1
|
Merola C, Caioni G, Bertolucci C, Lucon-Xiccato T, Savaşçı BB, Tait S, Casella M, Camerini S, Benedetti E, Perugini M. Embryonic and larval exposure to propylparaben induces developmental and long-term neurotoxicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168925. [PMID: 38040379 DOI: 10.1016/j.scitotenv.2023.168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Parabens are preservatives found in cosmetics, processed foods, and medications. The harmful repercussions on the central nervous system by one of the most common parabens, propylparaben (PrP), are yet unknown, especially during development. In this study, the neurodevelopmental effects of PrP and long-term neurotoxicity were investigated in the zebrafish model, using an integrated approach. Zebrafish embryos were exposed to two different concentrations of PrP (10 and 1000 μg/L), then larvae were examined for their behavioral phenotypes (open-field behavior, startle response, and circadian rhythmicity) and relevant brain markers (cyp19a1b, pax6a, shank3a, and gad1b). Long-term behavioral and cognitive impacts on sociability, cerebral functional asymmetry and thigmotaxis were also examined on juveniles at 30 dpf and 60 dpf. Moreover, proteomics and gene expression analysis were assessed in brains of 60 dpf zebrafish. Interestingly, thigmotaxis was decreased by the high dose in larvae and increased by the low dose in juveniles. The expression of shank3a and gad1b genes was repressed by both PrP concentrations pointing to possible effects of PrP on neurodevelopment and synaptogenesis. Proteomics analysis evidenced alterations related to brain development and lipid metabolism. Overall, the results demonstrated that early-life exposure to PrP promotes developmental and persistent neurobehavioral alterations in the zebrafish model, affecting genes and protein levels possibly associated with brain diseases.
Collapse
Affiliation(s)
- Carmine Merola
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Beste Başak Savaşçı
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Sabrina Tait
- Gender-specific prevention and health Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Marialuisa Casella
- Mass Spectrometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Serena Camerini
- Mass Spectrometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| |
Collapse
|
2
|
Li J, Miramontes TG, Czopka T, Monk KR. Synaptic input and Ca 2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nat Neurosci 2024; 27:219-231. [PMID: 38216650 DOI: 10.1038/s41593-023-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca2+ activity in OPCs predict where a subset of myelin sheaths forms in differentiated oligodendrocytes. Further analyses reveal that spontaneous synaptic release is integral to OPC Ca2+ activity, while evoked synaptic release contributes only in early development. Finally, disruption of the synaptic genes dlg4a/dlg4b, gphnb and nlgn3b impairs OPC differentiation and myelination. Together, we propose that neuron-OPC synapses are dynamically assembled and can predetermine myelination patterns through Ca2+ signaling.
Collapse
Affiliation(s)
- Jiaxing Li
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Micheva KD, Gong B, Collman F, Weinberg RJ, Smith SJ, Trimmer JS, Murray KD. Developing a Toolbox of Antibodies Validated for Array Tomography-Based Imaging of Brain Synapses. eNeuro 2023; 10:ENEURO.0290-23.2023. [PMID: 37945352 PMCID: PMC10748464 DOI: 10.1523/eneuro.0290-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Antibody (Ab)-based imaging techniques rely on reagents whose performance may be application specific. Because commercial antibodies are validated for only a few purposes, users interested in other applications may have to perform extensive in-house antibody testing. Here, we present a novel application-specific proxy screening step to efficiently identify candidate antibodies for array tomography (AT), a serial section volume microscopy technique for high-dimensional quantitative analysis of the cellular proteome. To identify antibodies suitable for AT-based analysis of synapses in mammalian brain, we introduce a heterologous cell-based assay that simulates characteristic features of AT, such as chemical fixation and resin embedding that are likely to influence antibody binding. The assay was included into an initial screening strategy to generate monoclonal antibodies that can be used for AT. This approach simplifies the screening of candidate antibodies and has high predictive value for identifying antibodies suitable for AT analyses. In addition, we have created a comprehensive database of AT-validated antibodies with a neuroscience focus and show that these antibodies have a high likelihood of success for postembedding applications in general, including immunogold electron microscopy. The generation of a large and growing toolbox of AT-compatible antibodies will further enhance the value of this imaging technique.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Cellular and Molecular Physiology, Stanford School of Medicine, Stanford, 94305, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
| | | | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, 27514, NC
| | | | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, 95618, CA
| |
Collapse
|
4
|
Shrestha AP, Stiles M, Grambergs RC, Boff JM, Madireddy S, Mondal K, Rajmanna R, Porter H, Sherry DM, Proia RL, Vaithianathan T, Mandal N. The Role of Sphingosine-1-Phosphate Receptor 2 in Mouse Retina Light Responses. Biomolecules 2023; 13:1691. [PMID: 38136563 PMCID: PMC10741782 DOI: 10.3390/biom13121691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
The bioactive sphingolipid sphingosine-1-phosphate (S1P) acts as a ligand for a family of G protein-coupled S1P receptors (S1PR1-5) to participate in a variety of signaling pathways. However, their specific roles in the neural retina remain unclear. We previously showed that S1P receptor subtype 2 (S1PR2) is expressed in murine retinas, primarily in photoreceptors and bipolar cells, and its expression is altered by retinal stress. This study aims to elucidate the role of S1PR2 in the mouse retina. We examined light responses by electroretinography (ERG), structural differences by optical coherence tomography (OCT), and protein levels by immunohistochemistry (IHC) in wild-type (WT) and S1PR2 knockout (KO) mice at various ages between 3 and 6 months. We found that a- and b-wave responses significantly increased at flash intensities between 400~2000 and 4~2000 cd.s/m2, respectively, in S1PR2 KO mice relative to those of WT controls at baseline. S1PR2 KO mice also exhibited significantly increased retinal nerve fiber layer (RNFL) and outer plexiform layer (OPL) thickness by OCT relative to the WT. Finally, in S1PR2 KO mice, we observed differential labeling of synaptic markers by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR). These results suggest a specific involvement of S1PR2 in the structure and synaptic organization of the retina and a potential role in light-mediated functioning of the retina.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan Stiles
- Departments of Cell Biology, Neurosurgery, and Pharmacological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Koushik Mondal
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rhea Rajmanna
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hunter Porter
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - David M. Sherry
- Departments of Cell Biology, Neurosurgery, and Pharmacological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Micheva KD, Gong B, Collman F, Weinberg RJ, Smith SJ, Trimmer JS, Murray KD. Developing a Toolbox of Antibodies Validated for Array Tomography-Based Imaging of Brain Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546920. [PMID: 37425759 PMCID: PMC10327040 DOI: 10.1101/2023.06.28.546920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Antibody-based imaging techniques rely on reagents whose performance may be application-specific. Because commercial antibodies are validated for only a few purposes, users interested in other applications may have to perform extensive in-house antibody testing. Here we present a novel application-specific proxy screening step to efficiently identify candidate antibodies for array tomography (AT), a serial section volume microscopy technique for high-dimensional quantitative analysis of the cellular proteome. To identify antibodies suitable for AT-based analysis of synapses in mammalian brain, we introduce a heterologous cell-based assay that simulates characteristic features of AT, such as chemical fixation and resin embedding that are likely to influence antibody binding. The assay was included into an initial screening strategy to generate monoclonal antibodies that can be used for AT. This approach simplifies the screening of candidate antibodies and has high predictive value for identifying antibodies suitable for AT analyses. In addition, we have created a comprehensive database of AT-validated antibodies with a neuroscience focus and show that these antibodies have a high likelihood of success for postembedding applications in general, including immunogold electron microscopy. The generation of a large and growing toolbox of AT-compatible antibodies will further enhance the value of this imaging technique.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Cellular and Molecular Physiology, Stanford School of Medicine, Stanford, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Richard J. Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC
| | | | - James S. Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Karl D. Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA
| |
Collapse
|
6
|
Shrestha AP, Stiles M, Grambergs RC, Boff JM, Madireddy S, Mondal K, Rajmanna R, Porter H, Sherry D, Proia RL, Vaithianathan T, Mandal N. The role of sphingosine-1-phosphate receptor 2 in mouse retina light responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555709. [PMID: 37732206 PMCID: PMC10508730 DOI: 10.1101/2023.09.01.555709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The bioactive sphingolipid sphingosine-1-phosphate (S1P) acts as a ligand for a family of G protein-coupled S1P receptors (S1PR1-5) to participate in a variety of signaling pathways. However, their specific roles in the neural retina remain unclear. We previously showed that S1P receptor subtype 2 (S1PR2) is expressed in murine retinas, primarily in photoreceptors and bipolar cells, and its expression is altered by retinal stress. This study aims to elucidate the role of S1PR2 in the mouse retina. We examined light responses by electroretinography (ERG), structural differences by optical coherence tomography (OCT), and protein levels by immunohistochemistry (IHC) in wild-type (WT) and S1PR2 knockout (KO) mice at various ages between 3 and 6 months. We found that a- and b-wave responses significantly increased at flash intensities between 400∼2000 and 4∼2,000 cd.s/m 2 respectively, in S1PR2 KO mice relative to those of WT controls at baseline. S1PR2 KO mice also exhibited significantly increased retinal nerve fiber layer (RNFL) and outer plexiform layer (OPL) thickness by OCT relative to the WT. Finally, in S1PR2 KO mice, we observed differential labeling of synaptic markers by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR). These results suggest a specific involvement of S1PR2 in the structure and synaptic organization of the retina and a potential role in light-mediated functioning of the retina.
Collapse
|
7
|
Analysis of Axonal Regrowth and Dendritic Remodeling After Optic Nerve Crush in Adult Zebrafish. Methods Mol Biol 2023; 2636:163-190. [PMID: 36881300 DOI: 10.1007/978-1-0716-3012-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Neurodegenerative diseases and central nervous system (CNS) injuries are frequently characterized by axonal damage, as well as dendritic pathology. In contrast to mammals, adult zebrafish show a robust regeneration capacity after CNS injury and form the ideal model organism to further unravel the underlying mechanisms for both axonal and dendritic regrowth upon CNS damage. Here, we first describe an optic nerve crush injury model in adult zebrafish, an injury paradigm that inflicts de- and regeneration of the axons of retinal ganglion cells (RGCs), but also triggers RGC dendrite disintegration and subsequent recovery in a stereotyped and timed process. Next, we outline protocols for quantifying axonal regeneration and synaptic recovery in the brain, using retro- and anterograde tracing experiments and an immunofluorescent staining for presynaptic compartments, respectively. Finally, methods to analyze RGC dendrite retraction and subsequent regrowth in the retina are delineated, using morphological measurements and immunofluorescent staining for dendritic and synaptic markers.
Collapse
|
8
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
9
|
Atzei A, Jense I, Zwart EP, Legradi J, Venhuis BJ, van der Ven LT, Heusinkveld HJ, Hessel EV. Developmental Neurotoxicity of Environmentally Relevant Pharmaceuticals and Mixtures Thereof in a Zebrafish Embryo Behavioural Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136717. [PMID: 34206423 PMCID: PMC8297305 DOI: 10.3390/ijerph18136717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.
Collapse
Affiliation(s)
- Alessandro Atzei
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Ingrid Jense
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Edwin P. Zwart
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Jessica Legradi
- Environment & Health, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Bastiaan J. Venhuis
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Leo T.M. van der Ven
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Harm J. Heusinkveld
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
- Correspondence:
| | - Ellen V.S. Hessel
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| |
Collapse
|
10
|
Van Houcke J, Geeraerts E, Vanhunsel S, Beckers A, Noterdaeme L, Christiaens M, Bollaerts I, De Groef L, Moons L. Extensive growth is followed by neurodegenerative pathology in the continuously expanding adult zebrafish retina. Biogerontology 2019. [PMID: 30382466 DOI: 10.1007/s10522-018-9780-6/figures/10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The development of effective treatments for age-related neurodegenerative diseases remains one of the biggest medical challenges today, underscoring the high need for suitable animal model systems to improve our understanding of aging and age-associated neuropathology. Zebrafish have become an indispensable complementary model organism in gerontology research, yet their growth-control properties significantly differ from those in mammals. Here, we took advantage of the clearly defined and highly conserved structure of the fish retina to study the relationship between the processes of growth and aging in the adult zebrafish central nervous system (CNS). Detailed morphological measurements reveal an early phase of extensive retinal growth, where both the addition of new cells and stretching of existent tissue drive the increase in retinal surface. Thereafter, and coinciding with a significant decline in retinal growth rate, a neurodegenerative phenotype becomes apparent,-characterized by a loss of synaptic integrity, an age-related decrease in cell density and the onset of cellular senescence. Altogether, these findings support the adult zebrafish retina as a valuable model for gerontology research and CNS disease modeling and will hopefully stimulate further research into the mechanisms of aging and age-related pathology.
Collapse
Affiliation(s)
- Jessie Van Houcke
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lut Noterdaeme
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Marijke Christiaens
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Ilse Bollaerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Van Houcke J, Geeraerts E, Vanhunsel S, Beckers A, Noterdaeme L, Christiaens M, Bollaerts I, De Groef L, Moons L. Extensive growth is followed by neurodegenerative pathology in the continuously expanding adult zebrafish retina. Biogerontology 2018; 20:109-125. [PMID: 30382466 DOI: 10.1007/s10522-018-9780-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jessie Van Houcke
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lut Noterdaeme
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Marijke Christiaens
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Ilse Bollaerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Fierro J, Haynes DR, Washbourne P. 4.1Ba is necessary for glutamatergic synapse formation in the sensorimotor circuit of developing zebrafish. PLoS One 2018; 13:e0205255. [PMID: 30286167 PMCID: PMC6171929 DOI: 10.1371/journal.pone.0205255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023] Open
Abstract
During the process of synapse formation, thousands of proteins assemble at prospective sites of cell-cell communication. Although many of these proteins have been identified, the roles they play in generating functional connections during development remain unknown. 4.1 scaffolding proteins have been implicated in synapse formation and maturation in vitro, but in vivo studies for some family members have suggested these proteins are not important for this role. We examined the role of family member 4.1B because it has been implicated in glutamatergic synaptogenesis, but has not been described in vivo. We identified two 4.1B genes in zebrafish, 4.1Ba and 4.1Bb, by sequence comparisons and synteny analysis. In situ hybridization shows these genes are differentially expressed, with 4.1Ba expressed primarily in the nervous system and 4.1Bb expressed in the nervous system and muscle, but not the spinal cord. We focused our studies on 4.1Ba in the spinal cord. 4.1Ba knockdown reduced the number of glutamatergic synapses at caudal primary motor neurons and caused an increase in the duration of touch-evoked coiling. These results suggest 4.1Ba is important for the formation of functional glutamatergic synapses in the developing zebrafish spinal cord.
Collapse
Affiliation(s)
- Javier Fierro
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Dylan R. Haynes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
13
|
Beckers A, Van Dyck A, Bollaerts I, Van houcke J, Lefevere E, Andries L, Agostinone J, Van Hove I, Di Polo A, Lemmens K, Moons L. An Antagonistic Axon-Dendrite Interplay Enables Efficient Neuronal Repair in the Adult Zebrafish Central Nervous System. Mol Neurobiol 2018; 56:3175-3192. [DOI: 10.1007/s12035-018-1292-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022]
|
14
|
Freifeld L, Odstrcil I, Förster D, Ramirez A, Gagnon JA, Randlett O, Costa EK, Asano S, Celiker OT, Gao R, Martin-Alarcon DA, Reginato P, Dick C, Chen L, Schoppik D, Engert F, Baier H, Boyden ES. Expansion microscopy of zebrafish for neuroscience and developmental biology studies. Proc Natl Acad Sci U S A 2017; 114:E10799-E10808. [PMID: 29162696 PMCID: PMC5740639 DOI: 10.1073/pnas.1706281114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.
Collapse
Affiliation(s)
- Limor Freifeld
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
| | - Iris Odstrcil
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Dominique Förster
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Alyson Ramirez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Emma K Costa
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
| | - Shoh Asano
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
| | - Orhan T Celiker
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139
| | - Ruixuan Gao
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139
| | | | - Paul Reginato
- Department of Biological Engineering, MIT, Cambridge, MA 02139
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138
| | - Cortni Dick
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
| | - Linlin Chen
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
- Neuroscience Program, Wellesley College, Wellesley, MA 02481
| | - David Schoppik
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York NY 10016
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139;
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139
- Center for Neurobiological Engineering, MIT, Cambridge, MA 02139
| |
Collapse
|
15
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
16
|
Yan Q, Zhai L, Zhang B, Dallman JE. Spatial patterning of excitatory and inhibitory neuropil territories during spinal circuit development. J Comp Neurol 2017; 525:1649-1667. [PMID: 27997694 DOI: 10.1002/cne.24152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/13/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
To generate rhythmic motor behaviors, both single neurons and neural circuits require a balance between excitatory inputs that trigger action potentials and inhibitory inputs that promote a stable resting potential (E/I balance). Previous studies have focused on individual neurons and have shown that, over a short spatial scale, excitatory and inhibitory (E/I) synapses tend to form structured territories with inhibitory inputs enriched on cell bodies and proximal dendrites and excitatory inputs on distal dendrites. However, systems-level E/I patterns, at spatial scales larger than single neurons, are largely uncharted. We used immunostaining for PSD-95 and gephyrin postsynaptic scaffolding proteins as proxies for excitatory and inhibitory synapses, respectively, to quantify the numbers and map the distributions of E/I synapses in zebrafish spinal cord at both an embryonic stage and a larval stage. At the embryonic stage, we found that PSD-95 puncta outnumber gephyrin puncta, with the number of gephyrin puncta increasing to match that of PSD-95 puncta at the larval stage. At both stages, PSD-95 puncta are enriched in the most lateral neuropil corresponding to distal dendrites while gephyrin puncta are enriched on neuronal somata and in the medial neuropil. Significantly, similar to synaptic puncta, neuronal processes also exhibit medial-lateral territories at both developmental stages with enrichment of glutamatergic (excitatory) processes laterally and glycinergic (inhibitory) processes medially. This establishment of neuropil excitatory-inhibitory structure largely precedes dendritic arborization of primary motor neurons, suggesting that the structured neuropil could provide a framework for the development of E/I balance at the cellular level. J. Comp. Neurol. 525:1649-1667, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qing Yan
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| | - Lu Zhai
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| | - Bo Zhang
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| | - Julia E Dallman
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| |
Collapse
|
17
|
Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Front Mol Neurosci 2016; 9:55. [PMID: 27458342 PMCID: PMC4935692 DOI: 10.3389/fnmol.2016.00055] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies.
Collapse
Affiliation(s)
- Robert A. Kozol
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Alexander J. Abrams
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - David M. James
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Elena Buglo
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - Qing Yan
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | | |
Collapse
|
18
|
Lv C, Stewart WJ, Akanyeti O, Frederick C, Zhu J, Santos-Sacchi J, Sheets L, Liao JC, Zenisek D. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels. Cell Rep 2016; 15:2784-95. [PMID: 27292637 DOI: 10.1016/j.celrep.2016.05.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022] Open
Abstract
Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term "ghost ribbons." Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.
Collapse
Affiliation(s)
- Caixia Lv
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - William J Stewart
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - Otar Akanyeti
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - Courtney Frederick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Joseph Santos-Sacchi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Lavinia Sheets
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Opthalmology and Visual Sciences, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
19
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
20
|
Thomas GM, Hayashi T. Smarter neuronal signaling complexes from existing components: How regulatory modifications were acquired during animal evolution. Bioessays 2013; 35:929-39. [DOI: 10.1002/bies.201300076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gareth M. Thomas
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology; Temple University Medical School; Philadelphia PA USA
| | - Takashi Hayashi
- Department of Molecular Neurobiology and Pharmacology; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
21
|
Easley-Neal C, Fierro J, Buchanan J, Washbourne P. Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep 2013; 3:1199-212. [PMID: 23602570 DOI: 10.1016/j.celrep.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022] Open
Abstract
Synapse formation is a complex process that involves the recruitment and assembly of a myriad of pre- and postsynaptic proteins. Despite being present at every synapse in the vertebrate CNS, little is known about the transport, recruitment, and stabilization of synapsin at nascent synapses during development. We examined the transport and recruitment of synapsin to nascent presynaptic terminals in vivo in the developing zebrafish spinal cord. Synapsin was transported in a transport packet independently of two other presynaptic organelles: synaptic vesicle (SV) protein transport vesicles (STVs) and Piccolo-containing active zone precursor transport vesicles (PTVs). During presynaptic assembly, recruitment of all three transport packets occurred in an ordered sequence: STVs preceded PTVs, which in turn preceded synapsin. Importantly, cyclin-dependent kinase 5 (Cdk5) specifically regulated the late recruitment of synapsin transport packets at synapses. These results point to additional layers of complexity in the established mechanisms of synaptogenesis.
Collapse
|
22
|
Walsh GS, Grant PK, Morgan JA, Moens CB. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration. Development 2011; 138:3033-42. [PMID: 21693519 PMCID: PMC3119310 DOI: 10.1242/dev.063842] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.
Collapse
Affiliation(s)
- Gregory S Walsh
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
23
|
Sheets L, Trapani JG, Mo W, Obholzer N, Nicolson T. Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development 2011; 138:1309-19. [PMID: 21350006 DOI: 10.1242/dev.059451] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ribbon synapses of the ear, eye and pineal gland contain a unique protein component: Ribeye. Ribeye consists of a novel aggregation domain spliced to the transcription factor CtBP2 and is one of the most abundant proteins in synaptic ribbon bodies. Although the importance of Ribeye for the function and physical integrity of ribbon synapses has been shown, a specific role in synaptogenesis has not been described. Here, we have modulated Ribeye expression in zebrafish hair cells and have examined the role of Ribeye in synapse development. Knockdown of ribeye resulted in fewer stimulus-evoked action potentials from afferent neurons and loss of presynaptic Ca(V)1.3a calcium channel clusters in hair cells. Additionally, afferent innervation of hair cells was reduced in ribeye morphants, and the reduction was correlated with depletion of Ribeye punctae. By contrast, transgenic overexpression of Ribeye resulted in Ca(V)1.3a channels colocalized with ectopic aggregates of Ribeye protein. Overexpression of Ribeye, however, was not sufficient to create ectopic synapses. These findings reveal two distinct functions of Ribeye in ribbon synapse formation--clustering Ca(V)1.3a channels at the presynapse and stabilizing contacts with afferent neurons--and suggest that Ribeye plays an organizing role in synaptogenesis.
Collapse
Affiliation(s)
- Lavinia Sheets
- Howard Hughes Medical Institute, Oregon Hearing Research Center, 3181 SW Sam Jackson Park Road, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
24
|
Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M, Fujii S, Higashinakagawa T, Yamamoto T. A functional analysis of GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet 2010; 55:155-62. [PMID: 20111057 DOI: 10.1038/jhg.2010.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Array-based comparative genomic hybridization identified a 2.3-Mb microdeletion of 17p13.2p13.1 in a boy presenting with moderate mental retardation, intractable epilepsy and dysmorphic features. This deletion region was overlapped with the previously proposed shortest region overlapped for microdeletion of 17p13.1 in patients with mental retardation, microcephaly, microretrognathia and abnormal magnetic resonance imaging (MRI) findings of cerebral white matter, in which at least 17 known genes are included. Among them, DLG4/PSD95, GPS2, GABARAP and KCTD11 have a function in neuronal development. Because of the functional importance, we paid attention to DLG4/PSD95 and GABARAP, and analyzed zebrafish in which the zebrafish homolog of human DLG4/PSD95 and GABARAP was knocked down and found that gabarap knockdown resulted in small head and hypoplastic mandible. This finding would be similar to the common findings of the patients with 17p13.1 deletions. Although there were no pathogenic mutations in DLG4/PSD95 or GABARAP in a cohort study with 142 patients with idiopathic developmental delay with/without epilepsy, further studies would be required for genes included in this region.
Collapse
Affiliation(s)
- Yuta Komoike
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:125-37. [PMID: 18248172 DOI: 10.1089/zeb.2005.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Meyer MP, Smith SJ. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci 2006; 26:3604-14. [PMID: 16571769 PMCID: PMC6673851 DOI: 10.1523/jneurosci.0223-06.2006] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To explore the relationship between axon arbor growth and synaptogenesis, developing retinal ganglion cell (RGC) axon arbors in zebrafish optic tectum were imaged in vivo at high temporal and spatial resolution using two-photon microscopy. Individual RGC axons were dually labeled by expression of a cytosolic red fluorescent protein (DsRed Express) to mark arbor structure and a fusion of the synaptic vesicle protein synaptophysin with green fluorescent protein (Syp:GFP) to mark presynaptic vesicles. Analysis of time-lapse sequences acquired at 10 min intervals revealed unexpectedly rapid kinetics of both axon branch and vesicle cluster turnover. Nascent axonal branches exhibited short average lifetimes of 19 min, and only 17% of newly extended axonal processes persisted for periods exceeding 3 h. The majority (70%) of Syp:GFP puncta formed on newly extended axonal processes. Syp:GFP puncta also exhibited short average lifetimes of 30 min, and only 34% of puncta were stabilized for periods exceeding 3 h. Moreover, strongly correlated dynamics of Syp:GFP puncta and branch structure suggest that synaptogenesis exerts strong influences on both the extension and the selective stabilization of nascent branches. First, new branches form almost exclusively at newly formed Syp:GFP puncta. Second, stabilized nascent branches invariably bear Syp:GFP puncta, and the detailed dynamics of branch retraction suggest strongly that nascent synapses can act at branch tips to arrest retraction. These observations thus provide evidence that synaptogenesis guides axon arbor growth by first promoting initial branch extension and second by selective branch stabilization.
Collapse
Affiliation(s)
- Martin P Meyer
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|