1
|
Rajan JRS, Gill K, Chow E, Ashbrook DG, Williams RW, Zwicker JG, Goldowitz D. Investigating Motor Coordination Using BXD Recombinant Inbred Mice to Model the Genetic Underpinnings of Developmental Coordination Disorder. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70014. [PMID: 40071748 PMCID: PMC11898013 DOI: 10.1111/gbb.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity. We sought to correlate behavior in basic motor control tasks with the known genotypes of these reference populations of mice using quantitative trait locus (QTL) mapping. We used 12 BXD strains with an average of 16 mice per group to assess the onset of reflexes during the early neonatal stage of life and differences in motor coordination using the tests for open field, rotarod, and gait behaviors during the adolescent/young adulthood period. Results indicated significant variability between strains in when neonatal reflexes appeared and significant strain differences for all measures of motor coordination. Five strains (BXD15, BXD27, BXD28, BXD75, BXD86) struggled with sensorimotor coordination as seen in gait analysis, rotarod, and open field, similar to human presentation of DCD. We identified three significant quantitative trait loci for gait on proximal Chr 3, Chr 4, and distal Chr 6. Based on expression, function, and polymorphism within the mapped QTL intervals, seven candidate genes (Gpr63, Spata5, Trpc3, Cntn6, Chl1, Grm7, Ogg1) emerged. This study offers new insights into mouse motor behavior, which promises to be a first murine model to explore the genetics and neural correlates of DCD.
Collapse
Affiliation(s)
- Jeffy Rajan Soundara Rajan
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- British Columbia Children's Hospital Research InstituteVancouverCanada
| | - Kamaldeep Gill
- British Columbia Children's Hospital Research InstituteVancouverCanada
- Rehabilitation SciencesUniversity of British ColumbiaVancouverCanada
| | - Eric Chow
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - David G. Ashbrook
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Robert W. Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jill G. Zwicker
- British Columbia Children's Hospital Research InstituteVancouverCanada
- Department of Occupational Science & Occupational TherapyUniversity of British ColumbiaVancouverCanada
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- British Columbia Children's Hospital Research InstituteVancouverCanada
| |
Collapse
|
2
|
Ide H, Miike K, Ohmori T, Maruyama K, Izumi Y, Tanigawa S, Nishinakamura R. Mouse embryonic kidney transplantation identifies maturation defects in the medulla. Sci Rep 2024; 14:30293. [PMID: 39639083 PMCID: PMC11621804 DOI: 10.1038/s41598-024-81984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Kidney organoids are connected to the host circulation and mature after transplantation. However, they are still immature compared to the adult kidneys, and their precise maturation stages remain unclear. By transplanting the mouse embryonic kidney as a model system for organoid transplantation, we report here the maturation defects of the graft, especially in the medulla. Single cell profiling of the developing kidneys in vivo identified gene sets associated with the maturation of the collecting duct epithelium and medullary stroma. These data revealed an upregulation of genes associated with channel/transporter functions and immune defense, as well as a downregulation of neuronal genes. Using these marker genes, we found that the maturation of the collecting duct and medullary stroma in the grafts barely corresponds to the perinatal stage, which was confirmed histologically by using representative genes. Thus, the gene sets obtained serve as maturation coordinates for the renal medulla and will be helpful in analyzing its maturation defects after transplantation. They will also provide a useful basis for further maturation of transplanted kidney organoids.
Collapse
Affiliation(s)
- Hiroshi Ide
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koichiro Miike
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kosuke Maruyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Zhang W, Huang H, Gui A, Mu D, Zhao T, Li H, Watanabe K, Xiao Z, Ye H, Xu Y. Contactin-6-deficient male mice exhibit the abnormal function of the accessory olfactory system and impaired reproductive behavior. Brain Behav 2023; 13:e2893. [PMID: 36860170 PMCID: PMC10097056 DOI: 10.1002/brb3.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Contactin-6 (CNTN6), also known as NB-3, is a neural recognition molecule and a member of the contactin subgroup of the immunoglobulin superfamily. Gene encoding CNTN6 is expressed in many regions of the neural system, including the accessory olfactory bulb (AOB) in mice. We aim to determine the effect of CNTN6 deficiency on the function of the accessory olfactory system (AOS). METHODS We examined the effect of CNTN6 deficiency on the reproductive behavior of male mice through behavioral experiments such as urine sniffing and mate preference tests. Staining and electron microscopy were used to observe the gross structure and the circuitry activity of the AOS. RESULTS Cntn6 is highly expressed in the vomeronasal organ (VNO) and the AOB, and sparsely expressed in the medial amygdala (MeA) and the medial preoptic area (MPOA), which receive direct and/or indirect projections from the AOB. Behavioral tests to examine reproductive function in mice, which is mostly controlled by the AOS, revealed that Cntn6-/- adult male mice showed less interest and reduced mating attempts toward estrous female mice in comparison with their Cntn6+/+ littermates. Although Cntn6-/- adult male mice displayed no obvious changes in the gross structure of the VNO or AOB, we observed the increased activation of granule cells in the AOB and the lower activation of neurons in the MeA and the MPOA as compared with Cntn6+/+ adult male mice. Moreover, there were an increased number of synapses between mitral cells and granule cells in the AOB of Cntn6-/- adult male mice as compared with wild-type controls. CONCLUSION These results indicate that CNTN6 deficiency affects the reproductive behavior of male mice, suggesting that CNTN6 participated in normal function of the AOS and its ablation was involved in synapse formation between mitral and granule cells in the AOB, rather than affecting the gross structure of the AOS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Huiling Huang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ailing Gui
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Di Mu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Hongtao Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Kazutada Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Zhicheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhou Y, Yan F, Han X, Huang X, Cheng X, Geng Y, Jiang X, Han Y, Zhao M, Zhu L. NB-3 expression in endothelial cells contributes to the maintenance of blood brain barrier integrity in a mouse high-altitude cerebral edema model. Exp Neurol 2022; 354:114116. [PMID: 35584741 DOI: 10.1016/j.expneurol.2022.114116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
NB-3, a member of the contactin/F3 subgroup in the immunoglobulin superfamily, plays an important role in neural development and injury recovery. The blood brain barrier (BBB) is typically involved in the pathophysiology of neural disorders, such as hypoxic-ischemic brain injury. Our previous research found that NB-3 protects against brain damage in a mouse stroke model. However, its role in high-altitude disorders caused by hypobaric hypoxia exposure remains unknown. In the present study, we found that NB-3 was expressed in brain microvascular endothelial cells (BMECs) and responded to hypoxia stimulation. Conditional knockout of NB-3 in endothelial cells increased BBB leakage and downregulated tight junction proteins in vivo. NB-3 deficiency promoted the downregulation of tight junction proteins under Lipopolysaccharide (LPS)/hypoxia stimulation. Conversely, overexpression or supplementation with NB-3 alleviated endothelial barrier injuries. Transcriptome sequencing showed that NB-3 regulated various cell attachment genomic changes, including the Notch signaling pathway. Blocking the Notch signaling pathway increased VEGF/VEGFR2 pathway activation induced by LPS/hypoxia. Collectively, we present evidence that NB-3 plays key roles in maintaining BBB integrity under high-altitude cerebral edema conditions.
Collapse
Affiliation(s)
- Yanzhao Zhou
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Yan
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xue Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ying Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; College of Life Sciences, Anhui Medical University, Hefei 230032, China; School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Boni C, Laudanna C, Sorio C. A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease. Biomolecules 2022; 12:84. [PMID: 35053232 PMCID: PMC8773835 DOI: 10.3390/biom12010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase receptor gamma (PTPRG) is known to interact with and regulate several tyrosine kinases, exerting a tumor suppressor role in several type of cancers. Its wide expression in human tissues compared to the other component of group 5 of receptor phosphatases, PTPRZ expressed as a chondroitin sulfate proteoglycan in the central nervous system, has raised interest in its role as a possible regulatory switch of cell signaling processes. Indeed, a carbonic anhydrase-like domain (CAH) and a fibronectin type III domain are present in the N-terminal portion and were found to be associated with its role as [HCO3-] sensor in vascular and renal tissues and a possible interaction domain for cell adhesion, respectively. Studies on PTPRG ligands revealed the contactins family (CNTN) as possible interactors. Furthermore, the correlation of PTPRG phosphatase with inflammatory processes in different normal tissues, including cancer, and the increasing amount of its soluble form (sPTPRG) in plasma, suggest a possible role as inflammatory marker. PTPRG has important roles in human diseases; for example, neuropsychiatric and behavioral disorders and various types of cancer such as colon, ovary, lung, breast, central nervous system, and inflammatory disorders. In this review, we sum up our knowledge regarding the latest discoveries in order to appreciate PTPRG function in the various tissues and diseases, along with an interactome map of its relationship with a group of validated molecular interactors.
Collapse
Affiliation(s)
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy; (C.B.); (C.L.)
| |
Collapse
|
6
|
Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Transl Psychiatry 2021; 11:106. [PMID: 33542194 PMCID: PMC7862349 DOI: 10.1038/s41398-021-01223-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorders (ASD), anorexia nervosa (AN), Alzheimer's disease (AD), and schizophrenia (SZ), are heterogeneous brain disorders with unknown etiology. Genome wide studies have revealed a wide variety of risk genes for these disorders, indicating a biological link between genetic signaling pathways and brain pathology. A unique risk gene is Contactin 4 (Cntn4), an Ig cell adhesion molecule (IgCAM) gene, which has been associated with several neuropsychiatric disorders including ASD, AN, AD, and SZ. Here, we investigated the Cntn4 gene knockout (KO) mouse model to determine whether memory dysfunction and altered brain plasticity, common neuropsychiatric symptoms, are affected by Cntn4 genetic disruption. For that purpose, we tested if Cntn4 genetic disruption affects CA1 synaptic transmission and the ability to induce LTP in hippocampal slices. Stimulation in CA1 striatum radiatum significantly decreased synaptic potentiation in slices of Cntn4 KO mice. Neuroanatomical analyses showed abnormal dendritic arborization and spines of hippocampal CA1 neurons. Short- and long-term recognition memory, spatial memory, and fear conditioning responses were also assessed. These behavioral studies showed increased contextual fear conditioning in heterozygous and homozygous KO mice, quantified by a gene-dose dependent increase in freezing response. In comparison to wild-type mice, Cntn4-deficient animals froze significantly longer and groomed more, indicative of increased stress responsiveness under these test conditions. Our electrophysiological, neuro-anatomical, and behavioral results in Cntn4 KO mice suggest that Cntn4 has important functions related to fear memory possibly in association with the neuronal morphological and synaptic plasticity changes in hippocampus CA1 neurons.
Collapse
|
7
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types. J Neurosci 2020; 40:5177-5195. [PMID: 32457074 PMCID: PMC7329304 DOI: 10.1523/jneurosci.0471-20.2020] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023] Open
Abstract
Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing to profile >32,000 ACs from mice of both sexes and applied computational methods to identify 63 AC types. We identified molecular markers for each type and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types expressed markers for the canonical inhibitory neurotransmitters GABA or glycine, but several expressed neither or both. In addition, many expressed one or more neuropeptides, and two expressed glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological, and morphologic analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in the mouse retina.SIGNIFICANCE STATEMENT The mouse retina is a leading model for analyzing the development, structure, function, and pathology of neural circuits. A complete molecular atlas of retinal cell types provides an important foundation for these studies. We used high-throughput single-cell RNA sequencing to characterize the most heterogeneous class of retinal interneurons, amacrine cells, identifying 63 distinct types. The atlas includes types identified previously as well as many novel types. We provide evidence for the use of multiple neurotransmitters and neuropeptides, and identify transcription factors expressed by groups of closely related types. Combining these results with those obtained previously, we proposed that the mouse retina contains ∼130 neuronal types and is therefore comparable in complexity to other regions of the brain.
Collapse
Affiliation(s)
- Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mallory A Laboulaye
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Inbal Benhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
9
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
10
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
11
|
Repnikova EA, Lyalin DA, McDonald K, Astbury C, Hansen-Kiss E, Cooley LD, Pfau R, Herman GE, Pyatt RE, Hickey SE. CNTN6 copy number variations: Uncertain clinical significance in individuals with neurodevelopmental disorders. Eur J Med Genet 2019; 63:103636. [PMID: 30836150 DOI: 10.1016/j.ejmg.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022]
Abstract
Copy number variations (CNVs) of the CNTN6 gene - a member of the contactin gene superfamily - have been previously proposed to have an association with neurodevelopmental and autism spectrum disorders. However, no functional evidence has been provided to date and phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. In view of conflicting reports on the pathogenicity of CNVs involving CNTN6 and association with different phenotypes, we, independently, evaluated clinical features of nineteen patients with detected CNV of CNTN6 as part of their clinical microarray analysis at Children's Mercy and Nationwide Children's Hospitals for the period of 2008-2015. The clinical presentations of these patients were variable making it difficult to establish genotype-phenotype correlations. CNVs were inherited in six patients. For thirteen patients, inheritance pattern was not established due to unavailability of parental samples for testing. In three cases CNV was inherited from a healthy parent and in three cases from a parent with neurodevelopmental symptoms. Of the nineteen patients, four had a separate genetic abberation in addition to CNV of the CNTN6 that could independently explain their respective phenotypes. Separately, CNTN6 sequencing was performed on an autism spectrum disorder (ASD) research cohort of 94 children from 80 unrelated families. We found no difference in frequency of rare coding variants between the cohort of patients and controls. We conclude that CNVs involving CNTN6 alone seem to be most likely a neutral variant or a possible modifier rather than a disease-causing variant. Patients with CNVs encompassing CNTN6 could benefit from additional genetic testing since a clinical diagnosis due to a CNV of CNTN6 alone is still questionable.
Collapse
Affiliation(s)
- Elena A Repnikova
- The Division of Clinical Genetics and Genomics Laboratories, Children's Mercy Hospital Kansas City, Kansas City, MO, 64108 USA; University Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA.
| | - Dmitry A Lyalin
- The Division of Clinical Genetics and Genomics Laboratories, Children's Mercy Hospital Kansas City, Kansas City, MO, 64108 USA
| | - Kimberly McDonald
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Caroline Astbury
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Emily Hansen-Kiss
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA; Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Linda D Cooley
- The Division of Clinical Genetics and Genomics Laboratories, Children's Mercy Hospital Kansas City, Kansas City, MO, 64108 USA; University Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA
| | - Ruthann Pfau
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Gail E Herman
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA; Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Robert E Pyatt
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Scott E Hickey
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Chatterjee M, Schild D, Teunissen CE. Contactins in the central nervous system: role in health and disease. Neural Regen Res 2019; 14:206-216. [PMID: 30530999 PMCID: PMC6301169 DOI: 10.4103/1673-5374.244776] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Contactins are a group of cell adhesion molecules that are mainly expressed in the brain and play pivotal roles in the organization of axonal domains, axonal guidance, neuritogenesis, neuronal development, synapse formation and plasticity, axo-glia interactions and neural regeneration. Contactins comprise a family of six members. Their absence leads to malformed axons and impaired nerve conduction. Contactin mediated protein complex formation is critical for the organization of the axon in early central nervous system development. Mutations and differential expression of contactins have been identified in neuro-developmental or neurological disorders. Taken together, contactins are extensively studied in the context of nervous system development. This review summarizes the physiological roles of all six members of the Contactin family in neurodevelopment as well as their involvement in neurological/neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- DFG Excellence Cluster 171, University of Göttingen, Göttingen, Germany
| | - Charlotte E. Teunissen
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Huang Z, Yarong G, Shimoda Y, Watanabe K, Liu Y. Induced NB-3 Limits Regenerative Potential of Serotonergic Axons after Complete Spinal Transection. J Neurotrauma 2019; 36:436-447. [PMID: 30156464 DOI: 10.1089/neu.2018.5652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NB-3 (contactin-6) is a member of the contactin family and has a wide range of roles during central nervous system development and disease. Here, we found that NB-3 was simultaneously induced in the serotonergic raphespinal tract (sRST) axons and in the scar-forming cells after spinal cord injury (SCI). Regrowth of sRST axons was promoted in vivo by blocking NB-3 expression in either sRST axons or scar-forming cells when post-traumatic axons of the sRST tried to penetrate the glial scar. NB-3 deficiency promoted synapse reformation between sRST regenerative axons and motor neurons and enhanced the potential for electrical activity of muscle contraction and motor coordination. In vivo evidence also suggested that NB-3 induction in both sRST axons and scar-forming cells was required to mediate NB-3 signaling inhibition of sRST axon regeneration after SCI. Our findings suggest that NB-3 protein is a potential molecular target for future SCI treatments.
Collapse
Affiliation(s)
- Zhenhui Huang
- 1 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gao Yarong
- 1 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yasushi Shimoda
- 2 Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | - Yaobo Liu
- 1 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Canet-Pons J, Schubert R, Duecker RP, Schrewe R, Wölke S, Kieslich M, Schnölzer M, Chiocchetti A, Auburger G, Zielen S, Warnken U. Ataxia telangiectasia alters the ApoB and reelin pathway. Neurogenetics 2018; 19:237-255. [DOI: 10.1007/s10048-018-0557-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
15
|
Mu D, Xu Y, Zhao T, Watanabe K, Xiao Z, Ye H. Cntn6 deficiency impairs allocentric navigation in mice. Brain Behav 2018; 8:e00969. [PMID: 30106251 PMCID: PMC5991572 DOI: 10.1002/brb3.969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION CNTN6 is an immunoglobulin domain-containing cell adhesion molecule that belongs to the contactin family. It is involved in the development of the nervous system. We aim to determine the effect of Cntn6 deficiency on the allocentric navigation in mice. METHODS We recorded the travel distance and escape time of wild-type and Cntn6 mutant male and female mice in the Morris water maze task according to the protocol. RESULTS There was hardly any Cntn6 expression in the hippocampus of postnatal day 0 (P0) mice, while obvious Cntn6 expression was present in the hippocampal CA1 region of the P7 mice. During the acquisition period of Morris water maze task (Day 1 to 4), Cntn6-/- male mice failed to shorten the escape time to reach platform on the third day, while the travel distance to platform was not significantly different. There was no significant difference in both escape time and travel distance to the platform among all female subjects. In the probe trial test (Day 5), spatial memory of the female mutant mice was mildly affected, while Cntn6-/- male mice were normal. In the spatial relearning test (Day 7 to 10), Cntn6-/- male mice showed no difference in escape time to the platform compared to the wild-type male mice, while Cntn6 deficient female mice required shorter escape time to travel to the platform on day 7, day 8, and day 10. CONCLUSIONS Cntn6 is expressed in the developing hippocampus in mice. Cntn6 deficiency affects spatial learning and memory, indicating that Cntn6 plays a role in the development of hippocampus and affects allocentric navigation of the animals.
Collapse
Affiliation(s)
- Di Mu
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| | - Yiliang Xu
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| | - Tian Zhao
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| | - Kazutada Watanabe
- Department of BioengineeringNagaoka University of TechnologyNagaokaNiigataJapan
| | - Zhi‐Cheng Xiao
- The Key Laboratory of Stem Cell and Regenerative MedicineInstitute of Molecular and Clinical MedicineKunming Medical UniversityKunmingChina
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonMELAustralia
| | - Haihong Ye
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
17
|
Korablev AN, Serova IA, Serov OL. Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology. BMC Genet 2017; 18:112. [PMID: 29297312 PMCID: PMC5751523 DOI: 10.1186/s12863-017-0582-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Copy Number Variation (CNV) of the human CNTN6 gene (encoding the contactin-6 protein), caused by deletions or duplications, is responsible for severe neurodevelopmental impairments, often in combination with facial dysmorphias. Conversely, deleterious point mutations of this gene do not show any clinical phenotypes. The aim of this study is to generate mice carrying large deletions, duplications and inversions involving the Cntn6 gene as a new experimental model to study CNV of the human CNTN6 locus. Results To generate large chromosomal rearrangements on mouse chromosome 6, we applied CRISPR/Cas9 technology in zygotes. Two guide RNAs (gRNAs) (flanking a DNA fragment of 1137 Mb) together with Cas9 mRNA and single-stranded DNA oligonucleotides (ssODN) were microinjected into the cytoplasm of 599 zygotes of F1 (C57BL x CBA) mice, and 256 of them were transplanted into oviducts of CD-1 females. As a result, we observed the birth of 41 viable F0 offspring. Genotyping of these mice was performed by PCR analysis and sequencing of PCR products. Among the 41 F0 offspring, we identified seven mice with deletions, two animals carrying duplications of the gene and four carrying inversions. Interestingly, two F0 offspring had both deletions and duplications. It is important to note that while three of seven deletion carriers showed expected sequences at the new joint sites, in another three, we identified an absence of 1–10 nucleotides at the CRISPR/Cas9 cut sites, and in one animal, 103 bp were missing, presumably due to error-prone non-homologous end joining. In addition, we detected the absence of 5 and 13 nucleotides at these sites in two F0 duplication carriers. Similar sequence changes at CRISPR/Cas9 cut sites were observed at the right and left boundaries of inversions. Thus, megabase-scale deletions, duplications and inversions were identified in 11 F0 offspring among 41 analyzed, i.e., approximately 25% efficiency. All genetically modified F0 offspring were viable and able to transmit these large chromosomal rearrangements to the next generation. Conclusions Using CRISPR/Cas9 technology, we created mice carrying megabase-scale deletions, duplications, and inversions involving the full-sized Cntn6 gene. These mice became founders of new mouse lines, which may be more appropriate experimental models of CNV in the human 3p26.3 region than Сntn6 knockout mice.
Collapse
Affiliation(s)
- Alexei N Korablev
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics, Russia Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia.,Research Institute of Medical Genetics, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Irina A Serova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics, Russia Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Oleg L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics, Russia Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia. .,Research Institute of Medical Genetics, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
18
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
19
|
Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, Rolland T, Gouder L, Mathieu A, Buratti J, Amsellem F, Benabou M, Van-Gils J, Beggiato A, Konyukh M, Bourgeois JP, Gazzellone MJ, Yuen RKC, Walker S, Delépine M, Boland A, Régnault B, Francois M, Van Den Abbeele T, Mosca-Boidron AL, Faivre L, Shimoda Y, Watanabe K, Bonneau D, Rastam M, Leboyer M, Scherer SW, Gillberg C, Delorme R, Cloëz-Tayarani I, Bourgeron T. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatry 2017; 22:625-633. [PMID: 27166760 PMCID: PMC5378808 DOI: 10.1038/mp.2016.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.
Collapse
Affiliation(s)
- O Mercati
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - G Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Danckaert
- Imagopole, Citech, Institut Pasteur, Paris, France
| | - G André-Leroux
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
- INRA, Unité MaIAGE, UR1404, Jouy-en-Josas, France
| | - A Maruani
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Bellinzoni
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | - T Rolland
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - L Gouder
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Mathieu
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Buratti
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - F Amsellem
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Benabou
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Van-Gils
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Beggiato
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Konyukh
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J-P Bourgeois
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - M J Gazzellone
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - R K C Yuen
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - S Walker
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - M Delépine
- Centre National de Génotypage, Evry, France
| | - A Boland
- Centre National de Génotypage, Evry, France
| | - B Régnault
- Eukaryote Genotyping Platform, Genopole, Institut Pasteur, Paris, France
| | - M Francois
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - T Van Den Abbeele
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - A L Mosca-Boidron
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - L Faivre
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - Y Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - K Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - D Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - M Rastam
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - M Leboyer
- INSERM U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Assistance Publique-Hôpitaux de Paris, DHU Pe-PSY, H. Mondor Hospital, Department of Psychiatry, Créteil, France
- FondaMental Foundation, Créteil, France
| | - S W Scherer
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- McLaughlin Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - R Delorme
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - I Cloëz-Tayarani
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - T Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- FondaMental Foundation, Créteil, France
| |
Collapse
|
20
|
A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Mol Cell Neurosci 2017; 81:72-83. [PMID: 28064060 DOI: 10.1016/j.mcn.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 12/30/2022] Open
Abstract
Contactins (Cntns) are a six-member subgroup of the immunoglobulin cell adhesion molecule superfamily (IgCAMs) with pronounced brain expression and function. Recent genetic studies of neuropsychiatric disorders have pinpointed contactin-4 (CNTN4), contactin-5 (CNTN5) and contactin-6 (CNTN6) as candidate genes in neurodevelopmental disorders, particularly in autism spectrum disorders (ASDs), but also in intellectual disability, schizophrenia (SCZ), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), alcohol use disorder (AUD) and anorexia nervosa (AN). This suggests that they have important functions during neurodevelopment. This suggestion is supported by data showing that neurite outgrowth, cell survival and neural circuit formation can be affected by disruption of these genes. Here, we review the current genetic data about their involvement in neuropsychiatric disorders and explore studies on how null mutations affect mouse behavior. Finally, we highlight to role of protein-protein interactions in the potential mechanism of action of Cntn4, -5 and -6 and emphasize that complexes with other membrane proteins may play a role in neuronal developmental functions.
Collapse
|
21
|
Zuko A, Oguro-Ando A, Post H, Taggenbrock RLRE, van Dijk RE, Altelaar AFM, Heck AJR, Petrenko AG, van der Zwaag B, Shimoda Y, Pasterkamp RJ, Burbach JPH. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Front Mol Neurosci 2016; 9:143. [PMID: 28018171 PMCID: PMC5156884 DOI: 10.3389/fnmol.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Renske L R E Taggenbrock
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow, Russia
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht Utrecht, Netherlands
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology Nagaoka, Japan
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - J P H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
22
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
23
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
24
|
Abstract
We present selected highlights from research that appeared during 2015 on Tourette syndrome and other tic disorders. Topics include phenomenology, comorbidities, developmental course, genetics, animal models, neuroimaging, electrophysiology, pharmacology, and treatment. We briefly summarize articles whose results we believe may lead to new treatments, additional research or modifications in current models of TS.
Collapse
Affiliation(s)
- Cheryl A Richards
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Huang Z, Gao Y, Sun Y, Zhang C, Yin Y, Shimoda Y, Watanabe K, Liu Y. NB-3 signaling mediates the cross-talk between post-traumatic spinal axons and scar-forming cells. EMBO J 2016; 35:1745-65. [PMID: 27192985 DOI: 10.15252/embj.201593460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
Little is known about the molecules mediating the cross-talk between post-traumatic axons and scar-forming cells after spinal cord injury. We found that a sustained NB-3 induction was simultaneously present in the terminations of post-traumatic corticospinal axons and scar-forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB-3 deficiency or interruption of NB-3 trans-homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB-3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar-forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB-3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB-3 trans-homophilic interactions mediate the cross-talk between post-traumatic axons and scar-forming cells and impair the intrinsic growth ability of injured axons.
Collapse
Affiliation(s)
- Zhenhui Huang
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yarong Gao
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yuhui Sun
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Chao Zhang
- The Medical School of Lanzhou University, Lanzhou, China
| | - Yue Yin
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | - Yaobo Liu
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Zuko A, Oguro-Ando A, van Dijk R, Gregorio-Jordan S, van der Zwaag B, Burbach JPH. Developmental role of the cell adhesion molecule Contactin-6 in the cerebral cortex and hippocampus. Cell Adh Migr 2016; 10:378-92. [PMID: 26939565 DOI: 10.1080/19336918.2016.1155018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6(-/-) mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6(-/-) mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6(-/-) mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6(-/-) mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks.
Collapse
Affiliation(s)
- Amila Zuko
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Asami Oguro-Ando
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Roland van Dijk
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Sara Gregorio-Jordan
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Bert van der Zwaag
- b Department of Genetics , University Medical Center Utrecht , Utrecht , The Netherlands
| | - J Peter H Burbach
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| |
Collapse
|
27
|
Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression. Sci Rep 2015; 5:14453. [PMID: 26571361 PMCID: PMC4585890 DOI: 10.1038/srep14453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/24/2015] [Indexed: 01/31/2023] Open
Abstract
Disruption of angiotensin II type 1 (AT1) receptor prolonged life span in mice. Since aging-related decline in skeletal muscle function was retarded in Atgr1a−/− mice, we examined the role of AT1 receptor in muscle regeneration after injury. Administration of AT1 receptor blocker irbesartan increased the size of regenerating myofibers, decreased fibrosis, and enhanced functional muscle recovery after cryoinjury. We recently reported that complement C1q, secreted by macrophages, activated Wnt/β-catenin signaling and promoted aging-related decline in regenerative capacity of skeletal muscle. Notably, irbesartan induced M2 polarization of macrophages, but reduced C1q expression in cryoinjured muscles and in cultured macrophage cells. Irbesartan inhibited up-regulation of Axin2, a downstream gene of Wnt/β-catenin pathway, in cryoinjured muscles. In addition, topical administration of C1q reversed beneficial effects of irbesartan on skeletal muscle regeneration after injury. These results suggest that AT1 receptor blockade improves muscle repair and regeneration through down-regulation of the aging-promoting C1q-Wnt/β-catenin signaling pathway.
Collapse
|
28
|
Hu J, Liao J, Sathanoori M, Kochmar S, Sebastian J, Yatsenko SA, Surti U. CNTN6 copy number variations in 14 patients: a possible candidate gene for neurodevelopmental and neuropsychiatric disorders. J Neurodev Disord 2015; 7:26. [PMID: 26257835 PMCID: PMC4528395 DOI: 10.1186/s11689-015-9122-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
Background Neurodevelopmental disorders are impairments of brain function that affect emotion, learning, and memory. Copy number variations of contactin genes (CNTNs), including CNTN3, CNTN4, CNTN5, and CNTN6, have been suggested to be associated with these disorders. However, phenotypes have been reported in only a handful of patients with copy number variations involving CNTNs. Methods From January 2009 to January 2013, 3724 patients ascertained through the University of Pittsburgh Medical Center were referred to our laboratory for clinical array comparative genomic hybridization testing. We screened this cohort of patients to identify individuals with the 3p26.3 copy number variations involving the CNTN6 gene, and then retrospectively reviewed the clinical information and family history of these patients to determine the association between the 3p26.3 copy number variations and neurodevelopmental disorders. Results Fourteen of the 3724 patients had 3p26.3 copy number variations involving the CNTN6 gene. Thirteen of the 14 patients with these CNTN6 copy number variations presented with various neurodevelopmental disorders including developmental delay, autistic spectrum disorders, seizures and attention deficit hyperactivity disorder. Family history was available for 13 of the 14 patients. Twelve of the thirteen families have multiple members with neurodevelopmental and neuropsychiatric disorders including attention deficit hyperactivity disorder, seizures, autism spectrum disorder, intellectual disability, schizophrenia, depression, anxiety, learning disability, and bipolar disorder. Conclusions Our findings suggest that deletion or duplication of the CNTN6 gene is associated with a wide spectrum of neurodevelopmental behavioral disorders.
Collapse
Affiliation(s)
- Jie Hu
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jun Liao
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA
| | - Malini Sathanoori
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Sally Kochmar
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA
| | | | - Svetlana A Yatsenko
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Urvashi Surti
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
29
|
Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A 2014; 111:E5661-9. [PMID: 25512547 DOI: 10.1073/pnas.1416991111] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The domestication of the horse ∼ 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.
Collapse
|
30
|
Wong CM, Wang Y, Lee JTH, Huang Z, Wu D, Xu A, Lam KSL. Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice. J Biol Chem 2014; 289:25976-86. [PMID: 25074942 DOI: 10.1074/jbc.m114.576058] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adropin is a highly conserved polypeptide that has been suggested to act as an endocrine factor that plays important roles in metabolic regulation, insulin sensitivity, and endothelial functions. However, in this study, we provide evidence demonstrating that adropin is a plasma membrane protein expressed abundantly in the brain. Using a yeast two-hybrid screening approach, we identified NB-3/Contactin 6, a brain-specific, non-canonical, membrane-tethered Notch1 ligand, as an interaction partner of adropin. Furthermore, this interaction promotes NB3-induced activation of Notch signaling and the expression of Notch target genes. We also generated and characterized adropin knockout mice to explore the role of adropin in vivo. Adropin knockout mice exhibited decreased locomotor activity and impaired motor coordination coupled with defective synapse formation, a phenotype similar to NB-3 knockout mice. Taken together, our data suggest that adropin is a membrane-bound protein that interacts with the brain-specific Notch1 ligand NB3. It regulates physical activity and motor coordination via the NB-3/Notch signaling pathway and plays an important role in cerebellum development in mice.
Collapse
Affiliation(s)
- Chi-Ming Wong
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong and
| | - Yudong Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine
| | - Jimmy Tsz Hang Lee
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine
| | - Zhe Huang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine
| | - Donghai Wu
- the Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Department of Pharmacology and Pharmacy,
| | - Karen Siu Ling Lam
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong and
| |
Collapse
|
31
|
Microduplication of 3p26.3 implicated in cognitive development. Case Rep Genet 2014; 2014:295359. [PMID: 24778888 PMCID: PMC3978399 DOI: 10.1155/2014/295359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/03/2014] [Indexed: 01/25/2023] Open
Abstract
We report here a 34-month-old boy with global developmental delay referred for molecular karyotyping and fragile X studies. Molecular karyotype analysis revealed a microduplication in the 3p26.3 region involving part of the CHL1 and CNTN6 genes. Several deletions, one translocation, and one duplication have previously been described in this region of chromosome 3. The CHL1 gene has been proposed as a dosage-sensitive gene with a central role in cognitive development, and so the microduplication reported here appears to be implicated in our patient's phenotype.
Collapse
|
32
|
New insights into the roles of the contactin cell adhesion molecules in neural development. ADVANCES IN NEUROBIOLOGY 2014; 8:165-94. [PMID: 25300137 DOI: 10.1007/978-1-4614-8090-7_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vertebrates, the contactin (CNTN) family of neural cell recognition molecules includes six related cell adhesion molecules that play non-overlapping roles in the formation and maintenance of the nervous system. CNTN1 and CNTN2 are the prototypical members of the family and have been involved, through cis- and trans-interactions with distinct cell adhesion molecules, in neural cell migration, axon guidance, and the organization of myelin subdomains. In contrast, the roles of CNTN3-6 are less well characterized although the generation of null mice and the recent identification of a common extracellular binding partner have considerably advanced our grasp of their physiological roles in particular as they relate to the wiring of sensory tissues. In this review, we aim to present a summary of our current understanding of CNTN functions and give an overview of the challenges that lie ahead in understanding the roles these proteins play in nervous system development and maintenance.
Collapse
|
33
|
Zuko A, Kleijer KTE, Oguro-Ando A, Kas MJH, van Daalen E, van der Zwaag B, Burbach JPH. Contactins in the neurobiology of autism. Eur J Pharmacol 2013; 719:63-74. [PMID: 23872404 DOI: 10.1016/j.ejphar.2013.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
Autism is a disease of brain plasticity. Inspiring work of Willem Hendrik Gispen on neuronal plasticity has stimulated us to investigate gene defects in autism and the consequences for brain development. The central process in the pathogenesis of autism is local dendritic mRNA translation which is dependent on axodendritic communication. Hence, most autism-related gene products (i) are part of the protein synthesis machinery itself, (ii) are components of the mTOR signal transduction pathway, or (iii) shape synaptic activity and plasticity. Accordingly, prototype drugs have been recognized that interfere with these pathways. The contactin (CNTN) family of Ig cell adhesion molecules (IgCAMs) harbours at least three members that have genetically been implicated in autism: CNTN4, CNTN5, and CNTN6. In this chapter we review the genetic and neurobiological data underpinning their role in normal and abnormal development of brain systems, and the consequences for behavior. Although data on each of these CNTNs are far from complete, we tentatively conclude that these three contactins play roles in brain development in a critical phase of establishing brain systems and their plasticity. They modulate neuronal activities, such as neurite outgrowth, synaptogenesis, survival, guidance of projections and terminal branching of axons in forming neural circuits. Current research on these CNTNs concentrate on the neurobiological mechanism of their developmental functions. A future task will be to establish if proposed pharmacological strategies to counteract ASD-related symptomes can also be applied to reversal of phenotypes caused by genetic defects in these CNTN genes.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Kristel T E Kleijer
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Asami Oguro-Ando
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martien J H Kas
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Emma van Daalen
- Department of Psychiatry, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - J Peter H Burbach
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
34
|
Kong L, Choi RC, Tsim KW, Jing N, Nakayama DK, Wang Z. Distribution and expression of Kirre, an IgSF molecule, during postnatal development of rat cerebellum. Neurosci Lett 2013; 543:22-6. [DOI: 10.1016/j.neulet.2013.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 11/24/2022]
|
35
|
Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J Neurosci 2013; 32:14402-14. [PMID: 23055510 DOI: 10.1523/jneurosci.3193-12.2012] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bipolar, amacrine, and retinal ganglion cells elaborate arbors and form synapses within the inner plexiform layer (IPL) of the vertebrate retina. Specific subsets of these neuronal types synapse in one or a few of the ≥10 sublaminae of the IPL. Four closely related Ig superfamily transmembrane adhesion molecules--Sidekick1 (Sdk1), Sdk2, Dscam, and DscamL--are expressed by non-overlapping subsets of chick retinal neurons and promote their lamina-specific arborization (Yamagata and Sanes, 2008). Here, we asked whether contactins (Cntns), six homologs of Sdks and Dscams, are expressed by and play roles in other subsets. In situ hybridization showed that cntn1-5 were differentially expressed by subsets of amacrine cells. Immunohistochemistry showed that each Cntn protein was concentrated in a subset of IPL sublaminae. To assess roles of Cntns in retinal development, we focused on Cntn2. Depletion of Cntn2 by RNA interference markedly reduced the ability of Cntn2-positive cells to restrict their arbors to appropriate sublaminae. Conversely, ectopic expression of cntn2 redirected neurites of transduced neurons to the Cntn2-positive sublaminae. Thus, both loss- and gain-of-function strategies implicate Cntn2 in lamina-specific neurite targeting. Studies in heterologous cells showed that Cntn2 mediates homophilic adhesion, but does not bind detectably to Sdks, Dscams, or other Cntns. Overexpression analysis showed that Cntns1 and 3 can also redirect neurites to appropriate sublaminae. We propose that Cntns, Sdks, and Dscams comprise an Ig superfamily code that uses homophilic interactions to promote lamina-specific targeting of retinal dendrites in IPL.
Collapse
|
36
|
Huang Z, Yu Y, Shimoda Y, Watanabe K, Liu Y. Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse. J Comp Neurol 2012; 520:1227-45. [PMID: 21935948 DOI: 10.1002/cne.22772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neural recognition molecule NB-3 is involved in neural development and synapse formation. However, its role in axon tract formation is unclear. In this study, we found that the temporal expression of NB-3 in the deep layers of the motor cortex in mice was coincident with the development of the corticospinal tract (CST). Clear NB-3 immunoreactivity in the CST trajectory strongly suggested that NB-3 was expressed specifically in projecting CST axons. By tracing CST axons in NB-3−/− mice at different developmental stages, we found that these axons were capable of projecting and forming a normal trajectory. However, the projection was greatly delayed in NB-3−/− mice compared with wild-type (WT) mice from the embryonic to postnatal stages, a period that is coincident with the completion of the CST projection in mice. Subsequently, although their projection was delayed, CST axons in NB-3−/− mice gradually completed a normal projection. By stage P21, the characteristics of CST projections in NB-3−/− mice were not statistically different from those in WT mice. In addition, we found that the branching of CST axons into spinal gray matter also was delayed in NB-3−/− mice. The CST innervation area in the spinal gray matter of NB-3−/− mice was greatly reduced in comparison with WT mice until P30 and gradually became normal by P45. These data suggest that NB-3 is involved in the normal projection and terminal branching of developing CST axons.
Collapse
Affiliation(s)
- Zhenhui Huang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
37
|
Huang X, Sun J, Zhao T, Wu KW, Watanabe K, Xiao ZC, Zhu LL, Fan M. Loss of NB-3 aggravates cerebral ischemia by impairing neuron survival and neurite growth. Stroke 2011; 42:2910-6. [PMID: 21817151 DOI: 10.1161/strokeaha.110.609560] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE NB-3 is a member of the F3/contactin family of neural recognition molecules, which are crucial for cell morphogenesis and motility. NB-3 is expressed in neurons and plays an important role in axonal extension and neuronal survival. However, the role of NB-3 in cerebral ischemic injury remains unknown. METHODS Adult male wild-type and NB-3 knockout mice were subjected to ischemic injury by unilateral middle cerebral carotid artery occlusion for 3 hours, 6 hours, and 12 hours. Ischemic infarction volumes were then determined by 2, 3, 5-triphenyltetrazolium chloride staining. Neurological dysfunction analysis was also performed. Primary culture of neuronal cells from wild-type and knockout animals was also used for analysis of neuronal survival and neurite outgrowth. RESULTS NB-3 expression in the ischemic hemisphere was decreased after transient middle cerebral artery occlusion (MCAO). NB-3-knockout mice developed a 2.6-fold larger infarct volume and exhibited increased neurological deficit scores after transient middle cerebral artery occlusion compared with control mice. Substrate with NB-3 promoted neuronal survival and neurite outgrowth in vitro, whereas neurite outgrowth and neuronal survival were significantly reduced in NB-3-deficient neurons. In addition, NB-3 deficiency renders neurons more susceptible to oxygen-glucose deprivation-induced damage and NB-3 as substrate could partially through homophilic mechanisms. CONCLUSIONS These data demonstrate that NB-3 deficiency may aggravate brain damage after middle cerebral artery occlusion by impairing neuronal survival and neurite growth.
Collapse
Affiliation(s)
- Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bouyain S, Watkins DJ. Identification of tyrosine phosphatase ligands for contactin cell adhesion molecules. Commun Integr Biol 2011; 3:284-6. [PMID: 20714415 DOI: 10.4161/cib.3.3.11656] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/23/2022] Open
Abstract
The incessant tug of war between tyrosine kinases and tyrosine phosphatases regulates critical signaling events during embryogenesis and adulthood. Among these proteins, receptor protein tyrosine phosphatases (RPTPs) have emerged as an important class of neuronal receptors, seemingly capable of mediating cell adhesion and tyrosine dephosphorylation events. Indeed, these proteins combine extracellular domains that resemble those of cell adhesion molecules and tyrosine phosphatase domains that counter the activities of tyrosine kinases. However, the detailed mechanisms underlying RPTP-mediated cell adhesion and RPTP-mediated cell signaling continue to elude our understanding mainly because very few extracellular binding partners of RPTPs have been identified. We have recently characterized biochemically and structurally the interactions between members of the contactin family of neural recognition molecules and the homologous receptor protein tyrosine phosphatase zeta (PTPRZ) and gamma (PTPRG) that are expressed in the nervous system. Here, we present our main findings and we discuss their possible implication for the control of tyrosine dephosphorylation by contactin family members.
Collapse
Affiliation(s)
- Samuel Bouyain
- Division of Molecular Biology and Biochemistry; School of Biological Sciences; University of Missouri-Kansas City; Kansas City, MO USA
| | | |
Collapse
|
39
|
Stoeckli ET. Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family. Cell Adh Migr 2011; 4:523-6. [PMID: 20622526 DOI: 10.4161/cam.4.4.12733] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF CAMs) have been implicated in neural circuit formation in both the peripheral and the central nervous system. Several recent studies highlight a role of the Contactin group of IgSF CAMs in cerebellar development, in particular in the development of granule cells. Granule cells are the most numerous type of neurons in the nervous system and by forming a secondary proliferative zone in the cerebellum they provide an exception to the rule that neuronal precursors proliferate in the ventricular zone. Granule cells express Contactin-2, Contactin-1, and Contactin-6 in a sequential manner. Contactins are required for axon guidance, fasciculation, and synaptogenesis, and thus affect multiple steps in neural circuit formation in the developing cerebellum.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.
| |
Collapse
|
40
|
Cottrell CE, Bir N, Varga E, Alvarez CE, Bouyain S, Zernzach R, LambThrush D, Evans J, Trimarchi M, Butter EM, Cunningham D, Gastier-Foster JM, McBride K, Herman GE. Contactin 4 as an autism susceptibility locus. Autism Res 2011; 4:189-99. [PMID: 21308999 PMCID: PMC3209658 DOI: 10.1002/aur.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/15/2010] [Indexed: 01/05/2023]
Abstract
Structural and sequence variation have been described in several members of the contactin (CNTN) and contactin-associated protein (CNTNAP) gene families in association with neurodevelopmental disorders, including autism. Using array comparative genome hybridization (CGH), we identified a maternally inherited ∼535 kb deletion at 3p26.3 encompassing the 5' end of the contactin 4 gene (CNTN4) in a patient with autism. Based on this finding and previous reports implicating genomic rearrangements of CNTN4 in autism spectrum disorders (ASDs) and 3p- microdeletion syndrome, we undertook sequencing of the coding regions of the gene in a local ASD cohort in comparison with a set of controls. Unique missense variants were identified in 4 of 75 unrelated individuals with ASD, as well as in 1 of 107 controls. All of the amino acid substitutions were nonsynonomous, occurred at evolutionarily conserved positions, and were, thus, felt likely to be deleterious. However, these data did not reach statistical significance, nor did the variants segregate with disease within all of the ASD families. Finally, there was no detectable difference in binding of two of the variants to the interacting protein PTPRG in vitro. Thus, additional larger studies will be necessary to determine whether CNTN4 functions as an autism susceptibility locus in combination with other genetic and/or environmental factors.
Collapse
Affiliation(s)
| | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Elizabeth Varga
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO
| | | | - Devon LambThrush
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Johnna Evans
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Michael Trimarchi
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Eric M. Butter
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Julie M. Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Kim McBride
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Gail E. Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
41
|
Ye H, Zhao T, Tan YLJ, Liu J, Pallen CJ, Xiao ZC. Receptor-like protein-tyrosine phosphatase α enhances cell surface expression of neural adhesion molecule NB-3. J Biol Chem 2011; 286:26071-80. [PMID: 21622556 DOI: 10.1074/jbc.m110.214080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural adhesion molecule NB-3 plays an important role in the apical dendrite development of layer V pyramidal neurons in the visual cortex, and receptor-like protein-tyrosine phosphatase α (PTPα) mediates NB-3 signaling in this process. Here we investigated the role of PTPα in regulating cell surface expression of NB-3. We found that cortical neurons from PTPα knock-out mice exhibited a lower level of NB-3 at the cell surface. When expressed in COS1 cells, NB-3 was enriched in the Golgi apparatus with a low level of cell surface expression. However, co-expression of PTPα increased the cell surface distribution of NB-3. Further analysis showed that PTPα facilitated Golgi exit of NB-3 and stabilized NB-3 protein at the cell surface by preventing its release from the plasma membrane. The extracellular region of PTPα but not its catalytic activity is necessary for its effect on NB-3 expression. Thus, the PTPα-mediated increase of NB-3 level at the cell surface represents a novel function of PTPα in NB-3 signaling in neural development.
Collapse
Affiliation(s)
- Haihong Ye
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | |
Collapse
|
42
|
Xenaki D, Martin IB, Yoshida L, Ohyama K, Gennarini G, Grumet M, Sakurai T, Furley AJW. F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation. Development 2011; 138:519-29. [PMID: 21205796 DOI: 10.1242/dev.051912] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Modulation of the sonic hedgehog (SHH) pathway is a crucial factor in cerebellar morphogenesis. Stimulation of granule neuron progenitor (GNP) proliferation is a central function of SHH signalling, but how this is controlled locally is not understood. We show that two sequentially expressed members of the contactin (CNTN) family of adhesion molecules, TAG1 and F3, act antagonistically to control SHH-induced proliferation: F3 suppresses SHH-induced GNP proliferation and induces differentiation, whereas TAG1 antagonises F3. Production of GNPs in TAG1-null mice is delayed and reduced. F3 and TAG1 colocalise on GNPs with the related L1-like adhesion molecule NrCAM, and F3 fails to suppress the SHH-induced proliferation of NrCAM-deficient GNPs. We show that F3 and SHH both primarily affect a group of intermediate GNPs (IPs), which, though actively dividing, also express molecules associated with differentiation, including β-tubulin III (TuJ1) and TAG1. In vivo, intermediate progenitors form a discrete layer in the middle of the external germinal layer (mEGL), while F3 becomes expressed on the axons of postmitotic granule neurons as they leave the inner EGL (iEGL). We propose, therefore, that F3 acts as a localised signal in the iEGL that induces SHH-stimulated cells in the overlying mEGL to exit cell cycle and differentiate. By contrast, expression of TAG1 on GNPs antagonises this signal in the mEGL, preventing premature differentiation and sustaining GNP expansion in a paracrine fashion. Together, these findings indicate that CNTN and L1-like proteins play a significant role in modulating SHH-induced neuronal precursor proliferation.
Collapse
Affiliation(s)
- Dia Xenaki
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ey E, Leblond CS, Bourgeron T. Behavioral profiles of mouse models for autism spectrum disorders. Autism Res 2011; 4:5-16. [DOI: 10.1002/aur.175] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/13/2010] [Indexed: 12/18/2022]
|
44
|
ZUKO AMILA, BOUYAIN SAMUEL, VAN DER ZWAAG BERT, BURBACH JPETERH. Contactins: structural aspects in relation to developmental functions in brain disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:143-80. [PMID: 21846565 PMCID: PMC9921585 DOI: 10.1016/b978-0-12-386483-3.00001-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contactins are members of a protein subfamily of neural immunoglobulin (Ig) domain-containing cell adhesion molecules. Their architecture is based on six N-terminal Ig domains, four fibronectin type III domains, and a C-terminal glycophosphatidylinositol (GPI)-anchor to the extracellular part of the cell membrane. Genetics of neuropsychiatric disorders, particularly autism spectrum disorders, have pinpointed contactin-4, -5, and -6 (CNTN4, -5, and -6) as potential disease genes in neurodevelopmental disorders and suggested that they participate in pathways important for appropriate brain development. These contactins have distinct but overlapping patterns of brain expression, and null-mutation causes subtle morphological and functional defects in the brain. The molecular basis of their neurodevelopmental functions is likely conferred by heterophilic protein interactions. Cntn4, -5, and -6 interact with protein tyrosine phosphatase receptor gamma (Ptptg) using a shared binding site that spans their second and third Ig repeats. Interactions with amyloid precursor protein (APP), Notch, and other IgCAMs have also been indicated. The present data indicate that Cntn4, -5, and -6 proteins may be part of heteromeric receptor complexes as well as serve as ligands themselves.
Collapse
Affiliation(s)
- AMILA ZUKO
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - SAMUEL BOUYAIN
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - BERT VAN DER ZWAAG
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. PETER H. BURBACH
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3. Neurosci Lett 2010; 473:102-6. [DOI: 10.1016/j.neulet.2010.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/23/2010] [Accepted: 02/11/2010] [Indexed: 01/01/2023]
|
46
|
The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A 2010; 107:2443-8. [PMID: 20133774 DOI: 10.1073/pnas.0911235107] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ) are expressed primarily in the nervous system and mediate cell adhesion and signaling events during development. We report here the crystal structures of the carbonic anhydrase-like domains of PTPRZ and PTPRG and show that these domains interact directly with the second and third immunoglobulin repeats of the members of the contactin (CNTN) family of neural recognition molecules. Interestingly, these receptors exhibit distinct specificities: PTPRZ binds only to CNTN1, whereas PTPRG interacts with CNTN3, 4, 5, and 6. Furthermore, we present crystal structures of the four N-terminal immunoglobulin repeats of mouse CNTN4 both alone and in complex with the carbonic anhydrase-like domain of mouse PTPRG. In these structures, the N-terminal region of CNTN4 adopts a horseshoe-like conformation found also in CNTN2 and most likely in all CNTNs. This restrained conformation of the second and third immunoglobulin domains creates a binding site that is conserved among CNTN3, 4, 5, and 6. This site contacts a discrete region of PTPRG composed primarily of an extended beta-hairpin loop found in both PTPRG and PTPRZ. Overall, these findings implicate PTPRG, PTPRZ and CNTNs as a group of receptors and ligands involved in the manifold recognition events that underlie the construction of neural networks.
Collapse
|
47
|
Sakurai K, Toyoshima M, Ueda H, Matsubara K, Takeda Y, Karagogeos D, Shimoda Y, Watanabe K. Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse. Dev Neurobiol 2009; 69:811-24. [DOI: 10.1002/dneu.20742] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Manderson EN, Birch AH, Shen Z, Mes-Masson AM, Provencher D, Tonin PN. Molecular genetic analysis of a cell adhesion molecule with homology to L1CAM, contactin 6, and contactin 4 candidate chromosome 3p26pter tumor suppressor genes in ovarian cancer. Int J Gynecol Cancer 2009; 19:513-25. [PMID: 19509545 DOI: 10.1111/igc.0b013e3181a3cd38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Loss of heterozygosity (LOH) analyses of epithelial ovarian cancers (EOCs) previously identified a candidate tumor suppressor gene (TSG) locus within the chromosomal region 3p25.3-pter. Loss of heterozygosity analysis was performed to define the locus and identify candidates for further study. Loss of heterozygosity analysis of 124 malignant EOC samples of different histopathologic subtypes using 12 polymorphic microsatellite repeat markers identified a 330-kilobase minimal region of overlapping deletions at 3p26.3 that contained contactin 4 (CNTN4) as the only known TSG candidate. However, evaluation of the LOH patterns in the serous EOC samples, the most common subtype, enabled the identification of a second, broader region of LOH also included the cell adhesion molecule with homology to L1CAM (CHL1) and CNTN6 as candidates. Gene expression by reverse transcription polymerase chain reaction was not detectable in primary cultures of normal ovarian surface epithelial cells for any of these candidates. CNTN6 expression was also not detectable in serous EOC samples. In contrast, gene expression of CNTN4 and CHL1, particularly overexpression of CHL1, was observed in serous EOC samples. Mutation and gene expression analyses of well-defined EOC cell lines (OV-90, TOV-112D, TOV-21G, and TOV-81D) that differ in their tumorigenic potential and chromosome 3p26-pter genomic content revealed CNTN4 expression and a novel mutation only in the tumorigenic EOC cell line TOV-21G. This mutation was neither observed in controls (n = 105) nor detected by sequencing analysis of complementary DNA. Taken together, these results do not support the candidacy of CHL1, CNTN6, and CNTN4 as TSGs in the 3p26-pter region. However, the overexpression of CHL1, a member of the L1 cell adhesion molecule (L1CAM) family, warrants further investigation.
Collapse
|
49
|
Schwarz V, Pan J, Voltmer-Irsch S, Hutter H. IgCAMs redundantly control axon navigation in Caenorhabditis elegans. Neural Dev 2009; 4:13. [PMID: 19341471 PMCID: PMC2672934 DOI: 10.1186/1749-8104-4-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) form one of the largest and most diverse families of adhesion molecules and receptors in the nervous system. Many members of this family mediate contact and communication among neurons during development. The Caenorhabditis elegans genome contains a comparatively small number of IgCAMs, most of which are evolutionarily conserved and found across all animal phyla. Only some of these have been functionally characterized so far. RESULTS We systematically analyzed previously uncharacterized IgCAMs in C. elegans. Green fluorescent protein reporter constructs of 12 IgCAMs revealed that expression generally is not confined to a single tissue and that all tissues express at least one of the IgCAMs. Most IgCAMs were expressed in neurons. Within the nervous system significant overlap in expression was found in central components of the motor circuit, in particular the command interneurons, ventral cord motoneurons as well as motoneurons innervating head muscles. Sensory neurons are underrepresented among the cells expressing these IgCAMs. We isolated mutations for eight of the genes showing neuronal expression. Phenotypic analysis of single mutants revealed limited neuronal defects, in particular axon navigation defects in some of the mutants. Systematic genetic interaction studies uncovered two cases of functional overlap among three and four genes, respectively. A strain combining mutations in all eight genes is viable and shows no additional defects in the neurons that were analyzed, suggesting that genetic interactions among those genes are limited. CONCLUSION Genetic interactions involving multiple IgCAMs affecting axon outgrowth demonstrate functional overlap among IgCAMs during nervous system development.
Collapse
|
50
|
Katidou M, Vidaki M, Strigini M, Karagogeos D. The immunoglobulin superfamily of neuronal cell adhesion molecules: lessons from animal models and correlation with human disease. Biotechnol J 2009; 3:1564-80. [PMID: 19072911 DOI: 10.1002/biot.200800281] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in the formation of neural circuits at different levels: cell migration, axonal and dendritic targeting as well as synapse formation. Furthermore, in perinatal and adult life, neuronal IgCAMs are required for the formation and maintenance of specialized axonal membrane domains, synaptic plasticity and neurogenesis. Mutations in the corresponding human genes have been correlated to several human neuronal disorders. Perturbing neuronal IgCAMs in animal models provides powerful means to understand the molecular and cellular basis of such human disorders. In this review, we concentrate on the NCAM, L1 and contactin subfamilies of neuronal IgCAMs summarizing recent functional studies from model systems and highlighting their links to disease pathogenesis.
Collapse
Affiliation(s)
- Markella Katidou
- University of Crete, Faculty of Medicine, Vassilika Vouton, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|