1
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Sabatelli P, Merlini L, Di Martino A, Cenni V, Faldini C. Early Morphological Changes of the Rectus Femoris Muscle and Deep Fascia in Ullrich Congenital Muscular Dystrophy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031252. [PMID: 35162283 PMCID: PMC8834967 DOI: 10.3390/ijerph19031252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Ullrich congenital muscular dystrophy (UCMD) is a severe form of muscular dystrophy caused by the loss of function of collagen VI, a critical component of the muscle-tendon matrix. Magnetic resonance imaging of UCMD patients’ muscles shows a peculiar rim of abnormal signal at the periphery of each muscle, and a relative sparing of the internal part. The mechanism/s involved in the early fat substitution of muscle fiber at the periphery of muscles remain elusive. We studied a muscle biopsy of the rectus femoris/deep fascia (DF) of a 3-year-old UCMD patient, with a homozygous mutation in the COL6A2 gene. By immunohistochemical and ultrastructural analysis, we found a marked fatty infiltration at the interface of the muscle with the epimysium/DF and an atrophic phenotype, primarily in fast-twitch fibers, which has never been reported before. An unexpected finding was the widespread increase of interstitial cells with long cytoplasmic processes, consistent with the telocyte phenotype. Our study documents for the first time in a muscle biopsy the peculiar pattern of outside-in muscle degeneration followed by fat substitution as already shown by muscle imaging, and an increase of telocytes in the interstitium of the deep fascia, which highlights a potential involvement of this structure in the pathogenesis of UCMD.
Collapse
Affiliation(s)
- Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366755; Fax: +39-051-4689922
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Vittoria Cenni
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Guadagnin E, Mohassel P, Johnson KR, Yang L, Santi M, Uapinyoying P, Dastgir J, Hu Y, Dillmann A, Cookson MR, Foley AR, Bönnemann CG. Transcriptome analysis of collagen VI-related muscular dystrophy muscle biopsies. Ann Clin Transl Neurol 2021; 8:2184-2198. [PMID: 34729958 PMCID: PMC8607456 DOI: 10.1002/acn3.51450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To define the transcriptomic changes responsible for the histologic alterations in skeletal muscle and their progression in collagen VI‐related muscular dystrophy (COL6‐RD). Methods COL6‐RD patient muscle biopsies were stratified into three groups based on the overall level of pathologic severity considering degrees of fibrosis, muscle fiber atrophy, and fatty replacement of muscle tissue. Using microarray and RNA‐Seq, we then performed global gene expression profiling on the same muscle biopsies and compared their transcriptome with age‐ and sex‐matched controls. Results COL6‐RD muscle biopsy transcriptomes as a group revealed prominent upregulation of muscle extracellular matrix component genes and the downregulation of skeletal muscle and mitochondrion‐specific genes. Upregulation of the TGFβ pathway was the most conspicuous change across all biopsies and was fully evident even in the mildest/earliest histological group. There was no difference in the overall transcriptional signature between the different histologic groups but polyserial analysis identified relative changes along with COL6‐RD histological severity. Interpretation Overall, our study establishes the prominent dysregulation of extracellular matrix genes, TGFβ signaling, and its downstream cellular pathways at the transcriptomic level in COL6‐RD muscle.
Collapse
Affiliation(s)
- Eleonora Guadagnin
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, BG 10 RM 5S223, Bethesda, Maryland, 20892, USA
| | - Lin Yang
- Division of Biomedical Informatics, Department of Biomedical Engineering, University of Florida, 1064 Center Drive, NEB 364, Gainsville, Florida, 32611, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, 324 South 34th Street, Philadelphia, Pennsylvania, 19104, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Atlantic Health System, Goryeb Children's Hospital, Morristown, New Jersey, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Allissa Dillmann
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| |
Collapse
|
4
|
Liu C, Li L, Ge M, Gu L, Wang M, Zhang K, Su Y, Zhang Y, Liu C, Lan M, Yu Y, Wang T, Li Q, Zhao Y, Yu Z, Li N, Meng Q. Overexpression of miR-29 Leads to Myopathy that Resemble Pathology of Ullrich Congenital Muscular Dystrophy. Cells 2019; 8:cells8050459. [PMID: 31096686 PMCID: PMC6562860 DOI: 10.3390/cells8050459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD) bring heavy burden to patients’ families and society. Because the incidence of this disease is very low, studies in patients are extremely limited. Animal models of this disease are indispensable. UCMD belongs to extracellular matrix-related diseases. However, the disease models constructed by knocking out some pathogenic genes of human, such as the Col6a1, Col6a2, or Col6a3 gene, of mice could not mimic UCMD. The purpose of this study is to construct a mouse model which can resemble the pathology of UCMD. miR-29 is closely related to extracellular matrix deposition of tissues and organs. To address this issue, we developed a mouse model for overexpression miR-29 using Tet-on system. In the muscle-specific miR-29ab1 cluster transgenic mice model, we found that mice exhibited dyskinesia, dyspnea, and spinal anomaly. The skeletal muscle was damaged and regenerated. At the same time, we clarify the molecular mechanism of the role of miR-29 in this process. Different from human, Col4a1 and Col4a2, target genes of miR-29, are the key pathogenic genes associating with these phenotypes. This mouse model simulates the human clinical and pathological characteristics of UCMD patients and is helpful for the subsequent research and treatment of UCMD.
Collapse
Affiliation(s)
- Chuncheng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Lei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Mengxu Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lijie Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Kuo Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yang Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yuying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Miaomiao Lan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yingying Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Tongtong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qiuyan Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yaofeng Zhao
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Ning Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Cescon M, Gregorio I, Eiber N, Borgia D, Fusto A, Sabatelli P, Scorzeto M, Megighian A, Pegoraro E, Hashemolhosseini S, Bonaldo P. Collagen VI is required for the structural and functional integrity of the neuromuscular junction. Acta Neuropathol 2018; 136:483-499. [PMID: 29752552 DOI: 10.1007/s00401-018-1860-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
The synaptic cleft of the neuromuscular junction (NMJ) consists of a highly specialized extracellular matrix (ECM) involved in synapse maturation, in the juxtaposition of pre- to post-synaptic areas, and in ensuring proper synaptic transmission. Key components of synaptic ECM, such as collagen IV, perlecan and biglycan, are binding partners of one of the most abundant ECM protein of skeletal muscle, collagen VI (ColVI), previously never linked to NMJ. Here, we demonstrate that ColVI is itself a component of this specialized ECM and that it is required for the structural and functional integrity of NMJs. In vivo, ColVI deficiency causes fragmentation of acetylcholine receptor (AChR) clusters, with abnormal expression of NMJ-enriched proteins and re-expression of fetal AChRγ subunit, both in Col6a1 null mice and in patients affected by Ullrich congenital muscular dystrophy (UCMD), the most severe form of ColVI-related myopathies. Ex vivo muscle preparations from ColVI null mice revealed altered neuromuscular transmission, with electrophysiological defects and decreased safety factor (i.e., the excess current generated in response to a nerve impulse over that required to reach the action potential threshold). Moreover, in vitro studies in differentiated C2C12 myotubes showed the ability of ColVI to induce AChR clustering and synaptic gene expression. These findings reveal a novel role for ColVI at the NMJ and point to the involvement of NMJ defects in the etiopathology of ColVI-related myopathies.
Collapse
|
6
|
Mohassel P, Foley AR, Bönnemann CG. Extracellular matrix-driven congenital muscular dystrophies. Matrix Biol 2018; 71-72:188-204. [PMID: 29933045 DOI: 10.1016/j.matbio.2018.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Skeletal muscle function relies on the myofibrillar apparatus inside myofibers as well as an intact extracellular matrix surrounding each myofiber. Muscle extracellular matrix (ECM) plays several roles including but not limited to force transmission, regulation of growth factors and inflammatory responses, and influencing muscle stem cell (i.e. satellite cell) proliferation and differentiation. In most myopathies, muscle ECM undergoes remodeling and fibrotic changes that may be maladaptive for normal muscle function and recovery. In addition, mutations in skeletal muscle ECM and basement proteins can cause muscle disease. In this review, we summarize the clinical features of two of the most common congenital muscular dystrophies, COL6-related dystrophies and LAMA2-related dystrophies, which are caused by mutations in muscle ECM and basement membrane proteins. The study of clinical features of these diseases has helped to inform basic research and understanding of the biology of muscle ECM. In return, basic studies of muscle ECM have provided the conceptual framework to develop therapeutic interventions for these and other similar disorders of muscle.
Collapse
Affiliation(s)
- Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America.
| |
Collapse
|
7
|
Rodríguez MA, Del Rio Barquero LM, Ortez CI, Jou C, Vigo M, Medina J, Febrer A, Ramon-Krauel M, Diaz-Manera J, Olive M, González-Mera L, Nascimento A, Jimenez-Mallebrera C. Differences in Adipose Tissue and Lean Mass Distribution in Patients with Collagen VI Related Myopathies Are Associated with Disease Severity and Physical Ability. Front Aging Neurosci 2017; 9:268. [PMID: 28848425 PMCID: PMC5550692 DOI: 10.3389/fnagi.2017.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in human collagen VI genes cause a spectrum of musculoskeletal conditions in children and adults collectively termed collagen VI-related myopathies (COL6-RM) characterized by a varying degree of muscle weakness and joint contractures and which include Ullrich Congenital Muscular Dystrophy (UCMD) and Bethlem Myopathy (BM). Given that collagen VI is one of the most abundant extracellular matrix proteins in adipose tissue and its emerging role in energy metabolism we hypothesized that collagen VI deficiency might be associated with alterations in adipose tissue distribution and adipokines serum profile. We analyzed body composition by means of dual-energy X-ray absorptiometry in 30 pediatric and adult COL6-RM myopathy patients representing a range of severities (UCMD, intermediate-COL6-RM, and BM). We found a distinctive pattern of regional adipose tissue accumulation which was more evident in children at the most severe end of the spectrum. In particular, the accumulation of fat in the android region was a distinguishing feature of UCMD patients. In parallel, there was a decrease in lean mass compatible with a state of sarcopenia, particularly in ambulant children with an intermediate phenotype. All children and adult patients that were sarcopenic were also obese. These changes were significantly more pronounced in children with collagen VI deficiency than in children with Duchenne Muscular Dystrophy of the same ambulatory status. High molecular weight adiponectin and leptin were significantly increased in sera from children in the intermediate and BM group. Correlation analysis showed that the parameters of fat mass were negatively associated with motor function according to several validated outcome measures. In contrast, lean mass parameters correlated positively with physical performance and quality of life. Leptin and adiponectin circulating levels correlated positively with fat mass parameters and negatively with lean mass and thus may be relevant to the disease pathogenesis and as circulating markers. Taken together our results indicate that COL6-RM are characterized by specific changes in total fat mass and distribution which associate with disease severity, motor function, and quality of life and which are clinically meaningful and thus should be taken into consideration in the management of these patients.
Collapse
Affiliation(s)
- M A Rodríguez
- Neuromuscular Unit, Department of Neuropaediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de DéuBarcelona, Spain
| | - Luís M Del Rio Barquero
- Department of Medical Imaging, Hospital Sant Joan de DéuBarcelona, Spain.,CETIR Centre MèdicBarcelona, Spain
| | - Carlos I Ortez
- Neuromuscular Unit, Department of Neuropaediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de DéuBarcelona, Spain
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de DeuBarcelona, Spain.,Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos IIIMadrid, Spain
| | - Meritxell Vigo
- Department of Rehabilitation and Physical Medicine, Hospital Sant Joan de DeuBarcelona, Spain
| | - Julita Medina
- Department of Rehabilitation and Physical Medicine, Hospital Sant Joan de DeuBarcelona, Spain
| | - Anna Febrer
- Department of Rehabilitation and Physical Medicine, Hospital Sant Joan de DeuBarcelona, Spain
| | - Marta Ramon-Krauel
- Department of Endocrinology, Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de DeuBarcelona, Spain
| | - Jorge Diaz-Manera
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Montse Olive
- Department of Pathology and Neuromuscular Unit, Bellvitge Biomedical Research Institute-Hospital de Bellvitge, Hospitalet de LlobregatBarcelona, Spain
| | - Laura González-Mera
- Department of Pathology and Neuromuscular Unit, Bellvitge Biomedical Research Institute-Hospital de Bellvitge, Hospitalet de LlobregatBarcelona, Spain.,Department of Neurology, Hospital de ViladecansBarcelona, Spain
| | - Andres Nascimento
- Neuromuscular Unit, Department of Neuropaediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de DéuBarcelona, Spain.,Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos IIIMadrid, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Department of Neuropaediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de DéuBarcelona, Spain.,Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
8
|
O'Grady GL, Lek M, Lamande SR, Waddell L, Oates EC, Punetha J, Ghaoui R, Sandaradura SA, Best H, Kaur S, Davis M, Laing NG, Muntoni F, Hoffman E, MacArthur DG, Clarke NF, Cooper S, North K. Diagnosis and etiology of congenital muscular dystrophy: We are halfway there. Ann Neurol 2016; 80:101-11. [PMID: 27159402 DOI: 10.1002/ana.24687] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To evaluate the diagnostic outcomes in a large cohort of congenital muscular dystrophy (CMD) patients using traditional and next generation sequencing (NGS) technologies. METHODS A total of 123 CMD patients were investigated using the traditional approaches of histology, immunohistochemical analysis of muscle biopsy, and candidate gene sequencing. Undiagnosed patients available for further testing were investigated using NGS. RESULTS Muscle biopsy and immunohistochemical analysis found deficiencies of laminin α2, α-dystroglycan, or collagen VI in 50% of patients. Candidate gene sequencing and chromosomal microarray established a genetic diagnosis in 32% (39 of 123). Of 85 patients presenting in the past 20 years, 28 of 51 who lacked a confirmed genetic diagnosis (55%) consented to NGS studies, leading to confirmed diagnoses in a further 11 patients. Using the combination of approaches, a confirmed genetic diagnosis was achieved in 51% (43 of 85). The diagnoses within the cohort were heterogeneous. Forty-five of 59 probands with confirmed or probable diagnoses had variants in genes known to cause CMD (76%), and 11 of 59 (19%) had variants in genes associated with congenital myopathies, reflecting overlapping features of these conditions. One patient had a congenital myasthenic syndrome, and 2 had microdeletions. Within the cohort, 5 patients had variants in novel (PIGY and GMPPB) or recently published genes (GFPT1 and MICU1), and 7 had variants in TTN or RYR1, large genes that are technically difficult to Sanger sequence. INTERPRETATION These data support NGS as a first-line tool for genetic evaluation of patients with a clinical phenotype suggestive of CMD, with muscle biopsy reserved as a second-tier investigation. Ann Neurol 2016;80:101-111.
Collapse
Affiliation(s)
- Gina L O'Grady
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Monkol Lek
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Shireen R Lamande
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Leigh Waddell
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Emily C Oates
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Jaya Punetha
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| | - Roula Ghaoui
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah A Sandaradura
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Heather Best
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Simranpreet Kaur
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia.,Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia.,Neurogenetic Unit, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Eric Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Sandra Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Kathryn North
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Scotton C, Bovolenta M, Schwartz E, Falzarano MS, Martoni E, Passarelli C, Armaroli A, Osman H, Rodolico C, Messina S, Pegoraro E, D'Amico A, Bertini E, Gualandi F, Neri M, Selvatici R, Boffi P, Maioli MA, Lochmüller H, Straub V, Bushby K, Castrignanò T, Pesole G, Sabatelli P, Merlini L, Braghetta P, Bonaldo P, Bernardi P, Foley R, Cirak S, Zaharieva I, Muntoni F, Capitanio D, Gelfi C, Kotelnikova E, Yuryev A, Lebowitz M, Zhang X, Hodge BA, Esser KA, Ferlini A. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci 2016; 129:1671-84. [PMID: 26945058 PMCID: PMC4852766 DOI: 10.1242/jcs.175927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.
Collapse
Affiliation(s)
- Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Matteo Bovolenta
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Elena Schwartz
- Ariadne Diagnostics, LLC, 9430 Key West Avenue, Suite 115, Rockville, MD 20850, USA
| | - Maria Sofia Falzarano
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Elena Martoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Chiara Passarelli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Annarita Armaroli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Hana Osman
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Carmelo Rodolico
- Department of Neuroscience, University of Messina and Centro Clinico Nemo Sud, Messina 98125, Italy
| | - Sonia Messina
- Department of Neuroscience, University of Messina and Centro Clinico Nemo Sud, Messina 98125, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova 35128, Italy
| | - Adele D'Amico
- Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Enrico Bertini
- Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Patrizia Boffi
- Department of Neurology, Regina Margherita Children's Hospital Turin, Torino 10126, Italy
| | - Maria Antonietta Maioli
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari 09124, Italy
| | - Hanns Lochmüller
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Volker Straub
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Katherine Bushby
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Tiziana Castrignanò
- SCAI SuperComputing Applications and Innovation Department, Cineca, 00185 Rome, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70121, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, CNR-National Research Council of Italy, Bologna 40129, Italy
| | - Luciano Merlini
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna 40136, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova 35128, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35128, Italy
| | - Paolo Bernardi
- Department of Biomedical Science, University of Padova, Padova 35128, Italy
| | - Reghan Foley
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Daniele Capitanio
- University of Milan, Department of Biomedical Science for Health, Milan 20090, Italy
| | - Cecilia Gelfi
- University of Milan, Department of Biomedical Science for Health, Milan 20090, Italy
| | | | - Anton Yuryev
- Ariadne Genomics, LLC, 9430 Key West Avenue, Suite 113, Rockville, MD 20850, USA
| | - Michael Lebowitz
- Ariadne Diagnostics, LLC, 9430 Key West Avenue, Suite 115, Rockville, MD 20850, USA
| | - Xiping Zhang
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Brian A Hodge
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| |
Collapse
|
10
|
Donkervoort S, Bonnemann C, Loeys B, Jungbluth H, Voermans N. The neuromuscular differential diagnosis of joint hypermobility. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169C:23-42. [DOI: 10.1002/ajmg.c.31433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Yonekawa T, Nishino I. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatry 2015; 86:280-7. [PMID: 24938411 DOI: 10.1136/jnnp-2013-307052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Collagen VI is widely distributed throughout extracellular matrices (ECMs) in various tissues. In skeletal muscle, collagen VI is particularly concentrated in and adjacent to basement membranes of myofibers. Ullrich congenital muscular dystrophy (UCMD) is caused by mutations in either COL6A1, COL6A2 or COL6A3 gene, thereby leading to collagen VI deficiency in the ECM. It is known to occur through either recessive or dominant genetic mechanism, the latter most typically by de novo mutations. UCMD is well defined by the clinicopathological hallmarks including distal hyperlaxity, proximal joint contractures, protruding calcanei, scoliosis and respiratory insufficiency. Recent reports have depicted the robust natural history of UCMD; that is, loss of ambulation by early teenage years, rapid decline in respiratory function by 10 years of age and early-onset, rapidly progressive scoliosis. Muscle pathology is characterised by prominent interstitial fibrosis disproportionate to the relative paucity of necrotic and regenerating fibres. To date, treatment for patients is supportive for symptoms such as joint contractures, respiratory failure and scoliosis. There have been clinical trials based on the theory of mitochondrion-mediated myofiber apoptosis or impaired autophagy. Furthermore, the fact that collagen VI producing cells in skeletal muscle are interstitial mesenchymal cells can support proof of concept for stem cell-based therapy.
Collapse
Affiliation(s)
- Takahiro Yonekawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan Department of Child Neurology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan Department of Clinical Development, Translational Medical Center, NCNP
| |
Collapse
|
12
|
Ruggiero L, Fiorillo C, Tessa A, Manganelli F, Iodice R, Dubbioso R, Vitale F, Storti E, Soscia E, Santorelli F, Santoro L. Muscle fiber type disproportion (FTD) in a family with mutations in the LMNA gene. Muscle Nerve 2015; 51:604-8. [PMID: 25256213 DOI: 10.1002/mus.24467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Mutations in the lamin A/C protein cause laminopathies, a heterogeneous group of disorders that include recessive axonal neuropathy (CMT2B1), Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy (LGMD), dilated cardiomyopathy with conduction defect, and different forms of lipodystrophy and progeria. METHODS We provide clinical, histopathological, muscle imaging, and cardiac features of a family with heterozygous mutation in the LMNA gene. RESULTS We identified heterozygous mutations (c.80C> T; pT27I) in the LMNA gene in 3 family members who had the LGMD phenotype with onset in their early thirties and cardiac conduction defects or dilated cardiomyopathy. Interestingly, muscle biopsies showed changes consistent with fiber type disproportion (FTD). CONCLUSIONS Fiber type disproportion has been reported only anecdotally in muscle biopsies of patients with LMNA mutations. Our report further supports this association and suggests inclusion of molecular testing for LMNA in the differential diagnosis of myopathies with FTD due to the risk for life threatening events.
Collapse
Affiliation(s)
- Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Guellich A, Negroni E, Decostre V, Demoule A, Coirault C. Altered cross-bridge properties in skeletal muscle dystrophies. Front Physiol 2014; 5:393. [PMID: 25352808 PMCID: PMC4196474 DOI: 10.3389/fphys.2014.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies (MDs) have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal MDs and discuss their ultimate impacts on striated muscle function.
Collapse
Affiliation(s)
- Aziz Guellich
- Service de Cardiologie, Hôpital Henri Mondor, University Paris-Est Créteil Créteil, France ; Equipe 8, Institut National de la Santé et de la Recherche Médicale Créteil, France
| | - Elisa Negroni
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France
| | | | - Alexandre Demoule
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France ; Assistance Publique-Hopitaux de Paris, Service de Pneumologie et Reanimation Medicale Paris, France
| | - Catherine Coirault
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France
| |
Collapse
|
14
|
The collagenopathies: review of clinical phenotypes and molecular correlations. Curr Rheumatol Rep 2014; 16:394. [PMID: 24338780 DOI: 10.1007/s11926-013-0394-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of collagen formation (the collagenopathies) affect almost every organ system and tissue in the body. They can be grouped by clinical phenotype, which usually correlates with the tissue distribution of the affected collagen subtype. Many of these conditions present in childhood; however, milder phenotypes presenting in adulthood are increasingly recognized. Many are difficult to differentiate clinically. Precise diagnosis by means of genetic testing assists in providing prognosis information, family counseling, and individualized treatment. This review provides an overview of the current range of clinical presentations associated with collagen defects, and the molecular mechanisms important to understanding how the results of genetic testing affect medical care.
Collapse
|
15
|
Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24:289-311. [PMID: 24581957 PMCID: PMC5258110 DOI: 10.1016/j.nmd.2013.12.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 12/14/2022]
Abstract
Congenital muscular dystrophies (CMDs) are early onset disorders of muscle with histological features suggesting a dystrophic process. The congenital muscular dystrophies as a group encompass great clinical and genetic heterogeneity so that achieving an accurate genetic diagnosis has become increasingly challenging, even in the age of next generation sequencing. In this document we review the diagnostic features, differential diagnostic considerations and available diagnostic tools for the various CMD subtypes and provide a systematic guide to the use of these resources for achieving an accurate molecular diagnosis. An International Committee on the Standard of Care for Congenital Muscular Dystrophies composed of experts on various aspects relevant to the CMDs performed a review of the available literature as well as of the unpublished expertise represented by the members of the committee and their contacts. This process was refined by two rounds of online surveys and followed by a three-day meeting at which the conclusions were presented and further refined. The combined consensus summarized in this document allows the physician to recognize the presence of a CMD in a child with weakness based on history, clinical examination, muscle biopsy results, and imaging. It will be helpful in suspecting a specific CMD subtype in order to prioritize testing to arrive at a final genetic diagnosis.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - Ching H Wang
- Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Susana Quijano-Roy
- Hôpital Raymond Poincaré, Garches, and UFR des sciences de la santé Simone Veil (UVSQ), France
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola, Brussels and Ghent University Hospital, Ghent, Belgium
| | | | - Ana Ferreiro
- UMR787 INSERM/UPMC and Reference Center for Neuromuscular Disorders, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christophe Béroud
- INSERM U827, Laboratoire de Génétique Moleculaire, Montpellier, France
| | | | | | - Jonathan Bellini
- Stanford University School of Medicine, Stanford, CA, United States
| | | | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Zou Y, Zwolanek D, Izu Y, Gandhy S, Schreiber G, Brockmann K, Devoto M, Tian Z, Hu Y, Veit G, Meier M, Stetefeld J, Hicks D, Straub V, Voermans NC, Birk DE, Barton ER, Koch M, Bönnemann CG. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum Mol Genet 2013; 23:2339-52. [PMID: 24334604 DOI: 10.1093/hmg/ddt627] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.
Collapse
Affiliation(s)
- Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pan TC, Zhang RZ, Markova D, Arita M, Zhang Y, Bogdanovich S, Khurana TS, Bönnemann CG, Birk DE, Chu ML. COL6A3 protein deficiency in mice leads to muscle and tendon defects similar to human collagen VI congenital muscular dystrophy. J Biol Chem 2013; 288:14320-14331. [PMID: 23564457 DOI: 10.1074/jbc.m112.433078] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Collagen VI is a ubiquitously expressed extracellular microfibrillar protein. Its most common molecular form is composed of the α1(VI), α2(VI), and α3(VI) collagen α chains encoded by the COL6A1, COL6A2, and COL6A3 genes, respectively. Mutations in any of the three collagen VI genes cause congenital muscular dystrophy types Bethlem and Ullrich as well as intermediate phenotypes characterized by muscle weakness and connective tissue abnormalities. The α3(VI) collagen α chain has much larger N- and C-globular domains than the other two chains. Its most C-terminal domain can be cleaved off after assembly into microfibrils, and the cleavage product has been implicated in tumor angiogenesis and progression. Here we characterize a Col6a3 mutant mouse that expresses a very low level of a non-functional α3(VI) collagen chain. The mutant mice are deficient in extracellular collagen VI microfibrils and exhibit myopathic features, including decreased muscle mass and contractile force. Ultrastructurally abnormal collagen fibrils were observed in tendon, but not cornea, of the mutant mice, indicating a distinct tissue-specific effect of collagen VI on collagen I fibrillogenesis. Overall, the mice lacking normal α3(VI) collagen chains displayed mild musculoskeletal phenotypes similar to mice deficient in the α1(VI) collagen α chain, suggesting that the cleavage product of the α3(VI) collagen does not elicit essential functions in normal growth and development. The Col6a3 mouse mutant lacking functional α3(VI) collagen chains thus serves as an animal model for COL6A3-related muscular dystrophy.
Collapse
Affiliation(s)
- Te-Cheng Pan
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rui-Zhu Zhang
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Dessislava Markova
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Machiko Arita
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yejia Zhang
- Departments of Orthopedic Surgery and Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, Illinois 60612
| | - Sasha Bogdanovich
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Carsten G Bönnemann
- Neurogenetics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20824
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
18
|
Muscle fiber atrophy and regeneration coexist in collagen VI-deficient human muscle: role of calpain-3 and nuclear factor-κB signaling. J Neuropathol Exp Neurol 2012; 71:894-906. [PMID: 22975586 DOI: 10.1097/nen.0b013e31826c6f7b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD) is a common form of muscular dystrophy associated with defects in collagen VI. It is characterized by loss of individual muscle fibers and muscle mass and proliferation of connective and adipose tissues. We sought to investigate the mechanisms by which collagen VI regulates muscle cell survival, size, and regeneration and, in particular, the potential role of the ubiquitin-proteasome and calpain-proteolytic systems. We studied muscle biopsies of UCMD (n = 6), other myopathy (n = 12), and control patients (n = 10) and found reduced expression of atrogin-1, MURF1, and calpain-3 mRNAs in UCMD cases. Downregulation of calpain-3 was associated with changes in the nuclear immunolocalization of nuclear factor-κB. We also observed increased expression versus controls of regeneration markers at the protein and RNA levels. Satellite cell numbers did not differ in collagen VI-deficient muscle versus normal nonregenerating muscle, indicating that collagen VI does not play a key role in the maintenance of the satellite cell pool. Our results indicate that alterations in calpain-3 and nuclear factor-κB signaling pathways may contribute to muscle mass loss in UCMD muscle, whereas atrogin-1 and MURF1 are not likely to play a major role.
Collapse
|
19
|
Clement EM, Feng L, Mein R, Sewry CA, Robb SA, Manzur AY, Mercuri E, Godfrey C, Cullup T, Abbs S, Muntoni F. Relative frequency of congenital muscular dystrophy subtypes: analysis of the UK diagnostic service 2001-2008. Neuromuscul Disord 2012; 22:522-7. [PMID: 22480491 DOI: 10.1016/j.nmd.2012.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/26/2012] [Indexed: 11/17/2022]
Abstract
The Dubowitz Neuromuscular Centre is the UK National Commissioning Group referral centre for congenital muscular dystrophy (CMD). This retrospective review reports the diagnostic outcome of 214 UK patients referred to the centre for assessment of 'possible CMD' between 2001 and 2008 with a view to commenting on the variety of disorders seen and the relative frequency of CMD subtypes in this patient population. A genetic diagnosis was reached in 53 of 116 patients fulfilling a strict criteria for the diagnosis of CMD. Within this group the most common diagnoses were collagen VI related disorders (19%), dystroglycanopathy (12%) and merosin deficient congenital muscular dystrophy (10%). Among the patients referred as 'possible CMD' that did not meet our inclusion criteria, congenital myopathies and congenital myasthenic syndromes were the most common diagnoses. In this large study on CMD the diagnostic outcomes compared favourably with other CMD population studies, indicating the importance of an integrated clinical and pathological assessment of this group of patients.
Collapse
Affiliation(s)
- E M Clement
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Congenital fiber-type disproportion is a form of congenital myopathy that may be best viewed as a syndrome rather than as a formal diagnosis. The central histologic abnormality is that type 1 fibers are consistently smaller than type 2 fibers by at least 35%-40%. Care is needed in diagnosing patients, as this histologic abnormality can occur in other congenital myopathies and in other neuromuscular disorders. Many of the genetic causes have been identified. Careful surveillance of respiratory function is required in all patients until the specific genetic cause is known and advice can be individualized.
Collapse
Affiliation(s)
- Nigel F Clarke
- Institute of Neuroscience and Muscle Research, Children's Hospital at Westmead, Discipline of Paediatrics & Child Health, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
21
|
Abstract
The collagen VI-related myopathy known as Ullrich congenital muscular dystrophy is an early-onset disease that combines substantial muscle weakness with striking joint laxity and progressive contractures. Patients might learn to walk in early childhood; however, this ability is subsequently lost, concomitant with the development of frequent nocturnal respiratory failure. Patients with intermediate phenotypes of collagen VI-related myopathy display a lesser degree of weakness and a longer period of ambulation than do individuals with Ullrich congenital muscular dystrophy, and the spectrum of disease finally encompasses mild Bethlem myopathy, in which ambulation persists into adulthood. Dominant and recessive autosomal mutations in the three major collagen VI genes-COL6A1, COL6A2, and COL6A3-can underlie this entire clinical spectrum, and result in deficient or dysfunctional microfibrillar collagen VI in the extracellular matrix of muscle and other connective tissues, such as skin and tendons. The potential effects on muscle include progressive dystrophic changes, fibrosis and evidence for increased apoptosis, which potentially open avenues for pharmacological intervention. Optimized respiratory management, including noninvasive nocturnal ventilation together with careful orthopedic management, are the current mainstays of treatment and have already led to a considerable improvement in life expectancy for children with Ullrich congenital muscular dystrophy.
Collapse
|
22
|
Bönnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:81-96. [PMID: 21496625 DOI: 10.1016/b978-0-08-045031-5.00005-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutations in the genes COL6A1, COL6A2, and COL6A3, coding for three α chains of collagen type VI, underlie a spectrum of myopathies, ranging from the severe congenital muscular dystrophy-type Ullrich (UCMD) to the milder Bethlem myopathy (BM), with disease manifestations of intermediate severity in between. UCMD is characterized by early-onset weakness, associated with pronounced distal joint hyperlaxity and the early onset or early progression of more proximal contractures. In the most severe cases ambulation is not achieved, or it may be achieved only for a limited period of time. BM may be of early or later onset, but is milder in its manifestations, typically allowing for ambulation well into adulthood, whereas typical joint contractures are frequently prominent. A genetic spectrum is emerging, with BM being caused mostly by dominantly acting mutations, although rarely recessive inheritance of BM is also possible, whereas both dominantly as well as recessively acting mutations underlie UCMD.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD 20892-3705, USA.
| |
Collapse
|
23
|
Rodríguez J, Malanda A, Gila L, Rodríguez I, Navallas J. Identification Procedure in a model of single fibre action potential – Part I: Estimation of fibre diameter and radial distance. J Electromyogr Kinesiol 2010; 20:264-73. [DOI: 10.1016/j.jelekin.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022] Open
|
24
|
Reed UC. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:144-168. [PMID: 19330236 DOI: 10.1590/s0004-282x2009000100038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/17/2008] [Indexed: 12/30/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. We initially present the main clinical and diagnostic data concerning the CMDs related to changes in the complex dystrophin-associated glycoproteins-extracellular matrix: CMD with merosin deficiency (CMD1A), collagen VI related CMDs (Ullrich CMD and Bethlem myopathy), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker-Warburg syndrome, CMD1C, CMD1D), and the much rarer CMD with integrin deficiency. Finally, we present other forms of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex (rigid spine syndrome, CMD1B, CMD with lamin A/C deficiency), and some apparently specific clinical forms not yet associated with a known molecular mechanism. The second part of this review concerning the pathogenesis and therapeutic perspectives of the different subtypes of CMD will be described in a next number.
Collapse
Affiliation(s)
- Umbertina Conti Reed
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Voermans NC, Bonnemann CG, Hamel BCJ, Jungbluth H, van Engelen BG. Joint hypermobility as a distinctive feature in the differential diagnosis of myopathies. J Neurol 2009; 256:13-27. [PMID: 19221853 DOI: 10.1007/s00415-009-0105-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/08/2008] [Indexed: 02/07/2023]
Abstract
Congenital and adult-onset inherited myopathies represent a wide spectrum of syndromes. Classification is based upon clinical features and biochemical and genetic defects. Joint hypermobility is one of the distinctive clinical features that has often been underrecognized so far. We therefore present an overview of myopathies associated with joint hypermobility: Ullrich congenital muscular dystrophy, Bethlem myopathy, congenital muscular dystrophy with joint hyperlaxity, multi-minicore disease, central core disease, and limb girdle muscular dystrophy 2E with joint hyperlaxity and contractures. We shortly discuss a second group of disorders characterised by both muscular features and joint hypermobility: the inherited disorders of connective tissue Ehlers-Danlos syndrome and Marfan syndrome. Furthermore, we will briefly discuss the extent and pattern of joint hypermobility in these myopathies and connective tissue disorders and propose two grading scales commonly used to score the severity of joint hypermobility. We will conclude focusing on the various molecules involved in these disorders and on their role and interactions in muscle and tendon, with a view to further elucidate the pathophysiology of combined hypermobility and myopathy. Hopefully, this review will contribute to enhanced recognition of joint hypermobility and thus be of aid in differential diagnosis.
Collapse
Affiliation(s)
- N C Voermans
- Neuromuscular Centre Nijmegen, Dept. of Neurology, 935, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|