1
|
Mikayama R, Togao O, Obara M, Wada T, Tokunaga C, Yoshidome S, Kato T, Isoda T, Ishigami K, Yabuuchi H. Multi-delay arterial spin labeling using a variable repetition time scheme in Moyamoya disease: Comparison with single-delay arterial spin labeling. Eur J Radiol 2025; 186:112034. [PMID: 40054339 DOI: 10.1016/j.ejrad.2025.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/22/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE To present a multi-delay arterial spin labeling (ASL) protocol that obtains the cerebral blood flow (CBF) considering the arterial transit time (ATT), and to assess the correlations with an iodine-123-N-isopropyl-p-iodoamphetamine single-photon emission computed tomography (123I-IMP SPECT) reference standard between multi-delay ASL and single-delay ASL in patients with Moyamoya disease. METHOD We retrospectively analyzed the images of 23 patients with Moyamoya disease (4-73 years, 5 men, 18 women), each of whom was imaged with 10-delay ASL using the variable repetition time (TR) scheme, single-delay ASL, and SPECT. Pearson correlation coefficients were calculated between the CBF values of each ASL and SPECT in the three divisions of the ATT, which we categorized as fast, normal, and slow regions. The threshold for statistical significance was set atP<0.05. RESULTS The CBF measured by multi-delay ASL and single-delay ASL were positively correlated with that measured by SPECT, with correlation coefficients of 0.6701 and 0.5637, respectively (P < 0.001). In the fast, normal, and slow ATT divisions, the correlation coefficients between the CBF measured by multi-delay ASL and that measured by SPECT were 0.6745, 0.7055, and 0.6746, respectively. Similarly, the correlations between the CBF measured by single-delay ASL and that measured by SPECT were 0.3811, 0.5090 and 0.6178, respectively. CONCLUSIONS Multi-delay ASL using the variable TR scheme showed a higher correlation with 123I-IMP SPECT than single-delay ASL for measuring the CBF. The variable TR scheme potentially improved the quantification of CBF on ASL imaging.
Collapse
Affiliation(s)
- Ryoji Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan; Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Chiaki Tokunaga
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Satoshi Yoshidome
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Takuro Isoda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Li T, Liu T, Zhang J, Ma Y, Wang G, Suo D, Yang B, Wang X, Funahashi S, Zhang K, Fang B, Yan T. Neurovascular coupling dysfunction of visual network organization in Parkinson's disease. Neurobiol Dis 2023; 188:106323. [PMID: 37838006 DOI: 10.1016/j.nbd.2023.106323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Parkinson's disease (PD) has been showed perfusion and neural activity alterations in specific regions, such as the motor and visual networks; however, the clinical significance of coupling changes is still unknown. To identify how neurovascular coupling changes during the pathophysiology of PD, patients and healthy controls underwent multiparametric magnetic resonance imaging to measure neural activity organization of segregation and integration using amplitude of low-frequency fluctuation (ALFF) and functional connectivity strength (FCS), and measure vascular responses using cerebral blood flow (CBF). Neurovascular coupling was calculated as the global CBF-ALFF and CBF-FCS coupling and the regional CBF/ALFF and CBF/FCS ratio. Correlations and dynamic causal modeling was then used to evaluate relationships with disease-alterations to clinical variables and information flow. Neurovascular coupling was impaired in PD with decreased global CBF-ALFF and CBF-FCS coupling, as well as decreased CBF/ALFF in the parieto-occipital cortex (dorsal visual stream) and CBF/FCS in the temporo-occipital cortex (ventral visual stream); these decouplings were associated with motor and non-motor impairments. The distinctive patterns of neurovascular coupling alterations within the dorsal and ventral visual streams of the visual system could potentially provide additional understanding into the pathophysiological mechanisms of PD.
Collapse
Affiliation(s)
- Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yunxiao Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Kiely M, Triebswetter C, Gong Z, Laporte JP, Faulkner ME, Akhonda MABS, Alsameen MH, Spencer RG, Bouhrara M. Evidence of An Association Between Cerebral Blood Flow and Microstructural Integrity in Normative Aging Using a Holistic MRI Approach. J Magn Reson Imaging 2023; 58:284-293. [PMID: 36326302 PMCID: PMC10154435 DOI: 10.1002/jmri.28508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE Cross sectional. POPULATION A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - John P. Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | - Maryam H. Alsameen
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Meng M, Liu F, Ma Y, Qin W, Guo L, Peng S, Gordon ML, Wang Y, Zhang N. The identification and cognitive correlation of perfusion patterns measured with arterial spin labeling MRI in Alzheimer's disease. Alzheimers Res Ther 2023; 15:75. [PMID: 37038198 PMCID: PMC10088108 DOI: 10.1186/s13195-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Vascular dysfunction, including cerebral hypoperfusion, plays an important role in the pathogenesis and progression of Alzheimer's disease (AD), independent of amyloid and tau pathology. We established an AD-related perfusion pattern (ADRP) measured with arterial spin labeling (ASL) MRI using multivariate spatial covariance analysis. METHODS We obtained multimodal MRI including pseudo-continuous ASL and neurocognitive testing in a total of 55 patients with a diagnosis of mild to moderate AD supported by amyloid PET and 46 normal controls (NCs). An ADRP was established from an identification cohort of 32 patients with AD and 32 NCs using a multivariate analysis method based on scaled subprofile model/principal component analysis, and pattern expression in individual subjects was quantified for both the identification cohort and a validation cohort (23 patients with AD and 14 NCs). Subject expression score of the ADRP was then used to assess diagnostic accuracy and cognitive correlations in AD patients and compared with global and regional cerebral blood flow (CBF) in specific areas identified from voxel-based univariate analysis. RESULTS The ADRP featured negative loading in the bilateral middle and posterior cingulate and precuneus, inferior parietal lobule, and frontal areas, and positive loading in the right cerebellum and bilateral basal areas. Subject expression score of the ADRP was significantly elevated in AD patients compared with NCs (P < 0.001) and showed good diagnostic accuracy for AD with area under receiver-operator curve of 0.87 [95% CI (0.78-0.96)] in the identification cohort and 0.85 in the validation cohort. Moreover, there were negative correlations between subject expression score and global cognitive function and performance in various cognitive domains in patients with AD. The characteristics of the ADRP topography and subject expression scores were supported by analogous findings obtained with regional CBF. CONCLUSIONS We have reported a characteristic perfusion pattern associated with AD using ASL MRI. Subject expression score of this spatial covariance pattern is a promising MRI biomarker for the identification and monitoring of AD.
Collapse
Affiliation(s)
- Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, USA
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, USA
| | - Yue Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China.
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
6
|
Hu Y, Wei Q, Zhou Z, Hu J, Xie J, Xu J. Customized whole brain-covering 3D GRASE in multi-delay pseudo-continuous arterial spin labeling for duplex distinct hemodynamic mapping contrasts of brain tissues and circulation pathways. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Gradient and spin echo (GRASE) is widely employed in arterial spin labeling (ASL) as an efficient readout sequence. Hemodynamic parameter mappings of perfusion, such as cerebral blood flow (CBF) and arterial transit time (ATT), can be derived via multi-delay ASL acquisitions. Multi-delay ASL perfusion imaging inevitably suffers limited signal-to-noise ratio (SNR) since a motion-sensitized vessel suppressing module has to be employed to highlight perfusion signals. The present work reveals that in multi-delay ASL, manipulation of GRASE sequence on either planar imaging echo echo train for adjusted spatial resolutions or FSE echo train for modulated extent of T
2-blurring can significantly alter the mapping contrasts among tissues and among cerebral lobes under different pathways of blood circulation, and meanwhile regulates SNR. Four separate multi-delay ASL scans with different echo train designs in 3D whole brain covering GRASE were carried out for healthy subjects to evaluate the variations in regard to the parameter quantifications and SNR. Based on the quantification mappings, the GRASE acquisition with moderate spatial resolution (3.5 × 3.5 × 4 mm3) and segmented k
z scheme was recognized for the first time to be recommended for more unambiguous CBF and ATT contrasts between GM and WM in conjunction with more enhanced ATT contrast between anterior and posterior cerebral circulations, with reasonably good SNR. The technical proposal is of great value for the cutting-edge research of a variety of neurological diseases of global concerns.
Collapse
|
7
|
Bouhrara M, Triebswetter C, Kiely M, Bilgel M, Dolui S, Erus G, Meirelles O, Bryan NR, Detre JA, Launer LJ. Association of Cerebral Blood Flow With Longitudinal Changes in Cerebral Microstructural Integrity in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Netw Open 2022; 5:e2231189. [PMID: 36094503 PMCID: PMC9468885 DOI: 10.1001/jamanetworkopen.2022.31189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Decreased cerebral tissue integrity and cerebral blood flow (CBF) are features of neurodegenerative diseases. Brain tissue maintenance is an energy-demanding process, making it particularly sensitive to hypoperfusion. However, little is known about the association between blood flow and brain microstructural integrity, including in normative aging. OBJECTIVE To assess associations between CBF and changes in cerebral tissue integrity in white matter and gray matter brain regions. DESIGN, SETTING, AND PARTICIPANTS In this longitudinal cohort study, magnetic resonance imaging was performed on 732 healthy adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective longitudinal study (baseline age of 18-30 years) that examined participants up to 8 times during 30 years (1985-1986 to 2015-2016). Cerebral blood flow was measured at baseline (year 25 of the CARDIA study), and changes in diffusion tensor indices of fractional anisotropy (FA) and mean diffusivity (MD), measures of microstructural tissue integrity, were measured at both baseline and after approximately 5 years of follow-up (year 30). Analyses were conducted from November 5, 2020, to January 29, 2022. MAIN OUTCOMES AND MEASURES Automated algorithms and linear mixed-effects statistical models were used to evaluate the associations between CBF at baseline and changes in FA or MD. RESULTS After exclusion of participants with missing or low-quality data, 654 at baseline (342 women; mean [SD] age, 50.3 [3.5] years) and 433 at follow-up (230 women; mean [SD] age, 55.1 [3.5] years) were scanned for CBF or FA and MD imaging. In the baseline cohort, 247 participants were Black (37.8%) and 394 were White (60.2%); in the follow-up cohort, 156 were Black (36.0%) and 277 were White (64.0%). Cross-sectionally, FA and MD were associated with CBF in most regions evaluated, with lower CBF values associated with lower FA or higher MD values, including the frontal white matter lobes (for CBF and MD: mean [SE] β = -1.4 [0.5] × 10-6; for CBF and FA: mean [SE] β = 2.9 [1.0] × 10-4) and the parietal white matter lobes (for CBF and MD: mean [SE] β = -2.4 [0.6] × 10-6; for CBF and FA: mean [SE] β = 4.4 [1.1] × 10-4). Lower CBF values at baseline were also significantly associated with steeper regional decreases in FA or increases in MD in most brain regions investigated, including the frontal (for CBF and MD: mean [SE] β = -1.1 [0.6] × 10-6; for CBF and FA: mean [SE] β = 2.9 [1.0] × 10-4) and parietal lobes (for CBF and MD: mean [SE] β = -1.5 [0.7] × 10-6; for CBF and FA: mean [SE] β = 4.4 [1.1] × 10-4). CONCLUSIONS AND RELEVANCE Results of this longitudinal cohort study of the association between CBF and diffusion tensor imaging metrics suggest that blood flow may be significantly associated with brain tissue microstructure. This work may lay the foundation for investigations to clarify the nature of early brain damage in neurodegeneration. Such studies may lead to new neuroimaging biomarkers of brain microstructure and function for disease progression.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Nick R. Bryan
- Department of Diagnostic Medicine, University of Texas, Austin
| | - John A. Detre
- Department of Radiology, University of Pennsylvania, Philadelphia
- Department of Neurology, University of Pennsylvania, Philadelphia
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
8
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
9
|
Li AM, Chen L, Liu H, Li Y, Duan W, Xu J. Age-dependent cerebrospinal fluid-tissue water exchange detected by magnetization transfer indirect spin labeling MRI. Magn Reson Med 2022; 87:2287-2298. [PMID: 34958518 PMCID: PMC8847338 DOI: 10.1002/mrm.29137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE A non-invasive magnetization transfer indirect spin labeling (MISL) MRI method is developed to quantify the water exchange between cerebrospinal fluid (CSF) and other tissues in the brain and to examine the age-dependence of water exchange. METHOD In the pulsed MISL, we implemented a short selective pulse followed by a post-labeling delay before an MRI acquisition with a long echo time; in the continuous MISL, a train of saturation pulses was applied. MISL signal (∆Z) was obtained by the subtraction of the label MRI at -3.5 ppm from the control MRI at 200 ppm. CSF was extracted from the mouse ventricles for the MISL optimization and validation. Comparison between wild type (WT) and aquaporin-4 knockout (AQP4-/- ) mice was performed to examine the contributions of CSF water exchange, whereas its age-dependence was investigated by comparing the adult and young WT mice. RESULTS The pulsed MISL method observed that the MISL signal reached the maximum at 1.5 s. The continuous MISL method showed the highest MISL signal in the fourth ventricle (∆Z = 13.5% ± 1.4%), whereas the third ventricle and the lateral ventricles had similar MISL ∆Z values (∆Z = 12.0% ± 1.8%). Additionally, significantly lower ∆Z (9.3%-18.7% reduction) was found in all ventricles for the adult mice than those of the young mice (p < 0.02). For the AQP4-/- mice, the ∆Z values were 5.9%-8.3% smaller than those of the age-matched WT mice in the lateral and fourth ventricles, but were not significant. CONCLUSION The MISL method has a great potential to study CSF water exchange with the surrounding tissues in brain.
Collapse
Affiliation(s)
- Anna M. Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Li AM, Xu J. Cerebrospinal fluid-tissue exchange revealed by phase alternate labeling with null recovery MRI. Magn Reson Med 2022; 87:1207-1217. [PMID: 34799860 PMCID: PMC8794537 DOI: 10.1002/mrm.29092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop phase alternate labeling with null recovery (PALAN) MRI methods for the quantification of the water exchange between cerebrospinal fluid (CSF) and other surrounding tissues in the brain. METHOD In both T1 -PALAN and apparent diffusion coefficient (ADC)-PALAN MRI methods, the cerebrospinal fluid signal was nulled, whereas the partial recovery of other tissues with shorter T1 (T1 -PALAN) or lower ADC values (ADC-PALAN) was labeled by alternating the phase of pulses. The water exchange was extracted from the difference between the recovery curves of CSF with and without labeling. RESULTS Both T1 -PALAN and ADC-PALAN observed a rapid occurrence of CSF water exchange with the surrounding tissues at 67 ± 56 ms and 13 ± 2 ms transit times, respectively. The T1 and ADC-PALAN signal peaked at 1.5 s. The CSF water exchange was 1153 ± 270 mL/100 mL/min with T1 -PALAN in the third and lateral ventricles, which was higher than 891 ± 60 mL/100 mL/min obtained by ADC-PALAN. T1 -PALAN ∆S values for the rostral and caudal ventricles are 0.015 ± 0.013 and 0.034 ± 0.01 (p = 0.022, n = 5), whereas similar ΔS values in both rostral and caudal lateral ventricles were observed by ADC-PALAN (3.9 ± 1.9 × 10-3 vs 4.4 ± 1.4 × 10-3 ; p = 0.66 and n = 5). CONCLUSION The PALAN methods are suitable tools to study CSF water exchange across different compartments in the brain.
Collapse
Affiliation(s)
- Anna M. Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding Author: Jiadi Xu, Ph.D., Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD, 21205, , Tel: 443-923-9572, Fax: 443-923-9505
| |
Collapse
|
11
|
Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 2022; 32:2976-2987. [DOI: 10.1007/s00330-021-08406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
|
12
|
Ibaraki M, Nakamura K, Matsubara K, Shinohara Y, Kinoshita T. Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography. Magn Reson Imaging 2021; 84:58-68. [PMID: 34562565 DOI: 10.1016/j.mri.2021.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET). METHODS For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET. RESULTS In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349). DISCUSSION AND CONCLUSION We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Kazuhiro Nakamura
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| |
Collapse
|
13
|
Alisch JSR, Kiely M, Triebswetter C, Alsameen MH, Gong Z, Khattar N, Egan JM, Bouhrara M. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021; 13:734992. [PMID: 34603011 PMCID: PMC8485051 DOI: 10.3389/fnagi.2021.734992] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The choroid plexus (CP) is an important cerebral structure involved in cerebrospinal fluid production and transport of solutes into the brain. Recent studies have uncovered the involvement of the CP in neurological disorders such as Alzheimer's disease and multiple sclerosis. However, our understanding of human age-related microstructural and functional changes in the CP with aging and neuropathology is limited. In this cross-sectional study, we investigated age and sex differences in the CP structure and function using advanced quantitative magnetic resonance imaging methodology in a large cohort (n = 155) of cognitively unimpaired individuals over a wide age range between 21 and 94 years. Our analysis included volumetric measurements, relaxometry measures (T 1 and T 2), diffusion tensor imaging (DTI) measures of fractional anisotropy (FA) and mean diffusivity (MD), as well as measures of cerebral blood flow (CBF). Our results revealed that CP volume was increasing with advancing age. We conjecture that this novel observation is likely attributed to alterations in the CP microstructure or function as well as to ventriculomegaly. Indeed, we also found that CBF was lower with advanced age, while, consistent with previous studies, T 1, T 2 and MD were higher, and FA was lower with advanced age. We attribute these functional and microstructural differences to a deteriorated CP structural integrity with aging. Furthermore, our relaxometry and DTI measures were found to be associated with differences in blood perfusion revealing lower microstructural integrity with lower CBF. Finally, in agreement with literature, sex-related differences in MD and CBF were statistically significant. This work lays the foundation for ongoing investigation of the involvement of CP in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
14
|
Canna A, Trojsi F, Di Nardo F, Caiazzo G, Tedeschi G, Cirillo M, Esposito F. Combining structural and metabolic markers in a quantitative MRI study of motor neuron diseases. Ann Clin Transl Neurol 2021; 8:1774-1785. [PMID: 34342169 PMCID: PMC8419394 DOI: 10.1002/acn3.51418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the performance of a combination of three quantitative MRI markers (iron deposition, basal neuronal metabolism, and regional atrophy) for differential diagnosis between amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). METHODS In total, 33 ALS, 12 PLS, and 28 healthy control (HC) subjects underwent a 3T MRI study including single- and multi-echo sequences for gray matter (GM) volumetry and quantitative susceptibility mapping (QSM) and a pseudo-continuous arterial spin labeling (ASL) sequence for cerebral blood flow (CBF) measurement. Mean values of QSM, CBF, and GM volumes were extracted in the motor cortex, basal ganglia, thalamus, amygdala, and hippocampus. A generalized linear model was applied to the three measures to binary discriminate between groups. The diagnostic performances were evaluated via receiver operating characteristic analyses. RESULTS A significant discrimination was obtained: between ALS and HCs in the left and right motor cortex, where QSM increases were respectively associated with disability scores and disease duration; between PLS and ALS in the left motor cortex, where PLS patients resulted significantly more atrophic; between ALS and HC in the right motor cortex, where GM volumes were associated with upper motor neuron scores. Significant discrimination between ALS and HC was achieved in subcortical structures only combining all three parameters. INTERPRETATION While increased QSM values in the motor cortex of ALS patients is a consolidated finding, combining QSM, CBF, and GM volumetry shows higher diagnostic potential for differentiating ALS patients from HC subjects and, in the motor cortex, between ALS and PLS.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
15
|
Alisch JSR, Khattar N, Kim RW, Cortina LE, Rejimon AC, Qian W, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging. Aging (Albany NY) 2021; 13:4911-4925. [PMID: 33596183 PMCID: PMC7950235 DOI: 10.18632/aging.202673] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM regions in a cohort (N = 80) of cognitively unimpaired individuals over a wide age range. In agreement with literature, we find that GM regions exhibited lower CBF with age. In contrast, WM regions exhibited higher CBF with age in various cerebral regions. We attribute this new finding to increased oligodendrocyte metabolism to maintain myelin homeostasis in the setting of increased myelin turnover with age. Further, consistent with prior studies, we found that CBF was higher in women than in men in all brain structures investigated. Our work provides new insights into the effects of age and sex on CBF. In addition, our results provide reference CBF values for the standard ASL protocol recommended by the ISMRM Perfusion Study Group and the European ASL in Dementia consortium. Thus, these results provide a foundation for further investigations of CNS perfusion in a variety of settings, including aging, cerebrovascular diseases, and dementias.
Collapse
Affiliation(s)
- Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard W Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Wenshu Qian
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luigi Ferrucci
- Laboratory Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| |
Collapse
|
16
|
Paschoal AM, Leoni RF, Foerster BU, Dos Santos AC, Pontes-Neto OM, Paiva FF. Contrast optimization in arterial spin labeling with multiple post-labeling delays for cerebrovascular assessment. MAGMA (NEW YORK, N.Y.) 2021; 34:119-131. [PMID: 32885356 DOI: 10.1007/s10334-020-00883-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Improving the readout for arterial spin labeling with multiple post-labeling delays (multi-PLD ASL) through a flip angle (FA) sweep towards increasing contrast-to-noise ratio for long PLD images. METHODS Images were acquired from 20 healthy subjects and 14 patients with severe, asymptomatic carotid artery stenosis (ACAS) in a 3T MRI scanner. Multi-PLD ASL images with conventional and proposed (FA sweep) readouts were acquired. For patients, magnetic resonance angiography was used to validate the multi-PLD ASL results. Perfusion values were calculated for brain regions irrigated by the main cerebral arteries and compared by analysis of variance. RESULTS For healthy subjects, better contrast was obtained for long PLDs when using the proposed multi-PLD method compared to the conventional. For both methods, no hemispheric difference of perfusion was observed. For patients, the proposed method facilitated the observation of delayed tissue perfusion, which was not visible for long PLD using the conventional multi-PLD ASL. CONCLUSION We successfully assessed brain perfusion of patients with asymptomatic CAS using multi-PLD ASL with FA sweep. We were able to show subtle individual differences. Moreover, prolonged arterial transit time in patients was observed, although they were considered asymptomatic, suggesting that it may not be an adequate term to characterize them.
Collapse
Affiliation(s)
- André Monteiro Paschoal
- Inbrain, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata Ferranti Leoni
- Inbrain, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | | | - Fernando Fernandes Paiva
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
17
|
Bladt P, den Dekker AJ, Clement P, Achten E, Sijbers J. The costs and benefits of estimating T 1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling. NMR IN BIOMEDICINE 2020; 33:e4182. [PMID: 31736223 PMCID: PMC7685117 DOI: 10.1002/nbm.4182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .
Collapse
Affiliation(s)
- Piet Bladt
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
| | - Arnold J. den Dekker
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
- Delft Center for Systems and ControlDelft University of Technology2628 CDDelftThe Netherlands
| | - Patricia Clement
- Department of Radiology and Nuclear MedicineGhent University9000GhentBelgium
| | - Eric Achten
- Department of Radiology and Nuclear MedicineGhent University9000GhentBelgium
| | - Jan Sijbers
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
| |
Collapse
|
18
|
Lin T, Qu J, Zuo Z, Fan X, You H, Feng F. Test-retest reliability and reproducibility of long-label pseudo-continuous arterial spin labeling. Magn Reson Imaging 2020; 73:111-117. [DOI: 10.1016/j.mri.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
|
19
|
Bouhrara M, Alisch JSR, Khattar N, Kim RW, Rejimon AC, Cortina LE, Qian W, Ferrucci L, Resnick SM, Spencer RG. Association of cerebral blood flow with myelin content in cognitively unimpaired adults. BMJ Neurol Open 2020; 2:e000053. [PMID: 33681786 PMCID: PMC7903181 DOI: 10.1136/bmjno-2020-000053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 05/31/2020] [Indexed: 01/23/2023] Open
Abstract
Background Myelin loss and cerebral blood flow (CBF) decline are central features of several neurodegenerative diseases. Myelin maintenance through oligodendrocyte metabolism is an energy-demanding process, so that myelin homeostasis is particularly sensitive to hypoxia, hypoperfusion or ischaemia. However, in spite of its central importance, little is known about the association between blood supply and myelin integrity. Objective To assess associations between cortical and subcortical CBF, and subcortical myelin content, in critical brain white matter regions. Materials and methods MRI was performed on a cohort of 67 cognitively unimpaired adults. Using advanced MRI methodology, we measured whole-brain longitudinal and transverse relaxation rates (R1 and R2), sensitive but non-specific markers of myelin content, and myelin water fraction (MWF), a direct surrogate of myelin content, as well as regional CBF, from each of these participants. Results All quantitative relaxometry metrics were positively associated with CBF in all brain regions evaluated. These associations between MWF or R1 and CBF, and, to a lesser extent, between R2 and CBF, were statistically significant in most brain regions examined, indicating that lower regional cortical or subcortical CBF corresponds to a decrease in local subcortical myelin content. Finally, all relaxometry metrics exhibited a quadratic, inverted U-shaped, association with age; this is attributed to the development of myelination from young to middle age, followed by progressive loss of myelin in later years. Conclusions In this first study examining the association between local blood supply and myelin integrity, we found that myelin content declines with CBF across a wide age range of cognitively normal subjects.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Joseph S R Alisch
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Nikkita Khattar
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard W Kim
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Abinand C Rejimon
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luis E Cortina
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Wenshu Qian
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Susan M Resnick
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G Spencer
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Liu D, Xu F, Li W, van Zijl PC, Lin DD, Qin Q. Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition. Magn Reson Med 2020; 84:2512-2522. [PMID: 32406137 DOI: 10.1002/mrm.28310] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/17/2020] [Accepted: 04/15/2020] [Indexed: 11/12/2022]
Abstract
PURPOSE To further optimize the velocity-selective arterial spin labeling (VSASL) sequence utilizing a Fourier-transform based velocity-selective inversion (FT-VSI) pulse train, and to evaluate its utility for 3D mapping of cerebral blood flow (CBF) with a gradient- and spin-echo (GRASE) readout. METHODS First, numerical simulations and phantom experiments were done to test the susceptibility to eddy currents and B1 field inhomogeneities for FT-VSI pulse trains with block and composite refocusing pulses. Second, the choices of the post-labeling delay (PLD) for FT-VSI prepared 3D VSASL were evaluated for the sensitivity to perfusion signal. The study was conducted among a young-age and a middle-age group at 3T. Both signal-to-noise ratio (SNR) and CBF were quantitatively compared with pseudo-continuous ASL (PCASL). The optimized 3D VSI-ASL was also qualitatively compared with PCASL in a whole-brain coverage among two healthy volunteers and a brain tumor patient. RESULTS The simulations and phantom test showed that composite refocusing pulses are more robust to both eddy-currents and B1 field inhomogeneities than block pulses. 3D VSASL images with FT-VSI preparation were acquired over a range of PLDs and PLD = 1.2 s was selected for its higher perfusion signal. FT-VSI labeling produced quantitative CBF maps with 27% higher SNR in gray matter compared to PCASL. 3D whole-brain CBF mapping using VSI-ASL were comparable to the corresponding PCASL results. CONCLUSION FT-VSI with 3D-GRASE readout was successfully implemented and showed higher sensitivity to perfusion signal than PCASL for both young and middle-aged healthy volunteers.
Collapse
Affiliation(s)
- Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Doris D Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Barzgari A, Sojkova J, Maritza Dowling N, Pozorski V, Okonkwo OC, Starks EJ, Oh J, Thiesen F, Wey A, Nicholas CR, Johnson S, Gallagher CL. Arterial spin labeling reveals relationships between resting cerebral perfusion and motor learning in Parkinson's disease. Brain Imaging Behav 2019; 13:577-587. [PMID: 29744796 DOI: 10.1007/s11682-018-9877-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.
Collapse
Affiliation(s)
- Amy Barzgari
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave, Madison, WI, 53705-2281, USA
| | - Jitka Sojkova
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave, Madison, WI, 53705-2281, USA
| | - N Maritza Dowling
- Department of Biostatistics and Research, School of Nursing, George Washington University, Washington, DC, 20006, USA
| | - Vincent Pozorski
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave, Madison, WI, 53705-2281, USA
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Erika J Starks
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jennifer Oh
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Frances Thiesen
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave, Madison, WI, 53705-2281, USA
| | - Alexandra Wey
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave, Madison, WI, 53705-2281, USA
| | - Christopher R Nicholas
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Sterling Johnson
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Catherine L Gallagher
- Wm. S. Middleton Memorial VA Hospital Geriatrics Research Education and Clinical Center (GRECC), Madison, WI, 53705, USA. .,Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave, Madison, WI, 53705-2281, USA. .,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
22
|
Zhao MY, Václavů L, Petersen ET, Biemond BJ, Sokolska MJ, Suzuki Y, Thomas DL, Nederveen AJ, Chappell MA. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI. Magn Reson Med 2019; 83:731-748. [PMID: 31513311 PMCID: PMC6899879 DOI: 10.1002/mrm.27956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
Abstract
Purpose To compare cerebral blood flow (CBF) and cerebrovascular reserve (CVR) quantification from Turbo‐QUASAR (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) arterial spin labeling (ASL) and single post‐labeling delay pseudo‐continuous ASL (PCASL). Methods A model‐based method was developed to quantify CBF and arterial transit time (ATT) from Turbo‐QUASAR, including a correction for magnetization transfer effects caused by the repeated labeling pulses. Simulations were performed to assess the accuracy of the model‐based method. Data from an in vivo experiment conducted on a healthy cohort were retrospectively analyzed to compare the CBF and CVR (induced by acetazolamide) measurement from Turbo‐QUASAR and PCASL on the basis of global and regional differences. The quality of the two ASL data sets was examined using the coefficient of variation (CoV). Results The model‐based method for Turbo‐QUASAR was accurate for CBF estimation (relative error was 8% for signal‐to‐noise ratio = 5) in simulations if the bolus duration was known. In the in vivo experiment, the mean global CVR estimated by Turbo‐QUASAR and PCASL was between 63% and 64% and not significantly different. Although global CBF values of the two ASL techniques were not significantly different, regional CBF differences were found in deep gray matter in both pre‐ and postacetazolamide conditions. The CoV of Turbo‐QUASAR data was significantly higher than PCASL. Conclusion Both ASL techniques were effective for quantifying CBF and CVR, despite the regional differences observed. Although CBF estimated from Turbo‐QUASAR demonstrated a higher variability than PCASL, Turbo‐QUASAR offers the advantage of being able to measure and control for variation in ATT.
Collapse
Affiliation(s)
- Moss Y Zhao
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lena Václavů
- Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Centre for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Bart J Biemond
- Amsterdam UMC, University of Amsterdam, Haematology, Internal Medicine, Amsterdam, Netherlands
| | - Magdalena J Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospitals, London, United Kingdom
| | - Yuriko Suzuki
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Aart J Nederveen
- Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Michael A Chappell
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Chu ML, Chien CP, Wu WC, Chung HW. Gradient- and spin-echo (GRASE) MR imaging: a long-existing technology that may find wide applications in modern era. Quant Imaging Med Surg 2019; 9:1477-1484. [PMID: 31667134 DOI: 10.21037/qims.2019.09.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mei-Lan Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Cheng-Ping Chien
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Radiology, Taipei Beitou Health Management Hospital, Taipei, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
25
|
Wengler K, Bangiyev L, Canli T, Duong TQ, Schweitzer ME, He X. 3D MRI of whole-brain water permeability with intrinsic diffusivity encoding of arterial labeled spin (IDEALS). Neuroimage 2019; 189:401-414. [DOI: 10.1016/j.neuroimage.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
|
26
|
Bouhrara M, Lee DY, Rejimon AC, Bergeron CM, Spencer RG. Spatially adaptive unsupervised multispectral nonlocal filtering for improved cerebral blood flow mapping using arterial spin labeling magnetic resonance imaging. J Neurosci Methods 2018; 309:121-131. [PMID: 30130609 DOI: 10.1016/j.jneumeth.2018.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cerebral blood flow (CBF) is an emerging biomarker for normal aging and neurodegenerative diseases. Arterial spin labeling (ASL) perfusion MRI permits noninvasive quantification of CBF. However, high-quality mapping of CBF from ASL imaging is challenging, largely due to noise. NEW METHOD We demonstrate the ability of the recently introduced nonlocal estimation of multispectral magnitudes (NESMA) filter to greatly improve determination of CBF estimates from ASL imaging data. We evaluated the results of NESMA-ASL for CBF mapping from data obtained on human brain (n = 10) across a wide age range (21-74 years) using a standard clinical protocol. Results were compared to those obtained from unfiltered images or filtered images using conventional and advanced filters. Quantitative analyses for different spatial image resolutions and signal-to-noise ratios, SNRs, were also conducted. RESULTS Our results demonstrate the potential of NESMA-ASL to permit high-quality high-resolution CBF mapping. NESMA-ASL substantially reduces random variation in derived CBF estimates while preserving edges and small structures, with minimal bias and dispersion in derived CBF estimates. COMPARISON WITH EXISTING METHODS NESMA-ASL outperforms all evaluated filters in terms of noise reduction and detail preservation. Further, unlike other filters, NESMA-ASL is straightforward to implement requiring only one user-defined parameter, which is relatively insensitive to SNR or local image structure. CONCLUSIONS In-vivo estimation of CBF in the human brain from ASL imaging data was markedly improved through use of the NESMA-ASL filter. The use of NESMA-ASL may contribute significantly to the goal of high-quality high-resolution CBF mapping within a clinically feasible acquisition time.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA.
| | - Diana Y Lee
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Christopher M Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Ivanov D, Gardumi A, Haast RA, Pfeuffer J, Poser BA, Uludağ K. Comparison of 3 T and 7 T ASL techniques for concurrent functional perfusion and BOLD studies. Neuroimage 2017; 156:363-376. [DOI: 10.1016/j.neuroimage.2017.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023] Open
|
28
|
Lee Y, Kim T. Assessment of hypertensive cerebrovascular alterations with multiband Look-Locker arterial spin labeling. J Magn Reson Imaging 2017; 47:663-672. [DOI: 10.1002/jmri.25812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/21/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yoojin Lee
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Tae Kim
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania USA
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania USA
| |
Collapse
|
29
|
Juttukonda MR, Jordan LC, Gindville MC, Davis LT, Watchmaker JM, Pruthi S, Donahue MJ. Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3681. [PMID: 28052565 PMCID: PMC5351809 DOI: 10.1002/nbm.3681] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/11/2016] [Accepted: 11/12/2016] [Indexed: 05/28/2023]
Abstract
Sickle cell anemia (SCA) is a genetic disorder resulting in reduced oxygen carrying capacity and elevated stroke risk. Pseudo-continuous arterial spin labeling (pCASL) measures of cerebral blood flow (CBF) may have relevance for stroke risk assessment; however, the effects of elevated flow velocity and reduced bolus arrival time (BAT) on CBF quantification in SCA patients have not been thoroughly characterized, and pCASL model parameters used in healthy adults are often applied to patients with SCA. Here, cervical arterial flow velocities and pCASL labeling efficiencies were computed in adults with SCA (n = 19) and age- and race-matched controls without sickle trait (n = 7) using pCASL in sequence with phase contrast MR angiography (MRA). Controls (n = 7) and a subgroup of patients (n = 8) also underwent multi-post-labeling-delay pCASL for BAT assessment. Mean flow velocities were elevated in SCA adults (velocity = 28.3 ± 4.1 cm/s) compared with controls (velocity = 24.5 ± 3.8 cm/s), and mean pCASL labeling efficiency (α) was reduced in SCA adults (α = 0.72) relative to controls (α = 0.91). In patients, mean whole-brain CBF from phase contrast MRA was 91.8 ± 18.1 ml/100 g/min, while mean pCASL CBF when assuming a constant labeling efficiency of 0.86 was 75.2 ± 17.3 ml/100 g/min (p < 0.01), resulting in a mean absolute quantification error of 23% when a labeling efficiency appropriate for controls was assumed. This difference cannot be accounted for by BAT (whole-brain BAT: control, 1.13 ± 0.06 s; SCA, 1.02 ± 0.09 s) or tissue T1 variation. In conclusion, BAT variation influences pCASL quantification less than elevated cervical arterial velocity and labeling efficiency variation in SCA adults; thus, a lower labeling efficiency (α = 0.72) or subject-specific labeling efficiency should be incorporated for SCA patients.
Collapse
Affiliation(s)
- Meher R. Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee USA
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee USA
| | - Lori C. Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt Medical Center, Nashville, Tennessee USA
| | - Melissa C. Gindville
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt Medical Center, Nashville, Tennessee USA
| | - Larry T. Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Manus J. Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee USA
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee USA
| |
Collapse
|
30
|
Qin Q, van Zijl PCM. Velocity-selective-inversion prepared arterial spin labeling. Magn Reson Med 2016; 76:1136-48. [PMID: 26507471 PMCID: PMC4848210 DOI: 10.1002/mrm.26010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/22/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop a Fourier-transform based velocity-selective inversion (FT-VSI) pulse train for velocity-selective arterial spin labeling (VSASL). METHODS This new pulse contains paired and phase cycled refocusing pulses. Its sensitivities to B0/B1 inhomogeneity and gradient imperfections such as eddy currents were evaluated through simulation and phantom studies. Cerebral blood flow (CBF) quantification using FT-VSI prepared VSASL was compared with conventional VSASL and pseudocontinuous ASL (PCASL) at 3 Tesla. RESULTS Simulation and phantom results of the proposed FT-VSI pulse train demonstrated excellent robustness to B0/B1 field inhomogeneity and eddy currents. The estimated CBF of gray matter and white matter for the FT-VSI prepared VSASL, averaged among eight healthy volunteers, were 49.5 ± 7.5 mL/100 g/min and 14.8 ± 2.4 mL/100 g/min, respectively. Excellent correlation and agreement between the FT-VSI method and conventional VSASL and PCASL were found. The averaged signal-to-noise ratio (SNR) value in gray matter of the FT-VSI method was 39% higher than VSASL using conventional double refocused hyperbolic tangent pulses and 9% lower than PCASL. CONCLUSION A novel FT-VSI pulse train was demonstrated to be a suitable labeling module for VSASL with robustness of velocity-selective profile to B0/B1 field inhomogeneity and gradient imperfections. Compared with conventional VSASL, FT-VSI prepared VSASL produced consistent CBF maps with higher SNR values. Magn Reson Med 76:1136-1148, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Chen G, Lei D, Ren J, Zuo P, Suo X, Wang DJJ, Wang M, Zhou D, Gong Q. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study. Sci Rep 2016; 6:28867. [PMID: 27374369 PMCID: PMC4931466 DOI: 10.1038/srep28867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/06/2016] [Indexed: 02/05/2023] Open
Abstract
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Collapse
Affiliation(s)
- Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Department of Radiology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Panli Zuo
- Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital &the People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
32
|
Kim KH, Choi SH, Park SH. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN). PLoS One 2016; 11:e0156687. [PMID: 27257674 PMCID: PMC4892492 DOI: 10.1371/journal.pone.0156687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0.53). The bi-directional perfusion imaging with multiphase ALADDIN approach can be an alternative to existing techniques for quantification of aCBV.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Hong Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
33
|
Lyu J, Ma N, Liebeskind DS, Wang DJJ, Ma L, Xu Y, Wang T, Miao Z, Lou X. Arterial Spin Labeling Magnetic Resonance Imaging Estimation of Antegrade and Collateral Flow in Unilateral Middle Cerebral Artery Stenosis. Stroke 2016; 47:428-33. [PMID: 26732570 DOI: 10.1161/strokeaha.115.011057] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/30/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Three-dimensional pseudocontinuous arterial spin labeling with multiple postlabeling delays has been used to assess cerebral blood flow (CBF). We used this modality to estimate antegrade and collateral flow in patients with unilateral middle cerebral artery stenosis. METHODS Consecutive patients with unilateral middle cerebral artery 50% to 99% stenosis at 2 centers underwent pseudocontinuous arterial spin labeling with a postlabeling delays of 1.5 and 2.5 s. Mean CBF of bilateral middle cerebral artery territory at the postlabeling delays 1.5 and 2.5 s was measured. Early-arriving flow proportion was defined as (CBF 1.5 s at lesion side/CBF 2.5 s at normal side)×100%. Late-arriving retrograde flow proportion was defined as ([CBF 2.5 s-CBF 1.5 s] at lesion side-[CBF 2.5 s-CBF 1.5 s] at normal side)/CBF 2.5 s at normal side×100%. Antegrade and collateral scales were evaluated in patients with conventional angiography. Spearman correlation coefficients were calculated between early-arriving flow and late-arriving retrograde flow proportions on arterial spin labeling and antegrade and collateral scales on conventional angiography, respectively. RESULTS Forty-one patients (46.0±12.0 years) were enrolled. The mean early-arriving flow proportion was 78.3±14.9%. The mean late-arriving retrograde flow proportion was 16.1±10.2%. In 21 patients with conventional angiography, Spearman correlation coefficient was 0.53 (95% confidence interval, 0.11-0.79) between antegrade grade and early-arriving flow proportion (P=0.01) and 0.81 (95% confidence interval, 0.56-0.92) between collateral grade and late-arriving retrograde flow proportion (P<0.0001). CONCLUSIONS Three-dimensional pseudocontinuous arterial spin labeling with 2 postlabeling delays may provide an empirical approach for estimating antegrade and collateral flow in patients with unilateral middle cerebral artery stenosis. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02479243.
Collapse
Affiliation(s)
- Jinhao Lyu
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - Ning Ma
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - David S Liebeskind
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - Danny J J Wang
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - Lin Ma
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - Yang Xu
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - Ting Wang
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.)
| | - Zhongrong Miao
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.).
| | - Xin Lou
- From the Department of Radiology, Chinese PLA General Hospital, Beijing, China (J.L., L.M., Y.X., T.W., X.L.); Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China (N.M., Z.M.); and Department of Neurology, UCLA Stroke Center, Los Angeles (D.S.L., D.J.J.W.).
| |
Collapse
|
34
|
Xu J, Qin Q, Wu D, Hua J, Song X, McMahon MT, Northington FJ, Zhang J, van Zijl PCM, Pekar JJ. Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging. Magn Reson Med 2015; 75:238-48. [PMID: 25732958 DOI: 10.1002/mrm.25641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE A steady pulsed imaging and labeling (SPIL) scheme is proposed to obtain high-resolution multislice perfusion images of mice brain using standard preclinical MRI equipment. THEORY AND METHODS The SPIL scheme repeats a pulsed arterial spin labeling (PASL) module together with a short mixing time to extend the temporal duration of the generated PASL bolus to the total experimental time. Multislice image acquisition takes place during the mixing times. The mixing time is also used for magnetization recovery following image acquisition. The new scheme is able to yield multislice perfusion images rapidly. The perfusion kinetic curve can be measured by a multipulsed imaging and labeling (MPIL) scheme, i.e., acquiring single-slice ASL signals before reaching steady-state in the SPIL sequence. RESULTS When applying the SPIL method to normal mice, and to mice with unilateral ischemia, high-resolution multislice (five slices) CBF images could be obtained in 8 min. Perfusion data from ischemic mice showed clear CBF reductions in ischemic regions. The SPIL method was also applied to postmortem mice, showing that the method is free from magnetization transfer confounds. CONCLUSION The new SPIL scheme provides for robust measurement of CBF with multislice imaging capability in small animals.
Collapse
Affiliation(s)
- Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiaolei Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James J Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:108691. [PMID: 24949416 PMCID: PMC4052111 DOI: 10.1155/2014/108691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/12/2014] [Indexed: 11/26/2022]
Abstract
To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.
Collapse
|