1
|
Min JS, Jo SJ, Lee S, Kim DY, Kim DH, Lee CB, Bae SK. A Comprehensive Review on the Pharmacokinetics and Drug-Drug Interactions of Approved GLP-1 Receptor Agonists and a Dual GLP-1/GIP Receptor Agonist. Drug Des Devel Ther 2025; 19:3509-3537. [PMID: 40330819 PMCID: PMC12052016 DOI: 10.2147/dddt.s506957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are peptide-derived analogs that were initially investigated to treat type 2 diabetes. Recently, a drug targeting the receptors of both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) (tirzepatide) has been introduced to the market, and its indications have expanded to include treating obesity. Here, we review the pharmacokinetics, pharmacokinetic drug-drug interactions (DDIs), and pharmacokinetic modeling approaches of four currently available GLP-1 RAs (exenatide, liraglutide, dulaglutide, and semaglutide) and tirzepatide. To address the extremely short half-life (2 min) of native human GLP-1, structural modifications have been applied to GLP-1 RAs and a dual GLP-1/GIP RA. These include amino acid sequence substitutions, fatty acid conjugation using a linker, and fusion with albumin or the IgG fragment crystallizable (Fc) region, resulting in minimal metabolism and renal excretion. Due to their diverse structures, the pharmacokinetic profiles vary, and a prolonged half-life may be associated with an increased risk of adverse events. Clinically significant drug-metabolizing enzyme- and transporter-mediated DDIs are yet to be reported. Mechanism-of-action-mediated DDIs are currently limited to those involving delayed gastric emptying, and most studies have found them to be clinically insignificant. However, significant changes in exposure were observed for oral contraceptives and levothyroxine following the administration of tirzepatide and oral semaglutide, respectively, indicating the need for close monitoring in these instances. Thirty models have been developed to predict pharmacokinetics and physiologically based pharmacokinetic modeling can be useful for assessing mechanism-of-action-mediated DDIs. Alterations in the volume of distribution and clearance resulting from other mechanisms of action (eg, reduced fat mass, changes in cytochrome P450 activity, and glomerular filtration rate) are key factors in determining pharmacokinetics. However, the DDIs mediated by these factors remain poorly understood and require further investigation to ensure that GLP-1 RAs can be safely used with concomitant medications.
Collapse
Affiliation(s)
- Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seong Jun Jo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, 14214, USA
| | - Sangyoung Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Duk Yeon Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Da Hyun Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Chae Bin Lee
- Johns Hopkins Drug Discovery, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
2
|
Au HCT, Zheng YJ, Le GH, Wong S, Phan L, Teopiz KM, Kwan ATH, Rhee TG, Rosenblat JD, Ho R, McIntyre RS. A systematic review in effects of glucagon-like peptide-1 (GLP-1) mono-agonists on functional connectivity: Target engagement and rationale for the development in mental disorders. J Affect Disord 2025; 370:321-327. [PMID: 39515485 DOI: 10.1016/j.jad.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The mechanistic role of glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists (GLP-1RAs) in modulating brain functional activity has been inadequately examined. Mental disorders are characterized by dysregulated functional connectivity in brain circuits that subserve phenomenology. We conducted a comprehensive synthesis of known effects of GLP-1 and GLP-1RAs on functional connectivity. METHODS We conducted a systematic review examining studies that investigate changes in functional connectivity mediated by GLP-1 and GLP-1RAs in human adults. Relevant articles were retrieved from OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), PubMed, and Web of Science from database inception to April 26, 2024. Primary or secondary studies (n = 8) investigating the role of GLP-1 and GLP-1RAs on functional connectivity were included for analysis. RESULTS GLP-1 and GLP-1RAs modulate functional connectivity within the dorsal default mode network (DMN), visuospatial network, right frontal parietal network, and the salience network. GLP-1 agonism is also associated with decreased functional connectivity within the hypothalamus, lateral orbitofrontal cortex, and amygdala. Contrastingly, some GLP-1RAs (e.g. exenatide) increase functional connectivity in the hypothalamus, nucleus tractus solitarius, and thalamus. Moreover, liraglutide is associated with increased functional connectivity within the hippocampus in healthy individuals suggesting that GLP-1RAs may have differential effects on brain functional connectivity. DISCUSSION We observed that GLP-1 and GLP-1 RAs are associated with changes in functional connectivity known to subserve phenomenology of many mental disorders (e.g. anhedonia). Future research should aim to further examine neural circuits and networks affected by GLP-1 receptor activity and how they may affect cognitive and psychopathological domains in psychiatric disorders.
Collapse
Affiliation(s)
- Hezekiah C T Au
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Yang Jing Zheng
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Lee Phan
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Roger Ho
- Division of Life Science (LIFS), Faculty of Science, Hong Kong University of Science and Technology (HKUST), Hong Kong; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Siriyotha S, Anothaisintawee T, Looareesuwan P, Nimitphong H, McKay GJ, Attia J, Thakkinstian A. Effectiveness of glucagon-like peptide-1 receptor agonists for reduction of body mass index and blood glucose control in patients with type 2 diabetes mellitus and obesity: A retrospective cohort study and difference-in-difference analysis. BMJ Open 2024; 14:e086424. [PMID: 39581734 PMCID: PMC11590856 DOI: 10.1136/bmjopen-2024-086424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness of glucagon-like peptide-1 receptor agonists (GLP-1RA) in reducing body mass index (BMI) and blood glucose levels in individuals with type 2 diabetes mellitus (T2DM) using the difference-in-differences (DID) technique. RESEARCH DESIGN AND METHODS This retrospective cohort study included patients with T2DM, receiving GLP1-RA or other second-line antidiabetic treatments between 2010 and 2023. A linear mixed-effect regression with heterogeneous augmented inverse probability weighting DID analysis was used to compare the effectiveness of GLP-1RA and other second-line treatments in reducing BMI, fasting plasma glucose (FPG) and haemoglobin A1C (HbA1c) in patients with T2DM. An average treatment effect on the treated (ATET) for each outcome was estimated. RESULTS 1000 patients with T2DM (GLP-1RA=220, non-GLP-1RA=880) were included. Compared with other second-line drugs, GLP-1RA significantly reduced BMI by approximately 1.02 kg/m2 (95% CI -1.46 to -0.58) over 24 months of treatment. Additionally, GLP-1RA significantly decreased FPG and HbA1c levels, compared with other second-line treatments with overall ATETs (95% CI) of -21.34 mg/dL (-29.53 to -13.15) and -0.58% (-0.77% to -0.38%), respectively. CONCLUSIONS Our results indicate that patients with T2DM treated with GLP-1RA had a significantly greater reduction in BMI, FPG and HbA1C levels compared with those receiving other second-line antidiabetic therapies. As such, GLP-1RA might be considered the preferred treatment for obese patients with T2DM who fail to sufficiently respond to metformin monotherapy.
Collapse
Affiliation(s)
- Sukanya Siriyotha
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thunyarat Anothaisintawee
- Department of Family Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panu Looareesuwan
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hataikarn Nimitphong
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Gareth J McKay
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, UK
| | - John Attia
- Division of Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Akel M, Ziq A, Kaldas P, Hamden J, Omari AR, Silanee A. Exploring the Therapeutic Potential of Glucagon-Like Peptide 1 (GLP-1) Receptor Agonists in Polycystic Ovary Syndrome. Cureus 2024; 16:e73687. [PMID: 39677183 PMCID: PMC11646169 DOI: 10.7759/cureus.73687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder affecting women of reproductive age and is characterized by hormonal imbalances, insulin resistance, and reproductive dysfunctions. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are primarily used in diabetes management to enhance insulin release by stimulating GLP-1 receptors in the pancreas. The search strategy included randomized trials on the management of PCOS symptoms with GLP-1 RAs alone or in combination with other medications; meta-analyses, literature reviews, or case reports were excluded. This scoping review focuses on 11 articles to explore the therapeutic potential of GLP-1 RAs in PCOS patients. The results show significant reductions in body weight, body mass index (BMI), and waist circumference, alongside improvements in insulin sensitivity in PCOS patients treated with GLP-1 agonists. However, the diverse presentation of patients and treatment approaches was a challenge in understanding the exact mechanisms, long-term effects, and safety profiles of GLP-1 RAs in PCOS patients. This study investigates the promising potential of GLP-1 agonists in managing PCOS-related metabolic and reproductive disturbances.
Collapse
Affiliation(s)
- Miis Akel
- Obstetrics and Gynecology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Aya Ziq
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Paul Kaldas
- Physical Medicine and Rehabilitation (PM&R), Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Jad Hamden
- Internal Medicine, St. George's University School of Medicine, Doral, USA
| | - Abdul Rahman Omari
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Allen Silanee
- Obstetrics and Gynecology, Mount Sinai Medical Center, Miami Beach, USA
| |
Collapse
|
5
|
Camilleri M, Acosta A. Newer pharmacological interventions directed at gut hormones for obesity. Br J Pharmacol 2024; 181:1153-1164. [PMID: 37917871 PMCID: PMC10947960 DOI: 10.1111/bph.16278] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
The objective is to review the newer pharmacological interventions for obesity, specifically single, dual and triple incretin receptor agonists that are either available or in the pipeline for treatment of obesity. The three incretin receptor targets are glucagon like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and glucagon. There are several approved single or dual incretin agonists which can be administered subcutaneously daily (e.g., liraglutide) or weekly (e.g., semaglutide, dulaglutide, and exenatide QW), and other experimental dual or triple incretin agonists. Analogues of amylin, peptide YY and oxyntomodulin, as well as the combination of a GLP1R agonist and GIPR antagonist also are in development. Oral semaglutide (administered daily) is approved for type 2 diabetes mellitus and is on track for regulatory review for obesity. The review includes specifically perspectives on the effects of these mechanisms and pharmacological agents on gastric emptying, which contribute to satiation and weight loss, in addition to the established evidence on effects on central mechanisms controlling appetite. In the future, it is anticipated that small molecule GLP-1 receptor agonists (e.g., oral danuglipron) will be developed for treating obesity. These pharmacological agents are having significant impact on glycaemic control and obesity and on their co-morbidities.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Lupianez-Merly C, Dilmaghani S, Vosoughi K, Camilleri M. Review article: Pharmacologic management of obesity - updates on approved medications, indications and risks. Aliment Pharmacol Ther 2024; 59:475-491. [PMID: 38169126 DOI: 10.1111/apt.17856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Obesity has reached epidemic proportions, with >40% of the US population affected. Although traditionally managed by lifestyle modification, and less frequently by bariatric therapies, there are significant pharmacological advancements. AIMS To conduct a narrative review of the neurohormonal and physiological understanding of weight gain and obesity, and the development, clinical testing, indications, expected clinical outcomes, and associated risks of current FDA-approved and upcoming anti-obesity medications (AOMs). METHODS We conducted a comprehensive review in PubMed for articles on pathophysiology and complications of obesity, including terms 'neurohormonal', 'obesity', 'incretin', and 'weight loss'. Next, we searched for clinical trial data of all FDA-approved AOMs, including both the generic and trade names of orlistat, phentermine/topiramate, bupropion/naltrexone, liraglutide, and semaglutide. Additional searches were conducted for tirzepatide and retatrutide - medications expecting regulatory approval. Searches included combinations of terms related to mechanism of action, indications, side effects, risks, and future directions. RESULTS We reviewed the pathophysiology of obesity, including specific role of incretins and glucagon. Clinical data supporting the use of various FDA-approved medications for weight loss are presented, including placebo-controlled or, when available, head-to-head trials. Beneficial metabolic effects, including impact on liver disease, adverse effects and risks of medications are discussed, including altered gastrointestinal motility and risk for periprocedural aspiration. CONCLUSION AOMs have established efficacy and effectiveness for weight loss even beyond 52 weeks. Further pharmacological options, such as dual and triple incretins, are probable forthcoming additions to clinical practice for combating obesity and its metabolic consequences such as metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Camille Lupianez-Merly
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Saam Dilmaghani
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kia Vosoughi
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Chen Y, Xiao Y, Lian G, Yi J, Liu X. Pneumatosis intestinalis associated with α-glucosidase inhibitors: a pharmacovigilance study of the FDA adverse event reporting system from 2004 to 2022. Expert Opin Drug Saf 2023:1-10. [PMID: 37929311 DOI: 10.1080/14740338.2023.2278708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND A-glucosidase inhibitors (AGIs) are suitable for type 2 diabetes mellitus patients with carbohydrate-rich diets while were reported associated with the rare but potentially life-threatening pneumatosis intestinalis (PI). RESEARCH DESIGN AND METHODS Data from the US Food and Drug Administration Adverse Event Reporting System (FAERS) were examined for AGIs, acarbose, voglibose, miglitol, or other anti-hyperglycemic drug classes. The reporting odds ratio (ROR), proportional reporting ratio, gamma poisson shrinker, and bayesian confidence propagation neural network were applied to determine the safety signals, which were performed under two other models to control for bias from type 2 diabetes mellitus and other anti-hyperglycemic drugs. RESULTS We found a significantly higher reporting of PI in all AGIs group [ROR = 73.85 (61.56-88.58)]. When further subdivided, voglibose and miglitol had a larger ROR than acarbose whether models were adjusted or not. The safety signals of biguanides, sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 inhibitors inhibitors, glucagon-like peptide-1 receptor agonists, sodium-glucose co-transporter-2 inhibitors, and other drug classes were not detected in three models. CONCLUSIONS Our study identified the safety signals of the PI-AGIs pair, primarily based on disproportionality analysis while controlling for confounders such as the disease-associated risk of PI and concomitant drug exposure.
Collapse
Affiliation(s)
- Yiqian Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guanghui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Szczesnowicz A, Szeliga A, Niwczyk O, Bala G, Meczekalski B. Do GLP-1 Analogs Have a Place in the Treatment of PCOS? New Insights and Promising Therapies. J Clin Med 2023; 12:5915. [PMID: 37762856 PMCID: PMC10532286 DOI: 10.3390/jcm12185915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women of reproductive age. This condition is characterized by hyperandrogenism and either oligo- or anovulation. PCOS patients often present comorbidities such as obesity, insulin resistance, impaired glucose metabolism, dyslipidemia, hypertension, metabolic syndrome, and an increased risk of diabetes. Given the profound implications of metabolic impairment in PCOS, the accurate diagnosis and management of these facets are imperative. The first-line approach to treatment involves lifestyle modifications, including dietary adjustments and exercise aimed at achieving weight loss, a strategy consistently emphasized across the literature. Supplementation with probiotics, vitamin D, and L-carnitine have also provided additional benefits to patients. In select cases, pharmacological interventions are needed for optimal therapeutic results. The most common medications used in PCOS include metformin, thiazolidinediones, inositols, and two classes of antidiabetic agents: dipeptidyl peptidase-IV (DPP-IV) inhibitors, and sodium-glucose cotransporter-2 (SGLT-2) inhibitors. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new addition to the therapeutic arsenal for the metabolic management of PCOS. GLP-1 receptor agonists cause insulin release in a glucose-dependent manner, yielding clinical benefits such as heightened satiety, reduced appetite, and appetite regulation. GLP-1RAs have demonstrated efficacy in reducing glycated hemoglobin levels and promoting weight loss while ameliorating hyperlipidemia. Prior to initiating GLP-1RA therapy, patients should undergo screening for contraindications, including history of pancreatitis, diabetic retinopathy, or thyroid cancer. The effects of treatment should be monitored using laboratory testing and body weight measurements. Effective communication between clinician and patient should be maintained with regular check-in for a period of 6 to 12 months.
Collapse
Affiliation(s)
- Aleksandra Szczesnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| |
Collapse
|
9
|
Sherwin M, Hamburger J, Katz D, DeMaria S. Influence of semaglutide use on the presence of residual gastric solids on gastric ultrasound: a prospective observational study in volunteers without obesity recently started on semaglutide. Can J Anaesth 2023; 70:1300-1306. [PMID: 37466909 DOI: 10.1007/s12630-023-02549-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
PURPOSE Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) have become increasingly popular as both diabetic and weight loss therapies. One effect of this class of medication is delayed gastric emptying, which may impact the risk of aspiration during anesthesia delivery. METHODS In this prospective study, we used gastric ultrasound to evaluate the presence of solid gastric contents in both supine and lateral positions after an eight-hour fast in those taking GLP-1RA compared with controls. Participants underwent a second ultrasound evaluation two hours later after drinking 12 fluid ounces of water (approximately 350 mL). RESULTS Twenty adults voluntarily enrolled, giving a total of ten participants in each group. In the supine position, 70% of semaglutide participants and 10% of control participants had solids present on gastric ultrasound (risk ratio [RR], 3.50; 95% confidence interval [CI], 1.26 to 9.65; P = 0.02.) In the lateral position, 90% of semaglutide participants and 20% of control participants had solids identified on gastric ultrasound (RR, 7.36; 95% CI, 1.13 to 47.7; P = 0.005). Two hours after drinking clear liquids, the two groups did not differ in the lateral position, but in the supine position, 90% of control group participants were rated as empty compared with only 30% of semaglutide group participants (P = 0.02). CONCLUSIONS This study provides preliminary evidence that GLP-1RAs may affect gastric emptying and residual gastric contents following an overnight fast and two hours after clear liquids, which may have implications for aspiration risk during anesthetic care.
Collapse
Affiliation(s)
- Marc Sherwin
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L., Levy Place, Box 1010, New York, NY, 10029, USA
| | - Joshua Hamburger
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L., Levy Place, Box 1010, New York, NY, 10029, USA
| | - Daniel Katz
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L., Levy Place, Box 1010, New York, NY, 10029, USA
| | - Samuel DeMaria
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L., Levy Place, Box 1010, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Lu W, Zhou Z, Jiang N, Han J. An updated patent review of GLP-1 receptor agonists (2020-present). Expert Opin Ther Pat 2023; 33:597-612. [PMID: 37870067 DOI: 10.1080/13543776.2023.2274905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Type 2 diabetes (T2DM) and obesity present significant global health issues, requiring the development of long-lasting and highly effective pharmacotherapies. Although glucagon-like peptide-1 receptor agonists (GLP-1RAs) are commonly used for diabetes treatment, their potential for addressing obesity is still being explored. AREAS COVERED This review offers a comprehensive overview of recently published patents from January 2020 to July 2023, focusing on modified GLP-1RAs, small molecule GLP-1RAs, GLP-1 R-based multi-agonists, GLP-1RA-based fusion proteins, and combination therapies. The patents discussed pertain to the treatment and prevention of diabetes and obesity. Patent searches were conducted using the PATENTSCOPE database of the World Intellectual Property Organization, using the keywords GLP-1, GLP-1/GIP, GLP-1/GCG, and GLP-1/GCG/GIP. EXPERT OPINION In recent years, patents have emphasized two main goals for developing GLP-1RAs drugs: oral delivery and improved weight reduction effects. To address the growing demand for improved treatments, researchers have focused their efforts on developing GLP-1 R-based multi-agonists, orally administered GLP-1RAs, and combination therapies utilizing GLP-1RAs. These new approaches offer promising benefits, such as improved effectiveness by targeting multiple pathways and reduced side effects. Additionally, the development of new uses, oral forms, and long-lasting preparations will be crucial in shaping the future market potential of GLP-1 drugs.
Collapse
Affiliation(s)
- Weiwen Lu
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, PR China
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, PR China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
11
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
12
|
Maselli D, Atieh J, Clark MM, Eckert D, Taylor A, Carlson P, Burton DD, Busciglio I, Harmsen WS, Vella A, Acosta A, Camilleri M. Effects of liraglutide on gastrointestinal functions and weight in obesity: A randomized clinical and pharmacogenomic trial. Obesity (Silver Spring) 2022; 30:1608-1620. [PMID: 35894080 PMCID: PMC9335902 DOI: 10.1002/oby.23481] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to determine the effects of a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide, and placebo subcutaneously over 16 weeks on weight and gastric functions and to evaluate associations of single-nucleotide polymorphisms in GLP1R (rs6923761) and TCF7L2 (rs7903146) with effects of liraglutide. METHODS The study conducted a randomized, parallel-group, placebo-controlled, 16-week trial of liraglutide, escalated to 3 mg subcutaneously daily in 136 otherwise healthy adults with obesity. Weight, gastric emptying of solids (GES), gastric volumes, satiation, and body composition measured at baseline and after treatment were compared in two treatment groups using analysis of covariance. RESULTS Liraglutide (n = 59) and placebo (n = 65) groups completed treatment. Relative to placebo, liraglutide increased weight loss at 5 and 16 weeks (both p < 0.05), slowed time to half GES (T1/2 ) at 5 and 16 weeks (both p < 0.001), and increased fasting gastric volume (p = 0.01) and satiation (p < 0.01) at 16 weeks. GES T1/2 was positively correlated with weight loss on liraglutide (both p < 0.001). After 16 weeks of liraglutide, GLP1R rs6923761 (AG/AA vs. GG) was associated with reduced percent body fat (p = 0.062), and TCF7L2 rs7903146 (CC vs. CT/TT) was associated with lower body weight (p = 0.015). CONCLUSIONS Liraglutide, 3 mg, induces weight loss with delay in GES T1/2 and reduces calorie intake. Slowing GES and variations in GLP1R and TCF7L2 are associated with liraglutide effects in obesity.
Collapse
Affiliation(s)
- Daniel Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Atieh
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew M Clark
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ann Taylor
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Duane D Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Irene Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - W Scott Harmsen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Adrian Vella
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Song R, Qian H, Wang Y, Li Q, Li D, Chen J, Yang J, Zhong J, Yang H, Min X, Xu H, Yang Y, Chen J. Research Progress on the Cardiovascular Protective Effect of Glucagon-Like Peptide-1 Receptor Agonists. J Diabetes Res 2022; 2022:4554996. [PMID: 35434139 PMCID: PMC9012640 DOI: 10.1155/2022/4554996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
The risk of cardiovascular diseases is closely related to diabetes. Macrovascular disease is the main cause of death and disability in patients with type 2 diabetes. In recent years, the glucagon-like peptide-1 receptor agonist (GLP-1RA), a new type of hypoglycemic drug, has been shown to regulate blood sugar levels, improve myocardial ischemia, regulate lipid metabolism, improve endothelial function, and exert a protective role in the cardiovascular system. This study reviewed the protective effects of GLP-1RA on the cardiovascular system.
Collapse
Affiliation(s)
- Rui Song
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yunlian Wang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qingmei Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dongfeng Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jishun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jingning Yang
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), China
- Institute of Virology, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
15
|
Vosoughi K, Atieh J, Khanna L, Khoshbin K, Prokop LJ, Davitkov P, Murad MH, Camilleri M. Association of Glucagon-like Peptide 1 Analogs and Agonists Administered for Obesity with Weight Loss and Adverse Events: A Systematic Review and Network Meta-analysis. EClinicalMedicine 2021; 42:101213. [PMID: 34877513 PMCID: PMC8633575 DOI: 10.1016/j.eclinm.2021.101213] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Comparative effectiveness of 7 glucagon-like peptide 1 (GLP-1) agents on weight loss (WL) in obesity remains unknown. METHODS We performed a systematic review, network meta-analysis (NMA) utilizing the following data sources: MEDLINE, EMBASE, Scopus, Cochrane Central and clinical trial registries, from inception to March 2, 2021. The prespecified criteria for study inclusion were randomized clinical trials (RCTs) of ≥12 weeks' duration. The data appraisal and extraction were performed by two investigators independently, using the published reports. The main outcomes and statistical methods were weight loss over placebo (WLOP) and adverse events (AEs) among GLP-1 agents using random-effects NMA (frequentist approach); relative ranking using surface under the cumulative ranking (SUCRA) method and certainty of evidence using grading of recommendations, assessment, development and evaluations (GRADE). FINDINGS 64 RCTs (from 2004 to 2021) included 27018 patients (median of age, 55.1 years old; 57.4% women; baseline weight 94.8kg and BMI 33.0kg/m2; trial duration 26 weeks). Direct meta-analysis showed significant WLOP with: -1.44kg (95% CI, -2.14 to -0.74) with dulaglutide ≥1.5 mg; -1.82kg (-2.42 to -1.23) with exenatide immediate release (IR); -2.20kg (-4.31 to -0.08) with exenatide extended release (ER); -3.20kg (-6.53 to 0.15) with efpeglenatide; -2.72kg (-3.35 to -2.09) with liraglutide ≤1.8mg; -4.49kg (-5.26 to -3.72) with liraglutide >1.8mg; -0.62kg (-1.22 to -0.02) with lixisenatide; -4.33kg (-5.71 to -3.00) with semaglutide SQ <2.4mg; -9.88kg (-13.17 to -6.59) with semaglutide SQ 2.4mg; -2.73kg (-4.81 to -0.65) with semaglutide oral; and -1.71kg (-2.64 to -0.78) with taspoglutide. Highest WLOP were with semaglutide SQ 2.4mg and <2.4mg, and liraglutide >1.8mg (SUCRAs 100, 86.1, 82.8 respectively). Highest SUCRAs for discontinuation due to AEs were with taspoglutide and liraglutide >1.8mg. Risk of bias was high or unclear for random sequence generation (29.7%), allocation concealment (26.6%), and incomplete outcome data (26.6%). Heterogeneity (I2 >50%) in WL and AEs reflected magnitude, not direction of effect.
Collapse
Affiliation(s)
- Kia Vosoughi
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jessica Atieh
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Lehar Khanna
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Larry J. Prokop
- Library-Public Service Department, Mayo Clinic, Rochester, MN
| | - Perica Davitkov
- Veterans Affairs Northeast Ohio Healthcare System and Case Western Reserve University, Cleveland, OH
| | - M. Hassan Murad
- Division of Preventive Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Ard J, Fitch A, Fruh S, Herman L. Weight Loss and Maintenance Related to the Mechanism of Action of Glucagon-Like Peptide 1 Receptor Agonists. Adv Ther 2021; 38:2821-2839. [PMID: 33977495 PMCID: PMC8189979 DOI: 10.1007/s12325-021-01710-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Obesity is a chronic disease associated with many complications. Weight loss of 5-15% can improve many obesity-related complications. Despite the benefits of weight reduction, there are many challenges in losing weight and maintaining long-term weight loss. Pharmacotherapy can help people with obesity achieve and maintain their target weight loss, thereby reducing the risk of obesity-related complications. The prevalence of obesity in the USA has been increasing over the past few decades, and despite the availability of approved anti-obesity medications (AOMs), people with obesity may not be accessing or receiving treatment at levels consistent with the disease prevalence. Reasons for low levels of initiation and long-term use of AOMs may include reluctance of public health and medical organizations to recognize obesity as a disease, lack of reimbursement, provider inexperience, and misperceptions about the efficacy and safety of available treatments. This article aims to inform primary care providers about the mechanism of action of one class of AOMs, glucagon-like peptide 1 receptor agonists (GLP-1RAs), in weight loss and longer-term maintenance of weight loss, and the efficacy and safety of this treatment class. GLP-1RA therapy was initially developed to treat type 2 diabetes. Owing to their effectiveness in reducing body weight, once-daily subcutaneous administration of liraglutide 3.0 mg has been approved, and once-weekly subcutaneous administration of semaglutide 2.4 mg is being investigated in phase III trials, for obesity management. Considerations regarding adverse effects and contraindications for different drug classes are provided to help guide treatment decision-making when considering pharmacotherapy for weight management in patients with obesity.
Collapse
Affiliation(s)
- Jamy Ard
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Angela Fitch
- MGH Weight Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sharon Fruh
- College of Nursing, University of South Alabama, Mobile, AL, USA
| | - Lawrence Herman
- Doctor of Medical Science Program, University of Lynchburg, Lynchburg, VA, USA
| |
Collapse
|
17
|
Brain-Gut-Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients 2021; 13:nu13020584. [PMID: 33578763 PMCID: PMC7916460 DOI: 10.3390/nu13020584] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
The obesity epidemic and its metabolic consequences are a major public health problem both in the USA and globally. While the underlying causes are multifactorial, dysregulations within the brain–gut–microbiome (BGM) system play a central role. Normal eating behavior is coordinated by the tightly regulated balance between intestinal, extraintestinal and central homeostatic and hedonic mechanisms, resulting in stable body weight. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food has played a crucial role in shifting this balance towards hedonic eating through both central (disruptions in dopaminergic signaling) and intestinal (vagal afferent function, metabolic toxemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. The balance between homeostatic and hedonic eating behaviors is not only influenced by the amount and composition of the diet, but also by the timing and rhythmicity of food ingestion. Circadian rhythmicity affects both eating behavior and multiple gut functions, as well as the composition and interactions of the microbiome with the gut. Profound preclinical effects of intermittent fasting and time restricted eating on the gut microbiome and on host metabolism, mostly demonstrated in animal models and in a limited number of controlled human trials, have been reported. In this Review, we will discuss the effects of time-restricted eating on the BGM and review the promising effects of this eating pattern in obesity treatment.
Collapse
|
18
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
19
|
Abstract
Communication pathways of the hypothalamus with other brain regions and the periphery are critical to successfully control key physiological and psychological processes. With advanced functional magnetic resonance imaging (fMRI) techniques, it is possible to target hypothalamic function and infer discrete hypothalamus networks. Resting-state functional connectivity (RSFC) is a promising tool to study the functional organization of the brain and may act as a marker of individual differences and dysfunctions. Based on recent fMRI findings, the hypothalamus is mostly connected to parts of the striatum, midbrain, thalamus, insula, frontal, cingulate, and temporal cortices and the cerebellum. There is a strong interplay of the hypothalamus with these regions in response to different metabolic, hormonal, and nutritional states. In a state of hunger, hypothalamus RSFC increases with a strong shift to reward-related brain regions, especially in person with excessive weight. Nutrient signals and hormones, as insulin, act on these same connections conveying reward and internal signals to regulate homeostatic control. Moreover, dysfunctional hypothalamus communication has been documented in persons with neurological and psychiatric diseases. The results implicate that patients with depression, epilepsy, and neurodegenerative diseases show mostly a reduction in hypothalamus RSFC, whereas patients with migraine and headache display predominantly increased hypothalamus RSFC. The extent of these changes and regions affected depend on the disorder and symptom severity. Whether hypothalamus RSFC can serve as a marker for disease states or is a prodromal neurobiological feature still needs to be investigated.
Collapse
|
20
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Ma N, He T, Johnston LJ, Ma X. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 2020; 11:1203-1219. [PMID: 32401136 PMCID: PMC7524279 DOI: 10.1080/19490976.2020.1758008] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tryptophan (Trp) is not only a nutrient enhancer but also has systemic effects. Trp metabolites signaling through the well-known aryl hydrocarbon receptor (AhR) constitute the interface of microbiome-gut-brain axis. However, the pathway through which Trp metabolites affect central nervous system (CNS) function have not been fully elucidated. AhR participates in a broad variety of physiological and pathological processes that also highly relevant to intestinal homeostasis and CNS diseases. Via the AhR-dependent mechanism, Trp metabolites connect bidirectional signaling between the gut microbiome and the brain, mediated via immune, metabolic, and neural (vagal) signaling mechanisms, with downstream effects on behavior and CNS function. These findings shed light on the complex Trp regulation of microbiome-gut-brain axis and add another facet to our understanding that dietary Trp is expected to be a promising noninvasive approach for alleviating systemic diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing100193, China
| |
Collapse
|
22
|
Inprasit C, Huang YC, Lin YW. Evidence for acupoint catgut embedding treatment and TRPV1 gene deletion increasing weight control in murine model. Int J Mol Med 2020; 45:779-792. [PMID: 31922226 PMCID: PMC7015137 DOI: 10.3892/ijmm.2020.4462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global health problem affecting the general population. Acupoint catgut embedding (ACE) is an alternative treatment that involves the implantation of absorbable catgut suture at acupoints. The transient receptor vanilloid member 1 (TRPV1) is a calcium ion channel that responds to several chemical ligands and is identified in numerous locations throughout the body. The aim of the present study was to examine the effect of ACE treatment on obesity and its associated complications through various neural mechanisms in a murine model. A C57/BL6 wild type (WT) and TRPV1‑/‑ (KO) mouse model was utilized to exclude any psychological factors associated with obesity. The WT‑HFD‑ACE and WT‑HFD‑SHAM groups received weekly ACE or placebo treatments at the bilateral ST36 acupoint. The mice were fed with a normal mice chow diet (ND) or a high‑fat food diet (HFD; 45 kcal%), and their body weights were recorded once a week. After 8 weeks, the subjects were sacrificed and changes in the levels of a number of biomarkers were investigated using ELISA, immunoblotting and immunofluorescence. The results indicated a significant decrease in body weight variation for the WT‑HFD‑ACE group compared with the WT‑HFD and WT‑HFD‑SHAM groups, using the WT‑ND group as the body weight baseline. By contrast, KO mice fed with ND or HFD demonstrated notable body weight maintenance throughout the experimental period. Similar patterns were observed in adipose tissue mass, glucose, leptin and insulin plasma levels, and protein molecule density of TRPV1 and its associated molecules in the hypothalamus and nucleus tractus solitarii. In contrast, in the prefrontal cortex, significant decreases in the concentrations of MAPK pathway proteins in the WT‑HFD and WT‑HFD‑SHAM groups were observed. The levels of these proteins were significantly increased in the WT‑HFD‑ACE and KO‑HFD groups. These results suggested that TRPV1 and its associated pathways may be involved in body weight maintenance, and may be controlled through ACE treatment or genetic manipulation.
Collapse
Affiliation(s)
- Chanya Inprasit
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University
| | - Yu-Chuen Huang
- College of Chinese Medicine, School of Chinese Medicine, China Medical University
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University
| |
Collapse
|
23
|
Sha S, Liu X, Zhao R, Qing L, He Q, Sun L, Chen L. Effects of glucagon-like peptide-1 analog liraglutide on the systemic inflammation in high-fat-diet-induced mice. Endocrine 2019; 66:494-502. [PMID: 31542859 DOI: 10.1007/s12020-019-02081-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Metabolic syndrome is a chronic-metabolic disease caused by a variety of factors, including high peripheral blood insulin levels and insulin resistance. It has been reported that GLP-1 could regulate insulin resistance. It is not known whether and how GLP-1 protects from fat-induced inflammation and immune changes. We investigated if GLP-1 alters the populations of fat-induced inflammation and immune cells and the related mechanism. METHODS We obtained obese C57BL/6J mice by feeding them high-fat food, then treated the obese mice with GLP-1+ high-fat diet (G + Hi), normal chow diet (Nor), or high-fat diet (Hi) (n = 20 for each group) for 8 weeks. The GLP-1 receptor-/- B6 group were fed with HFD for 8 weeks (GLP-1R KO + Hi). In vivo and in vitro experiments were conducted on mice immune cells to investigate the effects of GLP-1 on the changes of the immune components and functions in obesity. RESULTS We found that GLP-1 could efficiently change the CD4+ T subsets and level of cytokines in high-fat-induced mice by GLP-1 receptor. Further, these changes were correlated with a reduction in fat content and serum lipid level. Interestingly, GLP-1 could enhance the function of Tregs in vitro. CONCLUSION Our data showed that GLP-1 has an important role in shaping the CD4+ T population in high-fat-diet-induced mice by GLP-1 receptor, possibly providing a new target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Sha Sha
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Xiaoming Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Li Qing
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China.
| |
Collapse
|
24
|
Farr OM, Upadhyay J, Rutagengwa C, DiPrisco B, Ranta Z, Adra A, Bapatla N, Douglas VP, Douglas KA, Nolen-Doerr E, Mathew H, Mantzoros CS. Longer-term liraglutide administration at the highest dose approved for obesity increases reward-related orbitofrontal cortex activation in response to food cues: Implications for plateauing weight loss in response to anti-obesity therapies. Diabetes Obes Metab 2019; 21:2459-2464. [PMID: 31282006 PMCID: PMC6800581 DOI: 10.1111/dom.13827] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
AIMS GLP-1 analogs have recently risen to the forefront as effective medications for lowering weight through actions in the central nervous system (CNS). However, their actions in the CNS have not yet been studied in the human brain after longer-term administration at the highest dose approved for obesity (liraglutide 3.0 mg). MATERIALS AND METHODS A total of 20 participants with obesity were treated with placebo and liraglutide (3.0 mg) in the context of a randomized, placebo-controlled, double-blind, cross-over trial after 5 weeks of dose escalation. Neurocognitive and neuroimaging (fMRI) responses to food cues were examined at the clinical research center of Beth Israel Deaconess Medical Center. RESULTS While using liraglutide, patients lost more weight (placebo-subtracted -2.7%; P < .001), had decreased fasting glucose (P < .001) and showed improved cholesterol levels. In an uncontrolled analysis, brain activation in response to food images was not altered by liraglutide vs placebo. When controlled for BMI/weight, liraglutide increased activation of the right orbitofrontal cortex (OFC) in response to food cues (P < .016, corrected for multiple comparisons). CONCLUSIONS In contrast to prior studies, we demonstrate for the first time that liraglutide treatment, administered over a longer period at the highest doses approved for obesity, does not alter brain activation in response to food cues. A counter-regulatory increase in reward-related OFC activation in response to food cues can be observed when neuroimaging data are controlled for BMI changes, indicating changes in CNS that could lead to later plateaus of weight loss. These data point to a promising focus for additional interventions which, by contributing to the CNS reward system, could provide tangible benefits in reversing the plateauing phenomenon and promoting further weight loss.
Collapse
Affiliation(s)
- Olivia M. Farr
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
- Address correspondence to: Olivia Farr, Ph.D., Beth Israel Deaconess Medical Center, 330 Brookline Ave, Stoneman 820, Boston, MA 02215, Phone: 617-667-8636, Fax: 617-667-8634,
| | - Jagriti Upadhyay
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Chelsea Rutagengwa
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Bridget DiPrisco
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Zachary Ranta
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Amal Adra
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Neha Bapatla
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Vivian P. Douglas
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Konstantinos A. Douglas
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Eric Nolen-Doerr
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Hannah Mathew
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Christos S. Mantzoros
- Division of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
- Section of Endocrinology, VA Boston Healthcare System, Boston, MA 02130
| |
Collapse
|
25
|
Farr OM, Pilitsi E, Mantzoros CS. Of mice and men: incretin actions in the central nervous system. Metabolism 2019; 98:121-135. [PMID: 31173757 DOI: 10.1016/j.metabol.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Incretins have risen to the forefront of therapies for obesity and related metabolic complications, primarily because of their efficacy and relatively few side effects. Importantly, their efficacy in altering energy balance and decreasing body weight is apparently through actions in the central nervous system (CNS); the latter may have implications beyond obesity per se, i.e. in other disease states associated with obesity including CNS-related disorders. Here, we first describe the role of the CNS in energy homeostasis and then the current state of knowledge in terms of incretin physiology, pathophysiology and efficacy in preclinical and clinical studies. In the future, more clinical studies are needed to fully map mechanistic pathways underlying incretin actions and outcomes in the human CNS. Additionally, future research will likely lead to the discovery of additional novel incretins and/or more efficacious medications with less side effects through the improvement of current compounds with properties that would allow them to have more favorable pharmacokinetic and pharmacodynamic profiles and/or by combining known and novel incretins into safe and more efficacious combination therapies leading ultimately to more tangible benefits for our patients.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States of America.
| | - Eleni Pilitsi
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States of America
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States of America; Section of Endocrinology, VA Boston Healthcare System, Boston, MA 02130, United States of America
| |
Collapse
|
26
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Peradze N, Farr OM, Mantzoros CS. Research developments in metabolism 2018. Metabolism 2019; 91:70-79. [PMID: 30503805 DOI: 10.1016/j.metabol.2018.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Natia Peradze
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America.
| | - Olivia M Farr
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America
| | - Christos S Mantzoros
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
28
|
Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS One 2018; 13:e0201772. [PMID: 30080865 PMCID: PMC6078307 DOI: 10.1371/journal.pone.0201772] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/20/2018] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE A growing body of preclinical and clinical literature suggests that brain-gut-microbiota interactions play an important role in human health and disease, including hedonic food intake and obesity. We performed a tripartite network analysis based on graph theory to test the hypothesis that microbiota-derived fecal metabolites are associated with connectivity of key regions of the brain's extended reward network and clinical measures related to obesity. METHODS DTI and resting state fMRI imaging was obtained from 63 healthy subjects with and without elevated body mass index (BMI) (29 males and 34 females). Subjects submitted fecal samples, completed questionnaires to assess anxiety and food addiction, and BMI was recorded. RESULTS The study results demonstrate associations between fecal microbiota-derived indole metabolites (indole, indoleacetic acid, and skatole) with measures of functional and anatomical connectivity of the amygdala, nucleus accumbens, and anterior insula, in addition to BMI, food addiction scores (YFAS) and anxiety symptom scores (HAD Anxiety). CONCLUSIONS The findings support the hypothesis that gut microbiota-derived indole metabolites may influence hedonic food intake and obesity by acting on the extended reward network, specifically the amygdala-nucleus accumbens circuit and the amygdala-anterior insula circuit. These cross sectional, data-driven results provide valuable information for future mechanistic studies.
Collapse
|
29
|
Mehat K, Corpe CP. Evolution of complex, discreet nutrient sensing pathways. Curr Opin Clin Nutr Metab Care 2018; 21:289-293. [PMID: 29846195 DOI: 10.1097/mco.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current review summarizes and discusses current research on differences elicited between sugars and nonnutritive sweeteners via sugar-sensing pathways. RECENT FINDINGS Sugars, sweeteners, and sweetening agents are all perceived as sweet tasting because of their ability to bind to the type 1 taste receptor family of sweet taste receptors in the oral cavity. The ability of a wide variety of chemical ligands to activate the sweet taste receptor highlights the importance of sweet-tasting foods during human evolution. The sweet taste receptor has been located in the gut, and differences between oral and gut sugar-sensing pathways are discussed. SUMMARY Differences in the sweetness transduction cascade, and neuronal signalling may result in incretin hormone release upon activation of the sweet taste receptor from some sweeteners, but not others.
Collapse
Affiliation(s)
- Kirnjot Mehat
- Diet and Cardiovascular Health Group, Nutritional Sciences Division, King's College London, London, United Kingdom
| | | |
Collapse
|
30
|
Coveleskie K, Kilpatrick LA, Gupta A, Stains J, Connolly L, Labus JS, Sanmiguel C, Mayer EA. The effect of the GLP-1 analogue Exenatide on functional connectivity within an NTS-based network in women with and without obesity. Obes Sci Pract 2017; 3:434-445. [PMID: 29259802 PMCID: PMC5729499 DOI: 10.1002/osp4.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Objective The differential effect of GLP-1 agonist Exenatide on functional connectivity of the nucleus tractus solitaries (NTS), a key region associated with homeostasis, and on appetite-related behaviours was investigated in women with normal weight compared with women with obesity. Methods Following an 8-h fast, 19 female subjects (11 lean, 8 obese) participated in a 2-d double blind crossover study. Subjects underwent functional magnetic resonance imaging at fast and 30-min post subcutaneous injection of 5 μg of Exenatide or placebo. Functional connectivity was examined with the NTS. Drug-induced functional connectivity changes within and between groups and correlations with appetite measures were examined in a region of interest approach focusing on the thalamus and hypothalamus. Results Women with obesity reported less hunger after drug injection. Exenatide administration increased functional connectivity of the left NTS with the left thalamus and hypothalamus in the obese group only and increased the correlation between NTS functional connectivity and hunger scores in all subjects, but more so in the obese. Conclusions Obesity can impact the effects of Exenatide on brain connectivity, specifically in the NTS and is linked to changes in appetite control. This has implications for the use of GLP-1 analogues in therapeutic interventions.
Collapse
Affiliation(s)
- K. Coveleskie
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
| | - L. A. Kilpatrick
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - A. Gupta
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - J. Stains
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
| | - L. Connolly
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - J. S. Labus
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - C. Sanmiguel
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - E. A. Mayer
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- Ahmanson‐Lovelace Brain Mapping CenterUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|