1
|
Yuan Y, Li Z, Wu L, Cheng X, Deng C, Yu Y, Wang Q, Wang P. Smearable CQD-entrapped hydrogel with sensitive pH response and photodynamic antibacterial properties for visual intelligent wound monitoring. Biomaterials 2025; 322:123360. [PMID: 40286574 DOI: 10.1016/j.biomaterials.2025.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of chronic wounds remains a significant challenge in the clinical field, and optimizing the treatment plan through visual monitoring of wound healing is an effective way to solve such problem. Herein, we propose a feasible strategy to construct a smearable C-P-T/mCQDs hydrogel for real-time monitoring of wound infection and healing status, through the synergistic combination of modified carbon quantum dots (mCQD), cellulose nanofiber, tannic acid, and polyvinyl alcohol. The hydrogel can be readily applied on the skin and rapidly forms a gel dressing through high-density hydrogen bonding, demonstrating exceptional mechanical robustness (tensile elongation: 600 %) and autonomous self-healing capabilities. In particular, the carboxyl-rich mCQDs are more easily recognized by the sensitive pH-mediated polychromatic fluorescence response under ultraviolet excitation, exhibiting encouraging photodynamic therapy effect against bacterial infections. Under the irradiation of sunlight or near-infrared laser, the hydrogel achieves 99.99 % bactericidal efficacy against multiple types of bacteria (S. aureus, E. coli, P. aeruginosa, A. baumannii) within 20 min through reactive oxygen species generation. Furthermore, C-P-T/mCQDs demonstrates excellent antioxidant activity, biocompatibility, hemostatic efficiency and pro-healing properties. Notably, the mCQD-integrated hydrogel enables real-time, visual monitoring of wound status through its pH-responsive properties, providing substantial translational potential for personalized chronic wound management.
Collapse
Affiliation(s)
- Yun Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zirong Li
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Leilei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xinyi Cheng
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Chao Deng
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
2
|
Park SY, Tan JKS, Mo X, Song Y, Lim J, Liew XR, Chung H, Kim S. Carbon Quantum Dots with Tunable Size and Fluorescence Intensity for Development of a Nano-biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404524. [PMID: 39901664 PMCID: PMC11962697 DOI: 10.1002/smll.202404524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/13/2024] [Indexed: 02/05/2025]
Abstract
Carbon quantum dots (CQDs) are a class of nanomaterials known for their remarkable photostability, chemical inertness and biocompatibility. Changing their size, structure, and surface chemistry enable the tuning of their luminescence property, which gives them tremendous potential for various applications. CQDs synthesis typically involves long tedious processes, requiring multiple steps and harsh reaction conditions. Here, a new reliable, economical, and ultra-rapid one-step fabrication method is introduced to obtain CQDs with well-defined and reproducible photoluminescence properties via a simple heat treatment. These solid-state CQDs are homogenous in size and are ready to use without the need for further purification. The size of the fabricated CQDs and their corresponding peak fluorescence intensity are confirmed to be tunable by simple adjustment of the heat treatment conditions. Coupled with their selective fluorescence quenching by metal ions, the clinical potential of CQDs is demonstrated for biosensing applications by designing a new nano-biosensor to assess the quality of stored blood units through hemolysis quantification without disrupting storage conditions. This may pave the way for a new standard in blood bank inventory management.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Justin Kok Soon Tan
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
| | - Xuancheng Mo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Yujin Song
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Jiaqi Lim
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Xuan Ru Liew
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Hyunsoo Chung
- Department of Internal Medicine and Department of Medical Device DevelopmentSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Sangho Kim
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore119077Singapore
| |
Collapse
|
3
|
Cai D, Zhong X, Xu L, Xiong Y, Deng W, Zou G, Hou H, Ji X. Biomass-derived carbon dots: synthesis, modification and application in batteries. Chem Sci 2025; 16:4937-4970. [PMID: 40046072 PMCID: PMC11877355 DOI: 10.1039/d4sc08659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/23/2025] [Indexed: 03/16/2025] Open
Abstract
Biomass-derived carbon dots (BCDs) have attracted considerable attention for their promising attributes, including low toxicity, excellent solubility, biocompatibility, and eco-friendliness. Their rich surface chemistry and impressive photoluminescent properties have sparked widespread research interest, particularly in areas such as sensing and biomedicine. However, the potential applications of BCDs in the energy sector, especially in electrochemical energy storage batteries, have received scant review focus. This article systematically consolidates the selection of carbon sources, synthesis methods, modification strategies, and the corresponding characterization techniques for BCDs. Application strategies in energy storage batteries are explored, with the underlying connection between the role of BCDs in batteries and their structural properties being analyzed, providing comprehensive insights from synthesis and characterization to application. Furthermore, a preliminary discussion is initiated on the current limitations in material regulation and design within research, and potential avenues for enhancement are proposed.
Collapse
Affiliation(s)
- Dongyang Cai
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xue Zhong
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Laiqiang Xu
- Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology Changsha 410114 China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
4
|
Nunes PJ, Pereira RFP, Nunes SC, Correia SFH, Fu L, Ferreira RAS, Fernandes M, Bermudez VDZ. POE-Mediated Tunable Quantum Yield of Carbon Dots-Derived From Agapanthus Africanus (L.) Hoffmann Leaves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404717. [PMID: 39359048 DOI: 10.1002/smll.202404717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
The green synthesis of carbon dots (CDs) from natural sources is a challenging goal. Herein CDs are produced from Agapanthus africanus (L.) Hoffmann leaves by carbonization at 200/300 °C for 2/3 h. Samples are named CZ-X-Y, where Z, X, and Y represent carbonization, temperature, and time, respectively. CZ-200-3, CZ-300-2, and CZ-300-3 CDs have average sizes of 3.7 ± 0.7, 5.3 ± 1.2, and 5.1 ± 1.6 nm, respectively. Their surface, devoid of chlorophyll, contains ─OH, ─C═O, and ─C(═O)OH groups and sylvite. Isolated CZ-300-3 emits at 400 nm (excited at 260 nm) and exhibits an emission quantum yield (QY) value of 2 ± 1%. Embedding in the d-U(600)/d-(900) di-ureasil matrices resulted in transparent films with emission intensity maxima at 420/450 nm (360 nm), and QY values of 7 ± 1/16 ± 2% (400 nm). The enhancement of the QY value of the bare CDs agrees with an efficient passivation provided by the hybrid host. The hydrophilic CZ-300-3 CDs also exerted a marked surface modifying role, changing the surface roughness and the wettability of the hybrid films.
Collapse
Affiliation(s)
- Paulo J Nunes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Rui F P Pereira
- Centre of Chemistry, University of Minho, Braga, 4710-057, Portugal
| | - S C Nunes
- Chemistry Department and FibEnTech - Fiber Materials and Environmental Technologies, University of Beira Interior, Covilhã, 6201-001, Portugal
| | - Sandra F H Correia
- Instituto de Telecomunicações and University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Lianshe Fu
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Rute A S Ferreira
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana Fernandes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
- Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
- Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| |
Collapse
|
5
|
Yuan Y, Wu L, Yan B, Yu Y, Wang Q, Wang P. Fabrication and Efficient Interfacial Assembly of Bright Red-Emitting Carbon Quantum Dots for Security-Warning Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405101. [PMID: 39051511 DOI: 10.1002/smll.202405101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Carbon quantum dots (CQDs) have attracted more attentions due to their multiple performances. However, the fabrication of long-wavelength emitting CQDs with aliphatic precursors still remains a challenge, mainly because it is difficult to generate large sp2 domains to reduce energy gap, which is not conducive to a redshift of the luminescence peak. Hereon, by regulating the pH of citric acid and thiourea mixture, a N, S co-doped CQD emitting bright red fluorescence at 635 nm is successfully fabricated through the solvothermal reaction under acidic condition, achieving a high quantum yield of 32.66%. Solvatochromic effects of the CQDs are discussed through theoretical equations and models, which confirm that the hydrogen-bonding interaction dominates the fluorescence emission behavior of CQDs in polar solvents. Besides, a feasible strategy is proposed to prepare an anti-counterfeiting textile via the deposition of red-emitting CQDs onto cotton fibers, through rapidly evaporating the preferred organic solvent. As expected, the CQD-decorated textiles exhibit encouraging anti-counterfeiting and security-warning functions, along with underwater and long-distance detectability, washability, and sun resistance. It is worth noting that the present work is innovative in realizing the application of red-light-emitting CQDs in the fields of security-warning textiles.
Collapse
Affiliation(s)
- Yun Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Leilei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
6
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
7
|
Deo SS, Naser SS, Sinha A, Mohapatra SK, Parmar AS, Kujawska M, Verma SK, Tripathy J. Biophysical translational posterity of green carbon quantum dots: the unparalleled versatility. Nanomedicine (Lond) 2024; 19:2747-2776. [PMID: 39311508 DOI: 10.1080/17435889.2024.2402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 12/12/2024] Open
Abstract
Carbon dots (CQDs), zero-dimensional carbon nanostructures, have attracted considerable interest among researchers due to their versatile applications. CQDs exhibit exceptional photoluminescent properties and high quantum yield, making them ideal candidates for bioimaging, drug delivery and environmental sensing. Their biocompatibility and tunable surface chemistry enable targeted therapeutic delivery and real-time imaging with minimal toxicity. Additionally, CQDs are emerging as promising materials in optoelectronics, offering sustainable alternatives in light-emitting diodes and solar cells. This review underscores the unparalleled adaptability of green CQDs in bridging the gap between laboratory research and practical applications, paving the way for innovative solutions in healthcare and environmental monitoring. Through comprehensive analysis, it advances the understanding of CQDs, positioning them at the forefront of next-generation nanomaterials with significant translational impact.
Collapse
Affiliation(s)
- Simran Singh Deo
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, India
| | | | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Swagat K Mohapatra
- Department of Industrial & Engineering Chemistry, ICT-IOCB, Bhubaneswar, Odisha, 751013, India
| | | | | | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
- Department of Toxicology, Poznan University of Medical Sciences, Poland
| | | |
Collapse
|
8
|
Usman M, Cheng S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. ENG 2024; 5:2223-2263. [DOI: 10.3390/eng5030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The push for sustainability in nanomaterials has catalyzed significant advancements in the green synthesis of carbon dots (CDs) from renewable resources. This review uniquely explores recent innovations, including the integration of hybrid techniques, such as micro-wave-assisted and ultrasonic-assisted hydrothermal methods, as well as photocatalytic synthesis. These combined approaches represent a breakthrough, offering rapid production, precise control over CD properties, and enhanced environmental sustainability. In addition, the review emphasizes the growing use of green solvents and bio-based reducing agents, which further reduce the environmental footprint of CD production. This work also addresses key challenges, such as consistently controlling CD properties—size, shape, and surface characteristics—across different synthesis processes. Advanced characterization techniques and process optimizations are highlighted as essential strategies to overcome these hurdles. Furthermore, this review pioneers the integration of circular economy principles into CD production, proposing novel strategies for sustainable material use and waste reduction. By exploring innovative precursor materials, refining doping and surface engineering techniques, and advocating for comprehensive life cycle assessments, this work sets a new direction for future research. The insights provided here represent a significant contribution to the field, paving the way for more sustainable, efficient, and scalable CD production with diverse applications in optoelectronics, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Ren J, Opoku H, Tang S, Edman L, Wang J. Carbon Dots: A Review with Focus on Sustainability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405472. [PMID: 39023174 PMCID: PMC11425242 DOI: 10.1002/advs.202405472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Carbon dots (CDs) are an emerging class of nanomaterials with attractive optical properties, which promise to enable a variety of applications. An important and timely question is whether CDs can become a functional and sustainable alternative to incumbent optical nanomaterials, notably inorganic quantum dots. Herein, the current CD literature is comprehensively reviewed as regards to their synthesis and function, with a focus on sustainability aspects. The study quantifies why it is attractive that CDs can be synthesized with biomass as the sole starting material and be free from toxic and precious metals and critical raw materials. It further describes and analyzes employed pretreatment, chemical-conversion, purification, and processing procedures, and highlights current issues with the usage of solvents, the energy and material efficiency, and the safety and waste management. It is specially shown that many reported synthesis and processing methods are concerningly wasteful with the utilization of non-sustainable solvents and energy. It is finally recommended that future studies should explicitly consider and discuss the environmental influence of the selected starting material, solvents, and generated byproducts, and that quantitative information on the required amounts of solvents, consumables, and energy should be provided to enable an evaluation of the presented methods in an upscaled sustainability context.
Collapse
Affiliation(s)
- Junkai Ren
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Henry Opoku
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Jia Wang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| |
Collapse
|
10
|
Kumar P, Mahalakshmi M, Anitha S, Durgadevi S, Govarthanan M. Luminous blue carbon quantum dots employing Anisomeles indica (catmint) induce apoptotic signaling pathway in triple negative breast cancer (TNBC) cells. LUMINESCENCE 2024; 39:e4848. [PMID: 39092486 DOI: 10.1002/bio.4848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Herein, luminous blue carbon quantum dots (CDs) employing Anisomeles indica (Catmint) were reported with imaging, self-targeting, and therapeutic effects on triple-negative breast cancer (TNBC, MDA-MB-231) cells. The salient features of CDs generated from catmint are as follows: i) optical studies confirm CDs with excitation-dependent emission; ii) high-throughput characterization authenticates the formation of CDs with near-spherical shape with diameter ranging between 5 and 15 nm; iii) CDs induce cytotoxicity (3.22 ± 0.64 μg/ml) in triple-negative breast cancer (TNBC, MDA-MB-231) cells; iv) fluorescence microscopy demonstrates that CDs promote apoptosis by increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential; v) CDs significantly up-regulate pro-apoptotic gene expression levels such as caspases-8/9/3. Finally, our work demonstrates that catmint-derived CDs are prospective nanotheranostics that augment cancer targeting and imaging.
Collapse
Affiliation(s)
- Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Marimuthu Mahalakshmi
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Selvaraj Anitha
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sabapathi Durgadevi
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
11
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
12
|
Chopra A, Kumari Y, Singh AP, Sharma Y. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging. LUMINESCENCE 2024; 39:e4870. [PMID: 39155541 DOI: 10.1002/bio.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the beginning of nanoscience and nanotechnology, carbon dots (CDs) have been the foundational idea and have dominated the growth of the nano-field. CDs are an intriguing platform for utilization in biology, technology, catalysis, and other fields thanks to their numerous distinctive structural, physicochemical, and photochemical characteristics. Since several carbon dots have already been created, they have been assessed based on their synthesis process, and luminescence characteristics. Due to their biocompatibility, less toxic effects, and most significantly their fluorescent features in contrast to other carbon nanostructures, CDs have several benefits. This review focuses on the most recent advancements in the characterization, applications, and synthesis techniques used for CDs made from natural sources. It will also direct scientists in the creation of a synthesis technique for adjustable carbon dots that is more practical, effective, and environmentally benign. With low toxicity and low cost, CDs are meeting the new era's requirements for more selectivity and sensitivity in the detection and sensing of various things, such as biomaterial sensing, enzymes, chemical contamination, and temperature sensing. Its variety of properties, such as optical properties, chemiluminescence, and morphological analysis, make it a good option to use in bioimaging, drug delivery, biosensors, and cancer diagnosis.
Collapse
Affiliation(s)
- Arshdeep Chopra
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yogindra Kumari
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yash Sharma
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| |
Collapse
|
13
|
Piasek A, Pulit-Prociak J, Zielina M, Banach M. Fluorescence of D-Glucose-Derived Carbon Dots: Effect of Process Parameters. J Fluoresc 2024; 34:1693-1705. [PMID: 37594585 PMCID: PMC11249403 DOI: 10.1007/s10895-023-03392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
The aim of this study was to synthesize highly fluorescent carbon dots (CDs) from glucose using a microwave hydrothermal method. It explored the impact of glucose concentration, process time, molar ratio of KH2PO4 to glucose, and homogenization time on the resulting CDs, employing a fractional plan 3(k-1) with four independent parameters for twenty-seven synthesis. Results showed that longer process times at 200°C increased the fluorescence intensity of the CDs. The molar ratio of KH2PO4 to glucose, glucose concentration, and process time significantly influenced fluorescence. Homogenization was crucial for obtaining small particles, though an anti-aggregation agent might still be needed. UV-vis spectroscopy, spectrofluorimetry, and DLS were used to analyze the synthesized CDs. The UV-vis absorption maxima were observed around 230 nm and 282 nm, with peak shifts at different excitation wavelengths. Out of the twenty-seven samples, six CDs samples were identified to be below 10 nm and a total of twelve below 50 nm. Analyzing the results, the study concluded that the CDs possess strong fluorescence and are suitable for diverse applications. For enhanced fluorescence, longer process times at 200°C and the use of KH2PO4 were recommended, while shorter processes were preferred for obtaining smaller particles. Hierarchical clustering, the k-means method, Pareto charts, and profiles for predicted values and desirability were used to analyze the results. It was confirmed that higher fluorescence is favored by longer process time at 200°C and the use of KH2PO4. In order to obtain smaller particles, shorter processes should be used.
Collapse
Affiliation(s)
- Anna Piasek
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland.
| | - Jolanta Pulit-Prociak
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland
| | - Michał Zielina
- Faculty of Environmental Engineering and Energy, Department of Water Supply, Sewerage and Environmental Monitoring, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland
| |
Collapse
|
14
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
15
|
Szczepankowska J, Woszczak L, Khachatryan G, Khachatryan K, Krystyjan M, Grzesiakowska-Dul A, Kuchta-Gładysz M, Wojciechowska-Puchałka J, Hovhannisyan A, Krzan M. Preparation, Physicochemical, and Cyto- and Genotoxic Characterisation of Polysaccharide Composites Containing Carbon Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2967. [PMID: 38930336 PMCID: PMC11205529 DOI: 10.3390/ma17122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Rapid industrial growth is associated with an increase in the production of environmentally harmful waste. A potential solution to significantly reduce pollution is to replace current synthetic materials with readily biodegradable plastics. Moreover, to meet the demands of technological advancements, it is essential to develop materials with unprecedented properties to enhance their functionality. Polysaccharide composites demonstrate significant potential in this regard. Polysaccharides possess exceptional film-forming abilities and are safe for human use, biodegradable, widely available, and easily modifiable. Unfortunately, polysaccharide-based films fall short of meeting all expectations. To address this issue, the current study focused on incorporating carbon quantum dots (CQDs), which are approximately 10 nm in size, into the structure of a starch/chitosan biocomposite at varying concentrations. This modification has improved the mechanical properties of the resulting nanocomposites. The inclusion of nanoparticles led to a slight reduction in solubility and an increase in the swelling degree. The optical characteristics of the obtained films were influenced by the presence of CQDs, and the fluorescence intensity of the nanocomposites changed due to the specific heavy metal ions and amino acids used. Consequently, these nanocomposites show great potential for detecting these compounds. Cellular viability assessments and comet assays confirm that the resulting nanocomposites do not exhibit any cytotoxic properties based on this specific analytic method. The tested nanocomposites with the addition of carbon quantum dots (NC/CD II and NC/CD III) were characterised by greater genotoxicity compared to the negative control. The positive control, the starch/chitosan composite alone, was also characterised by a greater induction of chromatin damage in mouse cells compared to a pure mouse blood sample.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Liliana Woszczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Anna Grzesiakowska-Dul
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/24, 30-059 Krakow, Poland; (A.G.-D.); (M.K.-G.); (J.W.-P.)
| | - Marta Kuchta-Gładysz
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/24, 30-059 Krakow, Poland; (A.G.-D.); (M.K.-G.); (J.W.-P.)
| | - Joanna Wojciechowska-Puchałka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/24, 30-059 Krakow, Poland; (A.G.-D.); (M.K.-G.); (J.W.-P.)
| | - Armen Hovhannisyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Street 8, 30-239 Krakow, Poland
| |
Collapse
|
16
|
Ayisha Naziba T, Praveen Kumar D, Karthikeyan S, Sriramajayam S, Djanaguiraman M, Sundaram S, Ghamari M, Prasada Rao R, Ramakrishna S, Ramesh D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. CHEM REC 2024; 24:e202400030. [PMID: 38837295 DOI: 10.1002/tcr.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Indexed: 06/07/2024]
Abstract
Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- T Ayisha Naziba
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - D Praveen Kumar
- Bannari Amman Institute of Technology, Sathya Mangalam, 638 401, Tamil Nadu, India
| | - S Karthikeyan
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - S Sriramajayam
- Department of Agricultural Engineering, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, 628 252., Tamil Nadu, India
| | - M Djanaguiraman
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Mehrdad Ghamari
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - R Prasada Rao
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - D Ramesh
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
17
|
Jia Z, Zhang J, Ji Z, Yang X, Shi C, Sun X, Guo Y. Preparation of waterborne anti-counterfeiting ink based on dual luminescent nanohybrids of bacterial cellulose nanocrystals and lanthanide‑nitrogen co-modified GQDs. Int J Biol Macromol 2024; 271:132341. [PMID: 38821792 DOI: 10.1016/j.ijbiomac.2024.132341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
To address the growing challenge of counterfeit prevention, this study developed a novel anti-counterfeiting ink system based on bacterial cellulose nanocrystals (BCNC) and lanthanide (Er, Yb)‑nitrogen (N) co-dropped graphene quantum dots (GQDs), which exhibited both photoluminescence (PL) and upconversion photoluminescence (UCPL) fluorescent properties as well as excellent rheological characteristics. The Er/Yb/N-GQDs with positive charges were synthesized by a one-step hydrothermal method and subsequently assembled with negatively charged BCNC through electrostatic self-assembly to fabricate a novel nanohybrid, Er/Yb/N-GQDs-BCNC. Raman spectroscopy results indicated an enhancement in the graphitization of GQDs due to lanthanide modification. The TEM results demonstrated a homogeneous distribution of Er/Yb/N-GQDs on BCNC, while XRD, FTIR, and XPS analyses confirmed their physical binding, thus validating the successful synthesis of novel nanohybrids. Then, Er/Yb/N-GQDs-BCNC was introduced into PVA waterborne ink and exhibited dual anti-counterfeiting properties by emitting blue fluorescence at Em 440 nm under Ex 370 nm and green fluorescence at Em 550 nm under Ex 980 nm. Furthermore, the incorporation of BCNC significantly enhanced the thixotropic behavior and yield stress of the PVA waterborne ink. This enhancement made the dual anti-counterfeiting fluorescent ink more suitable for diversified applications on different devices and various substrates, thus providing a novel approach for convenient and rapid information encryption and high security anti-counterfeiting.
Collapse
Affiliation(s)
- Zhixin Jia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | | | - Zengtao Ji
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China
| |
Collapse
|
18
|
Chen W, Yin H, Cole I, Houshyar S, Wang L. Carbon Dots Derived from Non-Biomass Waste: Methods, Applications, and Future Perspectives. Molecules 2024; 29:2441. [PMID: 38893317 PMCID: PMC11174087 DOI: 10.3390/molecules29112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| | - Hong Yin
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Ivan Cole
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Shadi Houshyar
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Lijing Wang
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| |
Collapse
|
19
|
Jose J, Mohanraj R, G K S, K P G, Jacob JM. Turn-Off Fluorescence Sensor for the Detection of Ferric Ion in Water Using Green Synthesized Wrightia coccinea Carbon Quantum Dot. J Fluoresc 2024:10.1007/s10895-024-03760-3. [PMID: 38767724 DOI: 10.1007/s10895-024-03760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
The current study report that the production of carbon quantum dots from Wrightia coccinea (WC) leaves using an eco-friendly, one-pot process. The structural, morphological, and optical characteristics of the CDs made from W. coccinea leaves by hydrothermal treatment at 200 °C for six hours were assessed using a variety of spectroscopic and electron microscopy techniques. The average size of CD was found to be approximately 5 nm using transmission electron microscopy (TEM) and the quantum yield of the produced CD was 15.6%. The synthesized CDs demonstrated extraordinary sensing capacity with a detection limit of 0.511 µM for ferric ion detection. The impact of varying pH levels on the fluorescence behavior of CD was thoroughly investigated. The maximum fluorescence intensity was examined at pH 3. Therefore, to detect Fe3+ ions as best as possible, the pH of the entire solution was adjusted to a value of 3. Furthermore, the pH-dependent fluorescence feature of CDs can be exploited by pH-sensitive fluorescence sensors. In the future, this might provide an added advantage for pH-based fluorescence sensor applications.
Collapse
Affiliation(s)
- Jincy Jose
- Department of Environmental Science and Management, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Rangaswamy Mohanraj
- Department of Environmental Science and Management, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Shamnamol G K
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering, Pattoor, APJ Abdulkalam Technological University, Thiruvananthapuram, Kerala, 690 529, India
| | - Greeshma K P
- Department of Chemistry, Sri Ramakrishna College of Arts and Science, Coimbatore, 641006, Tamilnadu, India
| | - Jaya Mary Jacob
- Scientist-B, Kerala State Council for Science Technology and Environment (KSCSTE), Pattom, 695004, Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
Liu Y, Chen L, Su X, Wang L, Jiao Y, Zhou P, Li B, Duan R, Zhu G. Constructing an eco-friendly and ratiometric fluorescent sensor for highly efficient detection of mercury ion in environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4318-4329. [PMID: 38100024 DOI: 10.1007/s11356-023-31167-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
Mercury ion (Hg2+) is a highly toxic and ubiquitous pollutant, whose effective detection has aroused widespread concern. A novel ratiometric fluorescent sensor has been designed to rapidly and efficiently detect Hg2+ based on blue/red carbon dots (CDs) with environmental friendliness. This sensor was well characterized via TEM, FTIR, XPS, UV-vis, and zeta potential analysis and displayed excellent fluorescence properties and stability. The fluorescence of blue CDs at 447 nm was significantly quenched with the addition of Hg2+ resulted from the static quenching, whereas that of red CDs at 650 nm remained invariable. A sensitive method for Hg2+ determination was constructed in the range of 0.05-7.0 nmol mL-1 with optimal conditions, and the detection limit was down to 0.028 nmol mL-1. Meanwhile, compared to other 17 metal ions, the ratiometric fluorescent sensor exhibited high selectivity for Hg2+. Furthermore, satisfied recoveries had also been obtained for measuring trace Hg2+ in practical environmental samples. This developed ratiometric fluorescent sensor provided a reliable, environmental-friendly, rapid, and efficient platform for the detection of Hg2+ in environmental applications.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Letian Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Li Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Ya Jiao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Bin Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Ruijuan Duan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
21
|
Dubey P. An overview on animal/human biomass-derived carbon dots for optical sensing and bioimaging applications. RSC Adv 2023; 13:35088-35126. [PMID: 38046631 PMCID: PMC10690874 DOI: 10.1039/d3ra06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Over the past decade, carbon dots (CDs) have emerged as some of the extremely popular carbon nanostructures for diverse applications. The advantages of sustainable CDs, characterized by their exceptional photoluminescence (PL), high water solubility/dispersibility, non-toxicity, and biocompatibility, substantiate their potential for a wide range of applications in sensing and biology. Moreover, nature offers plant- and animal-derived precursors for the sustainable synthesis of CDs and their doped variants. These sources are not only readily accessible, inexpensive, and renewable but are also environmentally benign green biomass. This review article presents in detail the production of sustainable CDs from various animal and human biomass through bottom-up synthetic methods, including hydrothermal, microwave, microwave-hydrothermal, and pyrolysis methods. The resulting CDs exhibit a uniform size distribution, possibility of heteroatom doping, surface passivation, and remarkable excitation wavelength-dependent/independent emission and up-conversion PL characteristics. Consequently, these CDs have been successfully utilized in multiple applications, such as bioimaging and the detection of various analytes, including heavy metal ions. Finally, a comprehensive assessment is presented, highlighting the prospects and challenges associated with animal/human biomass-derived CDs for multifaceted applications.
Collapse
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
22
|
Abu N, Chinnathambi S, Kumar M, Etezadi F, Bakhori NM, Zubir ZA, Md Salleh SN, Shueb RH, Karthikeyan S, Thangavel V, Abdullah J, Pandian GN. Development of biomass waste-based carbon quantum dots and their potential application as non-toxic bioimaging agents. RSC Adv 2023; 13:28230-28249. [PMID: 37753403 PMCID: PMC10518661 DOI: 10.1039/d3ra05840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Over recent years, carbon quantum dots (CQDs) have advanced significantly and gained substantial attention for their numerous benefits. These benefits include their simple preparation, cost-effectiveness, small size, biocompatibility, bright luminescence, and low cytotoxicity. As a result, they hold great potential for various fields, including bioimaging. A fascinating aspect of synthesizing CQDs is that it can be accomplished by using biomass waste as the precursor. Furthermore, the synthesis approach allows for control over the physicochemical characteristics. This paper unequivocally examines the production of CQDs from biomass waste and their indispensable application in bioimaging. The synthesis process involves a simple one-pot hydrothermal method that utilizes biomass waste as a carbon source, eliminating the need for expensive and toxic reagents. The resulting CQDs exhibit tunable fluorescence and excellent biocompatibility, making them suitable for bioimaging applications. The successful application of biomass-derived CQDs has been demonstrated through biological evaluation studies in various cell lines, including HeLa, Cardiomyocyte, and iPS, as well as in medaka fish eggs and larvae. Using biomass waste as a precursor for CQDs synthesis provides an environmentally friendly and sustainable alternative to traditional methods. The resulting CQDs have potential applications in various fields, including bioimaging.
Collapse
Affiliation(s)
- Norhidayah Abu
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150 Kelantan Malaysia
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Mahima Kumar
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Fatemeh Etezadi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Noremylia Mohd Bakhori
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Zuhana Ahmad Zubir
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Shahrul Nizam Md Salleh
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150 Kelantan Malaysia
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology Chennai 600 127 India
| | - Vaijayanthi Thangavel
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Serdang 43400 Selangor Malaysia
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| |
Collapse
|
23
|
Di Matteo P, Trani A, Bortolami M, Feroci M, Petrucci R, Curulli A. Electrochemical Sensing Platform Based on Carbon Dots for the Simultaneous Determination of Theophylline and Caffeine in Tea. SENSORS (BASEL, SWITZERLAND) 2023; 23:7731. [PMID: 37765788 PMCID: PMC10535149 DOI: 10.3390/s23187731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
A simple and selective method for the determination of caffeine (CAF) and theophylline (THEO) has been developed for a glassy carbon electrode (GCE) modified with a composite including carbon dots (CDs) and chitosan (CS). To our knowledge, there are no previous studies that analyze a CDs-modified GCE for the presence of CAF and THEO. The electrochemical behavior of a GCE modified with a CDs-CS composite was studied in acidic medium by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Considering the sensor analytical parameters, the same linear concentrations range was found for CAF and THEO ranging from 1 × 10-5 to 5 × 10-3 mol L-1 with the same detection limit (LOD) of 1 × 10-6 mol L-1. The reproducibility and repeatability data were satisfactory in terms of RSD%. Moreover, the storage stability was evaluated, evidencing good results whatever the experimental conditions used. The developed sensor was applied for the simultaneous determination of CAF and THEO in tea and drug, and results were compared with those obtained with HPLC-ESI-MS in SIR mode as an independent method optimized on purpose. The electrochemical sensor presents the undoubled advantages in terms of cheapness, portability, and ease of use, since it does not require skilled personnel.
Collapse
Affiliation(s)
- Paola Di Matteo
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, Italy; (P.D.M.); (M.B.); (M.F.)
| | - Alessandro Trani
- Consiglio Nazionale Delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Supporto, Sapienza, 00161 Rome, Italy;
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, Italy; (P.D.M.); (M.B.); (M.F.)
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, Italy; (P.D.M.); (M.B.); (M.F.)
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, Italy; (P.D.M.); (M.B.); (M.F.)
| | - Antonella Curulli
- Consiglio Nazionale Delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Supporto, Sapienza, 00161 Rome, Italy;
| |
Collapse
|
24
|
Ma X, Gao M, Zhang X, Wang Y, Li G. Polymer-Derived Carbon Nanofiber and Its Photocurrent-Switching Responses of Carbon Nanofiber/Cu Nanocomposite in Wide Ranges of Excited Light Wavelength. Polymers (Basel) 2023; 15:3528. [PMID: 37688154 PMCID: PMC10489919 DOI: 10.3390/polym15173528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Transformation into electric or photoelectric functional composite from non-conjugated polymers is a great challenge due to the presence of a large number of locative states. In this paper, carbon nanofiber was synthesized via hydrothermal carbonization utilizing carboxymethyl cellulose as a precursor, and the carbon nanofiber/Cu nanocomposite was constructed for defect passivation. The results indicated that the resulting nanocomposites exhibited good absorbance in visible light range and NIR (near-infrared). The photoconductive responses to typical weak visible light (650 nm et al.) and NIR (808, 980, and 1064 nm) were studied based on Au gap electrodes on flexible polymer substrates. The results exhibited that the nanocomposite's solid thick film showed photocurrent-switching behaviors to visible light and NIR, the switch-ratio was depending on the wavelengths and power of incident lights. The positive and negative photoconductance responses phenomenon was observed in different compositions and changing excited wavelengths. Their photophysical mechanisms were discussed. This illustrated that the nanocomposites easily produce free electrons and holes via low power of incident light. Free electrons and holes could be utilized for different purposes in multi-disciplinary fields. It would be a potential application in broadband flexible photodetectors, artificial vision, simulating retina, and bio-imaging from visible light to NIR. This is a low-cost and green approach to obtain nanocomposite exhibiting good photocurrent response from the visible range to NIR.
Collapse
Affiliation(s)
- Xingfa Ma
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - Mingjun Gao
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - Xintao Zhang
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - You Wang
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.L.)
| | - Guang Li
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.L.)
| |
Collapse
|
25
|
Li X, Wang C, Li P, Sun X, Shao Z, Xia J, Liu Q, Shen F, Fang Y. Beer-derived nitrogen, phosphorus co-doped carbon quantum dots: Highly selective on-off-on fluorescent probes for the detection of ascorbic acid in fruits. Food Chem 2023; 409:135243. [PMID: 36584525 DOI: 10.1016/j.foodchem.2022.135243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A rapid, facile and ultrasensitive fluorescence sensing system based on beer-derived nitrogen, phosphorus co-doped carbon quantum dots (N, P-CQDs) for the detection of ascorbic acid (AA) in fruits was proposed. N, P-CQDs were successfully synthesized by one-step hydrothermal method, which afforded a high quantum yield (21.7 %), and showed the fluorescence with a maximum emission wavelength of 450 nm at an excitation wavelength of 370 nm. Further, N, P-CQDs were employed as an efficient sensor for ultrasensitive Fe3+-detection at concentrations ranging from 1-20 µM and 100-300 µM, respectively. N, P-CQDs@Fe3+ showed a high sensitivity and selectivity for AA detection. A linear response range for AA was obtained from 1 to 200 µM with limit of detection of 0.84 µM was obtained for AA. The result of MTT test showed that N, P-CQDs exhibit low toxicity, providing fast, accurate and less toxic route for testing AA in the food analysis fields.
Collapse
Affiliation(s)
- Xinyue Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Chao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ji Xia
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fei Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
26
|
Al-Ghamdi S, Darwish A, Hamdallah TA, Pasha A, Elnair ME, Al-Atawi A, Khasim S. Biological Synthesis of Novel Carbon Quantum Dots Using Halimeda Opuntia Green Algae with Improved Optical Properties and Electrochemical Performance for Possible Energy Storage Applications. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
27
|
Fan J, Kang L, Cheng X, Liu D, Zhang S. Biomass-Derived Carbon Dots and Their Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4473. [PMID: 36558326 PMCID: PMC9783293 DOI: 10.3390/nano12244473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs) can be widely used in the field of sensing because of its good water solubility, low toxicity, high fluorescence stability and excellent biocompatibility. It has become a popular trend to prepare high-value, inexpensive, renewable and environmentally friendly CDs sensors from biomass resources. This article reviewed the research progress of biomass-derived CDs as chemical, physical and biological sensors in recent years and studied their preparation processes and sensing abilities. Furthermore, the prospects and challenges of biomass-CDs sensors were discussed. This article is expected to provide inspirations for the design, preparation and application of biomass-CDs sensors in the future.
Collapse
Affiliation(s)
- Jiang Fan
- Department of Chemical Engineering, Textile and Clothing, Shaanxi Polytechnic Institute, Xianyang 712000, China
| | - Lei Kang
- School of Surveying & Testing, Shaanxi Railway Institute, Weinan 714000, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xu Cheng
- Department of Chemical Engineering, Textile and Clothing, Shaanxi Polytechnic Institute, Xianyang 712000, China
| | - Di Liu
- Department of Chemical Engineering, Textile and Clothing, Shaanxi Polytechnic Institute, Xianyang 712000, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
28
|
Ye H, Liu B, Wang J, Zhou C, Xiong Z, Zhao L. A Hydrothermal Method to Generate Carbon Quantum Dots from Waste Bones and Their Detection of Laundry Powder. Molecules 2022; 27:molecules27196479. [PMID: 36235015 PMCID: PMC9571562 DOI: 10.3390/molecules27196479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Surfactants are one of the major pollutants in laundry powder, which have an impact on the environment and human health. Carbon quantum dots (CQDs) are spherical zero-dimensional fluorescent nanoparticles with great potential for fluorescent probing, electrochemical biosensing and ion sensing. Herein, a bottom-up approach was developed for the synthesis of CQDs from biomass to detect laundry detergent and laundry powder. Waste chicken bones were used as carbon precursors after being dried, crushed and reacted with pure water at 180 °C for 4 h to generate CQDs, which exhibited a monodisperse quasi-spherical structure with an average particle size of 3.2 ± 0.2 nm. Functional groups, including -OH, C=O, C=C and C-O, were identified on the surface of the prepared CQDs. The optimal fluorescence excitation wavelength of the yellow-brown CQDs was 380 nm, with a corresponding emission peak at 465 nm. CQDs did not significantly increase cell death in multiple cell lines at concentrations of 200 µg·mL−1. Fluorescence enhancement of CQDs was observed after addition of sodium dodecyl benzene sulphonate, a major anionic surfactant in laundry powder. A linear relationship between fluorescence enhancement CQDs and the concentration of laundry powder was established. Thus, a hydrothermal method was developed to generate CQDs from waste biomass that may be used as a fluorescent probe to detect laundry powder.
Collapse
Affiliation(s)
- Heng Ye
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen 361015, China
| | - Jin Wang
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama 700-8530, Japan
| | - Chunyu Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, China
- Correspondence: (Z.X.); (L.Z.)
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, China
- Correspondence: (Z.X.); (L.Z.)
| |
Collapse
|
29
|
Wu S, Yin Y, Sun C, Ma C. Novel Paper-Based Fluorescent Sensor Based on N-Doped Carbon Quantum Dots (N-CQDs) and Cotton Fiber Paper (CFP) with High Selectivity and Sensitivity for the Visual Determination of Mercury (II) in Environmental Waters. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Shunwei Wu
- School of Chemical Engineering, Qinghai University, Xining, China
| | - Yongzheng Yin
- School of Chemical Engineering, Qinghai University, Xining, China
| | - Chunyan Sun
- School of Chemical Engineering, Qinghai University, Xining, China
| | - Chenghai Ma
- School of Chemical Engineering, Qinghai University, Xining, China
| |
Collapse
|
30
|
González-González RB, Morales-Murillo MB, Martínez-Prado MA, Melchor-Martínez EM, Ahmed I, Bilal M, Parra-Saldívar R, Iqbal HMN. Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. CHEMOSPHERE 2022; 300:134515. [PMID: 35398070 DOI: 10.1016/j.chemosphere.2022.134515] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Rapid industrialization and manufacturing expansion have caused heavy metal pollution, which is a critical environmental issue faced by global population. In addition, the disadvantages presented by conventional detection methods such as the requirement of sophisticated instruments and qualified personnel have led to the development of novel nanosensors. Recently, carbon dots (CDs) have been presented as a multifunctional nanomaterial alternative for the accurate detection of heavy metal ions in water systems. The capacity of CDs to detect contaminants in wastewater -including heavy metals- can be found in the literature; however, to the best of our knowledge, none of them discusses the most recent strategies to enhance their performance. Therefore, in this review, beyond presenting successful examples of the use of CDs for the detection of metal ions, we further discuss the strategies to enhance their photoluminescence properties and their performance for environmental monitoring. In this manner, strategies such as heteroatom-doping and surface passivation are reviewed in detail, as well as describing the mechanisms and the effect of precursors and synthesis methods. Finally, the current challenges are described in detail to propose some recommendations for further research.
Collapse
Affiliation(s)
| | - Martha Beatriz Morales-Murillo
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | - María Adriana Martínez-Prado
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | | | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD, 4222, Australia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
31
|
Facile Synthesis of Multi-Emission Nitrogen/Boron Co-Doped Carbon Dots from Lignin for Anti-Counterfeiting Printing. Polymers (Basel) 2022; 14:polym14142779. [PMID: 35890555 PMCID: PMC9316793 DOI: 10.3390/polym14142779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
The transformation of lignin with natural aromatic structure into value-added carbon dots (CDs) achieves a win-win situation for low-cost production of novel nanomaterials and reasonable disposal of biomass waste. However, it remains challenging to produce multi-emission CDs from biomass for advanced applications. Herein, a green and facile approach to preparing multi-emission CDs from alkali lignin via N and B co-doping is developed. The obtained N and B co-doped CDs (NB-CDs) show multi-emission fluorescence centers at 346, 428 and 514 nm under different excitations. As the doping amount of N and B increases, the fluorescence emission band gradually shifts to 428 and 514 nm, while that at 346 nm decreases. The fluorescence mechanism is explored through the research of the structure, composition and optical performance of NB-CDs in combination with density functional theory (DFT) calculations. It demonstrates that the effect of doping with B-containing functional groups on the fluorescence emission behavior is multivariate, which may be the crucial contribution to the unique multi-emission fluorescence of CDs. The multi-emission NB-CDs with prominent stability are applied for multilevel anti-counterfeiting printing. It provides a promising direction for the sustainable and advanced application of biomass-derived CDs, and the theoretical results highlight a new insight into the deep understanding of the multi-emission fluorescence mechanism.
Collapse
|
32
|
Malavika JP, Shobana C, Sundarraj S, Ganeshbabu M, Kumar P, Selvan RK. Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. BIOMATERIALS ADVANCES 2022; 136:212756. [PMID: 35929302 DOI: 10.1016/j.bioadv.2022.212756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 05/26/2023]
Abstract
Carbon quantum dots (CQDs) have gained significant growing attention in the recent past due to their peculiar characteristics including smaller size, high surface area, photoluminescence, chemical stability, facile synthesis and functionalization possibilities. They are carbon nanostructures having less than 10 nm size with fluorescent properties. In recent years, the scientific community is curiously adopting biomass precursors for the preparation of CQDs over the chemical compounds. These biomass sources are sustainable, eco-friendly, inexpensive, widely available and convert waste into valuable materials. Hence in our work the fundamental understating of diverse fabrication methodologies of CQDs, and the types of raw materials employed in recent times, are all examined and correlated comprehensively. Their unique combination of remarkable properties, together with the ease with which they can be fabricated, makes CQDs as promising materials for applications in diverse biomedical fields, in particular for bio-imaging, targeted drug delivery and phototherapy for cancer treatment. The mechanism for luminescence is of considerable significance for leading the synthesis of CQDs with tunable fluorescence emission. Therefore, it is aimed to explore and provide an updated review on (i) the recent progress on the different synthesis methods of biomass-derived CQDs, (ii) the contribution of surface states or functional groups on the luminescence origin and (iii) its potential application for cancer theranostics, concentrating on their fluorescence properties. Finally, we explored the challenges in modification for the synthesis of CQDs from biomass derivatives and the future scope of CQDs in phototherapy for cancer theranostics.
Collapse
Affiliation(s)
- Jalaja Prasad Malavika
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), G. N. Mills, Coimbatore 641 029, Tamil Nadu, India
| | - Chellappan Shobana
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), G. N. Mills, Coimbatore 641 029, Tamil Nadu, India.
| | - Shenbagamoorthy Sundarraj
- Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India.
| | - Mariappan Ganeshbabu
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | |
Collapse
|
33
|
Xia L, Li X, Zhang Y, Zhou K, Yuan L, Shi R, Zhang K, Fu Q. Sustainable and Green Synthesis of Waste-Biomass-Derived Carbon Dots for Parallel and Semi-Quantitative Visual Detection of Cr(VI) and Fe 3. Molecules 2022; 27:1258. [PMID: 35209046 PMCID: PMC8876948 DOI: 10.3390/molecules27041258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Carbon dot (CD)-based multi-mode sensing has drawn much attention owing to its wider application range and higher availability compared with single-mode sensing. Herein, a simple and green methodology to construct a CD-based dual-mode fluorescent sensor from the waste biomass of flowers of wintersweet (FW-CDs) for parallel and semi-quantitative visual detection of Cr(VI) and Fe3+ was firstly reported. The FW-CD fluorescent probe had a high sensitivity to Cr(VI) and Fe3+ with wide ranges of linearity from 0.1 to 60 µM and 0.05 to 100 µM along with low detection limits (LOD) of 0.07 µM and 0.15 µM, respectively. Accordingly, the FW-CD-based dual-mode sensor had an excellent parallel sensing capacity toward Cr(VI) and Fe3+ with high selectivity and strong anti-interference capability by co-using dual-functional integration and dual-masking strategies. The developed parallel sensing platform was successfully applied to Cr(VI) and Fe3+ quantitative detection in real samples with high precision and good recovery. More importantly, a novel FW-CD-based fluorescent hydrogel sensor was fabricated and first applied in the parallel and semi-quantitative visual detection of Cr(VI) and ferrous ions in industrial effluent and iron supplements, further demonstrating the significant advantage of parallel and visual sensing strategies.
Collapse
Affiliation(s)
- Lan Xia
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (Y.Z.); (L.Y.); (K.Z.)
| | - Xiuju Li
- School of Pharmacy, Tongren Polytechnic College, Tongren 554300, China;
| | - Yuanhua Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (Y.Z.); (L.Y.); (K.Z.)
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China;
| | - Long Yuan
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (Y.Z.); (L.Y.); (K.Z.)
| | - Rui Shi
- Emergency Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Kailian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (Y.Z.); (L.Y.); (K.Z.)
| | - Qifeng Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (Y.Z.); (L.Y.); (K.Z.)
| |
Collapse
|
34
|
Lopez-Cantu DO, González-González RB, Melchor-Martínez EM, Martínez SAH, Araújo RG, Parra-Arroyo L, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Enzyme-mimicking capacities of carbon-dots nanozymes: Properties, catalytic mechanism, and applications - A review. Int J Biol Macromol 2022; 194:676-687. [PMID: 34813781 DOI: 10.1016/j.ijbiomac.2021.11.112] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023]
Abstract
Nanozymes, novel engineered nanomaterial-based artificial enzymes, have been developed to overcome intrinsic drawbacks exist in natural enzymes including high-cost storage, structural instability, and chemical sensitivity. More recently, carbon dots (CDs) have received significant attention due to their biocompatibility, high catalytic activity, and simple surface functionalization, thus emerging as possible alternatives for biomedical and environmental applications. In this review, we analyze methods and precursors used to synthesize CDs with enzyme-mimicking behaviors. In addition, approaches such as doping or constructing hybrid nanozymes are included as possible strategies to enhance the catalytic performance of CDs. Recent studies have reported CDs that mimic different oxidoreductases, exhibiting peroxidase-, catalase-, oxidase/laccase-, and superoxide dismutase-like activities. Therefore, this review presents a detailed discussion of the mechanism, recent advances, and application for each oxidoreductase-like activity reported on nanozymes based on CDs nanomaterials. Finally, current challenges faced in the successful translation of CDs to potential applications are addressed to suggest research directions.
Collapse
Affiliation(s)
| | | | | | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
35
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|