1
|
Hu Y, Sang N, Wu A, Pu J, Yan H, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Different types of bile acids exhibit opposite regulatory effects on lipid metabolism in finishing pigs through bile acid receptors. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:25-36. [PMID: 40135169 PMCID: PMC11930731 DOI: 10.1016/j.aninu.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 03/27/2025]
Abstract
The purpose of this research was to investigate how different bile acids impact lipid metabolism and carcass characteristics in finishing pigs, along with the potential mechanisms involved. Twenty-one finishing pigs (Duroc×Landrace×Yorkshire [DLY]; average BW = 144.38 ± 8.92 kg) were assigned to three dietary treatments, with each treatment containing seven replicates, each consisting of one pig. The three dietary treatments included: a basic diet, a basic diet supplemented with 500 mg/kg of hyodeoxycholic acid (HDCA), and a basic diet supplemented with 500 mg/kg of lithocholic acid (LCA). The trial lasted for 28 d. Hyodeoxycholic acid was used in the in vitro experiments and added to mature 3T3-L1 adipocytes for 4 d to elucidate the mechanism by which bile acids regulate lipid metabolism. The results suggested that HDCA tended to decrease backfat thickness in finishing pigs (P = 0.094) and reduced the size of lipid droplets in 3T3-L1 adipocytes (P = 0.012), whereas LCA increased backfat thickness (P = 0.016) and induced larger lipid droplets in the abdominal adipose tissue (P = 0.003). Furthermore, HDCA enhanced the expression of Takeda G-protein-coupled receptor 5 protein and hormone-sensitive lipase (HSL) gene in backfat of pigs (P < 0.05) and increased the protein expression of phosphorylated HSL (p-HSL) in vitro (P = 0.093). Compared to HDCA, LCA addition increased the gene and protein expression of peroxisome proliferator activated receptor gamma in backfat of pigs (P < 0.05) and enhanced the expression of hepatic genes sterol regulatory element-binding protein-1c and fatty acid synthase (P < 0.05). In conclusion, HDCA enhanced lipolysis and partially decreased backfat thickness in finishing pigs, while LCA promoted lipid synthesis and increased backfat thickness of pigs. The variations in the effects of various bile acids on bile acid receptors could explain these functional differences.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ni Sang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
2
|
Wang C, Yang Y, Chen J, Dai X, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Berberine Protects against High-Energy and Low-Protein Diet-Induced Hepatic Steatosis: Modulation of Gut Microbiota and Bile Acid Metabolism in Laying Hens. Int J Mol Sci 2023; 24:17304. [PMID: 38139133 PMCID: PMC10744296 DOI: 10.3390/ijms242417304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| |
Collapse
|
3
|
Liang M, Yang H, Xu L, Cao L. Obeticholic acid treatment of mice to promote fertilization and reproduction. ZYGOTE 2023; 31:527-536. [PMID: 37655605 DOI: 10.1017/s0967199423000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, has been demonstrated to ameliorate the histopathological characteristics of liver damage. Nonetheless, the systemic safety profile of OCA with regard to reproduction and development remains poorly understood. In the present study, we conducted a dose-response experiment by administering OCA at doses of 5 mg/kg, 10 mg/kg, or 20 mg/kg through tube feeding to investigate its effect on reproductive development and fertilization rate in both male and female mice. Furthermore, we evaluated the levels of protein and mitochondrial function in the placenta through western blot, qPCR, and scanning electron microscopy. The results showed that 10 mg/kg and 20 mg/kg OCA doses significantly reduced the rate of placental implantation (P < 0.05). Also, OCA increased maternal body weight. In addition, OCA increased levels of FXR and TGR5 and produced changes in oxidative stress levels (P < 0.05). Mitochondrial activity result found that 10 mg/kg and 20 mg/kg of OCA significantly reduced the mitophagy autosomes/nucleus compared with the normal control group (P < 0.05). What is more, there was no significant difference in sperm count after OCA intervention in either C57BL/10 mice or BALB/c mice. Overall, we demonstrated that OCA treatment protected against placental implantation by suppressing placental oxidative stress and mitochondrial activity.
Collapse
Affiliation(s)
- Ming Liang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong Province, China
| | - Huailiang Yang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong Province, China
| | - Lanyong Xu
- The People's Hospital of Gaotang, Gaotang People's Hospital Affiliated to Jining Medical College, Gaotang, 252800, Shandong Province, China
| | - Longqiao Cao
- Department of Reproductive Medicine, The First People's Hospital of Jining, Jining, 272011, Shandong Province, China
| |
Collapse
|
4
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
5
|
Wu S, Wang X, Xing W, Li F, Liang M, Li K, He Y, Wang J. An update on animal models of liver fibrosis. Front Med (Lausanne) 2023; 10:1160053. [PMID: 37035335 PMCID: PMC10076546 DOI: 10.3389/fmed.2023.1160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The development of liver fibrosis primarily determines quality of life as well as prognosis. Animal models are often used to model and understand the underlying mechanisms of human disease. Although organoids can be used to simulate organ development and disease, the technology still faces significant challenges. Therefore animal models are still irreplaceable at this stage. Currently, in vivo models of liver fibrosis can be classified into five categories based on etiology: chemical, dietary, surgical, transgenic, and immune. There is a wide variety of animal models of liver fibrosis with varying efficacy, which have different implications for proper understanding of the disease and effective screening of therapeutic agents. There is no high-quality literature recommending the most appropriate animal models. In this paper, we will describe the progress of commonly used animal models of liver fibrosis in terms of their development mechanisms, applications, advantages and disadvantages, and recommend appropriate animal models for different research purposes.
Collapse
Affiliation(s)
- ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Liang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - KeShen Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Yan He,
| | - JianMing Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- JianMing Wang,
| |
Collapse
|
6
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|
7
|
Lee EJ, Kim Y, Kim JE, Yoon EL, Lee SR, Jun DW. ALS-L1023 from Melissa officinalis Alleviates Liver Fibrosis in a Non-Alcoholic Fatty Liver Disease Model. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010100. [PMID: 36676050 PMCID: PMC9863634 DOI: 10.3390/life13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
ALS-L1023 is an ingredient extracted from Melissa officinalis L. (Labiatae; lemon balm), which is known as a natural medicine that suppresses angiogenesis. Herein, we aimed to determine whether ALS-L1023 could alleviate liver fibrosis in the non-alcoholic fatty liver disease (NAFLD) model. C57BL/6 wild-type male mice (age, 6 weeks old) were fed a choline-deficient high-fat diet (CDHFD) for 10 weeks to induce NAFLD. For the next 10 weeks, two groups of mice received the test drug along with CDHFD. Two doses (a low dose, 800 mg/kg/day; and a high dose, 1200 mg/kg/day) of ALS-L1023 were selected and mixed with feed for administration. Obeticholic acid (OCA; 10 mg/kg/day) was used as the positive control. Biochemical analysis revealed that the ALS-L1023 low-dose group had significantly decreased alanine transaminase and aspartate transaminase. The area of fibrosis significantly decreased due to the administration of ALS-L1023, and the anti-fibrotic effect of ALS-L1023 was greater than that of OCA. RNA sequencing revealed that the responder group had lower expression of genes related to the hedgehog-signaling pathway than the non-responder group. ALS-L1023 may exert anti-fibrotic effects in the NAFLD model, suggesting that it may provide potential benefits for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Republic of Korea
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ji Eun Kim
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea
| | - Eileen Laurel Yoon
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Ryol Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Correspondence: (S.R.L.); (D.W.J.)
| | - Dae Won Jun
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Republic of Korea
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
- Correspondence: (S.R.L.); (D.W.J.)
| |
Collapse
|
8
|
Brennan PN, Dillon JF, McCrimmon R. Advances and Emerging Therapies in the Treatment of Non-alcoholic Steatohepatitis. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:148-155. [PMID: 36694893 PMCID: PMC9835815 DOI: 10.17925/ee.2022.18.2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) now represents one of the most prevalent forms of cirrhosis and hepatocellular carcinoma. A number of treatment agents have undergone assessment in humans following promising results in animal models. Currently, about 50 therapeutic agents are in various stages of development. Recently, however, there have been a number of exciting and positive developments in this landscape, although there are inherent challenges ahead. In this article, we review the aetiological and pathological basis of NASH progression and describe putative targets for current therapies. We also discuss some of the likely future directions and difficulties around this complex and challenging disease paradigm.
Collapse
Affiliation(s)
- Paul N Brennan
- The University of Edinburgh, Centre for Regenerative Medicine, Edinburgh, UK,NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK,The University of Dundee, Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - John F Dillon
- NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK,The University of Dundee, Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Rory McCrimmon
- NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK,The University of Dundee, Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Varani J, McClintock SD, Knibbs RN, Harber I, Zeidan D, Jawad-Makki MAH, Aslam MN. Liver Protein Expression in NASH Mice on a High-Fat Diet: Response to Multi-Mineral Intervention. Front Nutr 2022; 9:859292. [PMID: 35634402 PMCID: PMC9130755 DOI: 10.3389/fnut.2022.859292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Male MS-NASH mice were maintained on a high-fat diet for 16 weeks with and without red algae-derived minerals. Obeticholic acid (OCA) was used as a comparator in the same strain and diet. C57BL/6 mice maintained on a standard (low-fat) rodent chow diet were used as a control. At the end of the in-life portion of the study, body weight, liver weight, liver enzyme levels and liver histology were assessed. Samples obtained from individual livers were subjected to Tandem Mass Tag labeling / mass spectroscopy for protein profile determination. As compared to mice maintained on the low-fat diet, all high-fat-fed mice had increased whole-body and liver weight, increased liver enzyme (aminotransferases) levels and widespread steatosis / ballooning hepatocyte degeneration. Histological evidence for liver inflammation and collagen deposition was also present, but changes were to a lesser extent. A moderate reduction in ballooning degeneration and collagen deposition was observed with mineral supplementation. Control mice on the high-fat diet alone demonstrated multiple protein changes associated with dysregulated fat and carbohydrate metabolism, lipotoxicity and oxidative stress. Cholesterol metabolism and bile acid formation were especially sensitive to diet. In mice receiving multi-mineral supplementation along with the high-fat diet, there was reduced liver toxicity as evidenced by a decrease in levels of several cytochrome P450 enzymes and other oxidant-generating moieties. Additionally, elevated expression of several keratins was also detected in mineral-supplemented mice. The protein changes observed with mineral supplementation were not seen with OCA. Our previous studies have shown that mice maintained on a high-fat diet for up to 18 months develop end-stage liver injury including hepatocellular carcinoma. Mineral-supplemented mice were substantially protected against tumor formation and other end-state consequences of high-fat feeding. The present study identifies early (16-week) protein changes occurring in the livers of the high-fat diet-fed mice, and how the expression of these proteins is influenced by mineral supplementation. These findings help elucidate early protein changes that contribute to end-stage liver injury and potential mechanisms by which dietary minerals may mitigate such damage.
Collapse
Affiliation(s)
- James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shannon D McClintock
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Randall N Knibbs
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Isabelle Harber
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dania Zeidan
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Muhammad N Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Zhang H, Dong M, Liu X. Obeticholic acid ameliorates obesity and hepatic steatosis by activating brown fat. Exp Ther Med 2021; 22:991. [PMID: 34345273 PMCID: PMC8311225 DOI: 10.3892/etm.2021.10423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Obeticholic acid (OCA) is exemplified as a potent drug for treating primary biliary cirrhosis and nonalcoholic fatty liver disease by inhibiting bile acid synthesis. However, it remains unclear whether the effect of OCA is mediated by the function of brown adipose tissue (BAT). In the present study, brown adipogenesis differentiation in vitro and db/db mouse model treated with OCA were used to assess the anti-obesity function by body weight tracking, O2 consumption, food intake, physical activity, glucose tolerance tests. In addition, uncoupling protein 1 (Ucp1) protein expression in brown adipose tissue was measured by western blotting, morphometry of brown adipose tissue was analyzed by hematoxylin and eosin staining. Hepatic steatosis was detected by Oil-Red O staining and serological analysis was performed to assess the effect of OCA on hyperlipidemia. OCA treatment enhanced brown adipocyte cell differentiation and upregulated the expression of the BAT-specific gene Ucp1) in C3H10T1/2 cells in vitro. Consistent with these findings, OCA increased whole-body energy metabolism and glucose homeostasis by enhancing BAT activity in vivo, and ultimately decreased body weight gain in db/db mice. In addition, the results demonstrated that spontaneous hepatic steatosis in db/db mice was ameliorated following OCA treatment. In summary, OCA functioned as a BAT activator to help ameliorate obesity and maintain glucose homeostasis in db/db mice. The present results may provide a novel potential therapeutic approach to activate brown fat in patients with obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, Henan 466001, P.R. China
| |
Collapse
|
11
|
Beyaz Coşkun A, Sağdiçoğlu Celep AG. Therapeutic modulation methods of gut microbiota and gut-liver axis. Crit Rev Food Sci Nutr 2021; 62:6505-6515. [PMID: 33749411 DOI: 10.1080/10408398.2021.1902263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver diseases are considered global health problems that cause more than 1 million deaths each year. Due to the increase in the prevalence of liver diseases worldwide, studies on different treatment methods have increased. Some of these methods is diagnostic and therapeutic applications based on the examination of the intestinal and intestinal microbiota. In this study, research articles, systematic review and review in the literature were examined in order to determine gut-liver axis relationship and treatment methods for liver diseases with gut modulation methods. Studies related to the subject have been searched in Google Scholar and Pubmed databases. The keywords "liver disease" and "gut-liver axis" and "microbiota" and "gut modulation methods" or "probiotic" or "prebiotic" or "symbiotic" or "antibiotic" or "bile acid regulation" or "adsorbent" or "fecal microbiota transplantation" were used in the searches. Improvements have been achieved in biomarkers of liver diseases by providing intestinal modulation with probiotic, prebiotic, symbiotic, antibiotic and adsorbents applications, bile acid regulation and fecal microbiota transplantation. In the results of experimental and clinical studies, it was seen that the therapeutic potential of the treatments performed by applying probiotics, prebiotics and symbiotics was higher.
Collapse
Affiliation(s)
- Ayfer Beyaz Coşkun
- Department of Nutrition and Dietetics, Faculty of Health Science, Fırat University, Elazığ, Turkey
| | | |
Collapse
|
12
|
Affiliation(s)
- Sona Kang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
13
|
Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front Pharmacol 2020; 11:603926. [PMID: 33343375 PMCID: PMC7745178 DOI: 10.3389/fphar.2020.603926] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) develops from non-alcoholic fatty liver disease (NAFLD). Currently, around 25% of the population is estimated to have NAFLD, and 25% of NAFLD patients are estimated to have NASH. NASH is typically characterized by liver steatosis inflammation, and fibrosis driven by metabolic disruptions such as obesity, diabetes, and dyslipidemia. NASH patients with significant fibrosis have increased risk of developing cirrhosis and liver failure. Currently, NASH is the second leading cause for liver transplant in the United States. More importantly, the risk of developing hepatocellular carcinoma from NASH has also been highlighted in recent studies. Patients may have NAFLD for years before progressing into NASH. Although the pathogenesis of NASH is not completely understood, the current “multiple-hits” hypothesis suggests that in addition to fat accumulation, elevated oxidative and ER stress may also drive liver inflammation and fibrosis. The development of clinically relevant animal models and pharmacological treatments for NASH have been hampered by the limited understanding of the disease mechanism and a lack of sensitive, non-invasive diagnostic tools. Currently, most pre-clinical animal models are divided into three main groups which includes: genetic models, diet-induced, and toxin + diet-induced animal models. Although dietary models mimic the natural course of NASH in humans, the models often only induce mild liver injury. Many genetic and toxin + diet-induced models rapidly induce the development of metabolic disruption and serious liver injury, but not without their own shortcomings. This review provides an overview of the “multiple-hits” hypothesis and an evaluation of the currently existing animal models of NASH. This review also provides an update on the available interventions for managing NASH as well as pharmacological agents that are currently undergoing clinical trials for the treatment of NASH.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council, Centre for Personalised Therapeutics Technologies, Lancaster, CBR, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
A Translational Mouse Model for NASH with Advanced Fibrosis and Atherosclerosis Expressing Key Pathways of Human Pathology. Cells 2020; 9:cells9092014. [PMID: 32883049 PMCID: PMC7565967 DOI: 10.3390/cells9092014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disorder that is associated with an increased incidence of cardiovascular disease and type 2 diabetes. Animal models adequately mimicking this condition are scarce. We herein investigate whether Ldlr−/−. Leiden mice on different high-fat diets represent a suitable NASH model. Ldlr−/−. Leiden mice were fed a healthy chow diet or fed a high-fat diet (HFD) containing lard or a fast food diet (FFD) containing milk fat. Additionally, the response to treatment with obeticholic acid (OCA) was evaluated. Both high-fat diets induced obesity, hyperlipidemia, hyperinsulinemia, and increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Mice on both diets developed progressive macro- and microvesicular steatosis, hepatic inflammation, and fibrosis, along with atherosclerosis. HFD induced more severe hyperinsulinemia, while FFD induced more severe hepatic inflammation with advanced (F3) bridging fibrosis, as well as more severe atherosclerosis. OCA treatment significantly reduced hepatic inflammation and fibrosis, and it did not affect atherosclerosis. Hepatic transcriptome analysis was compared with human NASH and illustrated similarity. The present study defines a translational model of NASH with progressive liver fibrosis and simultaneous atherosclerosis development. By adaptation of the fat content of the diet, either insulin resistance (HFD) or hepatic inflammation and fibrosis (FFD) can be aggravated.
Collapse
|
15
|
Zhu Y, Xu S, Lu Y, Wei Y, Yao B, Guo F, Zheng X, Wang Y, He Y, Jin L, Li Y. Repositioning an Immunomodulatory Drug Vidofludimus as a Farnesoid X Receptor Modulator With Therapeutic Effects on NAFLD. Front Pharmacol 2020; 11:590. [PMID: 32477115 PMCID: PMC7240069 DOI: 10.3389/fphar.2020.00590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disorder, and yet with no pharmacological treatment approved worldwide. The repositioning of old drugs provides a safe approach for drug development. Vidofludimus, an inhibitor for dihydroorotate dehydrogenase (DHODH) for the treatment of autoimmune disorders, is herein uncovered as a novel modulator for farnesoid X receptor (FXR) by biochemical and crystallographic analysis. We further revealed that vidofludimus exerts in vivo therapeutic effects on dextran sodium sulfate (DSS)-induced colitis in an FXR-dependent manner. Notably, vidofludimus also possesses remarkable beneficial effects in reducing NAFLD by targeting FXR, which may represent a unique approach in developing the treatment for NAFLD. Our findings not only reveal a promising template for the design of novel FXR ligands in treating autoimmune disorders, but also uncover a novel therapeutic effect for vidofludimus on NAFLD based on the newly established relationships among drugs, targets, and diseases.
Collapse
Affiliation(s)
- Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Yi Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Yijuan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Xing Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Yumeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China.,Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, USA
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Brønden A, Knop FK. Gluco-Metabolic Effects of Pharmacotherapy-Induced Modulation of Bile Acid Physiology. J Clin Endocrinol Metab 2020; 105:5601203. [PMID: 31630179 DOI: 10.1210/clinem/dgz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT The discovery and characterization of the bile acid specific receptors farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) have facilitated a wealth of research focusing on the link between bile acid physiology and glucose metabolism. Modulation of FXR and TGR5 activation have been demonstrated to affect the secretion of glucagon-like peptide 1, insulin, and glucagon as well as energy expenditure and gut microbiota composition, with potential beneficial effects on glucose metabolism. EVIDENCE ACQUISITION A search strategy based on literature searches in on PubMed with various combinations of the key words FXR, TGR5, agonist, apical sodium-dependent bile acid transporter (ASBT), bile acid sequestrant, metformin, and glucose metabolism has been applied to obtain material for the present review. Furthermore, manual searches including scanning of reference lists in relevant papers and conference proceedings have been performed. EVIDENCE SYNTHESIS This review provides an outline of the link between bile acid and glucose metabolism, with a special focus on the gluco-metabolic impact of treatment modalities with modulating effects on bile acid physiology; including FXR agonists, TGR5 agonists, ASBT inhibitors, bile acid sequestrants, and metformin. CONCLUSIONS Any potential beneficial gluco-metabolic effects of FXR agonists remain to be established, whereas the clinical relevance of TGR5-based treatment modalities seems limited because of substantial safety concerns of TGR5 agonists observed in animal models. The glucose-lowering effects of ASBT inhibitors, bile acid sequestrants, and metformin are at least partly mediated by modulation of bile acid circulation, which might allow an optimization of these bile acid-modulating treatment modalities. (J Clin Endocrinol Metab XX: 00-00, 2019).
Collapse
Affiliation(s)
- Andreas Brønden
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Steno Diabetes Copenhagen, DK-2820 Gentofte, Denmark
| |
Collapse
|
17
|
De Rudder M, Bouzin C, Nachit M, Louvegny H, Vande Velde G, Julé Y, Leclercq IA. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. J Transl Med 2020; 100:147-160. [PMID: 31506634 DOI: 10.1038/s41374-019-0315-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Pathologists use a semiquantitative scoring system (NAS or SAF score) to facilitate the reporting of disease severity and evolution. Similar scores are applied for the same purposes in rodents. Histological scores have inherent inter- and intra-observer variability and yield discrete and not continuous values. Here we performed an automatic numerical quantification of NASH features on liver sections in common preclinical NAFLD/NASH models. High-fat diet-fed foz/foz mice (Foz HF) or wild-type mice (WT HF) known to develop progressive NASH or an uncomplicated steatosis, respectively, and C57Bl6 mice fed a choline-deficient high-fat diet (CDAA) to induce steatohepatitis were analyzed at various time points. Automated software image analysis of steatosis, inflammation, and fibrosis was performed on digital images from entire liver sections. Data obtained were compared with the NAS score, biochemical quantification, and gene expression. As histologically assessed, WT HF mice had normal liver up to week 34 when they harbor mild steatosis with if any, little inflammation. Foz HF mice exhibited grade 2 steatosis as early as week 4, grade 3 steatosis at week 12 up to week 34; inflammation and ballooning increased gradually with time. Automated measurement of steatosis (macrovesicular steatosis area) revealed a strong correlation with steatosis scores (r = 0.89), micro-CT liver density, liver lipid content (r = 0.89), and gene expression of CD36 (r = 0.87). Automatic assessment of the number of F4/80-immunolabelled crown-like structures strongly correlated with conventional inflammatory scores (r = 0.79). In Foz HF mice, collagen deposition, evident at week 20 and progressing at week 34, was automatically quantified on picrosirius red-stained entire liver sections. The automated procedure also faithfully captured and quantitated macrovesicular steatosis, mixed inflammation, and pericellular fibrosis in CDAA-induced steatohepatitis. In conclusion, the automatic numerical analysis represents a promising quantitative method to rapidly monitor NAFLD activity with high-throughput in large preclinical studies and for accurate monitoring of disease evolution.
Collapse
Affiliation(s)
- Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Heloïse Louvegny
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
18
|
Jensen VS, Tveden-Nyborg P, Zacho-Rasmussen C, Quaade ML, Ipsen DH, Hvid H, Fledelius C, Wulff EM, Lykkesfeldt J. Variation in diagnostic NAFLD/NASH read-outs in paired liver samples from rodent models. J Pharmacol Toxicol Methods 2019; 101:106651. [PMID: 31733366 DOI: 10.1016/j.vascn.2019.106651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In animal models of non-alcoholic fatty liver disease (NAFLD), assessment of disease severity and treatment effects of drugs rely on histopathological scoring of liver biopsies. However, little is known about the sampling variation in liver samples from animal models of NAFLD, even though several histopathological hallmarks of the disease are known to be affected by sampling variation in patients. The aim of this study was to assess the sampling variation in multiple paired liver biopsies from three commonly used diet-induced rodent models of NAFLD. METHODS Eight male C57BL/6 mice, 8 male Sprague Dawley rats and 16 female Hartley guinea pigs were fed a NAFLD-inducing high-fat diet for 16 weeks (mice and rats), 20 or 24 weeks (guinea pigs). After the initial diet period, liver sections were sampled and subsequently assessed by histopathological scoring and biochemical analyses. RESULTS Fibrosis was heterogeneously distributed throughout the liver in mice, manifesting as both intra- and interlobular statistically significant differences. Hepatic triglyceride content showed interlobular differences in mice, and both intra- and interlobular differences in guinea pigs (24-week time point) all of which were statistically significant. Also, hepatic cholesterol content was subject to significant intra-lobular sampling variation in mice, and hepatic glycogen content differed significantly between lobes in mice and guinea pigs. DISCUSSION Dependent on animal model, both histopathological and biochemical end-points differed between sampling sites in the liver. Based on these findings, we recommend that sample site location is highly standardized and properly reported in order to minimize potential sampling variation and to optimize reproducibility and meaningful comparisons of preclinical studies of NAFLD.
Collapse
Affiliation(s)
- Victoria S Jensen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark; Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - Christina Zacho-Rasmussen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - Michelle L Quaade
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - David H Ipsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - Henning Hvid
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Christian Fledelius
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Erik M Wulff
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
19
|
Boland ML, Oró D, Tølbøl KS, Thrane ST, Nielsen JC, Cohen TS, Tabor DE, Fernandes F, Tovchigrechko A, Veidal SS, Warrener P, Sellman BR, Jelsing J, Feigh M, Vrang N, Trevaskis JL, Hansen HH. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World J Gastroenterol 2019; 25:4904-4920. [PMID: 31543682 PMCID: PMC6737317 DOI: 10.3748/wjg.v25.i33.4904] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in ob/ob and C57BL/6J mice.
AIM To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat.
METHODS Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat (Primex shortening) substituted by equivalent amounts of palm oil [Gubra amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% fat kcal), fructose (22%) and cholesterol (2%) level.
RESULTS The GAN diet was more obesogenic compared to the AMLN diet and impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J mice developed a mild to moderate fibrotic NASH phenotype when fed the same diets.
CONCLUSION Substitution of Primex with palm oil promotes a similar phenotype of biopsy-confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced obese mouse models suitable for characterizing novel NASH treatments.
Collapse
Affiliation(s)
- Michelle L Boland
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
- Pharmacology, Gubra, Hørsholm DK-2970, Denmark
| | - Denise Oró
- Pharmacology, Gubra, Hørsholm DK-2970, Denmark
| | | | | | | | - Taylor S Cohen
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - David E Tabor
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - Fiona Fernandes
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - Andrey Tovchigrechko
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | | | - Paul Warrener
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - Bret R Sellman
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | | | | | - Niels Vrang
- Pharmacology, Gubra, Hørsholm DK-2970, Denmark
| | - James L Trevaskis
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | | |
Collapse
|
20
|
McIlvride S, Nikolova V, Fan HM, McDonald JAK, Wahlström A, Bellafante E, Jansen E, Adorini L, Shapiro D, Jones P, Marchesi JR, Marschall HU, Williamson C. Obeticholic acid ameliorates dyslipidemia but not glucose tolerance in mouse model of gestational diabetes. Am J Physiol Endocrinol Metab 2019; 317:E399-E410. [PMID: 31237448 PMCID: PMC6732461 DOI: 10.1152/ajpendo.00407.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
Metabolism alters markedly with advancing gestation, characterized by progressive insulin resistance, dyslipidemia, and raised serum bile acids. The nuclear receptor farnesoid X receptor (FXR) has an integral role in bile acid homeostasis and modulates glucose and lipid metabolism. FXR is known to be functionally suppressed in pregnancy. The FXR agonist, obeticholic acid (OCA), improves insulin sensitivity in patients with type 2 diabetes with nonalcoholic fatty liver disease. We therefore hypothesized that OCA treatment during pregnancy could improve disease severity in a mouse model of gestational diabetes mellitus (GDM). C57BL/6J mice were fed a high-fat diet (HFD; 60% kcal from fat) for 4 wk before and throughout pregnancy to induce GDM. The impact of the diet supplemented with 0.03% OCA throughout pregnancy was studied. Pregnant HFD-fed mice displayed insulin resistance and dyslipidemia. OCA significantly reduced plasma cholesterol concentrations in nonpregnant and pregnant HFD-fed mice (by 22.4%, P < 0.05 and 36.4%, P < 0.001, respectively) and reduced the impact of pregnancy on insulin resistance but did not change glucose tolerance. In nonpregnant HFD-fed mice, OCA ameliorated weight gain, reduced mRNA expression of inflammatory markers in white adipose tissue, and reduced plasma glucagon-like peptide 1 concentrations (by 62.7%, P < 0.01). However, these effects were not evident in pregnant mice. OCA administration can normalize plasma cholesterol levels in a mouse model of GDM. However, the absence of several of the effects of OCA in pregnant mice indicates that the agonistic action of OCA is not sufficient to overcome many metabolic consequences of the pregnancy-associated reduction in FXR activity.
Collapse
Affiliation(s)
- Saraid McIlvride
- School of Life Course Sciences, King's College London, London, United Kingdom
| | - Vanya Nikolova
- School of Life Course Sciences, King's College London, London, United Kingdom
| | - Hei Man Fan
- School of Life Course Sciences, King's College London, London, United Kingdom
| | - Julie A K McDonald
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Annika Wahlström
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elena Bellafante
- School of Life Course Sciences, King's College London, London, United Kingdom
| | - Eugene Jansen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Peter Jones
- School of Life Course Sciences, King's College London, London, United Kingdom
| | - Julian R Marchesi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
21
|
Role of Bile Acids in Dysbiosis and Treatment of Nonalcoholic Fatty Liver Disease. Mediators Inflamm 2019; 2019:7659509. [PMID: 31341422 PMCID: PMC6613006 DOI: 10.1155/2019/7659509] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health threat around the world and is characterized by dysbiosis. Primary bile acids are synthesized in the liver and converted into secondary bile acids by gut microbiota. Recent studies support the role of bile acids in modulating dysbiosis and NAFLD, while the mechanisms are not well elucidated. Dysbiosis may alter the size and the composition of the bile acid pool, resulting in reduced signaling of bile acid receptors such as farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). These receptors are essential in lipid and glucose metabolism, and impaired bile acid signaling may cause NAFLD. Bile acids also reciprocally regulate the gut microbiota directly via antibacterial activity and indirectly via FXR. Therefore, bile acid signaling is closely linked to dysbiosis and NAFLD. During the past decade, stimulation of bile acid receptors with their agonists has been extensively explored for the treatment of NAFLD in both animal models and clinical trials. Early evidence has suggested the potential of bile acid receptor agonists in NAFLD management, but their long-term safety and effectiveness need further clarification.
Collapse
|
22
|
Roth JD, Veidal SS, Fensholdt LKD, Rigbolt KTG, Papazyan R, Nielsen JC, Feigh M, Vrang N, Young M, Jelsing J, Adorini L, Hansen HH. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep 2019; 9:9046. [PMID: 31227742 PMCID: PMC6588626 DOI: 10.1038/s41598-019-45178-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obeticholic acid (OCA) and elafibranor (ELA) are selective and potent agonists for the farnesoid X receptor (FXR) and dual peroxisome proliferator-activated receptor α/δ (PPAR-α/δ), respectively. Both agents have demonstrated clinical efficacy in nonalcoholic steatohepatitis (NASH). The present study used OCA and ELA to compare the effects of mono- and combination therapies on metabolic and histological endpoints in Lepob/ob mice with established diet-induced and biopsy-confirmed NASH (ob/ob-NASH). ob/ob-NASH mice were fed the AMLN diet high in trans-fat, fructose and cholesterol for 15 weeks, whereafter they received vehicle, OCA (30 mg/kg, PO, QD), ELA (3, 10 mg/kg, PO, QD), or combinations (OCA + ELA) for eight weeks. Within-subject comparisons were performed on histomorphometric changes, including fractional area of liver fat, galectin-3 and Col1a1. OCA and ELA monotherapies improved all quantitative histopathological parameters and OCA + ELA combinations exerted additive effects on metabolic and histological endpoints. In agreement with their different molecular mechanisms of action, OCA and ELA monotherapies elicited distinct hepatic gene expression profiles and their combination led to profound transcriptome changes associated with further improvements in lipid handling and insulin signaling, suppression of immune responses and reduced extracellular matrix formation. In conclusion, these findings provide preclinical proof-of-concept for combined FXR and PPAR-α/δ agonist-based therapies in NASH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Young
- Intercept Pharmaceuticals, San Diego, CA, USA
| | | | | | | |
Collapse
|
23
|
Farrell G, Schattenberg JM, Leclercq I, Yeh MM, Goldin R, Teoh N, Schuppan D. Mouse Models of Nonalcoholic Steatohepatitis: Toward Optimization of Their Relevance to Human Nonalcoholic Steatohepatitis. Hepatology 2019; 69:2241-2257. [PMID: 30372785 DOI: 10.1002/hep.30333] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) arises from a variable interplay between environmental factors and genetic determinants that cannot be completely replicated in animals. Notwithstanding, preclinical models are needed to understand NASH pathophysiology and test mechanism-based therapies. Among several mouse models of NASH, some exhibit the key pathophysiologic as well as histopathologic criteria for human NASH, whereas others may be useful to address specific questions. Models based on overnutrition with adipose restriction/inflammation and metabolic complications, particularly insulin resistance, may be most useful to investigate critical etiopathogenic factors. In-depth pathologic description is required for all models. Some models demonstrate hepatocyte ballooning, which can be confused with microvesicular steatosis, whereas demonstration of an inflammatory infiltrate and pattern of liver fibrosis compatible with human NASH is desirable in models used for pharmacologic testing. When mice with specific genetic strains or mutations that cause overeating consume a diet enriched with fat, modest amounts of cholesterol, and/or simple sugars ("Western diet"), they readily develop obesity with liver disease similar to human NASH, including significant fibrosis. Purely dietary models, such as high-fat/high-cholesterol, Western diet, and choline-deficient, amino acid-defined, are similarly promising. We share concern about using models without weight gain, adipose pathology, or insulin resistance/hyperinsulinemia and with inadequate documentation of liver pathology. NASH-related fibrosis is a key endpoint in trials of possible therapies. When studied for this purpose, NASH models should be reproducible and show steatohepatitis (ideally with ballooning) and at least focal bridging fibrosis, while metabolic factors/disordered lipid partitioning should contribute to etiopathogenesis. Because murine models are increasingly used to explore pharmacologic therapies for NASH, we propose a minimum set of requirements that investigators, drug companies, and journals should consider to optimize their translational value.
Collapse
Affiliation(s)
- Geoff Farrell
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | | | - Isabelle Leclercq
- Laboratory of Hepato-gastroenterology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Matthew M Yeh
- Department of Pathology, University of Washington, Seattle, WA
| | - Robert Goldin
- Department of Histopathology, Imperial College, London, UK
| | - Narci Teoh
- Department of Gastroenterology and Hepatology, Australian National University at The Canberra Hospital, Australian Capital Territory, Australia
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Sun G, Jackson CV, Zimmerman K, Zhang LK, Finnearty CM, Sandusky GE, Zhang G, Peterson RG, Wang YXJ. The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose. BMC Gastroenterol 2019; 19:41. [PMID: 30885145 PMCID: PMC6421686 DOI: 10.1186/s12876-019-0958-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic disorders such as insulin resistance, obesity, and hyperglycemia are prominent risk factors for the development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH). Dietary rodent models employ high fat, high cholesterol, high fructose, methionine/choline deficient diets or combinations of these to induce NAFLD/NASH. The FATZO mice spontaneously develop the above metabolic disorders and type 2 diabetes (T2D) when fed with a normal chow diet. The aim of the present study was to determine if FATZO mice fed a high fat and fructose diet would exacerbate the progression of NAFLD/NASH. METHODS Male FATZO mice at the age of 8 weeks were fed with high fat Western diet (D12079B) supplemented with 5% fructose in the drinking water (WDF) for the duration of 20 weeks. The body weight, whole body fat content, serum lipid profiles and liver function markers were examined monthly along with the assessment of liver histology for the development of NASH. In addition, the effects of obeticholic acid (OCA, 30 mg/kg, QD) on improvement of NASH progression in the model were evaluated. RESULTS Compared to normal control diet (CD), FATZO mice fed with WDF were heavier with higher body fat measured by qNMR, hypercholesterolemia and had progressive elevations in AST (~ 6 fold), ALT (~ 6 fold), liver over body weight (~ 2 fold) and liver triglyceride (TG) content (1.4-2.9 fold). Histological examination displayed evidence of NAFLD/NASH, including hepatic steatosis, lobular inflammation, ballooning and fibrosis in FATZO mice fed WDF. Treatment with OCA for 15 weeks in FATZO mice on WDF significantly alleviated hypercholesterolemia and elevation of AST/ALT, reduced liver weight and liver TG contents, attenuated hepatic ballooning, but did not affect body weight and blood TG levels. CONCLUSION WDF fed FATZO mice represent a new model for the study of progressive NAFLD/NASH with concurrent metabolic dysregulation.
Collapse
Affiliation(s)
- Gao Sun
- Crown Bioscience Taicang Inc, Taicang, China
| | | | | | | | - Courtney M Finnearty
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
25
|
Chae YJ, Jun DW, Saeed WK, Kang HT, Oh JH, Lee SM, Jang K. Feasibility and Stability of Liver Biopsy before Treatment for Preclinical Nonalcoholic Fatty Liver Studies. J Korean Med Sci 2019; 34:e14. [PMID: 30636945 PMCID: PMC6327092 DOI: 10.3346/jkms.2019.34.e14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The heterogeneity of histological findings in preclinical diet-induced nonalcoholic fatty liver disease (NAFLD) animal models is highly challenging. Here, we aimed to evaluate the feasibility and stability of repeated liver biopsy in NAFLD animal models. METHODS Heterogeneity of diet-induced NAFLD was evaluated at different time points in 52 high-fat diet (HFD), 35 methionine choline-deficiency diet (MCD), and 166 western diet (WD) induced NAFLD mice. Serial liver biopsies (left lateral, right medial, and left medial lobes) were performed monthly for up to 3 months. Mortality rates and changes in food intake, body weight, and liver enzymes were assessed. RESULTS At 12 weeks, of the HFD animals, 14% and 30% did not develop steatosis and lobular inflammation, respectively; of the MCD animals, 7% did not develop lobular inflammation; and of the WD animals, 14% and 51% did not develop steatosis and lobular inflammation, respectively. The mortality rate of repeated liver biopsy was 1.62% (2/123 mice died). Repeated liver biopsy can be used to trace disease progression. Although body weight, food intake, and liver enzymes slightly changed after biopsy, all recovered within a week. Repeated liver biopsy did not affect the degrees of inflammation and steatosis of the other liver lobes. CONCLUSION The diet-induced NAFLD models were quite heterogeneous. Our results suggest that the repeated liver biopsy before treatment was applicable and stable in this NAFLD animal study.
Collapse
Affiliation(s)
- Yeon Ji Chae
- Department Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Dae Won Jun
- Department Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Waqar Khalid Saeed
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Hyeon Tae Kang
- Department Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Ju Hee Oh
- Department Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Seung Min Lee
- Department Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
26
|
Disease Progression and Pharmacological Intervention in a Nutrient-Deficient Rat Model of Nonalcoholic Steatohepatitis. Dig Dis Sci 2019; 64:1238-1256. [PMID: 30511198 PMCID: PMC6548202 DOI: 10.1007/s10620-018-5395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is a marked need for improved animal models of nonalcoholic steatohepatitis (NASH) to facilitate the development of more efficacious drug therapies for the disease. METHODS Here, we investigated the development of fibrotic NASH in male Wistar rats fed a choline-deficient L-amino acid-defined (CDAA) diet with or without cholesterol supplementation for subsequent assessment of drug treatment efficacy in NASH biopsy-confirmed rats. The metabolic profile and liver histopathology were evaluated after 4, 8, and 12 weeks of dieting. Subsequently, rats with biopsy-confirmed NASH were selected for pharmacological intervention with vehicle, elafibranor (30 mg/kg/day) or obeticholic acid (OCA, 30 mg/kg/day) for 5 weeks. RESULTS The CDAA diet led to marked hepatomegaly and fibrosis already after 4 weeks of feeding, with further progression of collagen deposition and fibrogenesis-associated gene expression during the 12-week feeding period. Cholesterol supplementation enhanced the stimulatory effect of CDAA on gene transcripts associated with fibrogenesis without significantly increasing collagen deposition. Pharmacological intervention with elafibranor, but not OCA, significantly reduced steatohepatitis scores, and fibrosis-associated gene expression, however, was unable to prevent progression in fibrosis scores. CONCLUSION CDAA-fed rats develop early-onset progressive NASH, which offers the opportunity to probe anti-NASH compounds with potential disease-modifying properties.
Collapse
|
27
|
Morrison MC, Verschuren L, Salic K, Verheij J, Menke A, Wielinga PY, Iruarrizaga‐Lejarreta M, Gole L, Yu W, Turner S, Caspers MP, Martínez‐Arranz I, Pieterman E, Stoop R, van Koppen A, van den Hoek AM, Mato JM, Hanemaaijer R, Alonso C, Kleemann R. Obeticholic Acid Modulates Serum Metabolites and Gene Signatures Characteristic of Human NASH and Attenuates Inflammation and Fibrosis Progression in Ldlr-/-.Leiden Mice. Hepatol Commun 2018; 2:1513-1532. [PMID: 30556039 PMCID: PMC6287481 DOI: 10.1002/hep4.1270] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Concerns have been raised about whether preclinical models sufficiently mimic molecular disease processes observed in nonalcoholic steatohepatitis (NASH) patients, bringing into question their translational value in studies of therapeutic interventions in the process of NASH/fibrosis. We investigated the representation of molecular disease patterns characteristic for human NASH in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice and studied the effects of obeticholic acid (OCA) on these disease profiles. Multiplatform serum metabolomic profiles and genome-wide liver transcriptome from HFD-fed Ldlr-/-.Leiden mice were compared with those of NASH patients. Mice were profiled at the stage of mild (24 weeks HFD) and severe (34 weeks HFD) fibrosis, and after OCA intervention (24-34 weeks; 10 mg/kg/day). Effects of OCA were analyzed histologically, biochemically, by immunohistochemistry, using deuterated water technology (de novo collagen formation), and by its effect on the human-based transcriptomics and metabolomics signatures. The transcriptomics and metabolomics profile of Ldlr-/-.Leiden mice largely reflected the molecular signature of NASH patients. OCA modulated the expression of these molecular profiles and quenched specific proinflammatory-profibrotic pathways. OCA attenuated specific facets of cellular inflammation in liver (F4/80-positive cells) and reduced crown-like structures in adipose tissue. OCA reduced de novo collagen formation and attenuated further progression of liver fibrosis, but did not reduce fibrosis below the level before intervention. Conclusion: HFD-fed Ldlr-/-.Leiden mice recapitulate molecular transcriptomic and metabolomic profiles of NASH patients, and these signatures are modulated by OCA. Intervention with OCA in developing fibrosis reduces collagen deposition and de novo synthesis but does not resolve already manifest fibrosis in the period studied. These data show that human molecular signatures can be used to evaluate the translational character of preclinical models for NASH.
Collapse
Affiliation(s)
- Martine C. Morrison
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems BiologyNetherlands Organisation for Applied Scientific ResearchZeistThe Netherlands
| | - Kanita Salic
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Joanne Verheij
- Department of PathologyAmsterdam Medical CenterAmsterdamThe Netherlands
| | - Aswin Menke
- Department of PathologyTriskelion B.V.ZeistThe Netherlands
| | - Peter Y. Wielinga
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | | | - Laurent Gole
- Computational BioImage Analysis Unit, Agency of Science, Technology and Research (A*STAR), Institute of Molecular and Cell BiologySingapore
| | - Wei‐Miao Yu
- Computational BioImage Analysis Unit, Agency of Science, Technology and Research (A*STAR), Institute of Molecular and Cell BiologySingapore
| | | | - Martien P.M. Caspers
- Department of Microbiology and Systems BiologyNetherlands Organisation for Applied Scientific ResearchZeistThe Netherlands
| | | | - Elsbet Pieterman
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Reinout Stoop
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Arianne van Koppen
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Anita M. van den Hoek
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | | | - Roeland Hanemaaijer
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | | | - Robert Kleemann
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| |
Collapse
|
28
|
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2018; 11:104. [PMID: 30314377 PMCID: PMC6315965 DOI: 10.3390/ph11040104] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
The main treatments for patients with nonalcoholic fatty liver disease (NAFLD) are currently based on lifestyle changes, including ponderal decrease and dietary management. However, a subgroup of patients with nonalcoholic steatohepatitis (NASH), who are unable to modify their lifestyle successfully, may benefit from pharmaceutical support. Several drugs targeting pathogenic mechanisms of NAFLD have been evaluated in clinical trials for the treatment of NASH. Farnesoid X receptor (FXR) is a nuclear key regulator controlling several processes of the hepatic metabolism. NAFLD has been proven to be associated with abnormal FXR activity. Obeticholic acid (OCA) is a first-in-class selective FXR agonist with anticholestatic and hepato-protective properties. Currently, OCA is registered for the treatment of primary biliary cholangitis. However, promising effects of OCA on NASH and its metabolic features have been reported in several studies.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 8810 Catanzaro, Italy.
| | - Tetyana Falalyeyeva
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC 29646, USA.
- School of Health Research, Clemson University, Clemson, SC 29646, USA.
| | - Olena Tsyryuk
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Pushkinska 22a, 01610 Kiev, Ukraine.
| |
Collapse
|
29
|
Haczeyni F, Yeh MM, Ioannou GN, Leclercq IA, Goldin R, Dan YY, Yu J, Teoh NC, Farrell GC. Mouse models of non-alcoholic steatohepatitis: A reflection on recent literature. J Gastroenterol Hepatol 2018; 33:1312-1320. [PMID: 29424123 DOI: 10.1111/jgh.14122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is strongly associated with overnutrition, insulin resistance, and predisposition to type 2 diabetes. To critically analyze the translational significance of currently used animal models of NASH, we reviewed articles published during the last 3 years that studied NASH pathogenesis using mouse models. Among 146 articles, 34 (23%) used models in which overnutrition was reported, and 36 (25%) demonstrated insulin resistance, with or without glucose intolerance. Half the articles contained no information on whether mice exhibited overnutrition or insulin resistance. While 75 papers (52%) reported > 2-fold increase of serum/plasma alanine aminotransferase (ALT) compared with controls, ALT levels were near normal or not reported in 48%. Liver pathology was assessed by a pathologist with an interest in liver pathology in 53% of articles published in gastroenterology/hepatology journals, versus 43-44% in other journals. While there appears to be a trend to use models that are potentially relevant to the pathogenesis of human NASH, journals currently publish data on mouse models in which overnutrition and insulin resistance do not occur, without ALT increase or appropriate analysis of NASH pathology. We recommend that investigators, reviewers, and journal editors carefully consider the validity of NASH models in current use and that moves are made to reach a consensus on what the minimal criteria should be.
Collapse
Affiliation(s)
- Fahrettin Haczeyni
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Matthew M Yeh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Healthcare System and University of Washington, Seattle, Washington, USA
| | - Isabelle A Leclercq
- Institute of Experimental and Clinical Research, Catholic University of Louvain, Brussels, Belgium
| | - Robert Goldin
- Department of Cellular Pathology, Imperial College London, London, UK
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Narcissus C Teoh
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Geoffrey C Farrell
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Goto T, Itoh M, Suganami T, Kanai S, Shirakawa I, Sakai T, Asakawa M, Yoneyama T, Kai T, Ogawa Y. Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep 2018; 8:8157. [PMID: 29802399 PMCID: PMC5970222 DOI: 10.1038/s41598-018-26383-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/17/2018] [Indexed: 02/08/2023] Open
Abstract
Accumulating evidence has suggested that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) are therapeutically useful for non-alcoholic steatohepatitis (NASH). However, it is still unclear how FXR agonists protect against NASH and which cell type is the main target of FXR agonists. In this study, we examined the effects of OCA on the development of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice that progressively developed hepatic steatosis and NASH on Western diet (WD). Treatment with OCA effectively prevented chronic inflammation and liver fibrosis in WD-fed MC4R-KO mice with only marginal effect on body weight and hepatic steatosis. Hepatic crown-like structure (hCLS) is a unique histological structure characteristic of NASH, which triggers hepatocyte death-induced interstitial fibrosis. Intriguingly, treatment with OCA markedly reduced hCLS formation even after MC4R-KO mice developed NASH, thereby inhibiting the progression of liver fibrosis. As its mechanism of action, OCA suppressed metabolic stress-induced p53 activation and cell death in hepatocytes. Our findings in this study highlight the role of FXR in hepatocytes in the pathogenesis of NASH. Collectively, this study demonstrates the anti-fibrotic effect of OCA in a murine model of NASH with obesity and insulin resistance, which suggests the clinical implication for human NASH.
Collapse
Affiliation(s)
- Toshihiro Goto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Specialty Medicine Group, Drug Development Research Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Michiko Itoh
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Sayaka Kanai
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Sakai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Yoneyama
- Omics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Toshihiro Kai
- Omics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
31
|
Tølbøl KS, Kristiansen MNB, Hansen HH, Veidal SS, Rigbolt KTG, Gillum MP, Jelsing J, Vrang N, Feigh M. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J Gastroenterol 2018; 24:179-194. [PMID: 29375204 PMCID: PMC5768937 DOI: 10.3748/wjg.v24.i2.179] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the pharmacodynamics of compounds in clinical development for nonalcoholic steatohepatitis (NASH) in obese mouse models of biopsy-confirmed NASH.
METHODS Male wild-type C57BL/6J mice (DIO-NASH) and Lepob/ob (ob/ob-NASH) mice were fed a diet high in trans-fat (40%), fructose (20%) and cholesterol (2%) for 30 and 21 wk, respectively. Prior to treatment, all mice underwent liver biopsy for confirmation and stratification of liver steatosis and fibrosis, using the nonalcoholic fatty liver disease activity score (NAS) and fibrosis staging system. The mice were kept on the diet and received vehicle, liraglutide (0.2 mg/kg, SC, BID), obeticholic acid (OCA, 30 mg/kg PO, QD), or elafibranor (30 mg/kg PO, QD) for eight weeks. Within-subject comparisons were performed on changes in steatosis, inflammation, ballooning degeneration, and fibrosis scores. In addition, compound effects were evaluated by quantitative liver histology, including percent fractional area of liver fat, galectin-3, and collagen 1a1.
RESULTS Liraglutide and elafibranor, but not OCA, reduced body weight in both models. Liraglutide improved steatosis scores in DIO-NASH mice only. Elafibranor and OCA reduced histopathological scores of hepatic steatosis and inflammation in both models, but only elafibranor reduced fibrosis severity. Liraglutide and OCA reduced total liver fat, collagen 1a1, and galectin-3 content, driven by significant reductions in liver weight. The individual drug effects on NASH histological endpoints were supported by global gene expression (RNA sequencing) and liver lipid biochemistry.
CONCLUSION DIO-NASH and ob/ob-NASH mouse models show distinct treatment effects of liraglutide, OCA, and elafibranor, being in general agreement with corresponding findings in clinical trials for NASH. The present data therefore further supports the clinical translatability and utility of DIO-NASH and ob/ob-NASH mouse models of NASH for probing the therapeutic efficacy of compounds in preclinical drug development for NASH.
Collapse
Affiliation(s)
- Kirstine S Tølbøl
- Gubra Aps, Hørsholm DK-2970, Denmark
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Section for Metabolic Imaging and Liver Metabolism, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Maria NB Kristiansen
- Gubra Aps, Hørsholm DK-2970, Denmark
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | | | - Matthew P Gillum
- Section for Metabolic Imaging and Liver Metabolism, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | - Niels Vrang
- Gubra Aps, Hørsholm DK-2970, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | |
Collapse
|
32
|
Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:19-44. [PMID: 29956204 DOI: 10.1007/978-981-10-8684-7_3] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overnutrition, usually with obesity and genetic predisposition, lead to insulin resistance, which is an invariable accompaniment of nonalcoholic fatty liver disease (NAFLD). The associated metabolic abnormalities, pre- or established diabetes, hypertension and atherogenic dyslipidemia (clustered as metabolic syndrome) tend to be worse for nonalcoholic steatohepatitis (NASH), revealing it as part of a continuum of metabolic pathogenesis. The origins of hepatocellular injury and lobular inflammation which distinguish NASH from simple steatosis have intrigued investigators, but it is now widely accepted that NASH results from liver lipotoxicity. The key issue is not the quantity of liver fat but the type(s) of lipid molecules that accumulate, and how they are "packaged" to avoid subcellular injury. Possible lipotoxic mediators include free (unesterified) cholesterol, saturated free fatty acids, diacylglycerols, lysophosphatidyl-choline, sphingolipids and ceramide. Lipid droplets are intracellular storage organelles for non-structural lipid whose regulation is influenced by genetic polymorphisms, such as PNPLA3. Cells unable to sequester chemically reactive lipid molecules undergo mitochondrial injury, endoplasmic reticulum (ER) stress and autophagy, all processes of interest for NASH pathogenesis. Lipotoxicity kills hepatocytes by apoptosis, a highly regulated, non-inflammatory form of cell death, but also by necrosis, necroptosis and pyroptosis; the latter involve mitochondrial injury, oxidative stress, activation of c-Jun N-terminal kinase (JNK) and release of danger-associated molecular patterns (DAMPs). DAMPs stimulate innate immunity by binding pattern recognition receptors, such as Toll-like receptor 4 (TLR4) and the NOD-like receptor protein 3 (NLRP3) inflammasome, which release a cascade of pro-inflammatory chemokines and cytokines. Thus, lipotoxic hepatocellular injury attracts inflammatory cells, particularly activated macrophages which surround ballooned hepatocytes as crown-like structures. In both experimental and human NASH, livers contain cholesterol crystals which are a second signal for NLRP3 activation; this causes interleukin (IL)-1β and IL18 secretion to attract and activate macrophages and neutrophils. Injured hepatocytes also liberate plasma membrane-derived extracellular vesicles; these have been shown to circulate in NASH and to be pro-inflammatory. The way metabolic dysfunction leads to lipotoxicity, innate immune responses and the resultant pattern of cellular inflammation in the liver are likely also relevant to hepatic fibrogenesis and hepatocarcinogenesis. Pinpointing the key molecules involved pharmacologically should eventually lead to effective pharmacotherapy against NASH.
Collapse
Affiliation(s)
- Geoffrey C Farrell
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia.
| | - Fahrettin Haczeyni
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia
| | - Shivakumar Chitturi
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia
| |
Collapse
|
33
|
Jouihan H, Will S, Guionaud S, Boland ML, Oldham S, Ravn P, Celeste A, Trevaskis JL. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice. Mol Metab 2017; 6:1360-1370. [PMID: 29107284 PMCID: PMC5681275 DOI: 10.1016/j.molmet.2017.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is an unmet need associated with metabolic syndrome. There are no approved therapies for NASH; however, glucagon-like peptide-1 receptor (GLP-1R) and farnesoid-X receptor (FXR) agonists are promising drug targets. We investigated the therapeutic effects of co-administration of a GLP-1R agonist, IP118, with FXR agonist obeticholic acid (OCA) in mice. METHODS OCA and IP118 alone and in combination were sub-chronically administered to Lepob/Lepob mice with diet-induced NASH or diet-induced obese (DIO) mice. Metabolic (body weight and glucose) and liver (biochemical and histological) endpoints were assessed. NASH severity in Lepob/Lepob mice was graded using a customized integrated scoring system. RESULTS OCA reduced liver weight and lipid in NASH mice (both by -17%) but had no effect on plasma ALT or AST levels. In contrast, IP118 significantly reduced liver weight (-21%), liver lipid (-15%), ALT (-29%), and AST (-27%). The combination of OCA + IP118 further reduced liver weight (-29%), liver lipid (-22%), ALT (-39%), and AST (-36%). Combination therapy was superior to monotherapies in reducing hepatic steatosis, inflammation, and fibrosis. Hepatic improvements with IP118 and OCA + IP118 were associated with reduced body weight (-4.3% and -3.5% respectively) and improved glycemic control in OCA + IP118-treated mice. In DIO mice, OCA + IP118 co-administration reduced body weight (-25.3%) to a greater degree than IP118 alone (-12.5%) and further improved glucose tolerance and reduced hepatic lipid. CONCLUSION Our data suggest a complementary or synergistic therapeutic effect of GLP-1R and FXR agonism in mouse models of metabolic disease and NASH.
Collapse
Affiliation(s)
- Hani Jouihan
- Cardiovascular and Metabolic Diseases, MedImmune, LLC, Gaithersburg, MD, USA
| | - Sarah Will
- Cardiovascular and Metabolic Diseases, MedImmune, LLC, Gaithersburg, MD, USA
| | | | - Michelle L Boland
- Cardiovascular and Metabolic Diseases, MedImmune, LLC, Gaithersburg, MD, USA
| | - Stephanie Oldham
- Cardiovascular and Metabolic Diseases, MedImmune, LLC, Gaithersburg, MD, USA
| | - Peter Ravn
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | | | - James L Trevaskis
- Cardiovascular and Metabolic Diseases, MedImmune, LLC, Gaithersburg, MD, USA.
| |
Collapse
|
34
|
Townsend SA, Newsome PN. Review article: new treatments in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2017; 46:494-507. [PMID: 28677333 DOI: 10.1111/apt.14210] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease is the fastest growing cause of liver disease in the Western world, yet there is no approved pharmacotherapy. While lifestyle modifications remain the mainstay of treatment, only a proportion of individuals are able to make or sustain them, and so more treatment options are required. AIM To review the potential benefit of drugs used in clinical practice, those entering phase II trials, and compounds being investigated in pre-clinical studies. METHODS A literature search was performed using PubMed to identify relevant studies; linked references were also reviewed. RESULTS Vitamin E and pioglitazone have shown efficacy in non-alcoholic steatohepatitis (NASH), but long-term safety concerns, specifically bladder cancer and osteoporosis with pioglitazone, have limited their use. GLP-1 analogues and SGLT-2 inhibitors are currently approved for use in diabetes, have shown early efficacy in NASH and also have beneficial cardiovascular effects. Peroxisome proliferator-activator receptors and FXR agonists have potent effects on lipogenesis, inflammation and fibrosis, respectively, with their efficacy and safety being currently tested in phase 3. As inflammation and apoptosis are key features of NASH agents modulating these pathways are of interest; CCR2/5 antagonists downregulate inflammatory pathways and reduce fibrosis with caspase and apoptosis signal-regulating kinase 1 inhibitors reducing apoptosis and fibrosis. CONCLUSIONS Rising demand and an improved understanding of NASH pathophysiology has led to a surge in development of new therapies. Tailoring pharmacotherapy to the dominant pathogenic pathway in a given patient along with use of combination therapy is likely to represent the future direction in treatment of patients with NASH.
Collapse
Affiliation(s)
- S A Townsend
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - P N Newsome
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
35
|
Haczeyni F, Wang H, Barn V, Mridha AR, Yeh MM, Haigh WG, Ioannou GN, Choi YJ, McWherter CA, Teoh NCH, Farrell GC. The selective peroxisome proliferator-activated receptor-delta agonist seladelpar reverses nonalcoholic steatohepatitis pathology by abrogating lipotoxicity in diabetic obese mice. Hepatol Commun 2017; 1:663-674. [PMID: 29404484 PMCID: PMC5721439 DOI: 10.1002/hep4.1072] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/18/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
Lipotoxicity associated with insulin resistance is central to nonalcoholic steatohepatitis (NASH) pathogenesis. To date, only weight loss fully reverses NASH pathology, but mixed peroxisome proliferator–activated receptor‐alpha/delta (PPAR‐α/δ) agonists show some efficacy. Seladelpar (MBX‐8025), a selective PPAR‐δ agonist, improves atherogenic dyslipidemia. We therefore used this agent to test whether selective PPAR‐δ activation can reverse hepatic lipotoxicity and NASH in an obese, dyslipidemic, and diabetic mouse model. From weaning, female Alms1 mutant (foz/foz) mice and wild‐type littermates were fed an atherogenic diet for 16 weeks; groups (n = 8‐12) were then randomized to receive MBX‐8025 (10 mg/kg) or vehicle (1% methylcellulose) by gavage for 8 weeks. Despite minimally altering body weight, MBX‐8025 normalized hyperglycemia, hyperinsulinemia, and glucose disposal in foz/foz mice. Serum alanine aminotransferase ranged 300‐600 U/L in vehicle‐treated foz/foz mice; MBX‐8025 reduced alanine aminotransferase by 50%. In addition, MBX‐8025 normalized serum lipids and hepatic levels of free cholesterol and other lipotoxic lipids that were increased in vehicle‐treated foz/foz versus wild‐type mice. This abolished hepatocyte ballooning and apoptosis, substantially reduced steatosis and liver inflammation, and improved liver fibrosis. In vehicle‐treated foz/foz mice, the mean nonalcoholic fatty liver disease activity score was 6.9, indicating NASH; MBX‐8025 reversed NASH in all foz/foz mice (nonalcoholic fatty liver disease activity score 3.13). Conclusion: Seladelpar improves insulin sensitivity and reverses dyslipidemia and hepatic storage of lipotoxic lipids to improve NASH pathology in atherogenic diet–fed obese diabetic mice. Selective PPAR‐δ agonists act independently of weight reduction, but counter lipotoxicity related to insulin resistance, thereby providing a novel therapy for NASH. (Hepatology Communications 2017;1:663–674)
Collapse
Affiliation(s)
- Fahrettin Haczeyni
- Liver Research Group Australian National University Medical School at the Canberra Hospital Canberra ACT Australia
| | - Hans Wang
- Liver Research Group Australian National University Medical School at the Canberra Hospital Canberra ACT Australia
| | - Vanessa Barn
- Liver Research Group Australian National University Medical School at the Canberra Hospital Canberra ACT Australia
| | - Auvro R Mridha
- Liver Research Group Australian National University Medical School at the Canberra Hospital Canberra ACT Australia
| | - Matthew M Yeh
- Department of Pathology University of Washington Seattle WA
| | - W Geoffrey Haigh
- VA Medical Center Department of Medicine, University of Washington Seattle WA
| | - George N Ioannou
- VA Medical Center Department of Medicine, University of Washington Seattle WA
| | | | | | - Narcissus C-H Teoh
- Liver Research Group Australian National University Medical School at the Canberra Hospital Canberra ACT Australia
| | - Geoffrey C Farrell
- Liver Research Group Australian National University Medical School at the Canberra Hospital Canberra ACT Australia
| |
Collapse
|
36
|
Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today 2017; 22:1707-1718. [PMID: 28687459 DOI: 10.1016/j.drudis.2017.06.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in the Western world. NAFLD is a complex spectrum of liver diseases ranging from benign hepatic steatosis to its more aggressive necroinflammatory manifestation, nonalcoholic steatohepatitis (NASH). NASH pathogenesis is multifactorial and risk factors are almost identical to those of the metabolic syndrome. This has prompted substantial efforts to identify novel drug therapies for correcting underlying metabolic deficits, and to prevent or alleviate hepatic fibrosis in NASH. Available mouse models of NASH address different aspects of the disease, have varying clinical translatability, and, therefore, also show different utility in drug discovery.
Collapse
Affiliation(s)
- Henrik H Hansen
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark.
| | - Michael Feigh
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| | - Sanne S Veidal
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| | | | - Niels Vrang
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| | - Keld Fosgerau
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| |
Collapse
|
37
|
Abstract
Interactions between macrophages and adipocytes influence both metabolism and inflammation. Obesity-induced changes to macrophages and adipocytes lead to chronic inflammation and insulin resistance. This paper reviews the various functions of macrophages in lean and obese adipose tissue and how obesity alters adipose tissue macrophage phenotypes. Metabolic disease and insulin resistance shift the balance between numerous pro- and anti-inflammatory regulators of macrophages and create a feed-forward loop of increasing inflammatory macrophage activation and worsening adipocyte dysfunction. This ultimately leads to adipose tissue fibrosis and diabetes. The molecular mechanisms underlying these processes have therapeutic implications for obesity, metabolic syndrome, and diabetes.
Collapse
Affiliation(s)
- Dylan Thomas
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, H-3600, Boston, MA 02118.
| | - Caroline Apovian
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, Robinson 4400, Boston, MA 02118.
| |
Collapse
|