1
|
Hernández-Arciga U, Stamenkovic C, Yadav S, Nicoletti C, Albalawy WN, Al hammood F, Gonzalez TF, Naikwadi MU, Graham A, Smarz C, Little GJ, Williams SPG, McMahon B, Sipula IJ, Vandevender AM, Chuan B, Cooke D, Pinto AFM, Flores LC, Hartman HL, Diedrich JK, Brooke RT, Alder JK, Frahm KA, Pascal LE, Stolt E, Troensegaard H, Øvrebø B, Elshorbagy A, Molina E, Vinknes KJ, Tan RJ, Weisz OA, Bueno M, Eickelberg O, Steinhauser ML, Finkel T, Ables GP, Ikeno Y, Olsen T, Sacco A, Jurczak MJ, Sukoff Rizzo SJ, Parkhitko AA. Dietary methionine restriction started late in life promotes healthy aging in a sex-specific manner. SCIENCE ADVANCES 2025; 11:eads1532. [PMID: 40238871 PMCID: PMC12002124 DOI: 10.1126/sciadv.ads1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Aging is associated with dysregulated methionine metabolism and increased levels of enzymes in the tyrosine degradation pathway (TDP). To investigate the efficacy of targeting either methionine metabolism or the TDP for healthspan improvement in advanced age, we initiated dietary MetR or TDP inhibition in 18-month-old C57BL/6J mice. MetR significantly improved neuromuscular function, metabolic health, lung function, and frailty. In addition, we confirmed improved neuromuscular function from dietary MetR in 5XFAD mice, whose weight was not affected by MetR. We did not observe benefits with TDP inhibition. Single-nucleus RNA and ATAC sequencing of muscle revealed cell type-specific responses to MetR, although MetR did not significantly affect mouse aging epigenetic clock markers. Similarly, an 8-week MetR intervention in a human trial (NCT04701346) showed no significant impact on epigenetic clocks. The observed benefits from late-life MetR provide translational rationale to develop MetR mimetics as an antiaging intervention.
Collapse
Affiliation(s)
| | - Ceda Stamenkovic
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shweta Yadav
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara Nicoletti
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wafaa N. Albalawy
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Farazdaq Al hammood
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Aidan Graham
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Christian Smarz
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela J. Little
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Brenda McMahon
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, PA, USA
| | - Ian J. Sipula
- Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amber M. Vandevender
- Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron Chuan
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science Inc., Cold Spring, NY, USA
| | - Antonio F. M. Pinto
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa C. Flores
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Hannah L. Hartman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jolene K. Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Jonathan K. Alder
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Krystle A. Frahm
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura E. Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elsa Molina
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Roderick J. Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ora A. Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marta Bueno
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oliver Eickelberg
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L. Steinhauser
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Toren Finkel
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Gene P. Ables
- Orentreich Foundation for the Advancement of Science Inc., Cold Spring, NY, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research and Education Center, Audie L. Murphy VA Hospital South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Alessandra Sacco
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael J. Jurczak
- Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andrey A. Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Ommi NB, Mattocks DAL, Kalecký K, Bottiglieri T, Nichenametla SN. Pharmacological recapitulation of the lean phenotype induced by the lifespan-extending sulfur amino acid-restricted diet. Aging (Albany NY) 2025; 17:960-981. [PMID: 40202448 DOI: 10.18632/aging.206237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Sulfur amino acid restriction (SAAR), lowering the dietary concentration of sulfur amino acids methionine and cysteine, induces strong anti-obesity effects in rodents. Due to difficulties in formulating the SAAR diet for human consumption, its translation is challenging. Since our previous studies suggest a mechanistic role for low glutathione (GSH) in SAAR-induced anti-obesity effects, we investigated if the pharmacological lowering of GSH recapitulates the lean phenotype in mice on a sulfur amino acid-replete diet. Male obese C57BL6/NTac mice were fed high-fat diets with 0.86% methionine (CD), 0.12% methionine (SAAR), SAAR diet supplemented with a GSH biosynthetic precursor, N-acetylcysteine in water (NAC), and CD supplemented with a GSH biosynthetic inhibitor, DL-buthionine-(S, R)-sulfoximine in water (BSO). The SAAR diet lowered hepatic GSH but increased Nrf2, Phgdh, and serine. These molecular changes culminated in lower hepatic lipid droplet frequency, epididymal fat depot weights, and body fat mass; NAC reversed all these changes. BSO mice exhibited all SAAR-induced changes, with two notable differences, i.e., a smaller effect size than that of the SAAR diet and a higher predilection for molecular changes in kidneys than in the liver. Metabolomics data indicate that BSO and the SAAR diet induce similar changes in the kidney. Unaltered plasma aspartate and alanine transaminases and cystatin-C indicate that long-term continuous administration of BSO is safe. Data demonstrate that BSO recapitulates the SAAR-induced anti-obesity effects and that GSH plays a mechanistic role. BSO dose-response studies in animals and pilot studies in humans to combat obesity are highly warranted.
Collapse
Affiliation(s)
- Naidu B Ommi
- Animal Science Laboratory, Orentreich Foundation for the Advancement of Science Inc., Cold Spring-on-Hudson, NY 10516, USA
| | - Dwight A L Mattocks
- Animal Science Laboratory, Orentreich Foundation for the Advancement of Science Inc., Cold Spring-on-Hudson, NY 10516, USA
| | - Karel Kalecký
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Sailendra N Nichenametla
- Animal Science Laboratory, Orentreich Foundation for the Advancement of Science Inc., Cold Spring-on-Hudson, NY 10516, USA
| |
Collapse
|
3
|
Jeitner TM, Azcona JA, Ables GP, Cooke D, Horowitz MC, Singh P, Kelly JM, Cooper AJL. Cystine rather than cysteine is the preferred substrate for β-elimination by cystathionine γ-lyase: implications for dietary methionine restriction. GeroScience 2024; 46:3617-3634. [PMID: 37217633 PMCID: PMC11229439 DOI: 10.1007/s11357-023-00788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine β-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine β-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by β-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine β-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed β-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed β-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed β-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for β-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Mark C Horowitz
- Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pradeep Singh
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, 516 East 72Nd St, New York, NY, 10021, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
4
|
Liou CJ, Wu SJ, Yang HC, Fang LW, Cheng SC, Huang WC. Licochalcone D ameliorates lipid metabolism in hepatocytes by modulating lipogenesis and autophagy. Eur J Pharmacol 2024; 975:176644. [PMID: 38754535 DOI: 10.1016/j.ejphar.2024.176644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid β-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 33303, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33303, Taiwan
| | - Hui-Chi Yang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, No.8, Yida Rd. Yanchao Dist., Kaohsiung City, Taiwan
| | - Shu-Chen Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 33303, Taiwan.
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 33303, Taiwan; Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, 23656, Taiwan.
| |
Collapse
|
5
|
Olsen T, Elshorbagy A, Stolt E, Åsberg A, Zaré HK, Bastani NE, Refsum H, Retterstøl K, Vinknes KJ. Acute effects of oral mesna administration on the full amino acid profile and 3-methylhistidine: secondary results from the CYLOB dose-finding study. Amino Acids 2024; 56:39. [PMID: 38844567 PMCID: PMC11156715 DOI: 10.1007/s00726-024-03398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Plasma total cysteine (tCys) is strongly associated with fat mass in humans. Mesna lowers plasma tCys in a dose-dependent manner, but it is not known whether it interferes with metabolism of other amino acids or protein. In this Phase-1 study, we show that a single dose of mesna administered at 400, 800, 1200 or 1600 mg to 6-7 individuals per dose only slightly affects amino acid profiles, with increases in plasma valine across dose levels. There were no effects of mesna on 3-methylhistidine, a marker of protein breakdown.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Amany Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Hasse K Zaré
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, The Lipid Clinic, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Shen W, Yang M, Chen H, He C, Li H, Yang X, Zhuo J, Lin Z, Hu Z, Lu D, Xu X. FGF21-mediated autophagy: Remodeling the homeostasis in response to stress in liver diseases. Genes Dis 2024; 11:101027. [PMID: 38292187 PMCID: PMC10825283 DOI: 10.1016/j.gendis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 02/01/2024] Open
Abstract
Liver diseases are worldwide problems closely associated with various stresses, such as endoplasmic reticulum stress. The exact interplay between stress and liver diseases remains unclear. Autophagy plays an essential role in maintaining homeostasis, and recent studies indicate tight crosstalk between stress and autophagy in liver diseases. Once the balance between damage and autophagy is broken, autophagy can no longer resist injury or maintain homeostasis. In recent years, FGF21 (fibroblast growth factor 21)-induced autophagy has attracted much attention. FGF21 is regarded as a stress hormone and can be up-regulated by an abundance of signaling pathways in response to stress. Also, increased FGF21 activates autophagy by a complicated signaling network in which mTOR plays a pivotal role. This review summarizes the mechanism of FGF21-mediated autophagy and its derived application in the defense of stress in liver diseases and offers a glimpse into its promising prospect in future clinical practice.
Collapse
Affiliation(s)
- Wei Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Modan Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianyong Zhuo
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
Olsen T, Stolt E, Øvrebø B, Elshorbagy A, Tore EC, Lee-Ødegård S, Troensegaard H, Johannessen H, Doeland B, Vo AAD, Dahl AF, Svendsen K, Thoresen M, Refsum H, Rising R, Barvíková K, van Greevenbroek M, Kožich V, Retterstøl K, Vinknes KJ. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J Transl Med 2024; 22:40. [PMID: 38195568 PMCID: PMC10775517 DOI: 10.1186/s12967-023-04833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS SAAR led to a ~ 20% greater weight loss compared to controls (β 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elena C Tore
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Johannessen
- Department of Paedriatic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Beate Doeland
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna A D Vo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anja F Dahl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Cooke D, Ables GP. Physical activity of mice on dietary sulfur amino acid restriction is influenced by age of diet initiation and biological sex. Sci Rep 2023; 13:20609. [PMID: 37996548 PMCID: PMC10667228 DOI: 10.1038/s41598-023-47676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Sulfur amino acid restriction (SAAR)-the reduction of methionine and cysteine concentrations either in the diet or by genetic manipulation-promotes health span and extends lifespan, but its effects on physical activity remain unclear. We investigated whether age of diet initiation and biological sex could influence physical activity in mice fed either a control diet (CF, 0.86% methionine w/w) or SAAR (0.12% methionine w/w). Quadriceps femoris muscle mass is smaller in SAAR than in CF mice. Young mice fed a chronic SAAR diet at 8 weeks of age exhibited improved wire hang and running wheel activities compared to young CF mice, while aged mice showed comparable results. The effects of chronic SAAR on physical activity was mildly influenced by sex as observed in middle-aged male SAAR mice who showed minor improvements than CF males while middle-aged females displayed no discernible effects. Muscle mass is minimally affected by changes in markers of protein synthesis, autophagy and atrophy. Improvements to physical activity in young SAAR mice could be partially attributed to increased skeletal muscle mitochondrial activity. Furthermore, SAAR in C2C12 myotubes increased citrate synthase protein expression and enhanced succinyl dehydrogenase enzyme activity compared to CF myotubes. Overall, our data reveal that SAAR can improve mouse physical activity without compromising muscle proteostasis. This is partially due to enhanced mitochondrial activity, but the effects are influenced by age of diet initiation and sex.
Collapse
Affiliation(s)
- Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc., 855 Route 301, Cold Spring, NY, 10516, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Inc., 855 Route 301, Cold Spring, NY, 10516, USA.
| |
Collapse
|
9
|
Lee Y, Cho JY, Cho KY. Serum, Urine, and Fecal Metabolome Alterations in the Gut Microbiota in Response to Lifestyle Interventions in Pediatric Obesity: A Non-Randomized Clinical Trial. Nutrients 2023; 15:2184. [PMID: 37432339 DOI: 10.3390/nu15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Pediatric obesity is associated with alterations in the gut microbiota and its metabolites. However, how they influence obesity and the effect of lifestyle interventions remains unknown.. In this non-randomized clinical trial, we analyzed metabolomes and microbial features to understand the associated metabolic pathways and the effect of lifestyle interventions on pediatric obesity. Anthropometric/biochemical data and fasting serum, urine, and fecal samples were collected at baseline and after an eight-week, weight-reduction lifestyle modification program. Post-intervention, children with obesity were classified into responder and non-responder groups based on changes in total body fat. At baseline, serum L-isoleucine and uric acid levels were significantly higher in children with obesity compared with those in normal-weight children and were positively correlated with obesogenic genera. Taurodeoxycholic and tauromuricholic α + β acid levels decreased significantly with obesity and were negatively correlated with obesogenic genera. Branched-chain amino acid and purine metabolisms were distinguished metabolic pathways in the obese group. Post-intervention, urinary myristic acid levels decreased significantly in the responder group, showing a significant positive correlation with Bacteroides. Fatty acid biosynthesis decreased significantly in the responder group. Thus, lifestyle intervention with weight loss is associated with changes in fatty acid biosynthesis, and myristic acid is a possible therapeutic target for pediatric obesity.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
- CBNUH Cheongju-Osong National Advanced Clinical Trial Center, 77, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Chungcheongbuk-do, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| |
Collapse
|
10
|
Feng C, Jiang Y, Wu G, Shi Y, Ge Y, Li B, Cheng X, Tang X, Zhu J, Le G. Dietary Methionine Restriction Improves Gastrocnemius Muscle Glucose Metabolism through Improved Insulin Secretion and H19/IRS-1/Akt Pathway in Middle-Aged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5655-5666. [PMID: 36995760 DOI: 10.1021/acs.jafc.2c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methionine restriction (MR) improves glucose metabolism. In skeletal muscle, H19 is a key regulator of insulin sensitivity and glucose metabolism. Therefore, this study aims to reveal the underlying mechanism of H19 upon MR on glucose metabolism in skeletal muscle. Middle-aged mice were fed MR diet for 25 weeks. Mouse islets β cell line β-TC6 cells and mouse myoblast cell line C2C12 cells were used to establish the apoptosis or insulin resistance model. Our findings showed that MR increased B-cell lymphoma-2 (Bcl-2) expression, deceased Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate-specific proteinase-3 (Caspase-3) expression in pancreas, and promoted insulin secretion of β-TC6 cells. Meanwhile, MR increased H19 expression, insulin Receptor Substrate-1/insulin Receptor Substrate-2 (IRS-1/IRS-2) value, protein Kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK3β) phosphorylation, and hexokinase 2 (HK2) expression in gastrocnemius muscle and promoted glucose uptake in C2C12 cells. But these results were reversed after H19 knockdown in C2C12 cells. In conclusion, MR alleviates pancreatic apoptosis and promotes insulin secretion. And MR enhances gastrocnemius muscle insulin-dependent glucose uptake and utilization via the H19/IRS-1/Akt pathway, thereby ameliorating blood glucose disorders and insulin resistance in high-fat-diet (HFD) middle-aged mice.
Collapse
Affiliation(s)
- Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yonghui Shi
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangrong Cheng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianjin Zhu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Wu G, Xu J, Wang Q, Fang Z, Fang Y, Jiang Y, Zhang X, Cheng X, Sun J, Le G. Methionine-Restricted Diet: A Feasible Strategy Against Chronic or Aging-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5-19. [PMID: 36571820 DOI: 10.1021/acs.jafc.2c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dietary methionine restriction (MR) has been associated with multifaceted health-promoting effects. MR is conducive to prevention of several chronic diseases and cancer, and extension of lifespan. A growing number of studies on new phenotypes and mechanisms of MR have become available in the past five years, especially in angiogenesis, neurodegenerative diseases, intestinal microbiota, and intestinal barrier function. In this review, we summarize the characteristics and advantages of MR, and current knowledge on the physiological responses and effects of MR on chronic diseases and aging-associated pathologies. Potential mechanisms, in which hydrogen sulfide, fibroblast growth factor 21, gut microbiota, short-chain fatty acids, and so on are involved, are discussed. Moreover, directions for epigenetics and gut microbiota in an MR diet are presented in future perspectives. This review comprehensively summarizes the novel roles and interpretations of the mechanisms underlying MR in the prevention of chronic diseases and aging.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingxuan Xu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Ziyang Fang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yucheng Fang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yujie Jiang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohong Zhang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiangrong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266021, China
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
McGilvrey M, Fortier B, Tero B, Cooke D, Cooper E, Walker J, Koza R, Ables G, Liaw L. Effects of dietary methionine restriction on age-related changes in perivascular and beiging adipose tissues in the mouse. Obesity (Silver Spring) 2023; 31:159-170. [PMID: 36513498 PMCID: PMC9780157 DOI: 10.1002/oby.23583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) regulates vascular health. Dietary methionine restriction (MetR) impacts age-related adiposity, and this study addresses its effects in PVAT. METHODS Male C57BL/6 mice at 8, 52, and 102 weeks of age were fed a standard (0.86%) or low-methionine (0.12%) diet for 52 weeks in 8-week-old and 52-week-old mice and for 15 weeks in 102-week-old mice. RESULTS Mice with dietary MetR were resistant to weight gain and maintained a healthy blood profile. Aging increased lipid accumulation, and MetR reversed this phenotype. Notch signaling in inguinal white adipose tissue (iWAT) was decreased by MetR but increased in gonadal white adipose tissue. However, the Notch phenotype of brown adipose tissue (BAT) was not affected by MetR. Uncoupling protein 1 (UCP1) was increased in PVAT, iWAT, and BAT by MetR when initiated in young mice, but this effect was lost in middle-aged mice. CONCLUSIONS Lipid in mouse PVAT peaked at 1 year of age, consistent with peak body mass. MetR reduced body weight, normalized metabolic parameters, and decreased lipid in PVAT in all age cohorts. Mice fed a MetR diet from early maturity to 1 year of age displayed an increased thermogenic adipocyte phenotype in iWAT, PVAT, and BAT, all tissues with thermogenic capacity.
Collapse
Affiliation(s)
- Marissa McGilvrey
- Center for Molecular Medicine, MaineHealth Institute for Research
- Graduate School of Biomedical Science and Engineering, University of Maine
| | - Bethany Fortier
- Center for Molecular Medicine, MaineHealth Institute for Research
- Department of Biological Sciences, University of Southern Maine
| | - Benjamin Tero
- Center for Molecular Medicine, MaineHealth Institute for Research
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc
| | - Emily Cooper
- Center for Molecular Medicine, MaineHealth Institute for Research
| | - Jeffrey Walker
- Department of Biological Sciences, University of Southern Maine
| | - Robert Koza
- Center for Molecular Medicine, MaineHealth Institute for Research
- Graduate School of Biomedical Science and Engineering, University of Maine
| | - Gene Ables
- Orentreich Foundation for the Advancement of Science, Inc
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research
- Department of Biological Sciences, University of Southern Maine
- Graduate School of Biomedical Science and Engineering, University of Maine
| |
Collapse
|
13
|
Richie JP, Sinha R, Dong Z, Nichenametla SN, Ables GP, Ciccarella A, Sinha I, Calcagnotto AM, Chinchilli VM, Reinhart L, Orentreich D. Dietary Methionine and Total Sulfur Amino Acid Restriction in Healthy Adults. J Nutr Health Aging 2023; 27:111-123. [PMID: 36806866 PMCID: PMC10782544 DOI: 10.1007/s12603-023-1883-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Dietary restriction of methionine (Met) and cysteine (Cys) delays the aging process and aging-related diseases, improves glucose and fat metabolism and reduces oxidative stress in numerous laboratory animal models. Little is known regarding the effects of sulfur amino acid restriction in humans. Thus, our objectives were to determine the impact of feeding diets restricted in Met alone (MetR) or in both Met and Cys (total sulfur amino acids, SAAR) to healthy adults on relevant biomarkers of cardiometabolic disease risk. DESIGN A controlled feeding study. SETTING AND PARTICIPANTS We included 20 healthy adults (11 females/9 males) assigned to MetR or SAAR diet groups consisting of three 4-wk feeding periods: Control period; low level restriction period (70% MetR or 50% SAAR); and high level restriction period (90% MetR or 65% SAAR) separated by 3-4-wk washout periods. RESULTS No adverse effects were associated with either diet and level of restriction and compliance was high in all subjects. SAAR was associated with significant reductions in body weight and plasma levels of total cholesterol, LDL, uric acid, leptin, and insulin, BUN, and IGF-1, and increases in body temperature and plasma FGF-21 after 4 weeks (P<0.05). Fewer changes occurred with MetR including significant reductions in BUN, uric acid and 8-isoprostane and an increase in FGF-21 after 4 weeks (P<0.05). In the 65% SAAR group, plasma Met and Cys levels were significantly reduced by 15% and 13% respectively (P<0.05). CONCLUSION These results suggest that many of the short-term beneficial effects of SAAR observed in animal models are translatable to humans and support further clinical development of this intervention.
Collapse
Affiliation(s)
- John P. Richie
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey PA
| | - Zhen Dong
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Sailendra N. Nichenametla
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Gene P. Ables
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Amy Ciccarella
- Center for Clinical Research, Pennsylvania State University, State College, PA
| | - Indu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey PA
| | - Ana M. Calcagnotto
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Lisa Reinhart
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - David Orentreich
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| |
Collapse
|
14
|
Nichenametla SN, Mattocks DAL, Cooke D, Midya V, Malloy VL, Mansilla W, Øvrebø B, Turner C, Bastani N, Sokolová J, Pavlíková M, Richie JP, Shoveller A, Refsum H, Olsen T, Vinknes KJ, Kožich V, Ables GP. Cysteine restriction-specific effects of sulfur amino acid restriction on lipid metabolism. Aging Cell 2022; 21:e13739. [PMID: 36403077 PMCID: PMC9741510 DOI: 10.1111/acel.13739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.
Collapse
Affiliation(s)
- Sailendra N. Nichenametla
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Dwight A. L. Mattocks
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Diana Cooke
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Vishal Midya
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Virginia L. Malloy
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Wilfredo Mansilla
- Department of Animal BioscienceUniversity of GuelphGuelphOntarioCanada
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Cheryl Turner
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Nasser E. Bastani
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in PragueCharles University‐First Faculty of MedicinePragueCzech Republic
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University ‐ Faculty of Mathematics and PhysicsPragueCzech Republic
| | - John P. Richie
- Departments of Public Health Sciences and PharmacologyPenn State University College of MedicineHersheyPennsylvaniaUSA
| | - Anna K. Shoveller
- Department of Animal BioscienceUniversity of GuelphGuelphOntarioCanada
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway,Department of PharmacologyUniversity of OxfordOxfordUK
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in PragueCharles University‐First Faculty of MedicinePragueCzech Republic
| | - Gene P. Ables
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| |
Collapse
|
15
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
16
|
Multiomics assessment of dietary protein titration reveals altered hepatic glucose utilization. Cell Rep 2022; 40:111187. [PMID: 35977507 DOI: 10.1016/j.celrep.2022.111187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/17/2021] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary protein restriction (PR) has rapid effects on metabolism including improved glucose and lipid homeostasis, via multiple mechanisms. Here, we investigate responses of fecal microbiome, hepatic transcriptome, and hepatic metabolome to six diets with protein from 18% to 0% of energy in mice. PR alters fecal microbial composition, but metabolic effects are not transferable via fecal transplantation. Hepatic transcriptome and metabolome are significantly altered in diets with lower than 10% energy from protein. Changes upon PR correlate with calorie restriction but with a larger magnitude and specific changes in amino acid (AA) metabolism. PR increases steady-state aspartate, serine, and glutamate and decreases glucose and gluconeogenic intermediates. 13C6 glucose and glycerol tracing reveal increased fractional enrichment in aspartate, serine, and glutamate. Changes remain intact in hepatic ATF4 knockout mice. Together, this demonstrates an ATF4-independent shift in gluconeogenic substrate utilization toward specific AAs, with compensation from glycerol to promote a protein-sparing response.
Collapse
|
17
|
Chaudhary R, Liu B, Bensalem J, Sargeant TJ, Page AJ, Wittert GA, Hutchison AT, Heilbronn LK. Intermittent fasting activates markers of autophagy in mouse liver, but not muscle from mouse or humans. Nutrition 2022; 101:111662. [DOI: 10.1016/j.nut.2022.111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/09/2022]
|
18
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2022; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Degens H, Swaminathan A, Tallis J. A High-Fat Diet Aggravates the Age-Related Decline in Skeletal Muscle Structure and Function. Exerc Sport Sci Rev 2021; 49:253-259. [PMID: 33927161 DOI: 10.1249/jes.0000000000000261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The age-related decline in muscle function is aggravated by a high-fat diet (HFD)-induced increase in fat mass. The hypothesis is that an HFD leads to a faster accumulation of intramyocellular lipids (IMCL) and an earlier onset of muscle dysfunction in old than in young-adult individuals. The IMCL accumulation is attenuated in young-adult organisms by an elevated oxidative capacity. Methionine restriction enhances mitochondrial biogenesis and is promising to combat obesity across the ages.
Collapse
Affiliation(s)
| | - Anandini Swaminathan
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Jason Tallis
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Coventry, UK
| |
Collapse
|
20
|
Plummer JD, Postnikoff SD, Tyler JK, Johnson JE. Selenium supplementation inhibits IGF-1 signaling and confers methionine restriction-like healthspan benefits to mice. eLife 2021; 10:62483. [PMID: 33783357 PMCID: PMC8009673 DOI: 10.7554/elife.62483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Methionine restriction (MR) dramatically extends the healthspan of several organisms. Methionine-restricted rodents have less age-related pathology and increased longevity as compared with controls, and recent studies suggest that humans might benefit similarly. Mechanistically, it is likely that the decreased IGF-1 signaling that results from MR underlies the benefits of this regimen. Thus, we hypothesized that interventions that decrease IGF-1 signaling would also produce MR-like healthspan benefits. Selenium supplementation inhibits IGF-1 signaling in rats and has been studied for its putative healthspan benefits. Indeed, we show that feeding mice a diet supplemented with sodium selenite results in an MR-like phenotype, marked by protection against diet-induced obesity, as well as altered plasma levels of IGF-1, FGF-21, adiponectin, and leptin. Selenomethionine supplementation results in a similar, albeit less robust response, and also extends budding yeast lifespan. Our results indicate that selenium supplementation is sufficient to produce MR-like healthspan benefits for yeast and mammals.
Collapse
Affiliation(s)
- Jason D Plummer
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, United States
| | - Spike Dl Postnikoff
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Jay E Johnson
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, United States
| |
Collapse
|
21
|
Swaminathan A, Fokin A, Venckūnas T, Degens H. Methionine restriction plus overload improves skeletal muscle and metabolic health in old mice on a high fat diet. Sci Rep 2021; 11:1260. [PMID: 33441954 PMCID: PMC7806605 DOI: 10.1038/s41598-021-81037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Methionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.
Collapse
Affiliation(s)
- Anandini Swaminathan
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Andrej Fokin
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Tomas Venckūnas
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Hans Degens
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania ,grid.25627.340000 0001 0790 5329Department of Life Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|