1
|
Mathur Y, Shafie A, Alharbi B, Ashour AA, Al-Soud WA, Alhassan HH, Alharethi SH, Anjum F. Genome-Wide Analysis of Kidney Renal Cell Carcinoma: Exploring Differentially Expressed Genes for Diagnostic and Therapeutic Targets. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:393-401. [PMID: 37624678 DOI: 10.1089/omi.2023.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Kidney renal cell carcinoma (KIRC) is the most common type of renal cancer. Kidney malignancies have been ranked in the top 10 most frequently occurring cancers. KIRC is a prevalent malignancy with a poor prognosis. The disease has risen for the last 40 years, and robust biomarkers for KIRC are needed for precision/personalized medicine. In this bioinformatics study, we utilized genomic data of KIRC patients from The Cancer Genome Atlas for biomarker discovery. A total of 314 samples were used in this study. We identified many differentially expressed genes (DEGs) categorized as upregulated or downregulated. A protein-protein interaction network for the DEGs was then generated and analyzed using the Search Tool for the Retrieval of Interacting Genes plugin of Cytoscape. A set of 10 hub genes was selected based on the Maximum Clique Centrality score defined by the CytoHubba plugin. The elucidated set of genes, that is, CALCA, CRH, TH, CHAT, SLC18A3, FSHB, MYH6, CAV3, KCNA4, and GBX2, were then categorized as potential candidates to be explored as KIRC biomarkers. The survival analysis plots for each gene suggested that alterations in CHAT, CAV3, CRH, MYH6, SLC18A3, and FSHB resulted in decreased survival of KIRC patients. In all, the results suggest that genomic alterations in selected genes can be explored to inform biomarker discovery and for therapeutic predictions in KIRC.
Collapse
Affiliation(s)
- Yash Mathur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Rallapalli H, Bayin NS, Goldman H, Maric D, Nieman BJ, Koretsky AP, Joyner AL, Turnbull DH. Cell specificity of Manganese-enhanced MRI signal in the cerebellum. Neuroimage 2023; 276:120198. [PMID: 37245561 PMCID: PMC10330770 DOI: 10.1016/j.neuroimage.2023.120198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States; Gurdon Institute, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Hannah Goldman
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Canada; Medical Biophysics, University of Toronto, Toronto, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| | - Daniel H Turnbull
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
3
|
Ma D, Cardoso MJ, Zuluaga MA, Modat M, Powell NM, Wiseman FK, Cleary JO, Sinclair B, Harrison IF, Siow B, Popuri K, Lee S, Matsubara JA, Sarunic MV, Beg MF, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI. Neuroimage 2020; 223:117271. [PMID: 32835824 PMCID: PMC8417772 DOI: 10.1016/j.neuroimage.2020.117271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.
Collapse
Affiliation(s)
- Da Ma
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom; School of Engineering Science, Simon Fraser University, Burnaby, Canada.
| | - Manuel J Cardoso
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Maria A Zuluaga
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Data Science Department, EURECOM, France
| | - Marc Modat
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Nick M Powell
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Frances K Wiseman
- UK Dementia Research Institute at University College London, UK London; Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Jon O Cleary
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; Department of Radiology, Guy´s and St Thomas' NHS Foundation Trust, United Kingdom; Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
| | - Benjamin Sinclair
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Science, University of British Columbia, Vancouver, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London, United Kingdom; Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | | | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| |
Collapse
|
4
|
Kommajosyula SP, Faingold CL. Neural activity in the periaqueductal gray and other specific subcortical structures is enhanced when a selective serotonin reuptake inhibitor selectively prevents seizure-induced sudden death in the DBA/1 mouse model of sudden unexpected death in epilepsy. Epilepsia 2019; 60:1221-1233. [PMID: 31056750 DOI: 10.1111/epi.14759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is a critical issue in epilepsy, and DBA/1 mice are a useful animal model of this devastating epilepsy sequela. The serotonin hypothesis for SUDEP proposes that modifying serotonergic function significantly alters susceptibility to seizure-induced respiratory arrest (S-IRA). Agents that enhance serotonergic function, including a selective serotonin reuptake inhibitor, fluoxetine, selectively prevent S-IRA in DBA/1 mice. This study examined fluoxetine-induced changes in brain activity using manganese-enhanced magnetic resonance imaging (MEMRI) to reveal sites in the DBA/1 mouse brain where fluoxetine acts to prevent S-IRA. METHODS DBA/1 mice were subjected to audiogenic seizures (Sz) after saline or fluoxetine (45 mg/kg, intraperitoneal) administration. Control DBA/1 mice received fluoxetine or saline, but Sz were not evoked. A previous MEMRI study established the regions of interest (ROIs) for Sz in the DBA/1 mouse brain, and the present study examined MEMRI differences in the ROIs of these mouse groups. RESULTS The neural activity in several ROIs was significantly increased in fluoxetine-treated DBA/1 mice that exhibited Sz but not S-IRA when compared to the saline-treated mice that exhibited both Sz and respiratory arrest. These structures included the periaqueductal gray (PAG), amygdala, reticular formation (sensorimotor-limbic network), Kölliker-Fuse nucleus, facial-parafacial group (respiratory network), and pontine raphe. Of these ROIs, only the PAG showed significantly decreased neural activity with saline pretreatment when seizure-induced respiratory arrest occurred as compared to saline treatment without seizure. SIGNIFICANCE The PAG is known to play an important compensatory role for respiratory distress caused by numerous exigent situations in normal animals. The pattern of fluoxetine-induced activity changes in the present study suggests that PAG may be the most critical target for fluoxetine's action to prevent seizure-induced sudden death. These findings have potential clinical importance, because there is evidence of anomalous serotonergic function and PAG imaging abnormalities in human SUDEP.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
5
|
Okada S, Bartelle BB, Li N, Breton-Provencher V, Lee JJ, Rodriguez E, Melican J, Sur M, Jasanoff A. Calcium-dependent molecular fMRI using a magnetic nanosensor. NATURE NANOTECHNOLOGY 2018; 13:473-477. [PMID: 29713073 PMCID: PMC6086382 DOI: 10.1038/s41565-018-0092-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin B Bartelle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent Breton-Provencher
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiyoung J Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elisenda Rodriguez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James Melican
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mriganka Sur
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes Dev 2018; 32:373-388. [PMID: 29555651 PMCID: PMC5900711 DOI: 10.1101/gad.307330.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
Ferrer et al. demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. Human induced pluripotent stem cells derived from D63H homozygous fetuses fail to differentiate into embryoid bodies, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.
Collapse
|
7
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
8
|
Suero-Abreu GA, Aristizábal O, Bartelle BB, Volkova E, Rodríguez JJ, Turnbull DH. Multimodal Genetic Approach for Molecular Imaging of Vasculature in a Mouse Model of Melanoma. Mol Imaging Biol 2016; 19:203-214. [PMID: 27677887 DOI: 10.1007/s11307-016-1006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, we evaluated a genetic approach for in vivo multimodal molecular imaging of vasculature in a mouse model of melanoma. PROCEDURES We used a novel transgenic mouse, Ts-Biotag, that genetically biotinylates vascular endothelial cells. After inoculating these mice with B16 melanoma cells, we selectively targeted endothelial cells with (strept)avidinated contrast agents to achieve multimodal contrast enhancement of Tie2-expressing blood vessels during tumor progression. RESULTS This genetic targeting system provided selective labeling of tumor vasculature and showed in vivo binding of avidinated probes with high specificity and sensitivity using microscopy, near infrared, ultrasound, and magnetic resonance imaging. We further demonstrated the feasibility of conducting longitudinal three-dimensional (3D) targeted imaging studies to dynamically assess changes in vascular Tie2 from early to advanced tumor stages. CONCLUSIONS Our results validated the Ts-Biotag mouse as a multimodal targeted imaging system with the potential to provide spatio-temporal information about dynamic changes in vasculature during tumor progression.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA
- Department of Radiology, NYUSoM, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Joe J Rodríguez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA.
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA.
- Department of Radiology, NYUSoM, New York, NY, USA.
- Department of Pathology, NYUSoM, New York, NY, USA.
| |
Collapse
|
9
|
Suero-Abreu GA, Praveen Raju G, Aristizábal O, Volkova E, Wojcinski A, Houston EJ, Pham D, Szulc KU, Colon D, Joyner AL, Turnbull DH. In vivo Mn-enhanced MRI for early tumor detection and growth rate analysis in a mouse medulloblastoma model. Neoplasia 2015; 16:993-1006. [PMID: 25499213 PMCID: PMC4309249 DOI: 10.1016/j.neo.2014.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/03/2022] Open
Abstract
Mouse models have increased our understanding of the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor that often forms in the cerebellum. A major goal of ongoing research is to better understand the early stages of tumorigenesis and to establish the genetic and environmental changes that underlie MB initiation and growth. However, studies of MB progression in mouse models are difficult due to the heterogeneity of tumor onset times and growth patterns and the lack of clinical symptoms at early stages. Magnetic resonance imaging (MRI) is critical for noninvasive, longitudinal, three-dimensional (3D) brain tumor imaging in the clinic but is limited in resolution and sensitivity for imaging early MBs in mice. In this study, high-resolution (100 μm in 2 hours) and high-throughput (150 μm in 15 minutes) manganese-enhanced MRI (MEMRI) protocols were optimized for early detection and monitoring of MBs in a Patched-1 (Ptch1) conditional knockout (CKO) model. The high tissue contrast obtained with MEMRI revealed detailed cerebellar morphology and enabled detection of MBs over a wide range of stages including pretumoral lesions as early as 2 to 3 weeks postnatal with volumes close to 0.1 mm3. Furthermore, longitudinal MEMRI allowed noninvasive monitoring of tumors and demonstrated that lesions within and between individuals have different tumorigenic potentials. 3D volumetric studies allowed quantitative analysis of MB tumor morphology and growth rates in individual Ptch1-CKO mice. These results show that MEMRI provides a powerful method for early in vivo detection and longitudinal imaging of MB progression in the mouse brain.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - G Praveen Raju
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandre Wojcinski
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edward J Houston
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Diane Pham
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Kamila U Szulc
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Daniel Colon
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandra L Joyner
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Szulc KU, Lerch JP, Nieman BJ, Bartelle BB, Friedel M, Suero-Abreu GA, Watson C, Joyner AL, Turnbull DH. 4D MEMRI atlas of neonatal FVB/N mouse brain development. Neuroimage 2015; 118:49-62. [PMID: 26037053 DOI: 10.1016/j.neuroimage.2015.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/19/2022] Open
Abstract
The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Kamila U Szulc
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Molecular Biophysics Graduate Programs, New York University School of Medicine, New York, NY, USA
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| | - Charles Watson
- Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Biomedical Imaging, New York University School of Medicine, New York, NY, USA; Molecular Biophysics Graduate Programs, New York University School of Medicine, New York, NY, USA; Department of Radiology, New York University School of Medicine, New York, NY, USA; Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Phenotyping the central nervous system of the embryonic mouse by magnetic resonance microscopy. Neuroimage 2014; 97:95-106. [PMID: 24769183 DOI: 10.1016/j.neuroimage.2014.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/07/2014] [Accepted: 04/13/2014] [Indexed: 11/20/2022] Open
Abstract
Genetic mouse models of neurodevelopmental disorders are being massively generated, but technologies for their high-throughput phenotyping are missing. The potential of high-resolution magnetic resonance imaging (MRI) for structural phenotyping has been demonstrated before. However, application to the embryonic mouse central nervous system has been limited by the insufficient anatomical detail. Here we present a method that combines staining of live embryos with a contrast agent together with MR microscopy after fixation, to provide unprecedented anatomical detail at relevant embryonic stages. By using this method we have phenotyped the embryonic forebrain of Robo1/2(-/-) double mutant mice enabling us to identify most of the well-known anatomical defects in these mutants, as well as novel more subtle alterations. We thus demonstrate the potential of this methodology for a fast and reliable screening of subtle structural abnormalities in the developing mouse brain, as those associated to defects in disease-susceptibility genes of neurologic and psychiatric relevance.
Collapse
|
12
|
Friedel M, van Eede MC, Pipitone J, Chakravarty MM, Lerch JP. Pydpiper: a flexible toolkit for constructing novel registration pipelines. Front Neuroinform 2014; 8:67. [PMID: 25126069 PMCID: PMC4115634 DOI: 10.3389/fninf.2014.00067] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/26/2014] [Indexed: 01/12/2023] Open
Abstract
Using neuroimaging technologies to elucidate the relationship between genotype and phenotype and brain and behavior will be a key contribution to biomedical research in the twenty-first century. Among the many methods for analyzing neuroimaging data, image registration deserves particular attention due to its wide range of applications. Finding strategies to register together many images and analyze the differences between them can be a challenge, particularly given that different experimental designs require different registration strategies. Moreover, writing software that can handle different types of image registration pipelines in a flexible, reusable and extensible way can be challenging. In response to this challenge, we have created Pydpiper, a neuroimaging registration toolkit written in Python. Pydpiper is an open-source, freely available software package that provides multiple modules for various image registration applications. Pydpiper offers five key innovations. Specifically: (1) a robust file handling class that allows access to outputs from all stages of registration at any point in the pipeline; (2) the ability of the framework to eliminate duplicate stages; (3) reusable, easy to subclass modules; (4) a development toolkit written for non-developers; (5) four complete applications that run complex image registration pipelines “out-of-the-box.” In this paper, we will discuss both the general Pydpiper framework and the various ways in which component modules can be pieced together to easily create new registration pipelines. This will include a discussion of the core principles motivating code development and a comparison of Pydpiper with other available toolkits. We also provide a comprehensive, line-by-line example to orient users with limited programming knowledge and highlight some of the most useful features of Pydpiper. In addition, we will present the four current applications of the code.
Collapse
Affiliation(s)
- Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children Toronto, ON, Canada
| | | | - Jon Pipitone
- Kimel Family Translational Imaging-Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - M Mallar Chakravarty
- Kimel Family Translational Imaging-Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Department of Psychiatry, Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto, ON, Canada ; Rotman Research Institute Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Toronto, ON, Canada
| |
Collapse
|