was performed at 3.0T MRI/MRS imager in cerebral left frontal white matter, left lenticular nucleus, and left optic radiation. Our data showed that NAA/Cr ratios of the DR group were significantly lower than those of the DM group in the frontal white matter and optic radiation. In the lenticular nucleus, MI/Cr ratios were significantly higher in the DM group than those in the NC group, while MI/Cr ratios were significantly lower in the DR group than those in the DM group. In the frontal white matter, NAA/Cho ratios were found to be decreased in the DR group as compared to the NC group. Additionally, our finding indicated that NAA/Cr ratios were negatively associated with DR severity in both the frontal white matter and optic radiation. A decrease in NAA indicated neuronal loss and the likely explanation for a decrease in MI was glial loss. In conclusion, we inferred that cerebral neurons and glia cells were damaged in patients with DR. Our data support that DR is associated with brain tissue damage.
Collapse
Affiliation(s)
- Jia Tong
- Shandong University, Shandong, 250100, China
| | - Houfa Geng
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China
| | - Zhengjun Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China
| | - Xuelei Zhu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China
| | - Qiang Meng
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China
| | - Xinhai Sun
- Department of Magnetic Resonance Imaging, Affiliated Hospital of Jining Medical University, Shandong, 272029, China
| | - Min Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China
| | - Ruikun Qian
- Shandong Academy of Medical Sciences, Shandong, 250001, China
| | - Lin Sun
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China.
| | - Qiuhua Liang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Shandong, 272029, China.
| |
Collapse
|
41
|
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270:658-79. [PMID: 24568703 PMCID: PMC4263653 DOI: 10.1148/radiol.13130531] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.
Collapse
Affiliation(s)
- Gülin Öz
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jeffry R. Alger
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter B. Barker
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Robert Bartha
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alberto Bizzi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Chris Boesch
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Patrick J. Bolan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kevin M. Brindle
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Cristina Cudalbu
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alp Dinçer
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ulrike Dydak
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Uzay E. Emir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jens Frahm
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ramón Gilberto González
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stephan Gruber
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rolf Gruetter
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rakesh K. Gupta
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Arend Heerschap
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Anke Henning
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Hoby P. Hetherington
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Franklyn A. Howe
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra S. Hüppi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ralph E. Hurd
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kejal Kantarci
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dennis W. J. Klomp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Roland Kreis
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Marijn J. Kruiskamp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Martin O. Leach
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alexander P. Lin
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter R. Luijten
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Małgorzata Marjańska
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew A. Maudsley
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dieter J. Meyerhoff
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Carolyn E. Mountford
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Sarah J. Nelson
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - M. Necmettin Pamir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jullie W. Pan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew C. Peet
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Harish Poptani
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stefan Posse
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra J. W. Pouwels
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Eva-Maria Ratai
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian D. Ross
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Tom W. J. Scheenen
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Christian Schuster
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ian C. P. Smith
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian J. Soher
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ivan Tkáč
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Daniel B. Vigneron
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | | |
Collapse
|
42
|
Wiebenga OT, Klauser AM, Nagtegaal GJA, Schoonheim MM, Barkhof F, Geurts JJG, Pouwels PJW. Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR IN BIOMEDICINE 2014; 27:304-11. [PMID: 24399803 DOI: 10.1002/nbm.3063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 05/27/2023]
Abstract
The purpose of this study was to evaluate quality parameters, metabolite concentrations and concentration ratios, and to investigate the reproducibility of quantitative proton magnetic resonance spectroscopic imaging ((1)H-MRSI) of selected white and gray matter regions of healthy adults. 2D-quantitative short-TE (1)H-MRSI spectra were obtained at 1.5T from the healthy human brain. Subjects (n = 12) were scanned twice with an interval of six months. Absolute metabolite concentrations were obtained based on coil loading, taking into account differences in sensitivity of the phased-array head coil. Spectral quality parameters, absolute metabolite concentrations, concentration ratios, and their reproducibility were determined and compared between time-points using a repeated measures general linear model. The quality of the spectra of selected brain areas was good, as determined by a mean spectral linewidth between 4.8 and 7.3 Hz (depending on the region). No significant differences between the two time-points were observed for spectral quality, concentrations, or concentration ratios. The mean intrasubject coefficient of variation (CoV) varied between 4.0 and 8.5% for total N-acetylaspartate, 7.2 and 10.8% for total creatine, 5.9 and 9.8% for myo-inositol, and 8.0 and 13.3% for choline, and remained below 20% for glutamate. CoV was generally lower when concentration ratios were considered. The study shows that longitudinal quantitative short-TE (1)H-MRSI generates reproducible absolute metabolite concentrations in healthy human white and gray matter. This may serve as a background for longitudinal clinical studies in adult patients.
Collapse
Affiliation(s)
- Oliver T Wiebenga
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam and VU University Medical Center, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam and VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Simon JH. MRI outcomes in the diagnosis and disease course of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:405-25. [PMID: 24507528 DOI: 10.1016/b978-0-444-52001-2.00017-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite major advances in MRI, including practical implementations of multiple quantitative MRI methods, the conventional measures of focal, macroscopic disease remain the core MRI outcome measures in clinical trials. MRI enhancing lesion counts are used to assess inflammation, and new T2-lesions provide an index of (interval) activity between scans. These simple MRI measures also have immediate significance for early diagnosis as components of the 2010 revised dissemination in space and time criteria, and they provide a mechanism to monitor the subclinical disease in patients, including after treatment is initiated. The focal macroscopic injury, which includes demyelination and axonal damage, is at least partially linked to the diffuse injury through pathophysiologic mechanisms, such as secondary degeneration, but the diffuse diseases is largely independent. Quantitative measures of the more widespread pathology of the normal appearing white and gray matter currently remain applicable to populations of patients rather than individuals. Gray matter pathology, including focal lesions of the cortical gray matter and diffuse changes in the deep and cortical gray has emerged as both early and clinically relevant, as has atrophy. Major technical improvements in MRI hardware and pulse sequence design allow more specific and potentially more sensitive treatment metrics required for targeting outcomes most relevant to neuronal degeneration, remyelination and repair.
Collapse
Affiliation(s)
- Jack H Simon
- Oregon Health and Sciences University and Portland VA Medical Center, Portland, OR, USA.
| |
Collapse
|
44
|
Fievisohn EM, Sajja VSSS, Vandevord PJ, Hardy WN. Evaluation of impact-induced traumatic brain injury in the Göttingen Minipig using two input modes. TRAFFIC INJURY PREVENTION 2014; 15 Suppl 1:S81-S87. [PMID: 25307402 DOI: 10.1080/15389588.2014.929670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Two novel injury devices were used to characterize impact-induced traumatic brain injury (TBI). One imparts pure translation, and the other produces combined translation and rotation. The objective of this study was to evaluate the neuropathology associated with two injury devices using proton magnetic resonance spectroscopy (1H-MRS) to quantify metabolic changes and immunohistochemistry (IHC) to evaluate axonal damage in the corpus callosum. METHODS Young adult female Göttingen minipigs were exposed to impact-induced TBI with either the translation-input injury device or the combined-input injury device (n=11/group). Sham animals were treated identically except for the injury event (n=3). The minipigs underwent 1H-MRS scans prior to injury (baseline), approximately 1 h after injury, and 24 h post injury, at which point the brains were extracted for IHC. Metabolites of interest include glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), and γ-aminobutyric acid (GABA). Repeated measures analysis of variance with a least significant difference post hoc test were used to compare the three time points. IHC was performed on paraffin-embedded sections of the corpus callosum with light and heavy neurofilament antibodies. Stained pixel percentages were compared between shams and 24-h survival animals. RESULTS For the translation-input group (27.5-70.1 g), 16 significant metabolite differences were found. Three of these include a significant increase in Gln, both 1 h and 24 h postinjury, and an increase in GABA 24 h after injury. For the combined-input group (40.1-95.9 g; 1,014.5-3,814.9 rad/s2; 7.2-10.8 rad/s), 20 significant metabolite differences were found. Three of these include a significant increase in Glu, an increase in the ratio Glu/Gln, and an increase in the ratio Glu/NAAG 24 h after injury. The IHC analysis revealed significant increases in light and heavy neurofilament for both groups 24 h after injury. CONCLUSIONS Only five metabolite differences were similar between the input modes, most of which are related to inflammation or myelin disruption. The observed metabolite differences indicate important dissimilarities. For the translation-input group, an increase in Gln and GABA suggests a response in the GABA shunt system. For the combined-input group, an increase in Glu, Glu/Gln, and Glu/NAAG suggests glutamate excitotoxicity. Importantly, both of these input modes lead to similar light and heavy neurofilament damage, which indicates axonal disruption. Identifying neuropathological changes that are unique to different injury mechanisms is critical in defining the complexity of TBI and can lead to improved prevention strategies and the development of effective drug therapies.
Collapse
Affiliation(s)
- Elizabeth M Fievisohn
- a Virginia Tech-Wake Forest University, School of Biomedical Engineering and Sciences, Center for Injury Biomechanics, Virginia Polytechnic Institute and State University , Blacksburg , Virginia
| | | | | | | |
Collapse
|
45
|
Swanton J, Fernando K, Miller D. Early prognosis of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:371-91. [DOI: 10.1016/b978-0-444-52001-2.00015-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
46
|
Chang L, Munsaka SM, Kraft-Terry S, Ernst T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol 2013; 8:576-93. [PMID: 23666436 DOI: 10.1007/s11481-013-9460-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 02/07/2023]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) has been applied to numerous clinical studies, especially for neurological disorders. This technique can non-invasively evaluate brain metabolites and neurochemicals in selected brain regions and is particularly useful for assessing neuroinflammatory disorders. Neurometabolites assessed with MRS include the neuronal markers N-acetylaspartate (NAA) and glutamate (Glu), as well as the glial marker myo-inositol (MI). Therefore, the concentrations of these metabolites typically correspond to disease severity and often correlate well with clinical variables in the various brain disorders. Neuroinflammation with activated astrocytes and microglia in brain disorders are often associated with elevated MI, and to a lesser extent elevated total creatine (tCr) and choline containing compounds (Cho), which are found in higher concentrations in glia than neurons, while neuronal injury is indicated by lower than normal levels of NAA and Glu. This review summarizes the neurometabolite abnormalities found in MRS studies performed in patients with neuroinflammatory disorders or neuropathic pain, which also may be associated with neuroinflammation. These brain disorders include multiple sclerosis, neuroviral infections (including Human Immunodeficiency virus and Hepatitis C), degenerative brain disorders (including Alzheimer's disease and Parkinson's disease), stimulant abuse (including methamphetamine and cocaine) as well as several chronic pain syndromes.
Collapse
Affiliation(s)
- Linda Chang
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i at Manoa, Neuroscience and Magnetic Resonance Research Program, The Queen's Medical Center, 1356 Lusitana Street, UH Tower 7th Floor, Honolulu, HI 96813, USA.
| | | | | | | |
Collapse
|
47
|
Rovira A, Alonso J. 1H magnetic resonance spectroscopy in multiple sclerosis and related disorders. Neuroimaging Clin N Am 2013; 23:459-74. [PMID: 23928200 DOI: 10.1016/j.nic.2013.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) is an unconventional technique that allows noninvasive characterization of metabolic abnormalities in the central nervous system. (1)H-MRS provides important insights into the chemical-pathologic changes that occur in patients with multiple sclerosis (MS). In this review article we present the main brain and spinal cord (1)H-MRS features in MS, their diagnostic value in differentiating pseudotumoral demyelinating lesions from primary brain tumors, and their relationship with clinical variables. Last, some data related to the use of (1)H-MRS in therapeutic trials is presented.
Collapse
Affiliation(s)
- Alex Rovira
- Department of Radiology, Magnetic Resonance Unit (IDI), Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona 08035, Spain.
| | | |
Collapse
|
48
|
Tisell A, Leinhard OD, Warntjes JBM, Aalto A, Smedby Ö, Landtblom AM, Lundberg P. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS One 2013; 8:e61817. [PMID: 23613944 PMCID: PMC3629257 DOI: 10.1371/journal.pone.0061817] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
In Multiple Sclerosis (MS) the relationship between disease process in normal-appearing white matter (NAWM) and the development of white matter lesions is not well understood. In this study we used single voxel proton 'Quantitative Magnetic Resonance Spectroscopy' (qMRS) to characterize the NAWM and thalamus both in atypical 'Clinically Definite MS' (CDMS) patients, MRI(neg) (N = 15) with very few lesions (two or fewer lesions), and in typical CDMS patients, MRI(pos) (N = 20) with lesions, in comparison with healthy control subjects (N = 20). In addition, the metabolite concentrations were also correlated with extent of brain atrophy measured using Brain Parenchymal Fraction (BPF) and severity of the disease measured using 'Multiple Sclerosis Severity Score' (MSSS). Elevated concentrations of glutamate and glutamine (Glx) were observed in both MS groups (MRI(neg) 8.12 mM, p<0.001 and MRI(pos) 7.96 mM p<0.001) compared to controls, 6.76 mM. Linear regressions of Glx and total creatine (tCr) with MSSS were 0.16 ± 0.06 mM/MSSS (p = 0.02) for Glx and 0.06 ± 0.03 mM/MSSS (p = 0.04) for tCr, respectively. Moreover, linear regressions of tCr and myo-Inositol (mIns) with BPF were -6.22 ± 1.63 mM/BPF (p<0.001) for tCr and -7.71 ± 2.43 mM/BPF (p = 0.003) for mIns. Furthermore, the MRI(pos) patients had lower N-acetylaspartate and N-acetylaspartate-glutamate (tNA) and elevated mIns concentrations in NAWM compared to both controls (tNA: p = 0.04 mIns p<0.001) and MRI(neg) (tNA: p = 0.03 , mIns: p = 0.002). The results suggest that Glx may be an important marker for pathology in non-lesional white matter in MS. Moreover, Glx is related to the severity of MS independent of number of lesions in the patient. In contrast, increased glial density indicated by increased mIns and decreased neuronal density indicated by the decreased tNA, were only observed in NAWM of typical CDMS patients with white matter lesions.
Collapse
Affiliation(s)
- Anders Tisell
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
49
|
Verhey LH, Sled JG. Advanced magnetic resonance imaging in pediatric multiple sclerosis. Neuroimaging Clin N Am 2013; 23:337-54. [PMID: 23608694 DOI: 10.1016/j.nic.2012.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review summarizes results from studies that have applied advanced magnetic resonance (MR) imaging techniques to patients with pediatric-onset multiple sclerosis (MS), and includes a discussion of cortical imaging techniques, volumetry, magnetization transfer and diffusion tensor imaging, proton magnetic resonance spectroscopy, and functional MR imaging. Multicenter studies on the sensitivity of these techniques to natural history of disease and treatment response are required before their implementation into clinical practice.
Collapse
|
50
|
Tur C, Wheeler-Kingshott CAM, Altmann DR, Miller DH, Thompson AJ, Ciccarelli O. Spatial variability and changes of metabolite concentrations in the cortico-spinal tract in multiple sclerosis using coronal CSI. Hum Brain Mapp 2012; 35:993-1003. [PMID: 23281189 PMCID: PMC4238834 DOI: 10.1002/hbm.22229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 10/03/2012] [Accepted: 11/05/2012] [Indexed: 11/07/2022] Open
Abstract
We characterized metabolic changes along the cortico-spinal tract (CST) in multiple sclerosis (MS) patients using a novel application of chemical shift imaging (CSI) and considering the spatial variation of metabolite levels. Thirteen relapsing-remitting (RR) and 13 primary-progressive (PP) MS patients and 16 controls underwent (1)H-MR CSI, which was applied to coronal-oblique scans to sample the entire CST. The concentrations of the main metabolites, i.e., N-acetyl-aspartate, myo-Inositol (Ins), choline containing compounds (Cho) and creatine and phosphocreatine (Cr), were calculated within voxels placed in regions where the CST is located, from cerebral peduncle to corona radiata. Differences in metabolite concentrations between groups and associations between metabolite concentrations and disability were investigated, allowing for the spatial variability of metabolite concentrations in the statistical model. RRMS patients showed higher CST Cho concentration than controls, and higher CST Ins concentration than PPMS, suggesting greater inflammation and glial proliferation in the RR than in the PP course. In RRMS, a significant, albeit modest, association between greater Ins concentration and greater disability suggested that gliosis may be relevant to disability. In PPMS, lower CST Cho and Cr concentrations correlated with greater disability, suggesting that in the progressive stage of the disease, inflammation declines and energy metabolism reduces. Attention to the spatial variation of metabolite concentrations made it possible to detect in patients a greater increase in Cr concentration towards the superior voxels as compared to controls and a stronger association between Cho and disability, suggesting that this step improves our ability to identify clinically relevant metabolic changes.
Collapse
Affiliation(s)
- Carmen Tur
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom; Department of Medicine, Clinical Neuroimmunology Unit, Multiple Sclerosis Centre of Catalonia (CEM-Cat), Autonomous University of Barcelona, CARM-Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|