1
|
Gicquel T, Marchiano F, Reyes-Castellanos G, Audebert S, Camoin L, Habermann BH, Giannesini B, Carrier A. Integrative study of skeletal muscle mitochondrial dysfunction in a murine pancreatic cancer-induced cachexia model. eLife 2024; 13:RP93312. [PMID: 39422661 PMCID: PMC11488855 DOI: 10.7554/elife.93312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer, is a deadly cancer, often diagnosed late and resistant to current therapies. PDAC patients are frequently affected by cachexia characterized by muscle mass and strength loss (sarcopenia) contributing to patient frailty and poor therapeutic response. This study assesses the mechanisms underlying mitochondrial remodeling in the cachectic skeletal muscle, through an integrative exploration combining functional, morphological, and omics-based evaluation of gastrocnemius muscle from KIC genetically engineered mice developing autochthonous pancreatic tumor and cachexia. Cachectic PDAC KIC mice exhibit severe sarcopenia with loss of muscle mass and strength associated with reduced muscle fiber's size and induction of protein degradation processes. Mitochondria in PDAC atrophied muscles show reduced respiratory capacities and structural alterations, associated with deregulation of oxidative phosphorylation and mitochondrial dynamics pathways. Beyond the metabolic pathways known to be altered in sarcopenic muscle (carbohydrates, proteins, and redox), lipid and nucleic acid metabolisms are also affected. Although the number of mitochondria per cell is not altered, mitochondrial mass shows a twofold decrease and the mitochondrial DNA threefold, suggesting a defect in mitochondrial genome homeostasis. In conclusion, this work provides a framework to guide toward the most relevant targets in the clinic to limit PDAC-induced cachexia.
Collapse
Affiliation(s)
- Tristan Gicquel
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| | | | - Gabriela Reyes-Castellanos
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| | - Stephane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
| | | | | | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| |
Collapse
|
2
|
Michel CP, Messonnier LA, Giannesini B, Vilmen C, Sourdon J, Le Fur Y, Bendahan D. Endurance training and hydroxyurea have synergistic effects on muscle function and energetics in sickle cell disease mice. Blood Cells Mol Dis 2024; 107:102853. [PMID: 38574498 DOI: 10.1016/j.bcmd.2024.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Sickle cell disease (SCD) is an hemoglobinopathy resulting in the production of an abnormal Hb (HbS) which can polymerize in deoxygenated conditions, leading to the sickling of red blood cells (RBC). These alterations can decrease the oxygen-carrying capacity leading to impaired function and energetics of skeletal muscle. Any strategy which could reverse the corresponding defects could be of interest. In SCD, endurance training is known to improve multiples muscle properties which restores patient's exercise capacity but present reduced effects in anemic patients. Hydroxyurea (HU) can increase fetal hemoglobin production which can reduce anemia in patients. The present study was conducted to determine whether HU can improve the effects of endurance training to improve muscle function and energetics. Twenty SCD Townes mice have been trained for 8 weeks with (n = 11) or without (n = 9) HU. SCD mice muscle function and energetics were analyzed during a standardized rest-exercise-recovery protocol, using Phosphorus-31 Magnetic resonance spectroscopy (31P-MRS) and transcutaneous stimulation. The combination of training and HU specifically decreased fatigue index and PCr consumption while muscle oxidative capacity was improved. These results illustrate the potential synergistic effects of endurance training and HU on muscle function and energetics in sickle cell disease.
Collapse
Affiliation(s)
| | - Laurent A Messonnier
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Chambéry, France; Institut universitaire de France (IUF), France
| | | | | | - Joevin Sourdon
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| |
Collapse
|
3
|
Galli RA, Borsboom TC, Gineste C, Brocca L, Rossi M, Hwee DT, Malik FI, Bottinelli R, Gondin J, Pellegrino MA, de Winter JM, Ottenheijm CA. Tirasemtiv enhances submaximal muscle tension in an Acta1:p.Asp286Gly mouse model of nemaline myopathy. J Gen Physiol 2024; 156:e202313471. [PMID: 38376469 PMCID: PMC10876480 DOI: 10.1085/jgp.202313471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.
Collapse
Affiliation(s)
- Ricardo A. Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - Tamara C. Borsboom
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
| | | | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université Lyon, Lyon, France
| | | | - Josine M. de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Coen A.C. Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Atherosclerosis, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Michel CP, Bendahan D, Giannesini B, Vilmen C, Le Fur Y, Messonnier LA. Effects of hydroxyurea on skeletal muscle energetics and force production in a sickle cell disease murine model. J Appl Physiol (1985) 2023; 134:415-425. [PMID: 36603048 DOI: 10.1152/japplphysiol.00333.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) is commonly used as a treatment for patients with sickle cell disease (SCD) to enhance fetal hemoglobin production. This increased production is expected to reduce anemia (which depresses oxygen transport) and abnormal Hb content alleviating clinical symptoms such as vaso-occlusive crisis and acute chest syndrome. The effects of HU on skeletal muscle bioenergetics in vivo are still unknown. Due to the beneficial effects of HU upon oxygen delivery, improved skeletal muscle energetics and function in response to a HU treatment have been hypothesized. Muscle energetics and function were analyzed during a standardized rest-exercise-recovery protocol, using 31P-magnetic resonance spectroscopy in Townes SCD mice. Measurements were performed in three groups of mice: one group of 2-mo-old mice (SCD2m, n = 8), another one of 4-mo-old mice (SCD4m, n = 8), and a last group of 4-mo-old mice that have been treated from 2 mo of age with HU at 50 mg/kg/day (SCD4m-HU, n = 8). As compared with SCD2m mice, SCD4m mice were heavier and displayed a lower acidosis. As lower specific forces were developed by SCD4m compared with SCD2m, greater force-normalized phosphocreatine consumption and oxidative and nonoxidative costs of contraction were also reported. HU-treated mice (SCD4m-HU) displayed a significantly higher specific force production as compared with untreated mice (SCD4m), whereas muscle energetics was unchanged. Overall, our results support a beneficial effect of HU on muscle function.NEW & NOTEWORTHY Our results highlighted that force production decreases between 2 and 4 mo of age in SCD mice thereby indicating a decrease of muscle function during this period. Of interest, HU treatment seemed to blunt the observed age effect given that SCD4m-HU mice displayed a higher specific force production as compared with SCD4m mice. In that respect, HU treatment would help to maintain a higher capacity of force production during aging in SCD.
Collapse
Affiliation(s)
| | - David Bendahan
- CNRS, CRMBM, Aix-Marseille Université, Marseille, France
| | | | | | - Yann Le Fur
- CNRS, CRMBM, Aix-Marseille Université, Marseille, France
| | - Laurent A Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
5
|
Chivet M, McCluskey M, Nicot AS, Brocard J, Beaufils M, Giovannini D, Giannesini B, Poreau B, Brocard J, Humbert S, Saudou F, Fauré J, Marty I. Huntingtin regulates calcium fluxes in skeletal muscle. J Gen Physiol 2022; 155:213700. [PMID: 36409218 PMCID: PMC9682417 DOI: 10.1085/jgp.202213103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/09/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
The expression of the Huntingtin protein, well known for its involvement in the neurodegenerative Huntington's disease, has been confirmed in skeletal muscle. The impact of HTT deficiency was studied in human skeletal muscle cell lines and in a mouse model with inducible and muscle-specific HTT deletion. Characterization of calcium fluxes in the knock-out cell lines demonstrated a reduction in excitation-contraction (EC) coupling, related to an alteration in the coupling between the dihydropyridine receptor and the ryanodine receptor, and an increase in the amount of calcium stored within the sarcoplasmic reticulum, linked to the hyperactivity of store-operated calcium entry (SOCE). Immunoprecipitation experiments demonstrated an association of HTT with junctophilin 1 (JPH1) and stromal interaction molecule 1 (STIM1), both providing clues on the functional effects of HTT deletion on calcium fluxes. Characterization of muscle strength and muscle anatomy of the muscle-specific HTT-KO mice demonstrated that HTT deletion induced moderate muscle weakness and mild muscle atrophy associated with histological abnormalities, similar to the phenotype observed in tubular aggregate myopathy. Altogether, this study points toward the hypotheses of the involvement of HTT in EC coupling via its interaction with JPH1, and on SOCE via its interaction with JPH1 and/or STIM1.
Collapse
Affiliation(s)
- Mathilde Chivet
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Maximilian McCluskey
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Anne Sophie Nicot
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Julie Brocard
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Mathilde Beaufils
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Diane Giovannini
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Benoit Giannesini
- Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Aix Marseille University, Marseille, France
| | - Brice Poreau
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Jacques Brocard
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Sandrine Humbert
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Frédéric Saudou
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Julien Fauré
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Isabelle Marty
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France,Correspondence to Isabelle Marty:
| |
Collapse
|
6
|
Michel CP, Messonnier LA, Giannesini B, Chatel B, Vilmen C, Le Fur Y, Bendahan D. Effects of Hydroxyurea on Skeletal Muscle Energetics and Function in a Mildly Anemic Mouse Model. Front Physiol 2022; 13:915640. [PMID: 35784862 PMCID: PMC9240423 DOI: 10.3389/fphys.2022.915640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hydroxyurea (HU) is a ribonucleotide reductase inhibitor most commonly used as a therapeutic agent in sickle cell disease (SCD) with the aim of reducing the risk of vaso-occlusion and improving oxygen transport to tissues. Previous studies suggest that HU may be even beneficial in mild anemia. However, the corresponding effects on skeletal muscle energetics and function have never been reported in such a mild anemia model. Seventeen mildly anemic HbAA Townes mice were subjected to a standardized rest-stimulation (transcutaneous stimulation)-protocol while muscle energetics using 31Phosphorus magnetic resonance spectroscopy and muscle force production were assessed and recorded. Eight mice were supplemented with hydroxyurea (HU) for 6 weeks while 9 were not (CON). HU mice displayed a higher specific total force production compared to the CON, with 501.35 ± 54.12 N/mm3 and 437.43 ± 57.10 N/mm3 respectively (+14.6%, p < 0.05). Neither the total rate of energy consumption nor the oxidative metabolic rate were significantly different between groups. The present results illustrated a positive effect of a HU chronic supplementation on skeletal muscle function in mice with mild anemia.
Collapse
Affiliation(s)
- Constance P. Michel
- CRMBM, CNRS, Aix Marseille University, Marseille, France
- *Correspondence: Constance P. Michel,
| | - Laurent A. Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| | | | - Benjamin Chatel
- CRMBM, CNRS, Aix Marseille University, Marseille, France
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| | | | - Yann Le Fur
- CRMBM, CNRS, Aix Marseille University, Marseille, France
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, Marseille, France
| |
Collapse
|
7
|
Loubrie S, Trotier A, Ribot E, Massot P, Lefrançois W, Thiaudière E, Dallaudière B, Miraux S, Bourdel-Marchasson I. New setup for multi-parametric MRI in young and old rat gastrocnemius at 4.7 and 7 T during muscle stimulation. NMR IN BIOMEDICINE 2022; 35:e4620. [PMID: 34585794 DOI: 10.1002/nbm.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
T1 and T2 relaxation times combined with 31 P spectroscopy have been proven efficient for muscular disease characterization as well as for pre- and post-muscle stimulation measurements. Even though 31 P spectroscopy can already be performed during muscle exercise, no method for T1 and T2 measurement enables this possibility. In this project, a complete setup and protocol for multi-parametrical MRI of the rat gastrocnemius before, during and after muscle stimulation at 4.7 and 7 T is presented. The setup is fully MRI compatible and is composed of a cradle, an electro-stimulator and an electronic card in order to synchronize MRI sequences with muscle stimulation. A 2D triggered radial-encoded Look-Locker sequence was developed, and enabled T1 measurements in less than 2 min on stimulated muscle. Also, a multi-slice multi-echo sequence was adapted and synchronized for T2 measurements as well as 31 P spectroscopy acquisitions in less than 4 min in both cases on stimulated muscle. Methods were validated on young rats using different stimulation paradigms. Then they were applied on older rats to compare quantification results, using the different stimulation paradigms, and allowed observation of metabolic changes related to aging with good reproducibility. The robustness of the whole setup shows wide application opportunities.
Collapse
Affiliation(s)
- Stéphane Loubrie
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Aurelien Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Emeline Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Benjamin Dallaudière
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
- Centre d'Imagerie Ostéo-articulaire, Clinique du Sport de Bordeaux-Mérignac, Mérignac, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Isabelle Bourdel-Marchasson
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
- Pôle de gérontologie clinique, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Chatel B, Ducreux S, Harhous Z, Bendridi N, Varlet I, Ogier AC, Bernard M, Gondin J, Rieusset J, Westerblad H, Bendahan D, Gineste C. Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model. Dis Model Mech 2021; 14:272176. [PMID: 34378772 PMCID: PMC8461820 DOI: 10.1242/dmm.048981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial diseases are genetic disorders that lead to impaired mitochondrial function, resulting in exercise intolerance and muscle weakness. In patients, muscle fatigue due to defects in mitochondrial oxidative capacities commonly precedes muscle weakness. In mice, deletion of the fast-twitch skeletal muscle-specific Tfam gene (Tfam KO) leads to a deficit in respiratory chain activity, severe muscle weakness and early death. Here, we performed a time-course study of mitochondrial and muscular dysfunctions in 11- and 14-week-old Tfam KO mice, i.e. before and when mice are about to enter the terminal stage, respectively. Although force in the unfatigued state was reduced in Tfam KO mice compared to control littermates (wild type) only at 14 weeks, during repeated submaximal contractions fatigue was faster at both ages. During fatiguing stimulation, total phosphocreatine breakdown was larger in Tfam KO muscle than in wild-type muscle at both ages, whereas phosphocreatine consumption was faster only at 14 weeks. In conclusion, the Tfam KO mouse model represents a reliable model of lethal mitochondrial myopathy in which impaired mitochondrial energy production and premature fatigue occur before muscle weakness and early death. Summary: A time-course study of mitochondrial and muscular dysfunctions in a mouse model of mitochondrial myopathy reveals that decreased resistance to fatigue together with decreased oxidative capacities arise ahead of muscle weakness.
Collapse
Affiliation(s)
- Benjamin Chatel
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France.,CellMade, 73370 Le-Bourget-du-Lac, France
| | - Sylvie Ducreux
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Zeina Harhous
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Nadia Bendridi
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69600 Oullins, France
| | - Isabelle Varlet
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Augustin C Ogier
- Aix-Marseille Université, Université de Toulon, CNRS, LIS, 13397 Marseille, France
| | - Monique Bernard
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Julien Gondin
- Institut NeuroMyoGène, UMR CNRS 5310 - INSERM U1217, Université Claude Bernard Lyon 1, F-69008 Lyon, France
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - David Bendahan
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Charlotte Gineste
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| |
Collapse
|
9
|
Pelletier L, Petiot A, Brocard J, Giannesini B, Giovannini D, Sanchez C, Travard L, Chivet M, Beaufils M, Kutchukian C, Bendahan D, Metzger D, Franzini Armstrong C, Romero NB, Rendu J, Jacquemond V, Fauré J, Marty I. In vivo RyR1 reduction in muscle triggers a core-like myopathy. Acta Neuropathol Commun 2020; 8:192. [PMID: 33176865 PMCID: PMC7657350 DOI: 10.1186/s40478-020-01068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.
Collapse
|
10
|
Gineste C, Ogier AC, Varlet I, Hourani Z, Bernard M, Granzier H, Bendahan D, Gondin J. In vivo characterization of skeletal muscle function in nebulin-deficient mice. Muscle Nerve 2020; 61:416-424. [PMID: 31893464 DOI: 10.1002/mus.26798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The conditional nebulin knockout mouse is a new model mimicking nemaline myopathy, a rare disease characterized by muscle weakness and rods within muscle fibers. We investigated the impact of nebulin (NEB) deficiency on muscle function in vivo. METHODS Conditional nebulin knockout mice and control littermates were studied at 10 to 12 months. Muscle function (force and fatigue) and anatomy (muscles volume and fat content) were measured in vivo. Myosin heavy chain (MHC) composition and nebulin (NEB) protein expression were assessed by protein electrophoresis. RESULTS Conditional nebulin knockout mice displayed a lower NEB level (-90%) leading to a 40% and 45% reduction in specific maximal force production and muscles volume, respectively. Nebulin deficiency was also associated with higher resistance to fatigue and increased MHC I content. DISCUSSION Adult nebulin-deficient mice displayed severe muscle atrophy and weakness in vivo related to a low NEB content but an improved fatigue resistance due to a slower contractile phenotype.
Collapse
Affiliation(s)
| | - Augustin C Ogier
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
| | | | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Julien Gondin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Institut NeuroMyoGène, UMR CNRS 5310 - INSERM U1217, Université Claude Bernard, Lyon, France
| |
Collapse
|
11
|
Béchir N, Pecchi É, Vilmen C, Bernard M, Bendahan D, Giannesini B. Activin type IIB receptor blockade does not limit adenosine triphosphate supply in mouse skeletal muscle in Vivo. Muscle Nerve 2019; 58:834-842. [PMID: 30025155 DOI: 10.1002/mus.26306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Postnatal activin/myostatin type IIB receptor (ActRIIB) blockade increases skeletal muscle mass and strength but also increases muscle fatigability and impairs oxidative metabolism. The objective of this study was to determine in vivo whether this increased fatigability is due to energy supply limitation. METHODS The impact of 8-week ActRIIB blockade with soluble receptor (sActRIIB-Fc) on muscle function and adenosine triphosphate (ATP) fluxes was investigated noninvasively by using multimodal magnetic resonance and indirect calorimetry measurements in wild-type mice. RESULTS Activin/myostatin type IIB receptor blockade reduced (-41%) the muscle apparent mitochondrial capacity and increased (+11%) the basal body energy expenditure. During a fatiguing exercise, ActRIIB blockade decreased both oxidative ATP production rate (-32%) and fatigue resistance (-36%), but these changes affected neither the total ATP production rate nor the contractile ATP cost. DISCUSSION These findings demonstrate that the increased fatigability after ActRIIB blockade is not due to limitation in energy supply and/or disturbance in contractile ATP cost. Muscle Nerve 58:834-842, 2018.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | | | | | | | | |
Collapse
|
12
|
Warnez‐Soulie J, Macia M, Lac S, Pecchi E, Bernard M, Bendahan D, Bartoli M, Carrier A, Giannesini B. Tumor protein 53-induced nuclear protein 1 deficiency alters mouse gastrocnemius muscle function and bioenergetics in vivo. Physiol Rep 2019; 7:e14055. [PMID: 31124296 PMCID: PMC6533175 DOI: 10.14814/phy2.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/06/2022] Open
Abstract
Tumor protein 53-induced nuclear protein 1 (TP53INP1) deficiency leads to oxidative stress-associated obesity and insulin resistance. Although skeletal muscle has a predominant role in the development of metabolic syndrome, the bioenergetics and functional consequences of TP53INP1 deficiency upon this tissue remain undocumented. To clarify this issue, gastrocnemius muscle mechanical performance, energy metabolism, and anatomy were investigated in TP53INP1-deficient and wild-type mice using a multidisciplinary approach implementing noninvasive multimodal-NMR techniques. TP53INP1 deficiency increased body adiposity but did not affect cytosolic oxidative stress, lipid content, and mitochondrial pool and capacity in myocyte. During a fatiguing bout of exercise, the in vivo oxidative ATP synthesis capacity was dramatically reduced in TP53INP1-deficient mice despite ADP level (the main in vivo stimulator of mitochondrial respiration) did not differ between both genotypes. Moreover, TP53INP1 deficiency did not alter fatigue resistance but paradoxically increased the contractile force, whereas there were no differences for muscle fiber-type distribution and calcium homeostasis between both genotypes. In addition, muscle proton efflux was decreased in TP53INP1-deficient mice, thereby indicating a reduced blood supply. In conclusion, TP53INP1 plays a role in muscle function and bioenergetics through oxidative capacity impairment possibly as the consequence of abnormal mitochondrial respiration regulation and/or defective blood supply.
Collapse
Affiliation(s)
| | | | - Sophie Lac
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | | | | | | | | | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | | |
Collapse
|
13
|
Chatel B, Messonnier LA, Vilmen C, Bernard M, Pialoux V, Bendahan D. Ischaemia-induced muscle metabolic abnormalities are poorly alleviated by endurance training in a mouse model of sickle cell disease. Exp Physiol 2019; 104:398-406. [PMID: 30578584 DOI: 10.1113/ep087430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim of this study was to evaluate the potential beneficial effects of endurance training during an ischaemia-reperfusion protocol in a mouse model of sickle cell disease (SCD). What is the main finding and its importance? Endurance training did not reverse the metabolic defects induced by a simulated vaso-occlusive crisis in SCD mice, with regard to intramuscular acidosis, mitochondrial dysfunction or anatomical properties. Our results suggest that endurance training would reduce the number of vaso-occlusive crises rather than the complications related to vaso-occlusive crises. ABSTRACT The aim of this study was to investigate whether endurance training could limit the abnormalities described in a mouse model of sickle cell disease (SCD) in response to an ischaemia-reperfusion (I/R) protocol. Ten sedentary (HbSS-SED) and nine endurance-trained (HbSS-END) SCD mice were submitted to a standardized protocol of I/R of the leg, during which ATP, phosphocreatine and inorganic phosphate concentrations and intramuscular pH were measured using magnetic resonance spectroscopy. Forty-eight hours later, skeletal muscles were harvested. Oxidative stress markers were then measured. Although the time course of protons accumulation was slightly different between trained and sedentary mice (P < 0.05), the extent of acidosis was similar at the end of the ischaemic period. The initial rate of phosphocreatine resynthesis measured at blood flow restoration, illustrating mitochondrial function, was not altered in trained mice compared with sedentary mice. Although several oxidative stress markers were not different between groups (P > 0.05), the I/R-related increase of uric acid concentration observed in sedentary SCD mice (P < 0.05) was not present in the trained group. The spleen weight, generally used as a marker of the severity of the disease, was not different between groups (P > 0.05). In conclusion, endurance training did not limit the metabolic consequences of an I/R protocol in skeletal muscle of SCD mice, suggesting that the reduction in the severity of the disease previously demonstrated in the basal state would be attributable to a reduction of the occurrence of vaso-occlusive crises rather than a decrease of the deleterious effects of vaso-occlusive crises.
Collapse
Affiliation(s)
| | - Laurent A Messonnier
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000, Chambéry, France
| | | | | | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, Villeurbanne, France
| | | |
Collapse
|
14
|
Exacerbated metabolic changes in skeletal muscle of sickle cell mice submitted to an acute ischemia-reperfusion paradigm. Clin Sci (Lond) 2018; 132:2103-2115. [PMID: 30185507 DOI: 10.1042/cs20180268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is characterized by painful vaso-occlusive crisis. While there are several metabolic abnormalities potentially associated with muscular ischemia-reperfusion cycles that could be harmful in the context of SCD, the metabolic consequences of such events are still unknown. Ten controls (HbAA), thirteen heterozygous (HbAS), and ten homozygous (HbSS) SCD mice were submitted to a standardized protocol of rest-ischemia-reperfusion of the left leg during which adenosine triphosphate, phosphocreatine, and inorganic phosphate concentrations as well as intramuscular pH were measured using phosphorous magnetic resonance spectroscopy (MRS). Forty-eight hours later, skeletal muscles were harvested. Oxidative stress markers were then measured on the tibialis anterior. At the end of the ischemic period, HbSS mice had a lower pH value as compared with the HbAA and HbAS groups (P<0.01). During the reperfusion period, the initial rate of phosphocreatine resynthesis was lower in HbSS mice as compared with HbAA (P<0.05) and HbAS (P<0.01) animals. No significant difference among groups was observed regarding oxidative stress markers. HbSS mice displayed a higher intramuscular acidosis during the ischemic period while their mitochondrial function was impaired as compared with their HbAA and HbAS counterparts. These metabolic abnormalities could worsen the complications related to the pathology of SCD.
Collapse
|
15
|
Sébastien M, Giannesini B, Aubin P, Brocard J, Chivet M, Pietrangelo L, Boncompagni S, Bosc C, Brocard J, Rendu J, Gory-Fauré S, Andrieux A, Fourest-Lieuvin A, Fauré J, Marty I. Deletion of the microtubule-associated protein 6 (MAP6) results in skeletal muscle dysfunction. Skelet Muscle 2018; 8:30. [PMID: 30231928 PMCID: PMC6147105 DOI: 10.1186/s13395-018-0176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. Methods The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student’s t test or the Mann-Whitney test. Results We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. Conclusion Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia. Electronic supplementary material The online version of this article (10.1186/s13395-018-0176-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muriel Sébastien
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | | | - Perrine Aubin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Julie Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Mathilde Chivet
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Laura Pietrangelo
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Simona Boncompagni
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Christophe Bosc
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Jacques Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - John Rendu
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Sylvie Gory-Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Annie Andrieux
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Anne Fourest-Lieuvin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Julien Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Isabelle Marty
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France. .,University Grenoble Alpes, F-38000, Grenoble, France. .,GIN- Inserm U1216 - Bat EJ Safra, Chemin Fortuné Ferrini, 38700, La Tronche, France.
| |
Collapse
|
16
|
Chatel B, Messonnier LA, Barge Q, Vilmen C, Noirez P, Bernard M, Pialoux V, Bendahan D. Endurance training reduces exercise-induced acidosis and improves muscle function in a mouse model of sickle cell disease. Mol Genet Metab 2018; 123:400-410. [PMID: 29307759 DOI: 10.1016/j.ymgme.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 01/24/2023]
Abstract
Sickle cell disease (SCD) mice (Townes model of SCD) presented exacerbated exercise-induced acidosis and fatigability as compared to control animals. We hypothesize that endurance training could represent a valuable approach to reverse these muscle defects. Endurance-trained HbAA (HbAA-END, n=10), HbAS (HbAS-END, n=11) and HbSS (HbSS-END, n=8) mice were compared to their sedentary counterparts (10 HbAA-SED, 10 HbAS-SED and 9 HbSS-SED mice) during two rest - exercise - recovery protocols during which muscle energetics and function were measured. In vitro analyses of some proteins involved in muscle energetics, pH regulation and oxidative stress were also performed. Exercise-induced acidosis was lower in HbSS-END mice as compared to their sedentary counterparts during both moderate (p<0.001) and intense (p<0.1) protocols. The total force production measured during both protocols was higher in trained mice compared to sedentary animals. In vitro analyses revealed that enolase/citrate synthase ratio was reduced in HbSS-END (p<0.001) and HbAS-END (p<0.01) mice compared to their sedentary counterparts. In addition, malondialdehyde concentration was reduced in trained mice (p<0.05). In conclusion, endurance training would reverse the more pronounced exercise-induced acidosis, reduce oxidative stress and ameliorate some of the muscle function parameters in SCD mice.
Collapse
Affiliation(s)
| | - Laurent A Messonnier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
| | - Quentin Barge
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, Villeurbanne, France
| | | | - Philippe Noirez
- Paris Descartes University, Institute for Research in bioMedicine and Epidemiology of Sport, Paris, France
| | | | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, Villeurbanne, France
| | | |
Collapse
|
17
|
Liu Y, Gu Y, Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: a methodology review. Quant Imaging Med Surg 2017; 7:707-726. [PMID: 29312876 PMCID: PMC5756783 DOI: 10.21037/qims.2017.11.03] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/11/2017] [Indexed: 01/11/2023]
Abstract
Many human diseases are caused by an imbalance between energy production and demand. Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide the unique opportunity for in vivo assessment of several fundamental events in tissue metabolism without the use of ionizing radiation. Of particular interest, phosphate metabolites that are involved in ATP generation and utilization can be quantified noninvasively by phosphorous-31 (31P) MRS/MRI. Furthermore, 31P magnetization transfer (MT) techniques allow in vivo measurement of metabolic fluxes via creatine kinase (CK) and ATP synthase. However, a major impediment for the clinical applications of 31P-MRS/MRI is the prohibitively long acquisition time and/or the low spatial resolution that are necessary to achieve adequate signal-to-noise ratio. In this review, current 31P-MRS/MRI techniques used in basic science and clinical research are presented. Recent advances in the development of fast 31P-MRS/MRI methods are also discussed.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Chatel B, Messonnier LA, Hourdé C, Vilmen C, Bernard M, Bendahan D. Moderate and intense muscular exercises induce marked intramyocellular metabolic acidosis in sickle cell disease mice. J Appl Physiol (1985) 2017; 122:1362-1369. [DOI: 10.1152/japplphysiol.01099.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/22/2022] Open
Abstract
Sickle cell disease (SCD) is associated with an impaired oxygen delivery to skeletal muscle that could alter ATP production processes. The present study aimed to determine the effects of sickle hemoglobin (HbS) on muscle pH homeostasis in response to exercise in homozygous (HbSS, n = 9) and heterozygous (HbAS, n = 10) SCD (Townes) mice in comparison to control (HbAA, n = 10) littermates. Magnetic resonance spectroscopy of phosphorus 31 enabled to measure intramuscular pH and phosphocreatine (PCr) concentration during rest-stimulation-recovery protocols at two different intensities. Maximal activity of some enzymes involved in muscle energetics and content of proteins involved in pH regulation were also investigated. HbSS mice presented a more pronounced exercise-induced intramuscular acidosis, whatever the intensity of exercise. Moreover, the depletion of PCr was also exacerbated in HbSS mice in response to intense exercise as compared with both HbAA and HbAS mice ( P < 0.01). While no difference was observed concerning proteins involved in muscle pH regulation, the activity of enolase (a glycolytic enzyme) was higher in both HbSS and HbAS mice as compared with controls ( P < 0.05). Interestingly, HbAS mice presented also metabolic impairments as compared with their control counterparts. This study has identified for the first time an exacerbated exercise-induced intramuscular acidosis in SCD mice.NEW & NOTEWORTHY The main finding of the present study was that the exercise-induced intramuscular acidosis was systematically more pronounced in sickle cell disease (SCD) mice as compared with their control counterparts. This result is important since it has been demonstrated in vitro that acidosis can trigger hemoglobin polymerization. From that point of view, our results tend to support the idea that high-intensity exercise may increase the risk of hemoglobin polymerization in SCD.
Collapse
Affiliation(s)
| | - Laurent A. Messonnier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; and
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, Chambéry, France
| | - Christophe Hourdé
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, Chambéry, France
| | | | | | | |
Collapse
|
19
|
Liu Y, Mei X, Li J, Lai N, Yu X. Mitochondrial function assessed by 31P MRS and BOLD MRI in non-obese type 2 diabetic rats. Physiol Rep 2017; 4:4/15/e12890. [PMID: 27511984 PMCID: PMC4985553 DOI: 10.14814/phy2.12890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
The study aims to characterize age‐associated changes in skeletal muscle bioenergetics by evaluating the response to ischemia‐reperfusion in the skeletal muscle of the Goto‐Kakizaki (GK) rats, a rat model of non‐obese type 2 diabetes (T2D). 31P magnetic resonance spectroscopy (MRS) and blood oxygen level‐dependent (BOLD) MRI was performed on the hindlimb of young (12 weeks) and adult (20 weeks) GK and Wistar (control) rats. 31P‐MRS and BOLD‐MRI data were acquired continuously during an ischemia and reperfusion protocol to quantify changes in phosphate metabolites and muscle oxygenation. The time constant of phosphocreatine recovery, an index of mitochondrial oxidative capacity, was not statistically different between GK rats (60.8 ± 13.9 sec in young group, 83.7 ± 13.0 sec in adult group) and their age‐matched controls (62.4 ± 11.6 sec in young group, 77.5 ± 7.1 sec in adult group). During ischemia, baseline‐normalized BOLD‐MRI signal was significantly lower in GK rats than in their age‐matched controls. These results suggest that insulin resistance leads to alterations in tissue metabolism without impaired mitochondrial oxidative capacity in GK rats.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Xunbai Mei
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Jielei Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Nicola Lai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Department of Electrical and Computer Engineering and Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio Department of Radiology, Case Western Reserve University, Cleveland, Ohio Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
20
|
Chatel B, Bendahan D, Hourdé C, Pellerin L, Lengacher S, Magistretti P, Le Fur Y, Vilmen C, Bernard M, Messonnier LA. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice. FASEB J 2017; 31:2562-2575. [PMID: 28254758 DOI: 10.1096/fj.201601259r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1+/- mice). Twenty-four MCT1+/- and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1+/- mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1+/- mice at rest (P < 0.001), the mice showed higher acidosis during the first minute of exercise (P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1+/- mice had higher specific peak (P < 0.05) and maximum tetanic (P < 0.01) forces and lower fatigability (P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1+/- mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice.
Collapse
Affiliation(s)
- Benjamin Chatel
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France;
| | - David Bendahan
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Christophe Hourdé
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Lengacher
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neuroenergetic and Cellular Dynamics, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierre Magistretti
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Yann Le Fur
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Christophe Vilmen
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Monique Bernard
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Laurent A Messonnier
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
21
|
Impaired muscle force production and higher fatigability in a mouse model of sickle cell disease. Blood Cells Mol Dis 2017; 63:37-44. [PMID: 28110136 DOI: 10.1016/j.bcmd.2017.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022]
Abstract
Skeletal muscle function has been scarcely investigated in sickle cell disease (SCD) so that the corresponding impact of sickle hemoglobin is still a matter of debate. The purpose of this study was to investigate muscle force production and fatigability in SCD and to identify whether exercise intensity could have a modulatory effect. Ten homozygous sickle cell (HbSS), ten control (HbAA) and ten heterozygous (HbAS) mice were submitted to two stimulation protocols (moderate and intense) to assess force production and fatigability. We showed that specific maximal tetanic force was lower in HbSS mice as compared to other groups. At the onset of the stimulation period, peak force was reduced in HbSS and HbAS mice as compared to HbAA mice. Contrary to the moderate protocol, the intense stimulation protocol was associated with a larger decrease in peak force and rate of force development in HbSS mice as compared to HbAA and HbAS mice. These findings provide in vivo evidence of impaired muscle force production and resistance to fatigue in SCD. These changes are independent of muscle mass. Moreover, SCD is associated with muscle fatigability when exercise intensity is high.
Collapse
|
22
|
Béchir N, Pecchi E, Vilmen C, Le Fur Y, Amthor H, Bernard M, Bendahan D, Giannesini B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo. FASEB J 2016; 30:3551-3562. [PMID: 27416839 DOI: 10.1096/fj.201600271rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022]
Abstract
Postnatal blockade of the activin type IIB receptor (ActRIIB) represents a promising therapeutic strategy for counteracting dystrophic muscle wasting. However, its impact on muscle function and bioenergetics remains poorly documented in physiologic conditions. We have investigated totally noninvasively the effect of 8-wk administration of either soluble ActRIIB signaling inhibitor (sActRIIB-Fc) or vehicle PBS (control) on gastrocnemius muscle force-generating capacity, energy metabolism, and anatomy in dystrophic mdx mice using magnetic resonance (MR) imaging and dynamic [31P]-MR spectroscopy ([31P]-MRS) in vivo ActRIIB inhibition increased muscle volume (+33%) without changing fiber-type distribution, and increased basal animal oxygen consumption (+22%) and energy expenditure (+23%). During an in vivo standardized fatiguing exercise, maximum and total absolute contractile forces were larger (+40 and 24%, respectively) in sActRIIB-Fc treated animals, whereas specific force-generating capacity and fatigue resistance remained unaffected. Furthermore, sActRIIB-Fc administration did not alter metabolic fluxes, ATP homeostasis, or contractile efficiency during the fatiguing bout of exercise, although it dramatically reduced the intrinsic mitochondrial capacity for producing ATP. Overall, sActRIIB-Fc treatment increased muscle mass and strength without altering the fundamental weakness characteristic of dystrophic mdx muscle. These data support the clinical interest of ActRIIB blockade for reversing dystrophic muscle wasting.-Béchir, N., Pecchi, E., Vilmen, C., Le Fur, Y., Amthor, H., Bernard, M., Bendahan, D., Giannesini, B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Emilie Pecchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, Unités de Formation et de Recherche des Sciences de la Santé, INSERM U1179, Laboratoire International Associé, Biologie Appliquée Handicap Neuromusculaire, Cellules Souches Mésenchymateuses, Saint Quentin en Yvelines Therapeutics, Montigny-le-Bretonneux, France; and Service Génétique Médicale, Centre Hospitalier Universitaire Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Monique Bernard
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France;
| |
Collapse
|
23
|
Béchir N, Pecchi É, Relizani K, Vilmen C, Le Fur Y, Bernard M, Amthor H, Bendahan D, Giannesini B. Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo. Am J Physiol Endocrinol Metab 2016; 310:E539-49. [PMID: 26837807 DOI: 10.1152/ajpendo.00370.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/24/2016] [Indexed: 11/22/2022]
Abstract
Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Émilie Pecchi
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Karima Relizani
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé, INSERM U1179, LIA BAHN CSM, SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| | - Christophe Vilmen
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Monique Bernard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé, INSERM U1179, LIA BAHN CSM, SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Benoît Giannesini
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| |
Collapse
|
24
|
Yashiro K, Tonson A, Pecchi É, Vilmen C, Le Fur Y, Bernard M, Bendahan D, Giannesini B. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo. PLoS One 2015; 10:e0128016. [PMID: 26030806 PMCID: PMC4451153 DOI: 10.1371/journal.pone.0128016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic administration of capsiate is known to accelerate whole-body basal energy metabolism, but the consequences in exercising skeletal muscle remain very poorly documented. In order to clarify this issue, the effect of 2-week daily administration of either vehicle (control) or purified capsiate (at 10- or 100-mg/kg body weight) on skeletal muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in mice. Mechanical performance and energy metabolism were assessed strictly non-invasively in contracting gastrocnemius muscle using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Regardless of the dose, capsiate treatments markedly disturbed basal bioenergetics in vivo including intracellular pH alkalosis and decreased phosphocreatine content. Besides, capsiate administration did affect neither mitochondrial uncoupling protein-3 gene expression nor both basal and maximal oxygen consumption in isolated saponin-permeabilized fibers, but decreased by about twofold the Km of mitochondrial respiration for ADP. During a standardized in vivo fatiguing protocol (6-min of repeated maximal isometric contractions electrically induced at a frequency of 1.7 Hz), both capsiate treatments reduced oxidative cost of contraction by 30-40%, whereas force-generating capacity and fatigability were not changed. Moreover, the rate of phosphocreatine resynthesis during the post-electrostimulation recovery period remained unaffected by capsiate. Both capsiate treatments further promoted muscle mass gain, and the higher dose also reduced body weight gain and abdominal fat content. These findings demonstrate that, in addition to its anti-obesity effect, capsiate supplementation improves oxidative metabolism in exercising muscle, which strengthen this compound as a natural compound for improving health.
Collapse
Affiliation(s)
- Kazuya Yashiro
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Anne Tonson
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Émilie Pecchi
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Monique Bernard
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS One 2014; 9:e109066. [PMID: 25268244 PMCID: PMC4182639 DOI: 10.1371/journal.pone.0109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and invivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While invitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, invivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced invitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness invitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function invivo. These results clearly point out that invitro alterations are muscle-dependent and do not necessarily translate into similar changes invivo.
Collapse
|
26
|
Hiepe P, Gussew A, Rzanny R, Anders C, Walther M, Scholle HC, Reichenbach JR. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles. NMR IN BIOMEDICINE 2014; 27:958-970. [PMID: 24953438 DOI: 10.1002/nbm.3141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc = 11.8/9.7%; left ES/MF: T2 ,inc = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Center of Radiology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Gondin J, Vilmen C, Cozzone PJ, Bendahan D, Duhamel G. High-field (11.75T) multimodal MR imaging of exercising hindlimb mouse muscles using a non-invasive combined stimulation and force measurement device. NMR IN BIOMEDICINE 2014; 27:870-879. [PMID: 24890578 DOI: 10.1002/nbm.3122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
We have designed and constructed an experimental set-up allowing electrical stimulation of hindlimb mouse muscles and the corresponding force measurements at high-field (11.75T). We performed high-resolution multimodal MRI (including T2 -weighted imaging, angiography and diffusion) and analysed the corresponding MRI changes in response to a stimulation protocol. Mice were tested twice over a 1-week period to investigate the reliability of mechanical measurements and T2 changes associated with the stimulation protocol. Additionally, angiographic images were obtained before and immediately after the stimulation protocol. Finally, multislice diffusion imaging was performed before, during and immediately after the stimulation session. Apparent diffusion coefficient (ADC) maps were calculated on the basis of diffusion weighted images (DWI). Both force production and T2 values were highly reproducible as illustrated by the low coefficient of variation (<8%) and high intraclass correlation coefficient (≥0.75) values. Maximum intensity projection angiographic images clearly showed a strong vascular effect resulting from the stimulation protocol. Although a motion sensitive imaging sequence was used (echo planar imaging) and in spite of the strong muscle contractions, motion artifacts were minimal for DWI recorded under exercising conditions, thereby underlining the robustness of the measurements. Mean ADC values increased under exercising conditions and were higher during the recovery period as compared with the corresponding control values. The proposed experimental approach demonstrates accurate high-field multimodal MRI muscle investigations at a preclinical level which is of interest for monitoring the severity and/or the progression of neuromuscular diseases but also for assessing the efficacy of potential therapeutic interventions.
Collapse
Affiliation(s)
- Julien Gondin
- Aix-Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | | | | | | | | |
Collapse
|
28
|
Relizani K, Mouisel E, Giannesini B, Hourdé C, Patel K, Morales Gonzalez S, Jülich K, Vignaud A, Piétri-Rouxel F, Fortin D, Garcia L, Blot S, Ritvos O, Bendahan D, Ferry A, Ventura-Clapier R, Schuelke M, Amthor H. Blockade of ActRIIB signaling triggers muscle fatigability and metabolic myopathy. Mol Ther 2014; 22:1423-1433. [PMID: 24861054 DOI: 10.1038/mt.2014.90] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/18/2014] [Indexed: 12/26/2022] Open
Abstract
Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy-dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here, we show in mice, that 4-month pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling downregulates porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparβ, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.
Collapse
Affiliation(s)
- Karima Relizani
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany; UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Etienne Mouisel
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Current address: Inserm UMR 1048, Université Paul Sabatier, Toulouse, France
| | - Benoit Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, Marseille, France
| | - Christophe Hourdé
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Morales Gonzalez
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Jülich
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alban Vignaud
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Généthon, 1 bis rue de l'Internationale, Evry, France
| | - France Piétri-Rouxel
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France
| | | | - Luis Garcia
- UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Stéphane Blot
- Unité de Neurologie, Ecole Nationale Vétérinaire d'Alfort, Université Paris Est, Créteil, France
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, Marseille, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Université Paris Descartes, Paris, France
| | | | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Helge Amthor
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France; Service Génétique Médicale, CHU Necker-Enfants Malades, Université Paris Descartes, Paris, France.
| |
Collapse
|
29
|
Kazuya Y, Tonson A, Pecchi E, Dalmasso C, Vilmen C, Fur YL, Bernard M, Bendahan D, Giannesini B. A single intake of capsiate improves mechanical performance and bioenergetics efficiency in contracting mouse skeletal muscle. Am J Physiol Endocrinol Metab 2014; 306:E1110-9. [PMID: 24644244 DOI: 10.1152/ajpendo.00520.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Capsiate is known to increase whole body oxygen consumption possibly via the activation of uncoupling processes, but its effect at the skeletal muscle level remains poorly documented and conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated in mice 2 h after a single intake of either vehicle (control) or purified capsiate (at 10 or 100 mg/kg body wt) through a multidisciplinary approach combining in vivo and in vitro measurements. Mechanical performance and energy pathway fluxes were assessed strictly noninvasively during a standardized electrostimulation-induced exercise, using an original device implementing 31-phosphorus magnetic resonance spectroscopy, and mitochondrial respiration was evaluated in isolated saponin-permeabilized fibers. Compared with control, both capsiate doses produced quantitatively similar effects at the energy metabolism level, including an about twofold decrease of the mitochondrial respiration sensitivity for ADP. Interestingly, they did not alter either oxidative phosphorylation or uncoupling protein 3 gene expression at rest. During 6 min of maximal repeated isometric contractions, both doses reduced the amount of ATP produced from glycolysis and oxidative phosphorylation but increased the relative contribution of oxidative phosphorylation to total energy turnover (+28 and +21% in the 10- and 100-mg groups, respectively). ATP cost of twitch force generation was further reduced in the 10- (-35%) and 100-mg (-45%) groups. Besides, the highest capsiate dose also increased the twitch force-generating capacity. These data present capsiate as a helpful candidate to enhance both muscle performance and oxidative phosphorylation during exercise, which could constitute a nutritional approach for improving health and preventing obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yashiro Kazuya
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Anne Tonson
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Emilie Pecchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Christiane Dalmasso
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Monique Bernard
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, 13385, Marseille, France
| |
Collapse
|
30
|
Multimodal MRI and (31)P-MRS investigations of the ACTA1(Asp286Gly) mouse model of nemaline myopathy provide evidence of impaired in vivo muscle function, altered muscle structure and disturbed energy metabolism. PLoS One 2013; 8:e72294. [PMID: 23977274 PMCID: PMC3748127 DOI: 10.1371/journal.pone.0072294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023] Open
Abstract
Nemaline myopathy (NM), the most common non-dystrophic congenital disease of skeletal muscle, can be caused by mutations in the skeletal muscle α-actin gene (ACTA1) (~25% of all NM cases and up to 50% of severe forms of NM). Muscle function of the recently generated transgenic mouse model carrying the human Asp286Gly mutation in the ACTA1 gene (Tg(ACTA1)(Asp286Gly)) has been mainly investigated in vitro. Therefore, we aimed at providing a comprehensive picture of the in vivo hindlimb muscle function of Tg(ACTA1)(Asp286Gly) mice by combining strictly noninvasive investigations. Skeletal muscle anatomy (hindlimb muscles, intramuscular fat volumes) and microstructure were studied using multimodal magnetic resonance imaging (Dixon, T2, Diffusion Tensor Imaging [DTI]). Energy metabolism was studied using 31-phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Skeletal muscle contractile performance was investigated while applying a force-frequency protocol (1-150 Hz) and a fatigue protocol (6 min-1.7 Hz). Tg(ACTA1)(Asp286Gly) mice showed a mild muscle weakness as illustrated by the reduction of both absolute (30%) and specific (15%) maximal force production. Dixon MRI did not show discernable fatty infiltration in Tg(ACTA1)(Asp286Gly) mice indicating that this mouse model does not reproduce human MRI findings. Increased T2 values were observed in Tg(ACTA1)(Asp286Gly) mice and might reflect the occurrence of muscle degeneration/regeneration process. Interestingly, T2 values were linearly related to muscle weakness. DTI experiments indicated lower λ2 and λ3 values in Tg(ACTA1)(Asp286Gly) mice, which might be associated to muscle atrophy and/or the presence of histological anomalies. Finally (31)P-MRS investigations illustrated an increased anaerobic energy cost of contraction in Tg(ACTA1)(Asp286Gly) mice, which might be ascribed to contractile and non-contractile processes. Overall, we provide a unique set of information about the anatomic, metabolic and functional consequences of the Asp286Gly mutation that might be considered as relevant biomarkers for monitoring the severity and/or the progression of NM and for assessing the efficacy of potential therapeutic interventions.
Collapse
|
31
|
Giannesini B, Vilmen C, Amthor H, Bernard M, Bendahan D. Lack of myostatin impairs mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in vivo. Am J Physiol Endocrinol Metab 2013; 305:E33-40. [PMID: 23632633 DOI: 10.1152/ajpendo.00651.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it is well established that the lack of myostatin (Mstn) promotes skeletal muscle hypertrophy, the corresponding changes regarding force generation have been studied mainly in vitro and remain conflicting. Furthermore, the metabolic underpinnings of these changes are very poorly documented. To clarify this issue, we have investigated strictly noninvasively in vivo the impact of the lack of Mstn on gastrocnemius muscle function and energetics in Mstn-targeted knockout (Mstn-/-) mice using ¹H-magnetic resonance (MR) imaging and ³¹P-MR spectroscopy during maximal repeated isometric contractions induced by transcutaneous electrostimulation. In Mstn-/- animals, although body weight, gastrocnemius muscle volume, and absolute force were larger (+38, +118, and +34%, respectively) compared with wild-type (Mstn+/+) mice, specific force (calculated from MR imaging measurements) was significantly lower (-36%), and resistance to fatigue was decreased. Besides, Mstn deficiency did not affect phosphorylated compound concentrations and intracellular pH at rest but caused a large increase in ATP cost of contraction (up to +206% compared with Mstn+/+) throughout the stimulation period. Further, Mstn deficiency limits the shift toward oxidative metabolism during muscle activity despite the fact that oxidative ATP synthesis capacity was not altered. Our data demonstrate in vivo that the absence of Mstn impairs both mechanical performance and energy cost of contraction in hypertrophic muscle. These findings must be kept in mind when considering Mstn as a potential therapeutic target for increasing muscle mass in patients suffering from muscle-wasting disorders.
Collapse
Affiliation(s)
- Benoît Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, 13385, Marseille, France.
| | | | | | | | | |
Collapse
|
32
|
Gineste C, Le Fur Y, Vilmen C, Le Troter A, Pecchi E, Cozzone PJ, Hardeman EC, Bendahan D, Gondin J. Combined MRI and ³¹P-MRS investigations of the ACTA1(H40Y) mouse model of nemaline myopathy show impaired muscle function and altered energy metabolism. PLoS One 2013; 8:e61517. [PMID: 23613869 PMCID: PMC3629063 DOI: 10.1371/journal.pone.0061517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Nemaline myopathy (NM) is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. Mutations in the skeletal muscle α-actin gene (ACTA1) account for ∼25% of all NM cases and are the most frequent cause of severe forms of NM. So far, the mechanisms underlying muscle weakness in NM patients remain unclear. Additionally, recent Magnetic Resonance Imaging (MRI) studies reported a progressive fatty infiltration of skeletal muscle with a specific muscle involvement in patients with ACTA1 mutations. We investigated strictly noninvasively the gastrocnemius muscle function of a mouse model carrying a mutation in the ACTA1 gene (H40Y). Skeletal muscle anatomy (hindlimb muscles and fat volumes) and energy metabolism were studied using MRI and 31Phosphorus magnetic resonance spectroscopy. Skeletal muscle contractile performance was investigated while applying a force-frequency protocol (from 1–150 Hz) and a fatigue protocol (80 stimuli at 40 Hz). H40Y mice showed a reduction of both absolute (−40%) and specific (−25%) maximal force production as compared to controls. Interestingly, muscle weakness was associated with an improved resistance to fatigue (+40%) and an increased energy cost. On the contrary, the force frequency relationship was not modified in H40Y mice and the extent of fatty infiltration was minor and not different from the WT group. We concluded that the H40Y mouse model does not reproduce human MRI findings but shows a severe muscle weakness which might be related to an alteration of intrinsic muscular properties. The increased energy cost in H40Y mice might be related to either an impaired mitochondrial function or an alteration at the cross-bridges level. Overall, we provided a unique set of anatomic, metabolic and functional biomarkers that might be relevant for monitoring the progression of NM disease but also for assessing the efficacy of potential therapeutic interventions at a preclinical level.
Collapse
Affiliation(s)
- Charlotte Gineste
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Emilie Pecchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Patrick J. Cozzone
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Edna C. Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
| | - Julien Gondin
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) Unité Mixte de Recherche (UMR), Marseille, France
- * E-mail:
| |
Collapse
|
33
|
Gineste C, De Winter JM, Kohl C, Witt CC, Giannesini B, Brohm K, Le Fur Y, Gretz N, Vilmen C, Pecchi E, Jubeau M, Cozzone PJ, Stienen GJM, Granzier H, Labeit S, Ottenheijm CAC, Bendahan D, Gondin J. In vivo and in vitro investigations of heterozygous nebulin knock-out mice disclose a mild skeletal muscle phenotype. Neuromuscul Disord 2013; 23:357-69. [PMID: 23375831 DOI: 10.1016/j.nmd.2012.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/07/2012] [Accepted: 12/29/2012] [Indexed: 01/30/2023]
Abstract
Nemaline myopathy is the most common congenital skeletal muscle disease, and mutations in the nebulin gene account for 50% of all cases. Recent studies suggest that the disease severity might be related to the nebulin expression levels. Considering that mutations in the nebulin gene are typically recessive, one would expect that a single functional nebulin allele would maintain nebulin protein expression which would result in preserved skeletal muscle function. We investigated skeletal muscle function of heterozygous nebulin knock-out (i.e., nebulin(+/-)) mice using a multidisciplinary approach including protein and gene expression analysis and combined in vivo and in vitro force measurements. Skeletal muscle anatomy and energy metabolism were studied strictly non-invasively using magnetic resonance imaging and 31P-magnetic resonance spectroscopy. Maximal force production was reduced by around 16% in isolated muscle of nebulin(+/-) mice while in vivo force generating capacity was preserved. Muscle weakness was associated with a shift toward a slower proteomic phenotype, but was not related to nebulin protein deficiency or to an impaired energy metabolism. Further studies would be warranted in order to determine the mechanisms leading to a mild skeletal muscle phenotype resulting from the expression of a single nebulin allele.
Collapse
Affiliation(s)
- C Gineste
- Aix-Marseille Université, CRMBM, 13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Citrulline malate supplementation increases muscle efficiency in rat skeletal muscle. Eur J Pharmacol 2011; 667:100-4. [DOI: 10.1016/j.ejphar.2011.05.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/03/2011] [Accepted: 05/22/2011] [Indexed: 11/19/2022]
|
35
|
Prompers JJ, Strijkers GJ, Nicolay K. Magnetic resonance spectroscopy of in vivo tissue metabolism in small animals. DRUG DISCOVERY TODAY. TECHNOLOGIES 2011; 8:e95-e102. [PMID: 24990268 DOI: 10.1016/j.ddtec.2011.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|