1
|
Hazra S, Chakraborthy G. Effects of Diabetes and Hyperlipidemia in Physiological Conditions - A Review. Curr Diabetes Rev 2025; 21:24-34. [PMID: 38409688 DOI: 10.2174/0115733998289406240214093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is an autoimmune manifestation defined by persistent hyperglycemia and alterations in protein, fatty substances, and carbohydrate metabolism as an effect of problems with the secretion of insulin action or both. Manifestations include thirst, blurred eyesight, weight loss, and ketoacidosis, which can majorly lead to coma. There are different types of diabetes according to class or by cellular level. They are interrelated with hyperlipidemia as they are involved in the metabolism and regulation of physiological factors. Most parameters are seen at cellular or humoral levels, yet the underlying concern remains the same. OBJECTIVE To create a systematic correlation between the disease and locate the exact mechanism and receptors responsible for it. So, this article covers a proper way to resolve the conditions and their manifestation through literacy and diagrammatic. CONCLUSION Hence, this will be an insight for many scholars to understand the exact mechanism involved in the process.
Collapse
Affiliation(s)
- Sayan Hazra
- Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, 391760, India
| | - Gunosindhu Chakraborthy
- Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
2
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
3
|
Gruba N, Piwkowska A, Lesner A. Initial study of the detection of ADAM 10 in the urine of type-2 diabetic patients. Bioorg Chem 2023; 140:106826. [PMID: 37666108 DOI: 10.1016/j.bioorg.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Shirzaiy M, Dalirsani Z, Peymankar P, Taherizadeh M. Relationship between salivary levels of interleukin-8 and HbA1c in patients with type 2 diabetes. Endocrinol Diabetes Metab 2023; 6:e455. [PMID: 37775939 PMCID: PMC10638620 DOI: 10.1002/edm2.455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION Diabetes mellitus is a metabolic disease, which genetic and environmental factors play a role in its pathogenesis. Cytokines as important elements in the immune system have diverse expressions in different individuals and societies and are effective in the pathogenesis of diabetes. This study investigated the relationship between blood sugar control and salivary levels of interleukin-8 (IL-8) in patients with type 2 diabetes. METHODS This cross-sectional study was conducted on 73 subjects (35 diabetic and 38 healthy individuals). Unstimulated saliva samples were collected and the correlation between IL-8, as an inflammatory marker and HbA1c (Haemoglobin A1C) was studied. RESULTS The levels of IL-8 and HbA1c were significantly higher in the patient group than control group (p < .001, p < .001, respectively). There was not any relationship between salivary IL-8 levels and glycemic control levels (p = .629). Also, there was no remarkable difference between men and women in terms of the levels of IL-8 and HbA1c saliva (p = .524, p = .998, respectively). CONCLUSION Although the salivary IL-8 levels were higher in the diabetic patients, blood sugar control did not significantly affect cytokine concentrations. Increased salivary levels of IL-8 in patients with type 2 diabetes could be a basis for risk assessment, prevention and treatment of diabetes-related complications.
Collapse
Affiliation(s)
- Masoomeh Shirzaiy
- Oral and Dental Disease Research CenterZahedan University of Medical ScienceZahedanIran
| | - Zohreh Dalirsani
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Payam Peymankar
- Oral and Dental Disease Research CenterZahedan University of Medical ScienceZahedanIran
| | | |
Collapse
|
5
|
Łuniewski M, Matyjaszek-Matuszek B, Lenart-Lipińska M. Diagnosis and Non-Invasive Treatment of Obesity in Adults with Type 2 Diabetes Mellitus: A Review of Guidelines. J Clin Med 2023; 12:4431. [PMID: 37445466 PMCID: PMC10342979 DOI: 10.3390/jcm12134431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity, a chronic disease with multifactorial etiopathogenesis, is characterized by excessive accumulation of adipose tissue. Obesity prevalence is growing globally at an alarming rate. The overwhelming majority of obesity cases are caused by inappropriate lifestyles, such as overconsumption of food and inadequate physical activity. Metabolic and biochemical changes due to increased adiposity resulted in numerous comorbidities, increased all-cause mortality, and reduced quality of life. T2DM (type 2 diabetes mellitus) and obesity have many common pathogenetic points and drive each other in a vicious cycle. The aim of this article is to review obesity management guidelines and highlight the most important points. Management of both obesity-related and T2DM complications incur enormous expenses on healthcare systems. It is, therefore, paramount to provide streamlined yet custom-tailored weight management in order to avoid the negative ramifications of both diseases. Efficient obesity treatment leads to better diabetes control since some antidiabetic medications support weight reduction. Obesity treatment should be overseen by a multi-disciplinary team providing indispensable information and individually tailored regimens to patients. Weight management should be multimodal and consist chiefly of MNT (medical nutrition therapy), physical activity, and lifestyle changes. A comprehensive approach to obesity treatment may give tangible results to quality of life and comorbidities.
Collapse
Affiliation(s)
- Michał Łuniewski
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, 20-954 Lublin, Poland; (B.M.-M.); (M.L.-L.)
| | | | | |
Collapse
|
6
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
7
|
Mahgoub MO, Ali II, Adeghate JO, Tekes K, Kalász H, Adeghate EA. An Update on the Molecular and Cellular Basis of Pharmacotherapy in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24119328. [PMID: 37298274 DOI: 10.3390/ijms24119328] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic illness with an increasing global prevalence. More than 537 million cases of diabetes were reported worldwide in 2021, and the number is steadily increasing. The worldwide number of people suffering from DM is projected to reach 783 million in 2045. In 2021 alone, more than USD 966 billion was spent on the management of DM. Reduced physical activity due to urbanization is believed to be the major cause of the increase in the incidence of the disease, as it is associated with higher rates of obesity. Diabetes poses a risk for chronic complications such as nephropathy, angiopathy, neuropathy and retinopathy. Hence, the successful management of blood glucose is the cornerstone of DM therapy. The effective management of the hyperglycemia associated with type 2 diabetes includes physical exercise, diet and therapeutic interventions (insulin, biguanides, second generation sulfonylureas, glucagon-like peptide 1 agonists, dipeptidyl-peptidase 4 inhibitors, thiazolidinediones, amylin mimetics, meglitinides, α-glucosidase inhibitors, sodium-glucose cotransporter-2 inhibitors and bile acid sequestrants). The optimal and timely treatment of DM improves the quality of life and reduces the severe burden of the disease for patients. Genetic testing, examining the roles of different genes involved in the pathogenesis of DM, may also help to achieve optimal DM management in the future by reducing the incidence of DM and by enhancing the use of individualized treatment regimens.
Collapse
Affiliation(s)
- Mohamed Omer Mahgoub
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi P.O. Box 25669, United Arab Emirates
| | - Ifrah Ismail Ali
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Jennifer O Adeghate
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, NY 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, 635 W. 165th St., New York, NY 10032, USA
| | - Kornélia Tekes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Heydari N, Sharifi R, Nourbakhsh M, Golpour P, Nourbakhsh M. Long non-coding RNAs TUG1 and MEG3 in patients with type 2 diabetes and their association with endoplasmic reticulum stress markers. J Endocrinol Invest 2023:10.1007/s40618-023-02007-5. [PMID: 36662419 DOI: 10.1007/s40618-023-02007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), including taurine upregulated gene 1 (TUG1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and maternally expressed 3 (MEG3) play a regulatory role in endoplasmic reticulum (ER) stress. The present study aimed to investigate the expression of these lncRNAs in patients with type 2 diabetes and their association with biochemical and ER stress parameters. MATERIALS AND METHODS Participants included 57 patients with diabetes and 32 healthy individuals. Real-time PCR was performed to assess MALAT1, TUG1, MEG3, ATF4, and CHOP gene expression in peripheral blood mononuclear cells. Plasma GRP78, advanced glycation end products (AGEs), and insulin were measured using enzyme-linked immunosorbent assay (ELISA), and insulin resistance (IR) was calculated by the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS The expression of TUG1, MEG3, ATF4, and CHOP genes was significantly increased in the patients with diabetes compared to healthy individuals. MALAT1 gene expression was also higher in patients group; although it did not reach significant levels. TUG1 and MEG3 expression revealed significant positive correlations with the indices of glycemic control, including FBS, HbA1c, HOMA-IR, and AGEs, as well as markers of ER stress. MALAT1 expression was also positively correlated with ATF4 and AGEs. CONCLUSION The expression levels of TUG1 and MEG3 lncRNAs were increased in patients with diabetes and were associated with glycemic control and components of ER stress. Thus, these lncRNAs might be considered appropriate markers to identify ER stress due to hyperglycemia.
Collapse
Affiliation(s)
- N Heydari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 1449614535, Iran
| | - R Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Hemmat Highway, Tehran, 1449614535, Iran.
| | - M Nourbakhsh
- Hazrat Aliasghar Children's Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - P Golpour
- Department of Biochemistry, School of Medicine, Yazd University of Medical Sciences, Yazd, Iran
| | - M Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 1449614535, Iran.
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Hemmat Highway, Tehran, 1449614535, Iran.
| |
Collapse
|
9
|
Novel hit of DPP-4Is as promising antihyperglycemic agents with dual antioxidant/anti-inflammatory effects for type 2 diabetes with/without COVID-19. Bioorg Chem 2022; 128:106092. [PMID: 35985159 PMCID: PMC9364673 DOI: 10.1016/j.bioorg.2022.106092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/07/2022] [Indexed: 12/15/2022]
Abstract
DPP-4Is are well recognized therapy for type 2 diabetes. In spite of sharing a common mode of action, the chemical diversity among members of DPP-4Is raised the question whether structural differences may result in distinguished activities. DPP-4Is were recently explored as drug repurposing means for treatment of SARS-CoV-2 due to the urgent need for small molecule drugs for controlling infections. The use of DPP-4Is was not correlated with adverse COVID-19-related consequences among patients with type 2 diabetes. Inspired by these reasons and the importance of pyrimidinone ring as DPP-4I with both antioxidant and anti-inflammatory activities, we succeeded to prepare some novel pyrimidinone and thio-pyrimidinone derivatives, which were then screened for their antidiabetic activity and DPP-4 inhibition. In addition, their anti-inflammatory effect on LPS-stimulated RAW 264.7 cells were evaluated. Furthermore, their antioxidant activities were also tested.
Collapse
|
10
|
Noor F, Rehman A, Ashfaq UA, Saleem MH, Okla MK, Al-Hashimi A, AbdElgawad H, Aslam S. Integrating Network Pharmacology and Molecular Docking Approaches to Decipher the Multi-Target Pharmacological Mechanism of Abrus precatorius L. Acting on Diabetes. Pharmaceuticals (Basel) 2022; 15:414. [PMID: 35455411 PMCID: PMC9029140 DOI: 10.3390/ph15040414] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a notable health care load that imposes a serious impact on the quality of life of patients. The small amount of reported data and multiple spectra of pathophysiological mechanisms of T2DM make it a challenging task and serious economic burden in health care management. Abrus precatorius L. is a slender, perennial, deciduous, and woody twining plant used in various regions of Asia to treat a variety of ailments, including diabetes mellitus. Various in vitro studies revealed the therapeutic significance of A. precatorius against diabetes. However, the exact molecular mechanism remains unclarified. In the present study, a network pharmacology technique was employed to uncover the active ingredients, their potential targets, and signaling pathways in A. precatorius for the treatment of T2DM. In the framework of this study, we explored the active ingredient-target-pathway network and figured out that abrectorin, abrusin, abrisapogenol J, sophoradiol, cholanoic acid, precatorine, and cycloartenol decisively contributed to the development of T2DM by affecting AKT1, MAPK3, TNFalpha, and MAPK1 genes. Later, molecular docking was employed to validate the successful activity of the active compounds against potential targets. Lastly, we conclude that four highly active constituents, namely, abrusin, abrisapogenol J, precatorine, and cycloartenol, help in improving the body's sensitivity to insulin and regulate the expression of AKT1, MAPK3, TNFalpha, and MAPK1, which may act as potential therapeutic targets of T2DM. Integrated network pharmacology and docking analysis revealed that A. precatorius exerted a promising preventive effect on T2DM by acting on diabetes-associated signaling pathways. This provides a basis to understand the mechanism of the anti-diabetes activity of A. precatorius.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (A.R.); (U.A.A.)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (A.R.); (U.A.A.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (A.R.); (U.A.A.)
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Mohammad K. Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerpen, Belgium;
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (A.R.); (U.A.A.)
| |
Collapse
|
11
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010182. [PMID: 35011414 PMCID: PMC8746715 DOI: 10.3390/molecules27010182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.
Collapse
|
13
|
Shaikh S, Lee EJ, Ahmad K, Ahmad SS, Lim JH, Choi I. A Comprehensive Review and Perspective on Natural Sources as Dipeptidyl Peptidase-4 Inhibitors for Management of Diabetes. Pharmaceuticals (Basel) 2021; 14:591. [PMID: 34203048 PMCID: PMC8235117 DOI: 10.3390/ph14060591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an increasing global public health problem, and its prevalence is expected to rise in coming decades. Dipeptidyl peptidase-4 (DPP-4) is a therapeutic target for the management of T2DM, and its inhibitors prevent the degradation of glucose-dependent insulinotropic peptide and glucagon-like peptide 1, and thus, maintain their endogenous levels and lower blood glucose levels. Various medicinal plant extracts and isolated bioactive compounds exhibit DPP-4 inhibitory activity. In this review, we discussed different natural sources that have been shown to have anti-diabetic efficacy with a particular emphasis on DPP-4 inhibition. Furthermore, the effect of DPP-4 inhibition on pancreatic beta cell function, skeletal muscle function, and the glucose-lowering mechanisms were also discussed. We believe that scientists looking for novel compounds with therapeutic promise against T2DM will be able to develop antidiabetic drugs using these natural sources.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun-Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed-Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong-Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
14
|
Bhat IA, Kabeer SW, Reza MI, Mir RH, Dar MO. AdipoRon: A Novel Insulin Sensitizer in Various Complications and the Underlying Mechanisms: A Review. Curr Mol Pharmacol 2021; 13:94-107. [PMID: 31642417 DOI: 10.2174/1874467212666191022102800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders. OBJECTIVE In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders. RESULTS AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis. CONCLUSION A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.
Collapse
Affiliation(s)
- Ishfaq Ahmad Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Muhammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
15
|
Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020; 34:28. [PMID: 32617267 PMCID: PMC7320976 DOI: 10.34171/mjiri.34.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.
Collapse
Affiliation(s)
| | - Masoud Dehghan Tezerjani
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
16
|
|
17
|
Assessment of Salivary Adipokines Resistin, Visfatin, and Ghrelin as Type 2 Diabetes Mellitus Biomarkers. Biochem Res Int 2018; 2018:7463796. [PMID: 29487749 PMCID: PMC5816886 DOI: 10.1155/2018/7463796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/31/2017] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is emerging as a metabolic epidemic worldwide. Pathologically, dysregulation of many biological pathways precedes hyperglycemia and the clinical diagnosis of T2DM. Changing trajectories along the process of T2DM development necessitates frequent measurement of biomarkers for early identification of at-risk individuals and successful prevention. Increase in circulating inflammatory adipokines has been suggested as predictive of T2DM. Human saliva is an easily accessible biospecimen amenable for painless frequent collection and possesses nearly 50% of serum proteome. In this study, we measured the adipokines resistin, visfatin, TNF-α, and ghrelin as markers for T2DM in unstimulated whole saliva (UWS) using specific assay kits. Resistin and visfatin concentrations were significantly higher in T2DM saliva. Although the concentration of acylated or unacylated ghrelin was lower in diabetic saliva, the decrease was not significant. Since resistin and visfatin are biomarkers integral to T2DM pathology, their salivary assessments may receive clinical acceptance.
Collapse
|
18
|
Johnston LW, Harris SB, Retnakaran R, Zinman B, Giacca A, Liu Z, Bazinet RP, Hanley AJ. Longitudinal Associations of Phospholipid and Cholesteryl Ester Fatty Acids With Disorders Underlying Diabetes. J Clin Endocrinol Metab 2016; 101:2536-44. [PMID: 27144932 DOI: 10.1210/jc.2015-4267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Specific serum fatty acid (FA) profiles predict the development of incident type 2 diabetes; however, limited longitudinal data exist exploring their role in the progression of insulin sensitivity (IS) and β-cell function. OBJECTIVE To examine the longitudinal associations of the FA composition of serum phospholipid (PL) and cholesteryl ester (CE) fractions with IS and β-cell function over 6 years. DESIGN The Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort is a longitudinal observational study, with clinic visits occurring every 3 years. Three visits have been completed, totaling 6 years of follow-up. SETTING Individuals (n = 477) at risk for diabetes recruited from the general population in London and Toronto, Canada. MAIN OUTCOME MEASURES Values from an oral glucose tolerance test were used to compute 1/HOMA-IR and the Matsuda index for IS, the insulinogenic index over HOMA-IR, and the insulin secretion-sensitivity index-2 for β-cell function. Thin-layer chromatograph and gas chromatograph quantified FA. Generalized estimating equations were used for the analysis. RESULTS IS and β-cell function declined by 8.3-19.4% over 6 years. In fully adjusted generalized estimating equation models, PL cis-vaccenate (18:1n-7) was positively associated with all outcomes, whereas γ-linolenate (GLA; 18:3n-6) and stearate (18:0) were negatively associated with IS. Tests for time interactions revealed that PL eicosadienoate (20:2n-6) and palmitate (16:0) and CE dihomo-γ-linolenate (20:3n-6), GLA, and palmitate had stronger associations with the outcomes after longer follow-up. CONCLUSIONS In a Canadian population at risk for diabetes, we found that higher PL stearate and GLA and lower cis-vaccenic acid predicted consistently lower IS and β-cell function over 6 years.
Collapse
Affiliation(s)
- Luke W Johnston
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Stewart B Harris
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ravi Retnakaran
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Bernard Zinman
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Adria Giacca
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Zhen Liu
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
19
|
Abstract
Targeting a genetic variant with an antagonist may restore insulin secretion in a subgroup of type 2 diabetes patients (Tang et al., this issue).
Collapse
Affiliation(s)
- Claes-Goran Ostenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| |
Collapse
|
20
|
Derosa G, Querci F, Franzetti I, Dario Ragonesi P, D'Angelo A, Maffioli P. Comparison of the effects of barnidipine+losartan compared with telmisartan+hydrochlorothiazide on several parameters of insulin sensitivity in patients with hypertension and type 2 diabetes mellitus. Hypertens Res 2015; 38:690-4. [DOI: 10.1038/hr.2015.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/28/2023]
|
21
|
Hompesch M, Jones-Leone A, Carr MC, Matthews J, Zhi H, Young M, Morrow L, Reinhardt RR. Albiglutide does not impair the counter-regulatory hormone response to hypoglycaemia: a randomized, double-blind, placebo-controlled, stepped glucose clamp study in subjects with type 2 diabetes mellitus. Diabetes Obes Metab 2015; 17:82-90. [PMID: 25263215 DOI: 10.1111/dom.12398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/12/2014] [Accepted: 09/21/2014] [Indexed: 12/25/2022]
Abstract
AIM To determine if the glucagon-like peptide-1 (GLP-1) receptor agonist albiglutide, once weekly, impairs counter-regulatory responses during hypoglycaemia. METHODS We conducted a randomized, double-blind, parallel, placebo-controlled study in subjects with type 2 diabetes mellitus. A single dose of albiglutide 50 mg (n = 22) or placebo (n = 22) was administered on day 1. Glucose was clamped on day 4 (to coincide with the approximate albiglutide maximum plasma concentration) at 9.0, 5.0, 4.0, 3.3 and 2.8 mmol/l (162, 90, 72, 59.4 and 50.4 mg/dl), with a post-clamp recovery period to 3.9 mmol/l (70 mg/dl). Hormone measurements were made at each plateau and adverse events (AEs) were recorded. RESULTS The counter-regulatory hormones glucagon, epinephrine, norepinephrine, growth hormone and cortisol were appropriately suppressed when plasma glucose levels were >4.0 mmol/l (>72 mg/dl), but increased in the albiglutide and placebo groups with glucose levels <3.3 mmol/l (<59.4 mg/dl) in response to hypoglycaemia. The area under the curve geometric mean ratios (albiglutide : placebo), calculated from the clamped plateau of 4.0 mmol/l (72 mg/dl) to the glucose recovery point, were not significantly different for any of the counter-regulatory hormones. When plasma glucose levels were >5.0 mmol/l (>90 mg/dl), albiglutide increased pancreatic β-cell secretion of C-peptide in a glucose-dependent manner to a greater extent than did placebo, and it was suppressed in each group when levels were <4.0 mmol/l (<72 mg/dl). No significant difference between groups was observed in the recovery time to glucose level ≥3.9 mmol/l (≥70 mg/dl). There were no clinically relevant differences in AEs or other safety variables. CONCLUSIONS A single 50-mg dose of albiglutide was well tolerated and did not impair the counter-regulatory response to hypoglycaemia. These data provide mechanistic evidence supporting the low intrinsic hypoglycaemic potential of albiglutide.
Collapse
Affiliation(s)
- M Hompesch
- Profil Institute for Clinical Research, Inc., Chula Vista, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:752870. [PMID: 24151620 PMCID: PMC3787574 DOI: 10.1155/2013/752870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022]
Abstract
Diverse high energy diets have been utilized to precipitate obesity and related metabolic disorders in rodent models, though the dietary intervention has not absolutely been standardized. The present study established usage of a customized semipurified normal control diet (NCD) and high fat diet (HFD), for research studies on diet-induced metabolic disorders in albino rats. Male Wistar rats were fed with normal pellet diet (NPD) or customized NCDs I, II, III or HFDs I, II, III for 12 weeks and parameters, namely, body weight, visceral adiposity, serum triglycerides, cholesterol, and glucose were evaluated to select an appropriate NCD and HFD. The selected HFD was further evaluated for induction of fatty liver, whilst type 2 diabetes (T2D) induction was confirmed in HFD and streptozotocin (STZ) induced diabetes model in Wistar rats. Amongst different diets tested, NCD-I and HFD-I were selected, since NCD-I exhibited close resemblance to NPD, whereas HFD-I induced metabolic alterations, particularly obesity and dyslipidemia consistently. Moreover, HFD-I elevated terminal hepatic lipids, while HFD-I/STZ treatment augmented insulin resistance index and serum glucose levels significantly indicating effective induction of fatty liver and T2D, respectively. Therefore, customized semipurified NCD-I and HFD-I can be recommended for research studies on diet-induced metabolic disorders in albino Wistar rats.
Collapse
Affiliation(s)
| | - Joshua Allan Joseph
- R&D Centre, Natural Remedies, Plot No. 5B, Veerasandra Indl. Area, 19th K.M. Stone, Hosur Road, Electronic City, Bangalore, Karnataka 560 100, India
| | - Senthilkumar Anandakumar
- R&D Centre, Natural Remedies, Plot No. 5B, Veerasandra Indl. Area, 19th K.M. Stone, Hosur Road, Electronic City, Bangalore, Karnataka 560 100, India
| | - Vijayabalaji Venkatesan
- R&D Centre, Natural Remedies, Plot No. 5B, Veerasandra Indl. Area, 19th K.M. Stone, Hosur Road, Electronic City, Bangalore, Karnataka 560 100, India
| | | | - Amit Agarwal
- R&D Centre, Natural Remedies, Plot No. 5B, Veerasandra Indl. Area, 19th K.M. Stone, Hosur Road, Electronic City, Bangalore, Karnataka 560 100, India
| |
Collapse
|
23
|
In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem 2013; 136:758-64. [DOI: 10.1016/j.foodchem.2012.08.032] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022]
|
24
|
Salvadó L, Serrano-Marco L, Barroso E, Palomer X, Vázquez-Carrera M. Targeting PPARβ/δ for the treatment of type 2 diabetes mellitus. Expert Opin Ther Targets 2012; 16:209-23. [DOI: 10.1517/14728222.2012.658370] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Kim JH, Saxton AM. The TALLYHO mouse as a model of human type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:75-87. [PMID: 22893402 DOI: 10.1007/978-1-62703-068-7_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The TALLYHO/Jng (TH) mouse is an inbred polygenic model for type 2 diabetes (T2D) with moderate obesity. Both male and female TH mice are characterized by increased body and fat pad weights, hyperleptinemia, hyperinsulinemia, and hyperlipidemia. Glucose intolerance and hyperglycemia are exhibited only in males. Reduced 2-deoxy-glucose uptake occurs in adipose tissue and skeletal muscle of male TH mice. While both sexes of TH mice exhibit enlarged pancreatic islets, only males have degranulation and abnormal architecture in islets. Endothelial dysfunction and considerably decreased bone density are also observed in male TH mice. The blood pressure of male TH mice is normal. Genetic outcross experiments with non-diabetic strains revealed multiple susceptibility loci (quantitative trait loci) for obesity, hypertriglyceridemia, hypercholesterolemia, and hyperglycemia. In conclusion, TH mice encompass many aspects of polygenic human diabetes and are a very useful model for T2D.
Collapse
Affiliation(s)
- Jung Han Kim
- Department of Pharmacology, Physiology and Toxicology, Marshall University School of Medicine, Huntington, WV, USA.
| | | |
Collapse
|
26
|
de Miguel-Yanes JM, Manning AK, Shrader P, McAteer JB, Goel A, Hamsten A, PROCARDIS, Fox CS, Florez JC, Dupuis J, Meigs JB. Variants at the endocannabinoid receptor CB1 gene (CNR1) and insulin sensitivity, type 2 diabetes, and coronary heart disease. Obesity (Silver Spring) 2011; 19:2031-7. [PMID: 21633404 PMCID: PMC3686489 DOI: 10.1038/oby.2011.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inhibition of the endocannabinoid receptor CB1 improves insulin sensitivity, lowers glycemia, and slows atherosclerosis. We analyzed whether common variants in the gene encoding CB1, CNR1, are associated with insulin resistance, risk of type 2 diabetes (T2D) or coronary heart disease (CHD). We studied 2,411 participants of the Framingham Offspring Study (mean age 60 years, 52% women) for quantitative traits and CHD, and the Framingham SHARe database for T2D risk. We genotyped 19 single-nucleotide polymorphisms (SNPs) that tagged 85% (at r(2) = 0.8) of common (>5%) CNR1 SNPs. Fasting blood glucose and insulin at the 7th (1999-2001) exam were collected. We used age-, sex-, BMI-adjusted models to test additive associations of genotype with homeostasis model assessment of insulin resistance (HOMA(IR)) (linear mixed-effect models), T2D, or CHD. To account for multiple tests of SNPs, we generated empirical P values. The C allele at SNP rs806365 (frequency, 57.4%), ~4.1 kb 3' from CNR1, was associated with increased HOMA(IR) (n = 2,261, β = 0.05 per C, empirical P = 0.01), risk of T2D (674 cases, odds ratio = 1.19 per C, nominal P = 0.01) and CHD (237 cases, hazard ratio = 1.23 per C, nominal P = 0.04). The association of rs806365 with HOMA(IR) was replicated in a meta-analysis of two independent cohorts (National Health and Nutrition Examination Survey III genetic cohort (NHANES-III) plus Partners Case-Control Diabetes Study; 2,540 white individuals, β = 0.037, nominal P = 0.007), but not in the large Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Consortium (n = 29,248, nominal P = 0.74). The association of rs806365 was not replicated either with T2D in Diabetes Genetics Replication and Meta-analysis (DIAGRAM) (n = 10,128, nominal P = 0.31), or with CHD in PROCARDIS (n = 13,614, nominal P = 0.37). Although supported by initial results, we found no reproducible statistical association of common variation at CNR1 with insulin resistance, T2D, or CHD.
Collapse
|
27
|
Kuritzky L, Samraj GP. Enhanced glycemic control with combination therapy for type 2 diabetes in primary care. Diabetes Ther 2011; 2:162-77. [PMID: 22127825 PMCID: PMC3173597 DOI: 10.1007/s13300-011-0006-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes mellitus is an increasingly common medical problem for primary care clinicians to address. Treatment of diabetes has evolved from simple replacement of insulin (directly or through insulin secretagogs) through capture of mechanisms such as insulin sensitizers, alpha-glucosidase inhibitors, and incretins. Only very recently has recognition of the critical role of the gastrointestinal system as a major culprit in glucose dysregulation been established. Since glycated hemoglobin A(1c) reductions provide meaningful risk reduction as well as improved quality of life, it is worthwhile to explore evolving paths for more efficient use of the currently available pharmacotherapies. Because diabetes is a progressive disease, even transiently successful treatment will likely require augmentation as the disorder progresses. Pharmacotherapies with complementary mechanisms of action will be necessary to achieve glycemic goals. Hence, clinicians need to be well informed about the various noninsulin alternatives that have been shown to be successful in glycemic goal attainment. This article reviews the benefits of glucose control, the current status of diabetes control, pertinent pathophysiology, available pharmacological classes for combination, limitations of current therapies, and suggestions for appropriate combination therapies, including specific suggestions for thresholds at which different strategies might be most effectively utilized by primary care clinicians.
Collapse
Affiliation(s)
- Louis Kuritzky
- Department of Community Health and Family Medicine, University of Florida College of Medicine, Gainesville, Florida, FL, 32605, USA,
| | | |
Collapse
|
28
|
Sahakyan K, Lee KE, Shankar A, Klein R. Serum cystatin C and the incidence of type 2 diabetes mellitus. Diabetologia 2011; 54:1335-40. [PMID: 21380596 PMCID: PMC3290654 DOI: 10.1007/s00125-011-2096-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/25/2011] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS To examine the association of serum cystatin C with the incidence of type 2 diabetes mellitus over a 15 year follow-up period. METHODS The 15 year cumulative incidence of diabetes was measured in a cohort of Beaver Dam Eye Study participants (n = 3,472, 1988-2003). A person was defined as developing diabetes (a positive history of diabetes mellitus treated with insulin, oral hypoglycaemic agents and/or diet, or elevations in glycosylated haemoglobin levels) in the absence of diabetes at baseline. The relation of cystatin C and other risk factors to incident type 2 diabetes was determined using discrete time extension of the proportional hazards model. RESULTS The 15 year cumulative incidence of diabetes was estimated to be 9.6%. After controlling for age, sex, body mass index, smoking status, glycosylated haemoglobin, proteinuria, chronic kidney disease status and hypertension status, serum cystatin C at baseline was associated with the 15 year cumulative incidence of type 2 diabetes (OR per log of cystatin C unit 2.19, 95% CI 1.02-4.68). CONCLUSIONS/INTERPRETATION These findings show a positive relationship of serum cystatin C levels with the incidence of type 2 diabetes mellitus independently of confounding risk factors. The findings strongly suggest the need for further evaluation of the potential importance of cystatin C in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- K Sahakyan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 610 N Walnut Street, 4th Floor WARF, Madison, WI 53726, USA.
| | | | | | | |
Collapse
|
29
|
Vascular pathology and blood-brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovasc Psychiatry Neurol 2011; 2011:609202. [PMID: 21350721 PMCID: PMC3042607 DOI: 10.1155/2011/609202] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/28/2010] [Indexed: 01/13/2023] Open
Abstract
Vascular pathology is recognized as a principle insult in type 2 diabetes mellitus (T2DM). Co-morbidities such as structural brain abnormalities, cognitive, learning and memory deficits are also prevailing in T2DM patients. We previously suggested that microvascular pathologies involving blood-brain barrier (BBB) breakdown results in leakage of serum-derived components into the brain parenchyma, leading to neuronal dysfunction manifested as psychiatric illnesses. The current postulate focuses on the molecular mechanisms controlling BBB permeability in T2DM, as key contributors to the pathogenesis of mental disorders in patients. Revealing the mechanisms underlying BBB dysfunction and inflammatory response in T2DM and their role in metabolic disturbances, abnormal neurovascular coupling and neuronal plasticity, would contribute to the understanding of the mechanisms underlying psychopathologies in diabetic patients. Establishing this link would offer new targets for future therapeutic interventions.
Collapse
|
30
|
Different actions of losartan and ramipril on adipose tissue activity and vascular remodeling biomarkers in hypertensive patients. Hypertens Res 2010; 34:145-51. [DOI: 10.1038/hr.2010.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Shu XO, Long J, Cai Q, Qi L, Xiang YB, Cho YS, Tai ES, Li X, Lin X, Chow WH, Go MJ, Seielstad M, Bao W, Li H, Cornelis MC, Yu K, Wen W, Shi J, Han BG, Sim XL, Liu L, Qi Q, Kim HL, Ng DPK, Lee JY, Kim YJ, Li C, Gao YT, Zheng W, Hu FB. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 2010; 6:e1001127. [PMID: 20862305 PMCID: PMC2940731 DOI: 10.1371/journal.pgen.1001127] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 08/17/2010] [Indexed: 12/19/2022] Open
Abstract
Although more than 20 genetic susceptibility loci have been reported for type 2 diabetes (T2D), most reported variants have small to moderate effects and account for only a small proportion of the heritability of T2D, suggesting that the majority of inter-person genetic variation in this disease remains to be determined. We conducted a multistage, genome-wide association study (GWAS) within the Asian Consortium of Diabetes to search for T2D susceptibility markers. From 590,887 SNPs genotyped in 1,019 T2D cases and 1,710 controls selected from Chinese women in Shanghai, we selected the top 2,100 SNPs that were not in linkage disequilibrium (r2<0.2) with known T2D loci for in silico replication in three T2D GWAS conducted among European Americans, Koreans, and Singapore Chinese. The 5 most promising SNPs were genotyped in an independent set of 1,645 cases and 1,649 controls from Shanghai, and 4 of them were further genotyped in 1,487 cases and 3,316 controls from 2 additional Chinese studies. Consistent associations across all studies were found for rs1359790 (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) with P-values (per allele OR, 95%CI) of 6.49×10−9 (1.15, 1.10–1.20), 1.45×10−8 (1.13, 1.08–1.18), and 7.14×10−7 (1.13, 1.08–1.19), respectively, in combined analyses of 9,794 cases and 14,615 controls. Our study provides strong evidence for a novel T2D susceptibility locus at 13q31.1 and the presence of new independent risk variants near regions (10p13 and 15q22.2) reported by previous GWAS. Type 2 diabetes, a complex disease affecting more than a billion people worldwide, is believed to be caused by both environmental and genetic factors. Although some studies have shown that certain genes may make some people more susceptible to type 2 diabetes than others, the genes reported to date have only a small effect and account for a small proportion of type 2 diabetes cases. Furthermore, few of these studies have been conducted in Asian populations, although Asians are known to be more susceptible to insulin resistance than people living in Western countries, and incidence of type 2 diabetes has been increasing alarmingly in Asian countries. We conducted a multi-stage study involving 9,794 type 2 diabetes cases and 14,615 controls, predominantly Asians, to discover genes related to susceptibility to type 2 diabetes. We identified 3 genetic regions that are related to increased risk of type 2 diabetes.
Collapse
Affiliation(s)
- Xiao Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
While communicable diseases such as human immunodeficiency virus/acquired immune deficiency syndrome, malaria, and tuberculosis have continued to pose greater threats to the public health system in sub-Saharan Africa (SSA), it is now apparent that non-communicable diseases such as diabetes mellitus are undoubtedly adding to the multiple burdens the peoples in this region suffer. Type 2 diabetes mellitus (T2DM) is the most common form of diabetes (90-95%), exhibiting an alarming prevalence among peoples of this region. Its main risk factors include obesity, rapid urbanization, physical inactivity, ageing, nutrition transitions, and socioeconomic changes. Patients in sub-Saharan Africa also show manifestations of beta-cell dysfunction and insulin resistance. However, because of strained economic resources and a poor health care system, most of the patients are diagnosed only after they have overt symptoms and complications. Microvascular complications are the most prevalent, but metabolic disorders and acute infections cause significant mortality. The high cost of treatment of T2DM and its comorbidities, the increasing prevalence of its risk factors, and the gaps in health care system necessitate that solutions be planned and implemented urgently. Aggressive actions and positive responses from well-informed governments appear to be needed for the conducive interplay of all forces required to curb the threat of T2DM in sub-Saharan Africa. Despite the varied ethnic and transitional factors and the limited population data on T2DM in sub-Saharan Africa, this review provides an extensive discussion of the literature on the epidemiology, risk factors, pathogenesis, complications, treatment, and care challenges of T2DM in this region.
Collapse
Affiliation(s)
- Vivian C Tuei
- Department of Molecular Biosciences, Bioengineering University of Hawaii, Honolulu, USA
| | | | | |
Collapse
|