1
|
Missaghi K, Le Gal JP, Mercier J, Grover M, Beauséjour PA, Chartré S, Messihad O, Auclair F, Dubuc R. Revisiting the two rhythm generators for respiration in lampreys. Front Neuroanat 2024; 17:1270535. [PMID: 38250023 PMCID: PMC10796688 DOI: 10.3389/fnana.2023.1270535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
In lampreys, respiration consists of a fast and a slow rhythm. This study was aimed at characterizing both anatomically and physiologically the brainstem regions involved in generating the two rhythms. The fast rhythm generator has been located by us and others in the rostral hindbrain, rostro-lateral to the trigeminal motor nucleus. More recently, this was challenged by researchers reporting that the fast rhythm generator was located more rostrally and dorsomedially, in a region corresponding to the mesencephalic locomotor region. These contradictory observations made us re-examine the location of the fast rhythm generator using anatomical lesions and physiological recordings. We now confirm that the fast respiratory rhythm generator is in the rostro-lateral hindbrain as originally described. The slow rhythm generator has received less attention. Previous studies suggested that it was composed of bilateral, interconnected rhythm generating regions located in the caudal hindbrain, with ascending projections to the fast rhythm generator. We used anatomical and physiological approaches to locate neurons that could be part of this slow rhythm generator. Combinations of unilateral injections of anatomical tracers, one in the fast rhythm generator area and another in the lateral tegmentum of the caudal hindbrain, were performed to label candidate neurons on the non-injected side of the lateral tegmentum. We found a population of neurons extending from the facial to the caudal vagal motor nuclei, with no clear clustering in the cell distribution. We examined the effects of stimulating different portions of the labeled population on the respiratory activity. The rostro-caudal extent of the population was arbitrarily divided in three portions that were each stimulated electrically or chemically. Stimulation of either of the three sites triggered bursts of discharge characteristic of the slow rhythm, whereas inactivating any of them stopped the slow rhythm. Substance P injected locally in the lateral tegmentum accelerated the slow respiratory rhythm in a caudal hindbrain preparation. Our results show that the fast respiratory rhythm generator consists mostly of a population of neurons rostro-lateral to the trigeminal motor nucleus, whereas the slow rhythm generator is distributed in the lateral tegmentum of the caudal hindbrain.
Collapse
Affiliation(s)
- Kianoush Missaghi
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | | - Julien Mercier
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Martin Grover
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Shannon Chartré
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Omima Messihad
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Auclair
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Réjean Dubuc
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Saunders SE, Santin JM. Activation of respiratory-related bursting in an isolated medullary section from adult bullfrogs. J Exp Biol 2023; 226:jeb245951. [PMID: 37665261 PMCID: PMC10546875 DOI: 10.1242/jeb.245951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Breathing is generated by a rhythmic neural circuit in the brainstem, which contains conserved elements across vertebrate groups. In adult frogs, the 'lung area' located in the reticularis parvocellularis is thought to represent the core rhythm generator for breathing. Although this region is necessary for breathing-related motor output, whether it functions as an endogenous oscillator when isolated from other brainstem centers is not clear. Therefore, we generated thick brainstem sections that encompass the lung area to determine whether it can generate breathing-related motor output in a highly reduced preparation. Brainstem sections did not produce activity. However, subsaturating block of glycine receptors reliably led to the emergence of rhythmic motor output that was further enhanced by blockade of GABAA receptors. Output occurred in singlets and multi-burst episodes resembling the intact network. However, burst frequency was slower and individual bursts had longer durations than those produced by the intact preparation. In addition, burst frequency was reduced by noradrenaline and μ-opioids, and increased by serotonin, as observed in the intact network and in vivo. These results suggest that the lung area can be activated to produce rhythmic respiratory-related motor output in a reduced brainstem section and provide new insights into respiratory rhythm generation in adult amphibians. First, clustering breaths into episodes can occur within the rhythm-generating network without long-range input from structures such as the pons. Second, local inhibition near, or within, the rhythmogenic center may need to be overridden to express the respiratory rhythm.
Collapse
Affiliation(s)
- Sandy E. Saunders
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Joseph M. Santin
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Amaral-Silva L, Santin JM. Synaptic modifications transform neural networks to function without oxygen. BMC Biol 2023; 21:54. [PMID: 36927477 PMCID: PMC10022038 DOI: 10.1186/s12915-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia. RESULTS In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h. CONCLUSIONS Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| | - Joseph M Santin
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| |
Collapse
|
4
|
do Amaral-Silva L, Santin JM. A brainstem preparation allowing simultaneous access to respiratory motor output and cellular properties of motoneurons in American bullfrogs. J Exp Biol 2022; 225:jeb244079. [PMID: 35574670 PMCID: PMC9250796 DOI: 10.1242/jeb.244079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/06/2022] [Indexed: 10/25/2023]
Abstract
Breathing is generated by a complex neural circuit, and the ability to monitor the activity of multiple network components simultaneously is required to uncover the cellular basis of breathing. In neonatal rodents, a single brainstem slice can be obtained to record respiratory-related motor nerve discharge along with individual rhythm-generating cells or motoneurons because of the close proximity of these neurons in the brainstem. However, most ex vivo preparations in other vertebrates can only capture respiratory motor outflow or electrophysiological properties of putative respiratory neurons in slices without relevant synaptic inputs. Here, we detail a method to horizontally slice away the dorsal portion of the brainstem to expose fluorescently labeled motoneurons for patch-clamp recordings in American bullfrogs. This 'semi-intact' preparation allows tandem recordings of motor output and single motoneurons during respiratory-related synaptic inputs. The rhythmic motor patterns are comparable to those from intact preparations and operate at physiological temperature and [K+]. Thus, this preparation provides the ability to record network and cellular outputs simultaneously and may lead to new mechanistic insights into breathing control across vertebrates.
Collapse
Affiliation(s)
- Lara do Amaral-Silva
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27403, USA
| | - Joseph M. Santin
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27403, USA
| |
Collapse
|
5
|
Milsom WK, Kinkead R, Hedrick MS, Gilmour K, Perry S, Gargaglioni L, Wang T. Evolution of vertebrate respiratory central rhythm generators. Respir Physiol Neurobiol 2021; 295:103781. [PMID: 34481078 DOI: 10.1016/j.resp.2021.103781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/03/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Tracing the evolution of the central rhythm generators associated with ventilation in vertebrates is hindered by a lack of information surrounding key transitions. To begin with, central rhythm generation has been studied in detail in only a few species from four vertebrate groups, lamprey, anuran amphibians, turtles, and mammals (primarily rodents). Secondly, there is a lack of information regarding the transition from water breathing fish to air breathing amniotes (reptiles, birds, and mammals). Specifically, the respiratory rhythm generators of fish appear to be single oscillators capable of generating both phases of the respiratory cycle (expansion and compression) and projecting to motoneurons in cranial nerves innervating bucco-pharyngeal muscles. In the amniotes we find oscillators capable of independently generating separate phases of the respiratory cycle (expiration and inspiration) and projecting to pre-motoneurons in the ventrolateral medulla that in turn project to spinal motoneurons innervating thoracic and abdominal muscles (reptiles, birds, and mammals). Studies of the one group of amphibians that lie at this transition (the anurans), raise intriguing possibilities but, for a variety of reasons that we explore, also raise unanswered questions. In this review we summarize what is known about the rhythm generating circuits associated with breathing that arise from the different rhombomeric segments in each of the different vertebrate classes. Assuming oscillating circuits form in every pair of rhombomeres in every vertebrate during development, we trace what appears to be the evolutionary fate of each and highlight the questions that remain to be answered to properly understand the evolutionary transitions in vertebrate central respiratory rhythm generation.
Collapse
Affiliation(s)
- W K Milsom
- Department of Zoology, University of British Columbia, Canada.
| | - R Kinkead
- Département de Pédiatrie, Université Laval, Canada
| | - M S Hedrick
- Department of Biological Sciences, California State University, Hayward, CA, USA
| | - K Gilmour
- Department of Biology, University of Ottawa, Canada
| | - S Perry
- Department of Biology, University of Ottawa, Canada
| | - L Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, UNESP, Jaboticabal, Brazil
| | - T Wang
- Department of Zoophysiology, Aarhus University, Denmark
| |
Collapse
|
6
|
Horcholle-Bossavit G, Quenet B. Methods for frequency and correlation analyses of neurograms. MethodsX 2021; 8:101258. [PMID: 34434780 DOI: 10.1016/j.mex.2021.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/06/2020] [Accepted: 01/31/2021] [Indexed: 11/19/2022] Open
Abstract
Many physiological functions are based on motor rhythmic activities, among them breathing is a vital issue. The method presented here, or 'temporal grid extraction', aims at characterizing the temporal organization of such an activity. Beyond the measurement of the fundamental frequency, defining the successive cycles, some signal processing tools are helpful in order to look for the presence of higher frequency components that potentially structure these cycles. The method is applied to neurograms recorded from frog brainstem preparations, where two cycle types, buccal and lung cycles, may alternate. It relies on:•Continues Wavelet Transform (CWT) for time-frequency maps and frequency profiles•Crosscorrelation analysis for amplitude maps and amplitude profiles•Cycle-by-cycle autocorrelation analysis for autocorrelation maps and autocorrelation profilesUsing this method, the maps and profiles have revealed that a common high frequency clock drives both buccal and lung cycles.
Collapse
Affiliation(s)
- Ginette Horcholle-Bossavit
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris F-75013, France
| | - Brigitte Quenet
- PSL Research University, ESPCI-Paris Équipe de Statistique Appliquée, Paris F-75005, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris F-75013, France
| |
Collapse
|
7
|
Fonseca EM, Janes TA, Fournier S, Gargaglioni LH, Kinkead R. Orexin-A inhibits fictive air breathing responses to respiratory stimuli in the bullfrog tadpole (Lithobates catesbeianus). J Exp Biol 2021; 224:239725. [PMID: 33914034 DOI: 10.1242/jeb.240804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
In pre-metamorphic tadpoles, the neural network generating lung ventilation is present but actively inhibited; the mechanisms leading to the onset of air breathing are not well understood. Orexin (ORX) is a hypothalamic neuropeptide that regulates several homeostatic functions, including breathing. While ORX has limited effects on breathing at rest, it potentiates reflexive responses to respiratory stimuli mainly via ORX receptor 1 (OX1R). Here, we tested the hypothesis that OX1Rs facilitate the expression of the motor command associated with air breathing in pre-metamorphic bullfrog tadpoles (Lithobates catesbeianus). To do so, we used an isolated diencephalic brainstem preparation to determine the contributions of OX1Rs to respiratory motor output during baseline breathing, hypercapnia and hypoxia. A selective OX1R antagonist (SB-334867; 5-25 µmol l-1) or agonist (ORX-A; 200 nmol l-1 to 1 µmol l-1) was added to the superfusion media. Experiments were performed under basal conditions (media equilibrated with 98.2% O2 and 1.8% CO2), hypercapnia (5% CO2) or hypoxia (5-7% O2). Under resting conditions gill, but not lung, motor output was enhanced by the OX1R antagonist and ORX-A. Hypercapnia alone did not stimulate respiratory motor output, but its combination with SB-334867 increased lung burst frequency and amplitude, lung burst episodes, and the number of bursts per episode. Hypoxia alone increased lung burst frequency and its combination with SB-334867 enhanced this effect. Inactivation of OX1Rs during hypoxia also increased gill burst amplitude, but not frequency. In contrast with our initial hypothesis, we conclude that ORX neurons provide inhibitory modulation of the CO2 and O2 chemoreflexes in pre-metamorphic tadpoles.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp. Jaboticabal, SP 14884-900, Brazil.,Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Tara A Janes
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Stéphanie Fournier
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp. Jaboticabal, SP 14884-900, Brazil
| | - Richard Kinkead
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| |
Collapse
|
8
|
Is there a common drive for buccal movements associated with buccal and lung 'breath' in Lithobates catesbeianus? Respir Physiol Neurobiol 2020; 275:103382. [PMID: 31926342 DOI: 10.1016/j.resp.2020.103382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
In amphibians, there is some evidence that (1) anatomically separate brainstem respiratory oscillators are involved in rhythm generation, one for the buccal rhythm and another for the lung rhythm and (2) they become functionally coupled during metamorphosis. The present analysis, performed on neurograms recorded using brainstem preparations from Lithobates catesbeianus, aims to investigate the temporal organisation of lung and buccal burst types. Continuous Wavelet Transfom applied to the separated buccal and lung signals of a neurogram revealed that both buccal and lung frequency profiles exhibited the same low frequency peak around 1 Hz. This suggests that a common 'clock' organises both rhythms within an animal. A cross-correlation analysis applied to the buccal and lung burst signals revealed their similar intrinsic oscillation features, occurring at approximately 25 Hz. These observations suggest that a coupling between the lung and buccal oscillators emerges at metamorphosis. This coupling may be related to inter-connectivity between the two oscillators, and to a putative common drive.
Collapse
|
9
|
Reed MD, Iceman KE, Harris MB, Taylor BE. Buccal rhythmogenesis and CO 2 sensitivity in Lithobates catesbeianus tadpole brainstems across metamorphosis. Respir Physiol Neurobiol 2019; 268:103251. [PMID: 31279052 DOI: 10.1016/j.resp.2019.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022]
Abstract
Bullfrog tadpoles ventilate both the buccal cavity and lung. In isolated brainstems, the midbrain/pons influences CO2 responsiveness and timing of lung ventilatory bursting, depending on larval development. However, little is known about midbrain/pons influences on buccal burst patterns. As such, we investigated how removal of this region affects buccal burst shape and CO2 responsiveness across development. We measured facial nerve activity in brainstems isolated from tadpoles during early and late developmental stages, under normal and elevated levels of CO2. Brainstems were either left intact or transected by removing the midbrain/pons. In late stage preparations, buccal burst pattern differed between intact and reduced preparations, and bursts were responsive to elevated CO2 in these reduced preparations. These results suggest the midbrain/pons affects tadpole buccal burst pattern and CO2 responsiveness, perhaps similar to its influences on lung ventilation.
Collapse
Affiliation(s)
- Mitchell D Reed
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States.
| | - Kimberly E Iceman
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States; Department of Biology, Valparaiso University, Valparaiso, IN, 46383, United States
| | - Michael B Harris
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States; Department of Biology, California State University Long Beach, Long Beach, CA, 90840, United States
| | - Barbara E Taylor
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States; Department of Biology, California State University Long Beach, Long Beach, CA, 90840, United States
| |
Collapse
|
10
|
Horcholle-Bossavit G, Quenet B. Neural network model of an amphibian ventilatory central pattern generator. J Comput Neurosci 2019; 46:299-320. [PMID: 31119525 DOI: 10.1007/s10827-019-00718-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
The neuronal multiunit model presented here is a formal model of the central pattern generator (CPG) of the amphibian ventilatory neural network, inspired by experimental data from Pelophylax ridibundus. The kernel of the CPG consists of three pacemakers and two follower neurons (buccal and lung respectively). This kernel is connected to a chain of excitatory and inhibitory neurons organized in loops. Simulations are performed with Izhikevich-type neurons. When driven by the buccal follower, the excitatory neurons transmit and reorganize the follower activity pattern along the chain, and when driven by the lung follower, the excitatory and inhibitory neurons of the chain fire in synchrony. The additive effects of synaptic inputs from the pacemakers on the buccal follower account for (1) the low frequency buccal rhythm, (2) the intra-burst high frequency oscillations, and (3) the episodic lung activity. Chemosensitivity to acidosis is implemented by an increase in the firing frequency of one of the pacemakers. This frequency increase leads to both a decrease in the buccal burst frequency and an increase in the lung episode frequency. The rhythmogenic properties of the model are robust against synaptic noise and pacemaker jitter. To validate the rhythm and pattern genesis of this formal CPG, neurograms were built from simulated motoneuron activity, and compared with experimental neurograms. The basic principles of our model account for several experimental observations, and we suggest that these principles may be generic for amphibian ventilation.
Collapse
Affiliation(s)
- Ginette Horcholle-Bossavit
- Équipe de Statistique Appliquée, ESPCI-Paris, PSL Research University, F-75005, Paris, France.,Neurophysiologie respiratoire expérimentale et clinique, INSERM, UMRS1158, Sorbonne Université, F-75005, Paris, France
| | - Brigitte Quenet
- Équipe de Statistique Appliquée, ESPCI-Paris, PSL Research University, F-75005, Paris, France. .,Neurophysiologie respiratoire expérimentale et clinique, INSERM, UMRS1158, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
11
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Trask WM, Baghdadwala MI, Wilson RJA. Developmental Maturation of Functional Coupling Between Ventilatory Oscillators in the American Bullfrog. Dev Neurobiol 2018; 78:1218-1230. [PMID: 30354024 DOI: 10.1002/dneu.22647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 11/11/2022]
Abstract
Many vital motor behaviors - including locomotion, swallowing, and breathing - appear to be dependent upon the activity of and coordination between multiple endogenously rhythmogenic nuclei, or neural oscillators. Much as the functional development of sensory circuits is shaped during maturation, we hypothesized that coordination of oscillators involved in motor control may likewise be maturation-dependent, i.e., coupling and coordination between oscillators change over development. We tested this hypothesis using the bullfrog isolated brainstem preparation to study the metamorphic transition of ventilatory motor patterns from early rhythmic buccal (water) ventilation in the tadpole to the mature pattern of rhythmic buccal and lung (air) ventilation in the adult. Spatially distinct oscillators drive buccal and lung bursts in the isolated brainstem; we found these oscillators to be active but functionally uncoupled in the tadpole. Over the course of metamorphosis, the rhythms produced by the buccal and lung oscillators become increasingly tightly coordinated. These changes parallel the progression of structural and behavioral changes in the animal, with adult levels of coupling arising by the metamorphic stage (forelimb eruption). These findings suggest that oscillator coupling undergoes a maturation process similar to the refinement of sensory circuits over development.
Collapse
Affiliation(s)
- William M Trask
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mufaddal I Baghdadwala
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Thompson KJ. Oviposition-like central pattern generators in pregenital segments of male and female grasshoppers. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:419-433. [PMID: 29423751 DOI: 10.1007/s00359-018-1249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Grasshoppers produce an extraordinary oviposition behavior that is associated with multiple specializations of the skeletal and neuromuscular systems in the posterior abdomen, including a central pattern generator (CPG) in the female's terminal abdominal ganglion. Two pairs of shovel-shaped appendages, the ovipositor valves on the abdomen tip, excavate the soil for deposition of eggs. By contrast, the sexually monomorphic pregenital region of the abdomen is without appendages. Morphological homologues of ovipositor muscles and efferent neurons in the eighth abdominal segment are nevertheless present in pregenital segments of males and females. In both sexes, a robust rhythmic motor program was induced in pregenital segments by the same experimental methods used to elicit oviposition digging. The activity, recorded extracellularly, was oviposition-like in burst period (5-6 s) and homologous muscle phase relationships, and it persisted after sensory inputs were removed, indicating the presence of pregenital CPGs. The abdomen exhibited posterior-going waves of activity with an intersegmental phase delay of approximately 1 s. These results indicate that serially homologous motor systems, including functional CPGs, provided the foundation for the evolution of oviposition behavior.
Collapse
Affiliation(s)
- Karen J Thompson
- Department of Biology, Agnes Scott College, 141 E College Ave., Decatur, 30030, GA, USA.
| |
Collapse
|
14
|
The neural control of respiration in lampreys. Respir Physiol Neurobiol 2016; 234:14-25. [PMID: 27562521 DOI: 10.1016/j.resp.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022]
Abstract
This review focuses on past and recent findings that have contributed to characterize the neural networks controlling respiration in the lamprey, a basal vertebrate. As in other vertebrates, respiration in lampreys is generated centrally in the brainstem. It is characterized by the presence of a fast and a slow respiratory rhythm. The anatomical and the basic physiological properties of the neural networks underlying the generation of the fast rhythm have been more thoroughly investigated; less is known about the generation of the slow respiratory rhythm. Comparative aspects with respiratory generators in other vertebrates as well as the mechanisms of modulation of respiration in association with locomotion are discussed.
Collapse
|
15
|
Santin JM, Hartzler LK. Reassessment of chemical control of breathing in undisturbed bullfrogs, Lithobates catesbeianus, using measurements of pulmonary ventilation. Respir Physiol Neurobiol 2016; 224:80-9. [DOI: 10.1016/j.resp.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/26/2015] [Accepted: 09/27/2015] [Indexed: 11/28/2022]
|
16
|
Aldosterone, corticosterone, and thyroid hormone and their influence on respiratory control development in Lithobates catesbeianus: An in vitro study. Respir Physiol Neurobiol 2016; 224:104-13. [DOI: 10.1016/j.resp.2014.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
|
17
|
Ranohavimparany A, Bautin N, Fiamma MN, Similowski T, Straus C. Source of ventilatory complexity in the postmetamorphic tadpole brainstem, Pelophylax ridibundus: A pharmacological study. Respir Physiol Neurobiol 2016; 224:27-36. [DOI: 10.1016/j.resp.2014.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
18
|
Diving into the mammalian swamp of respiratory rhythm generation with the bullfrog. Respir Physiol Neurobiol 2015; 224:37-51. [PMID: 26384027 DOI: 10.1016/j.resp.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022]
Abstract
All vertebrates produce some form of respiratory rhythm, whether to pump water over gills or ventilate lungs. Yet despite the critical importance of ventilation for survival, the architecture of the respiratory central pattern generator has not been resolved. In frogs and mammals, there is increasing evidence for multiple burst-generating regions in the ventral respiratory group. These regions work together to produce the respiratory rhythm. However, each region appears to be pivotally important to a different phase of the motor act. Regions also exhibit differing rhythmogenic capabilities when isolated and have different CO2 sensitivity and pharmacological profiles. Interestingly, in both frogs and rats the regions with the most robust rhythmogenic capabilities when isolated are located in rhombomeres 7/8. In addition, rhombomeres 4/5 in both clades are critical for controlling phases of the motor pattern most strongly modulated by CO2 (expiration in mammals, and recruitment of lung bursts in frogs). These key signatures may indicate that these cell clusters arose in a common ancestor at least 400 million years ago.
Collapse
|
19
|
Albersheim-Carter J, Blubaum A, Ballagh IH, Missaghi K, Siuda ER, McMurray G, Bass AH, Dubuc R, Kelley DB, Schmidt MF, Wilson RJA, Gray PA. Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respir Physiol Neurobiol 2015; 224:2-10. [PMID: 26160673 DOI: 10.1016/j.resp.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022]
Abstract
Medullary motoneurons drive vocalization in many vertebrate lineages including fish, amphibians, birds, and mammals. The developmental history of vocal motoneuron populations in each of these lineages remains largely unknown. The highly conserved transcription factor Paired-like Homeobox 2b (Phox2b) is presumed to be expressed in all vertebrate hindbrain branchial motoneurons, including laryngeal motoneurons essential for vocalization in humans. We used immunohistochemistry and in situ hybridization to examine Phox2b protein and mRNA expression in caudal hindbrain and rostral spinal cord motoneuron populations in seven species across five chordate classes. Phox2b was present in motoneurons dedicated to sound production in mice and frogs (bullfrog, African clawed frog), but not those in bird (zebra finch) or bony fish (midshipman, channel catfish). Overall, the pattern of caudal medullary motoneuron Phox2b expression was conserved across vertebrates and similar to expression in sea lamprey. These observations suggest that motoneurons dedicated to sound production in vertebrates are not derived from a single developmentally or evolutionarily conserved progenitor pool.
Collapse
Affiliation(s)
- Jacob Albersheim-Carter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aleksandar Blubaum
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irene H Ballagh
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kianoush Missaghi
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Edward R Siuda
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George McMurray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Réjean Dubuc
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Marc F Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J A Wilson
- Hotchkiss Brain Institute and ACH Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Baghdadwala MI, Duchcherer M, Paramonov J, Wilson RJA. Three brainstem areas involved in respiratory rhythm generation in bullfrogs. J Physiol 2015; 593:2941-54. [PMID: 25952282 DOI: 10.1113/jp270380] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/29/2015] [Indexed: 11/08/2022] Open
Abstract
UNLABELLED For most multiphasic motor patterns, rhythm and pattern are produced by the same circuit elements. For respiration, however, these functions have long been assumed to occur separately. In frogs, the ventilatory motor pattern produced by the isolated brainstem consists of buccal and biphasic lung bursts. Previously, two discrete necessary and sufficient sites for lung and buccal bursts were identified. Here we identify a third site, the Priming Area, important for and having neuronal activity correlated with the first phase of biphasic lung bursts. As each site is important for burst generation of a separate phase, we suggest each major phase of ventilation is produced by an anatomically distinct part of an extensive brainstem network. Embedding of discrete circuit elements producing major phases of respiration within an extensive rhythmogenic brainstem network may be a shared architectural characteristic of vertebrates. ABSTRACT Ventilation in mammals consists of at least three distinct phases: inspiration, post-inspiration and late-expiration. While distinct brainstem rhythm generating and pattern forming networks have long been assumed, recent data suggest the mammalian brainstem contains two coupled neuronal oscillators: one for inspiration and the other for active expiration. However, whether additional burst generating ability is required for generating other phases of ventilation in mammals is controversial. To investigate brainstem circuit architectures capable of producing multiphasic ventilatory rhythms, we utilized the isolated frog brainstem. This preparation produces two types of ventilatory motor patterns, buccal and lung bursts. Lung bursts can be divided into two phases, priming and powerstroke. Previously we identified two putative oscillators, the Buccal and Lung Areas. The Lung Area produces the lung powerstroke and the Buccal Area produces buccal bursts and - we assumed - the priming phase of lung bursts. However, here we identify an additional brainstem region that generates the priming phase. This Priming Area extends rostral and caudal of the Lung Area and is distinct from the Buccal Area. Using AMPA microinjections and reversible synaptic blockade, we demonstrate selective excitation and ablation (respectively) of priming phase activity. We also demonstrate that the Priming Area contains neurons active selectively during the priming phase. Thus, we propose that three distinct neuronal components generate the multiphase respiratory motor pattern produced by the frog brainstem: the buccal, priming and powerstroke burst generators. This raises the possibility that a similar multi-burst generator architecture mediates the three distinct phases of ventilation in mammals.
Collapse
Affiliation(s)
- Mufaddal I Baghdadwala
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Maryana Duchcherer
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Paramonov
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
22
|
Nogaret A, O'Callaghan EL, Lataro RM, Salgado HC, Meliza CD, Duncan E, Abarbanel HDI, Paton JFR. Silicon central pattern generators for cardiac diseases. J Physiol 2015; 593:763-74. [PMID: 25433077 DOI: 10.1113/jphysiol.2014.282723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022] Open
Abstract
Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease.
Collapse
Affiliation(s)
- Alain Nogaret
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bongianni F, Mutolo D, Cinelli E, Pantaleo T. Neural mechanisms underlying respiratory rhythm generation in the lamprey. Respir Physiol Neurobiol 2014; 224:17-26. [PMID: 25220696 DOI: 10.1016/j.resp.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022]
Abstract
The isolated brainstem of the adult lamprey spontaneously generates respiratory activity. The paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, has been anatomically and functionally characterized. It is sensitive to opioids, neurokinins and acetylcholine. Excitatory amino acids, but not GABA and glycine, play a crucial role in the respiratory rhythmogenesis. These results are corroborated by immunohistochemical data. While only GABA exerts an important modulatory control on the pTRG, both GABA and glycine markedly influence the respiratory frequency via neurons projecting from the vagal motoneuron region to the pTRG. Noticeably, the removal of GABAergic transmission within the pTRG causes the resumption of rhythmic activity during apnea induced by blockade of glutamatergic transmission. The same result is obtained by microinjections of substance P or nicotine into the pTRG during apnea. The results prompted us to present some considerations on the phylogenesis of respiratory pattern generation. They may also encourage comparative studies on the basic mechanisms underlying respiratory rhythmogenesis of vertebrates.
Collapse
Affiliation(s)
- Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy.
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| |
Collapse
|
24
|
Cinelli E, Mutolo D, Robertson B, Grillner S, Contini M, Pantaleo T, Bongianni F. GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. J Physiol 2014; 592:1823-38. [PMID: 24492840 DOI: 10.1113/jphysiol.2013.268086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously shown that GABA and glycine modulate respiratory activity in the in vitro brainstem preparations of the lamprey and that blockade of GABAA and glycine receptors restores the respiratory rhythm during apnoea caused by blockade of ionotropic glutamate receptors. However, the neural substrates involved in these effects are unknown. To address this issue, the role of GABAA, GABAB and glycine receptors within the paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, and the vagal motoneuron region was investigated both during apnoea induced by blockade of glutamatergic transmission and under basal conditions through microinjections of specific antagonists. The removal of GABAergic, but not glycinergic transmission within the pTRG, causes the resumption of rhythmic respiratory activity during apnoea, and reveals the presence of a modulatory control of the pTRG under basal conditions. A blockade of GABAA and glycine receptors within the vagal region strongly increases the respiratory frequency through disinhibition of neurons projecting to the pTRG from the vagal region. These neurons were retrogradely labelled (neurobiotin) from the pTRG. Intense GABA immunoreactivity is observed both within the pTRG and the vagal area, which corroborates present findings. The results confirm the pTRG as a primary site of respiratory rhythm generation, and suggest that inhibition modulates the activity of rhythm-generating neurons, without any direct role in burst formation and termination mechanisms.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
26
|
Abstract
Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature.
Collapse
Affiliation(s)
- William K Milsom
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada
| | | |
Collapse
|
27
|
Duchcherer M, Baghdadwala MI, Paramonov J, Wilson RJ. Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: Rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis. Dev Neurobiol 2013; 73:888-98. [DOI: 10.1002/dneu.22108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Maryana Duchcherer
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| | - Mufaddal I. Baghdadwala
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| | - Jenny Paramonov
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| | - Richard J.A. Wilson
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| |
Collapse
|
28
|
Abstract
Breathing is an essential behavior that presents a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to both rapidly and slowly changing conditions, and how particular dysfunctions result in disease. We focus on recent advancements related to two essential sites for respiratory rhythmogenesis: (a) the preBötzinger Complex (preBötC) as the site for the generation of inspiratory rhythm and (b) the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) as the site for the generation of active expiration.
Collapse
Affiliation(s)
- Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
29
|
Gariépy JF, Missaghi K, Chartré S, Robert M, Auclair F, Dubuc R. Bilateral connectivity in the brainstem respiratory networks of lampreys. J Comp Neurol 2012; 520:1442-56. [PMID: 22101947 DOI: 10.1002/cne.22804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examines the connectivity in the neural networks controlling respiration in the lampreys, a basal vertebrate. Previous studies have shown that the lamprey paratrigeminal respiratory group (pTRG) plays a crucial role in the generation of respiration. By using a combination of anatomical and physiological techniques, we characterized the bilateral connections between the pTRGs and descending projections to the motoneurons. Tracers were injected in the respiratory motoneuron pools to identify pre-motor respiratory interneurons. Retrogradely labeled cell bodies were found in the pTRG on both sides. Whole-cell recordings of the retrogradely labeled pTRG neurons showed rhythmical excitatory currents in tune with respiratory motoneuron activity. This confirmed that they were related to respiration. Intracellular labeling of individual pTRG neurons revealed axonal branches to the contralateral pTRG and bilateral projections to the respiratory motoneuronal columns. Stimulation of the pTRG induced excitatory postsynaptic potentials in ipsi- and contralateral respiratory motoneurons as well as in contralateral pTRG neurons. A lidocaine HCl (Xylocaine) injection on the midline at the rostrocaudal level of the pTRG diminished the contralateral motoneuronal EPSPs as well as a local injection of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (2R)-amino-5-phosphonovaleric acid (AP-5) on the recorded respiratory motoneuron. Our data show that neurons in the pTRG send two sets of axonal projections: one to the contralateral pTRG and another to activate respiratory motoneurons on both sides through glutamatergic synapses.
Collapse
Affiliation(s)
- Jean-François Gariépy
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3T 1J4
| | | | | | | | | | | |
Collapse
|
30
|
Hallenbeck J. Pathophysiologies of Dyspnea Explained: Why Might Opioids Relieve Dyspnea and Not Hasten Death? J Palliat Med 2012; 15:848-53. [DOI: 10.1089/jpm.2011.0167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- James Hallenbeck
- School of Medicine, Department of Medicine, Division of General Medical Disciplines, Stanford University, Stanford, California
| |
Collapse
|
31
|
Leclère R, Straus C, Similowski T, Bodineau L, Fiamma MN. Persistent lung oscillator response to CO2 after buccal oscillator inhibition in the adult frog. Respir Physiol Neurobiol 2012; 183:166-9. [PMID: 22772313 DOI: 10.1016/j.resp.2012.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 11/13/2022]
Abstract
The automatic ventilatory drive in amphibians depends on two oscillators interacting with each other, the gill/buccal and lung oscillators. The lung oscillator would be homologous to the mammalian pre-Bötzinger complex and the gill/buccal oscillator homologous to the mammalian parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN). Dysfunction of the pFRG/RTN has been involved in the development of respiratory diseases associated to the loss of CO(2) chemosensitivity such as the congenital central hypoventilation syndrome. Here, on adult in vitro isolated frog brainstem, consequences of the buccal oscillator inhibition (by reducing Cl(-)) were evaluated on the respiratory rhythm developed by the lung oscillator under hypercapnic challenges. Our results show that under low Cl(-) concentration (i) the buccal oscillator is strongly inhibited and the lung burst frequency and amplitude decreased and (ii) it persists a powerful CO(2) chemosensitivity. In conclusion, in frog, the CO(2) chemosensitivity depends on cellular contingent(s) whose the functioning is independent of the concentration of Cl(-) and origin remains unknown.
Collapse
Affiliation(s)
- Renaud Leclère
- UPMC Univ Paris 06, ER 10, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013 Paris, France
| | | | | | | | | |
Collapse
|
32
|
Alonso JF, Mañanas MA, Rojas M, Bruce EN. Coordination of respiratory muscles assessed by means of nonlinear forecasting of demodulated myographic signals. J Electromyogr Kinesiol 2011; 21:1064-73. [PMID: 21821430 DOI: 10.1016/j.jelekin.2011.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/24/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022] Open
Abstract
Pulmonary diseases such as obstructive sleep apnea syndrome (OSAS) affect function of respiratory muscles. Individuals with OSAS suffer intermittent collapse of the upper airways during sleep due to unbalanced forces generated by the contraction of the diaphragm and upper airway dilator muscles. Respiratory rhythm and pattern generation can be described via nonlinear or coupled oscillators; therefore, the resulting activation of different respiratory muscles may be related to complex nonlinear interactions. The aims of this work were: to evaluate locally linear models for fitting and prediction of demodulated myographic signals from respiratory muscles; and to analyze quantitatively the influence of a pulmonary disease on this nonlinear forecasting related to low and moderate levels of respiratory effort. Electromyographic and mechanomyographic signals from three respiratory muscles (genioglossus, sternomastoid and diaphragm) were recorded in OSAS patients and controls while awake during an increased respiratory effort. Variables related to auto and cross prediction between muscles were calculated from the r(2) coefficient and the estimation of residuals, as functions of prediction horizon. In general, prediction improved linearly with higher levels of effort. A better prediction between muscle activities was obtained in OSAS patients when using genioglossus as the predictor signal. The prediction was significant for more than two respiratory cycles in OSAS patients compared to only a half cycle in controls. It could be concluded that nonlinear forecasting applied to genioglossus coupling with other muscles provides a promising assessment to monitor pulmonary diseases.
Collapse
Affiliation(s)
- Joan F Alonso
- Department of Automatic Control, Biomedical Engineering Research Centre, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | | | | | | |
Collapse
|
33
|
Straus C, Samara Z, Fiamma MN, Bautin N, Ranohavimparany A, Le Coz P, Golmard JL, Darré P, Zelter M, Poon CS, Similowski T. Effects of maturation and acidosis on the chaos-like complexity of the neural respiratory output in the isolated brainstem of the tadpole, Rana esculenta. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1163-74. [PMID: 21325645 PMCID: PMC3094042 DOI: 10.1152/ajpregu.00710.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/14/2011] [Indexed: 11/22/2022]
Abstract
Human ventilation at rest exhibits mathematical chaos-like complexity that can be described as long-term unpredictability mediated (in whole or in part) by some low-dimensional nonlinear deterministic process. Although various physiological and pathological situations can affect respiratory complexity, the underlying mechanisms remain incompletely elucidated. If such chaos-like complexity is an intrinsic property of central respiratory generators, it should appear or increase when these structures mature or are stimulated. To test this hypothesis, we employed the isolated tadpole brainstem model [Rana (Pelophylax) esculenta] and recorded the neural respiratory output (buccal and lung rhythms) of pre- (n = 8) and postmetamorphic tadpoles (n = 8), at physiologic (7.8) and acidic pH (7.4). We analyzed the root mean square of the cranial nerve V or VII neurograms. Development and acidosis had no effect on buccal period. Lung frequency increased with development (P < 0.0001). It also increased with acidosis, but in postmetamorphic tadpoles only (P < 0.05). The noise-titration technique evidenced low-dimensional nonlinearities in all the postmetamorphic brainstems, at both pH. Chaos-like complexity, assessed through the noise limit, increased from pH 7.8 to pH 7.4 (P < 0.01). In contrast, linear models best fitted the ventilatory rhythm in all but one of the premetamorphic preparations at pH 7.8 (P < 0.005 vs. postmetamorphic) and in four at pH 7.4 (not significant vs. postmetamorphic). Therefore, in a lower vertebrate model, the brainstem respiratory central rhythm generator accounts for ventilatory chaos-like complexity, especially in the postmetamorphic stage and at low pH. According to the ventilatory generators homology theory, this may also be the case in mammals.
Collapse
Affiliation(s)
- Christian Straus
- Service Central d'Explorations Fonctionnelles Respiratoires, Groupe Hospitalier Pitie-Salpetriere, 47-83 Boulevard de l'Hôpital, Paris Cedex 13, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Milsom WK. Adaptive trends in respiratory control: a comparative perspective. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1-10. [DOI: 10.1152/ajpregu.00069.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1941, August Krogh published a monograph entitled The Comparative Physiology of Respiratory Mechanisms (Philadelphia, PA: University of Pennsylvania Press, 1941). Since that time comparative studies have continued to contribute significantly to our understanding of the fundamentals of respiratory physiology and the adaptive trends in these processes that support a broad range of metabolic performance under demanding environmental conditions. This review specifically focuses on recent advances in our understanding of adaptive trends in respiratory control. Respiratory rhythm generators most likely arose from, and must remain integrated with, rhythm generators for chewing, suckling, and swallowing. Within the central nervous system there are multiple “segmental” rhythm generators, and through evolution there is a caudal shift in the predominant respiratory rhythm-generating site. All sites, however, may still be capable of producing or modulating respiratory rhythm under appropriate conditions. Expression of the respiratory rhythm is conditional on (tonic) input. Once the rhythm is expressed, it is often episodic as the basic medullary rhythm is turned on/off subject to a hierarchy of controls. Breathing patterns reflect differences in pulmonary mechanics resulting from differences in body wall and lung architecture and are modulated in different species by various combinations of upper and lower airway mechanoreceptors and arterial chemoreceptors to protect airways, reduce dead space ventilation, enhance gas exchange efficiency, and reduce the cost of breathing.
Collapse
Affiliation(s)
- William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Lal A, Oku Y, Hülsmann S, Okada Y, Miwakeichi F, Kawai S, Tamura Y, Ishiguro M. Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm. J Comput Neurosci 2010; 30:225-40. [PMID: 20544264 PMCID: PMC3058346 DOI: 10.1007/s10827-010-0249-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 03/10/2010] [Accepted: 05/24/2010] [Indexed: 11/28/2022]
Abstract
We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC.
Collapse
Affiliation(s)
- Amit Lal
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Control of respiration in fish, amphibians and reptiles. Braz J Med Biol Res 2010; 43:409-24. [PMID: 20396858 DOI: 10.1590/s0100-879x2010007500025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/25/2010] [Indexed: 11/22/2022] Open
Abstract
Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.
Collapse
|
37
|
Dubreuil V, Barhanin J, Goridis C, Brunet JF. Breathing with phox2b. Philos Trans R Soc Lond B Biol Sci 2009; 364:2477-83. [PMID: 19651649 DOI: 10.1098/rstb.2009.0085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last few years, elucidation of the architecture of breathing control centres has reached the cellular level. This has been facilitated by increasing knowledge of the molecular signatures of various classes of hindbrain neurons. Here, we review the advances achieved by studying the homeodomain factor Phox2b, a transcriptional determinant of neuronal identity in the central and peripheral nervous systems. Evidence from human genetics, neurophysiology and mouse reverse genetics converges to implicate a small population of Phox2b-dependent neurons, located in the retrotrapezoid nucleus, in the detection of CO(2), which is a paramount source of the 'drive to breathe'. Moreover, the same and other studies suggest that an overlapping or identical neuronal population, the parafacial respiratory group, might contribute to the respiratory rhythm at least in some circumstances, such as for the initiation of breathing following birth. Together with the previously established Phox2b dependency of other respiratory neurons (which we review briefly here), our new data highlight a key role of this transcription factor in setting up the circuits for breathing automaticity.
Collapse
|
38
|
Johnson SM, Moris CM, Bartman ME, Wiegel LM. Excitatory and inhibitory effects of opioid agonists on respiratory motor output produced by isolated brainstems from adult turtles (Trachemys). Respir Physiol Neurobiol 2009; 170:5-15. [PMID: 19833235 DOI: 10.1016/j.resp.2009.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 02/07/2023]
Abstract
To determine how central opioid receptor activation alters turtle breathing, respiratory-related hypoglossal (XII) motor bursts were recorded from isolated adult turtle brainstems during 60 min bath applications of agonists for delta- (DOR), kappa- (KOR), or nociceptin/orphanin (NOR) receptors. DADLE (DOR agonist) abolished XII burst frequency at 0.3-0.5 microM. DPDPE (DOR agonist) increased frequency by 40-44% at 0.01-0.1 microM and decreased frequency by 88+/-8% at 1.0 microM. U-50488 and U-59693 (KOR agonists) decreased frequency by 65-68% at 100 and 50 microM, respectively. Orphanin (NOR agonist) decreased frequency by 31-51% at 1.0-2.0 microM during the first 30 min period. Orphanin (0.5 and 2.0 microM) increased bursts/episode. Although morphine (10 microM) abolished frequency in nearly all brainstems, subsequent co-application of phenylephrine (alpha(1)-adrenergic agonist, 20-100 microM) with morphine restored activity to 16-78% of baseline frequency. Thus, DOR, KOR, and NOR activation regulates frequency and NOR activation regulates episodicity, while alpha(1)-adrenergic receptor activation reverses opioid-induced respiratory depression in turtles.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
39
|
Thoby-Brisson M, Karlén M, Wu N, Charnay P, Champagnat J, Fortin G. Genetic identification of an embryonic parafacial oscillator coupling to the preBötzinger complex. Nat Neurosci 2009; 12:1028-35. [PMID: 19578380 DOI: 10.1038/nn.2354] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/29/2009] [Indexed: 11/08/2022]
Abstract
The hindbrain transcription factors Phox2b and Egr2 (also known as Krox20) are linked to the development of the autonomic nervous system and rhombomere-related regulation of breathing, respectively. Mutations in these proteins can lead to abnormal breathing behavior as a result of an alteration in an unidentified neuronal system. We characterized a bilateral embryonic parafacial (e-pF) population of rhythmically bursting neurons at embryonic day (E) 14.5 in mice. These cells expressed Phox2b, were derived from Egr2-expressing precursors and their development was dependent on the integrity of the Egr2 gene. Silencing or eliminating the e-pF oscillator, but not the putative inspiratory oscillator (preBötzinger complex, preBötC), led to an abnormally slow rhythm, demonstrating that the e-pF controls the respiratory rhythm. The e-pF oscillator, the only one active at E14.5, entrained and then coupled with the preBötC, which emerged independently at E15.5. These data establish the dual organization of the respiratory rhythm generator at the time of its inception, when it begins to drive fetal breathing.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique UPR2216, Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
40
|
Fong AY, Zimmer MB, Milsom WK. The conditional nature of the “Central Rhythm Generator” and the production of episodic breathing. Respir Physiol Neurobiol 2009; 168:179-87. [DOI: 10.1016/j.resp.2009.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 12/01/2022]
|
41
|
Kinkead R. Phylogenetic trends in respiratory rhythmogenesis: Insights from ectothermic vertebrates. Respir Physiol Neurobiol 2009; 168:39-48. [DOI: 10.1016/j.resp.2009.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/26/2022]
|
42
|
Horcholle-Bossavit G, Quenet B. Neural model of frog ventilatory rhythmogenesis. Biosystems 2009; 97:35-43. [PMID: 19376192 DOI: 10.1016/j.biosystems.2009.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
In the adult frog respiratory system, periods of rhythmic movements of the buccal floor are interspersed by lung ventilation episodes. The ventilatory activity results from the interaction of two hypothesized oscillators in the brainstem. Here, we model these oscillators with two coupled neural networks, whose co-activation results in the emergence of new dynamics. One of the networks is built with "loop chains" of excitatory and inhibitory neurones producing periodic activities. We define two groups of excitatory neurones whose oscillatory antiphasic sums of activities represent output signals as possible motor commands towards antagonist buccal muscles. The other oscillator is a small network with a self-modulated excitatory input to an excitatory neurone whose episodic firings synchronise some neurones of the first network chains. When this oscillator is silent, the output signals exhibit only regular oscillations, and, when active, the synchronisation process reconfigures the output signals whose new features are representative of lung ventilation motor patterns. The biological interest of this formal model is illustrated by the persistence of the relevant dynamical features when perturbations are introduced in the model, i.e. dynamic noises and architecture modifications. The implementation of the networks with clock-driven continuous time neurones provides simulations with physiological time scales.
Collapse
|
43
|
Davies BL, Brundage CM, Harris MB, Taylor BE. Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and mu-opioid receptors. J Comp Physiol B 2009; 179:579-92. [PMID: 19184042 DOI: 10.1007/s00360-009-0339-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/29/2008] [Accepted: 01/02/2009] [Indexed: 02/03/2023]
Abstract
Location of the lung respiratory rhythm generator (RRG) in the bullfrog brainstem was investigated by examining neurokinin-1 and mu-opioid receptor (NK1R, muOR) colocalization by immunohistochemistry and characterizing the role of these receptors in lung rhythm and episodic pattern generation. NK1R and muOR occurred in brainstems from all developmental stages. In juvenile bullfrogs a distinct area of colocalization was coincident with high-intensity fluorescent labeling of muOR; high-intensity labeling of muOR was not distinctly and consistently localized in tadpole brainstems. NK1R labeling intensity did not change with development. Similarity in colocalization is consistent with similarity in responses to substance P (SP, NK1R agonist) and DAMGO (muOR agonist) when bath applied to bullfrog brainstems of different developmental stages. In early stage tadpoles and juvenile bullfrogs, SP increased and DAMGO decreased lung burst frequency. In juvenile bullfrogs, SP increased lung burst frequency, episode frequency, but decreased number of lung bursts per episode and lung burst duration. In contrast, DAMGO decreased lung burst frequency and burst cycle frequency, episode frequency, and number of lung bursts per episode but increased all other lung burst parameters. Based on these results, we hypothesize that NK1R and muOR colocalization together with a metamorphosis-related increase in muOR intensity marks the location of the lung RRG but not necessarily the lung episodic pattern generator.
Collapse
Affiliation(s)
- B L Davies
- Institute of Arctic Biology, University of Alaska Fairbanks, Rm 311 Irving I, 902 N Koyukuk Drive, Fairbanks, AK 99775, USA
| | | | | | | |
Collapse
|
44
|
Respiratory neuron group in the high cervical spinal cord discovered by optical imaging. Neuroreport 2008; 19:1739-43. [DOI: 10.1097/wnr.0b013e328318edb5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Johnson SM, Kinney ME, Wiegel LM. Inhibitory and excitatory effects of micro-, delta-, and kappa-opioid receptor activation on breathing in awake turtles, Trachemys scripta. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1599-612. [PMID: 18784338 DOI: 10.1152/ajpregu.00020.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For ectothermic vertebrates, such as reptiles, the effects of opioid receptor subtype activation on breathing are poorly understood. On the basis of previous studies on mammals and lampreys, we hypothesized that mu- and delta-opioid receptor (MOR and DOR, respectively) activation would cause respiratory depression, whereas kappa-opioid receptor (KOR) activation would have no effect. To address this question, we measured respiration in awake, freely swimming adult red-eared slider turtles (Trachemys scripta) before and after injection with agonists for specific opioid receptors. Injection of the MOR agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin acetate salt (DAMGO, 1.5 or 6.5 mg/kg) decreased ventilation (Ve) by 72 +/- 9% and 95 +/- 3%, respectively, 4.0 h after injection as a result of decreased breathing frequency and no change in tidal volume (Vt). DOR agonists, such as [d-Pen(2,5)]-enkephalin hydrate (DPDPE, 5.0 mg/kg) and [d-Ala(2),d-Leu(5)]-enkephalin acetate salt (DADLE, 6.3 mg/kg), decreased Ve by 44 +/- 10% and 89 +/- 4%, respectively, 4.0 h after injection as a result of decreased breathing frequency and no change in Vt. DADLE also increased breath duration by a maximum of 25 +/- 9% at 6.0 h after injection. The KOR agonist U-50488 (6.2 mg/kg) increased Vt by a maximum of 52 +/- 30% at 5.0 h after injection, with variable nonsignificant changes in Ve and breathing frequency. Naloxone injections (0.25-0.5 mg/kg) 1.0 h before opioid agonist injections blocked all DAMGO-dependent effects, DPDPE-dependent frequency depression, and DADLE-dependent breath duration augmentation for 2.0 h after agonist injections. These results show that MOR and DOR activation causes respiratory depression as a result of decreased breathing frequency, whereas Vt is increased after KOR activation.
Collapse
Affiliation(s)
- Stephen M Johnson
- Dept. of Comparative Biosciences, School of Veterinary Medicine, Univ. of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA.
| | | | | |
Collapse
|
46
|
Chen AK, Hedrick MS. Role of glutamate and substance P in the amphibian respiratory network during development. Respir Physiol Neurobiol 2008; 162:24-31. [PMID: 18450524 PMCID: PMC2504693 DOI: 10.1016/j.resp.2008.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/18/2008] [Accepted: 03/24/2008] [Indexed: 01/08/2023]
Abstract
This study tested the hypothesis that glutamatergic ionotropic (AMPA/kainate) receptors and neurokinin receptors (NKR) are important in the regulation of respiratory motor output during development in the bullfrog. The roles of these receptors were studied with in vitro brainstem preparations from pre-metamorphic tadpoles and post-metamorphic frogs. Brainstems were superfused with an artificial cerebrospinal fluid at 20-22 degrees C containing CNQX, a selective non-NMDA antagonist, or with substance P (SP), an agonist of NKR. Blockade of glutamate receptors with CNQX in both groups caused a reduction of lung burst frequency that was reversibly abolished at 5 microM (P<0.01). CNQX, but not SP, application produced a significant increase (P<0.05) in gill and buccal frequency in tadpoles and frogs, respectively. SP caused a significant increase (P<0.05) in lung burst frequency at 5 microM in both groups. These results suggest that glutamatergic activation of AMPA/kainate receptors is necessary for generation of lung burst activity and that SP is an excitatory neurotransmitter for lung burst frequency generation. Both glutamate and SP provide excitatory input for lung burst generation throughout the aquatic to terrestrial developmental transition in bullfrogs.
Collapse
Affiliation(s)
- Anna K. Chen
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542 USA
| | - Michael S. Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542 USA
| |
Collapse
|
47
|
Fournier S, Kinkead R. Role of pontine neurons in central O(2) chemoreflex during development in bullfrogs (Lithobates catesbeiana). Neuroscience 2008; 155:983-96. [PMID: 18590803 DOI: 10.1016/j.neuroscience.2008.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 11/25/2022]
Abstract
The present study used an in vitro brainstem preparation from pre-metamorphic tadpoles and adult bullfrogs (Lithobates catesbeiana) to understand the neural mechanisms associated with central O(2) chemosensitivity and its maturation. In this species, brainstem hypoxia increases fictive lung ventilation in tadpoles but decreases in adults. Previous studies have shown that alpha(1)-adrenoceptor inactivation prevents these responses, suggesting that noradrenergic neurons are involved. We first tested the hypothesis that the pons (which includes noradrenergic neurons from the locus coeruleus; LC) plays a role in the lung burst frequency response to central hypoxia by comparing the effects of brainstem transection at the LC level between pre-metamorphic tadpoles and adults. Data show that brainstem transection prevents the lung burst frequency response in both stage groups. During development, the progressive decrease in the Na(+)/K(+)/Cl(-) co-transporter NKCC1 contributes to the maturation of neural networks. Because NKCC1 becomes activated during hypoxia, we then tested the hypothesis that NKCC1 contributes to maturation of the central O(2) chemoreflex. Double labeling experiments showed that the proportion of tyrosine hydroxylase positive neurons expressing NKCC1 in the LC decreases during development. Inactivation of NKCC1 with bumetanide bath application reversed the lung burst response to hypoxia in tadpoles. Bumetanide inhibited the response in adults. These data indicate that a structure within the pons (potentially the LC) is necessary to the central hypoxic chemoreflex and demonstrate that NKCC1 plays a role in central O(2) chemosensitivity and its maturation in this species.
Collapse
Affiliation(s)
- S Fournier
- Department of Pediatrics, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, QC, Canada
| | | |
Collapse
|
48
|
Reconfiguration of respiratory-related population activity in a rostrally tilted transversal slice preparation following blockade of inhibitory neurotransmission in neonatal rats. Pflugers Arch 2008; 457:185-95. [DOI: 10.1007/s00424-008-0509-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/10/2008] [Accepted: 03/23/2008] [Indexed: 11/25/2022]
|
49
|
Oku Y, Kimura N, Masumiya H, Okada Y. Spatiotemporal organization of frog respiratory neurons visualized on the ventral medullary surface. Respir Physiol Neurobiol 2008; 161:281-90. [PMID: 18448395 DOI: 10.1016/j.resp.2008.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
50
|
Bass AH, Remage-Healey L. Central pattern generators for social vocalization: androgen-dependent neurophysiological mechanisms. Horm Behav 2008; 53:659-72. [PMID: 18262186 PMCID: PMC2570494 DOI: 10.1016/j.yhbeh.2007.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 12/04/2007] [Accepted: 12/10/2007] [Indexed: 12/13/2022]
Abstract
Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals.
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|